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Introduction

The legendary collaborative research project (German 
abbreviation: SFB) No. 230 “Natural Constructions” was 
established in Stuttgart, Germany, in 1984, the same year 
the famous Santa Fe Institute (SFI) was established in 
Santa Fe, New Mexico. In the opening workshop of the 
latter, one of the founders of the SFI, the Nobel laureate 
Murray Gell-Mann, said,

A new subject is taking shape, which has roots in cognitive 
science, in nonlinear systems dynamics, and in many parts of 
the physical, biological, and even the behavioral sciences. 
Some people call it self-organization, others complex systems 
theory, others synergetics, and so forth. It tries to attack the 
interesting question of how complexity arises from the 
association of simple elements.1

Complexity and interdisciplinarity are not only the key-
words to characterize the scientific profile of the SFI, they 

also describe the scientific aspiration of the SFB 230.2 Frei 
Otto was the spiritus rector of this SFB and one of its lead-
ing figures during the first 8 years. It was evident to him 
that the design of urban structures, from the architecture of 
buildings to the transportation infrastructure of cities and 
the regional planning of settlements, cannot be understood, 
and not be revived, without understanding the fundamental 
principles of self-organization. And this cannot be achieved 
without involving disciplines other than architecture, con-
struction engineering, and town planning, that is, natural 
sciences such as biology and physics.
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This is the reason why one of the authors (F.S.) joined 
the SFB 230 in early 1992, to contribute to a sub-project 
E2 Principles of Self-Organization and Evolution lead 
by Werner Ebeling. Our task was precisely to develop 
formal models, to explain, and to simulate the evolution 
of urban structures, bottom-up. We could build on the 
phenomenological understanding of these processes 
already developed by architects and town planners, such 
as Frei Otto,3 Eda Schaur4 and Klaus Humpert,5 just to 
name a few.

In November 1991, Frei Otto has just published a small 
booklet in the Concept Series of the SFB 230, a series 
aimed at steering the discussion rather than publishing 
firm results. It was titled “The natural construction of 
grown settlements” (published in German: Die natürliche 
Konstruktion gewachsener Siedlungen).3 This booklet, 
which also summarized some insights of the dissertation 
of Eda Schaur from the same year, became in some sense 
the guideline for our research for the coming 4 years. It 
sketched, with the hand-written text corrections and hand-
drawn illustrations by Frei Otto, the two fundamental pro-
cesses we should model by means of an abstract approach: 
“Erschliessen,” the process of accessing space, and 
“Besetzen,” the process of occupying space. The paragon 
for accessing space was the trail system, not just of 
humans but also of other biological species (p. 65 of the 
mentioned booklet contains the trail system of a mice set-
tlement near Warmbronn, hand-drawn by Frei Otto). 
Paragons for occupying space were natural forms such as 
foams or bubble floats, meshes, and also non-planned 
human settlements, which are captured in the eminent 
book by Eda Schaur.4

It was obvious already at the phenomenological level 
that these two processes of access and occupation, or 
transportation and aggregation, as we will call them in 
the following, are inherently tight to each other. Accessing 
space is the precondition of its subsequent occupation, 
but existing occupations also shape the further evolution 
of the structures that connect them. Hence, we face the 
problem of co-evolution, where two levels of different 
structures and functions feed back on each other (see 
Figure 1). This clearly defines the problem we need to 
solve: (1) to model, for each layer separately, the evolu-
tion of the structure, for example, the trail system and the 
urban aggregation and (2) to combine these two layers in 
a generalized system model, to study their mutual feed-
back and co-evolution.

This sets the stage for the rest of this article. We will 
first discuss the general concept for modeling these struc-
tures by means of an adaptive landscape. Then, we demon-
strate by means of examples how such structures evolve, 
for transportation and aggregation separately. Eventually, 
we sketch how a model to combine these two layers shall 
look like.

Agent-based models of urban 
structures

Generalized communication

Methodologically, we follow the bottom-up approach, that 
is, we start from the mentioned question of how “complex-
ity arises from the association of simple elements.” These 
elements, commonly denoted as agents, represent the units 
of the system which generate the structure. Agents are a 
rather abstract representation of entities with a certain 
demand. In line with the problem description given above, 
we use two different types of agents, entities with the need 
of assessing space and entities with the need of occupying 
space. These agents follow a given dynamics, that is, the 
need transforms into some sort of activity in time, which is 
in our case to move (accessing space) and to aggregate 
(occupying space). This means that agents are not simply 
equal to, for example, humans, although humans and other 
biological species assess and occupy space.

Urban systems can be seen as instances of complex sys-
tems, that is, they consist of a large number of heterogene-
ous agents that are “similar,” but not identical with respect 
to their properties. The interaction between these agents at 
the micro level results in the formation of urban structures 
at the macro level. This is often denoted as emergence, the 
sudden occurrence of new system qualities once certain 
critical parameters, known as thresholds or tipping points, 
are reached. These new system qualities cannot be decom-
posed or reduced to the properties of individual agents, 
which is a feature of all self-organizing systems. Self-
organization describes “the process by which individual 
subunits achieve, through their cooperative interactions, 

Figure 1.  Two-layer description of urban structures: (bottom 
layer) urban aggregation and (top layer) transportation system. 
Both layers influence each other in their evolution. The 
feedback is mediated by some meta-agents (see Co-evolution of 
urban structures section).
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states characterized by new, emergent properties tran-
scending the properties of their constitutive parts.”6

How shall we then model the “cooperative interactions” 
between a large number of agents, in a general way? Today, 
the complex network approach has become fashionable. It 
decomposes all interactions between agents into binary 
interactions, that is, interactions between two individual 
agents which are represented by links, while the agents are 
represented by the nodes of the network. Such a descrip-
tion has many disadvantages if we want to model urban 
structures. First, we have to consider the (two-dimensional) 
physical space, that is, interactions between agents are 
bound to some defined spatial neighborhood. Second, in 
many situations, agents do not interact directly, but indi-
rectly by means of a medium. Taking the example of an 
emerging trail system, agents are not attracted to other 
agents but to the trail they commonly use.

We can describe this kind of interaction as generalized 
communication,7 that is, agents “read” and “write” informa-
tion which is exchanged by a “communication field.” The 
latter serves as a medium that couples the different agents in 
a weighted manner, that is, it takes the spatial distance, the 
dissemination, and the aging of information into account. 
With respect to urban structure formation, we can see this 
communication field as an adaptive landscape that is shaped 
by the actions of all agents collectively, but also feeds back 
on their actions. This feedback is described in Figure 2.

We will illustrate the role of the adaptive landscape and 
its meaning in urban structure formation in the following 
sections. But before, we want to make a general comment. 
At a time, where we celebrate the 100th anniversary of 
Albert Einstein’s general relativity theory, it is worth not-
ing that even in physics particles “communicate” indi-
rectly via fields. Electrons generate an electrostatic field 
that “communicates” their position and electric charge to 
other particles. And these particles “respond” differently to 
this information. Positrons are attracted, whereas other 
electrons are repelled. In the same vein, mass generates a 
gravitational field. More precisely, as Albert Einstein 
noticed in his seminal theory, mass curves physical space 
which in turn influences the motion of other masses and 
even of light. So, physical space can be seen as an adaptive 
“landscape” that constantly adapts to the distribution of 
mass while affecting its position.

In the following, we build our conceptual approach for 
the evolution of urban structures on such adaptive land-
scapes. These landscapes are only generated by the agents 
and in turn influence their further action. But they can also 
follow an eigen dynamics, that is, the information con-
tained in these landscapes can diffuse and decay by itself, 
without the involvement of agents.

Agent-based models of trail formation

Trail formation gives a lucid example of how the adaptive 
landscape is generated by the agents. We assume that 
agents move in a two-dimensional physical space and 
leave a marker at each position they visit (“writing”). 
These markers can be sensed by other agents if they are in 
the immediate vicinity (“reading”). Agents then decide 
with a certain probability to follow the existing markers 
(“acting”).

Ants, for example, use different chemical markers, so-
called pheromones, to mark their trails and to provide cues 
for other ants. All the markers together define the informa-
tion field h t( , )r  that depends on the position r  in the two-
dimensional space and on time t. This field follows its 
own dynamics: if no new markers are created at a given 
position, the field decays over time, for example, the 
chemicals decompose. This way, the field constantly 
adapts to the current movement of the agents; it increases 
at positions highly visited and decreases otherwise.

Agents evaluate this information by measuring the gra-
dient of the field, that is, they prefer to move into the direc-
tion of higher values. Their motion can be seen as a hike in 
the adaptive landscape that is changed by every step. 
Agents try to follow a route along the “mountain ridge” 
(see Figure 3). This reinforces the existing markers, which 
in turn attracts more agents. Eventually, all agents move 
along the same trail which becomes visible by the high 
concentration of information, for example, of chemical 
markers. Pedestrians may not use such markers, but they 
leave footprints cutting the grass which serves the same 
purpose.8

To observe directed movements between two locations, 
A  in the center and B  in the periphery, we use two dif-

ferent kinds of markers that generate their own field. In 
the example of Figure 4, we note that the information 

Figure 2.  (Left) Feedback between agents and the adaptive landscape. (Right) mass curves space which influences other masses.
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generated by the agents moving from A to B affects agents 
moving in the opposite direction, and vice versa. This indi-
rect feedback helps agents starting from A to find their way 
to any of the peripheral locations in B  and the other way 
round. If agents would only follow their own information, 
they would get stuck in either A  or B  because the gradi-
ent would always point back to their origin.

Agent-based models of urban aggregation

Similar to trail systems, also the evolution of urban aggre-
gates can be modeled by means of agents creating, and 
interacting with, an adaptive landscape. We note that in 
this case, the agents, in an abstract manner, represent enti-
ties with a different demand, namely of occupying space, 

which also translates into a different activity, namely to 
aggregate. Occupying space depends on two kinds of 
“resources,” a demand (represented by the agent) to 
occupy a (free) site and a supply, that is, the availability of 
free sites. Hence, we face the problem to first match supply 
and demand, which only leads to the desired activity, to 
aggregate. Therefore, occupation combines two different 
processes, the search process, to find the right place, and 
the process to settle, that is, a transition from being mobile 
during the search to becoming immobile.

Both the search and the settle processes depend on 
information about the already existing urban aggregation, 
which is captured in an adaptive landscape. While this 
information is generated by the existing build-up area, it 
can also spread out to the neighborhood. For example, 
downtown Manhattan creates an attraction potential that 
also spills over to adjacent areas. To account for this, the 
adaptive landscape, denoted by g t( , )r  for urban settle-
ments, is created by agents that represent existing built-up 
units C0 , which do not move (see Figure 5). Another type 
of agents, C1 , represents growth units, which are potential 
build-up units searching for the best location to “settle.” 
These units are created far outside of the center, taking into 
account free space, A, and demand for settlement space, 
B. In their search for an optimal location, the C1  agents 
follow the gradient of the adaptive landscape, trying to get 

Figure 4.  (Left) Feedback between agents and the adaptive landscape in case of directed trails. (Right) Self-organized trails to 
connect a center with locations at the periphery.10

Figure 5.  (Left) Feedback between agents and the adaptive landscape for urban aggregation. (Right) Urban attraction field of the 
south-east built-up area of Berlin/Potsdam (1910).11

Figure 3.  An adaptive landscape representing a trail between 
two locations R0  and R1.9
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as close as possible to the maximum. The rate at which 
growth units transform into real build-up units, that is, 
become immobile, also increases with the value of g t( , )r .  
That means the C1  agents likely “settle” before they have 
reached the maximum of the adaptive landscape.

This agent-based model, known as A B C- -  model,11 is 
able to reproduce two empirical observations in the 
growth of large urban settlements: (1) as time progresses, 
urban growth zones shift toward outer regions of the 
urban area and sometimes concentrate around suburbs, 
and (b) the urban center, although most attractive, does 
not further grow in size. The latter means that construc-
tion activities aim at reusing existing built-up areas, but 
not to fill existing free space. The fractal-like structure of 
and the cluster size distribution12 of urban settlement 
areas are still kept.

We note that a similar agent-based model13 is able to 
reproduce the emergence of urban centers at a certain crit-
ical distance from each other. This was one of the key 
propositions of the central place theory developed by 
Walter Christaller14 in 1933 (see Figure 6). In this model, 
the adaptive landscape reflects the spatial distribution of 
production, which defines an average wage paid to the 
workers at a particular location. Agents represent either 
employed (C0 ) or unemployed (C1 ) workers. Unemployed 
workers can migrate and take into account gradients in 
the wage, that is, they prefer to move to places that pay a 
higher wage. If they become employed workers, they no 
longer migrate but settle and start contributing to the pro-
duction, this way increasing the average wage at that 
place. Figure 6 shows such a spatial distribution of pro-
duction centers from a simulation. The critical distance 
between the centers allows them to coexist, in agreement 
with the theory of Walter Christaller. But the emergence 
of the critical distance is a self-organized phenomenon, 
resulting from the transition of broadly distributed centers 
with low productivity to localized distant centers with 
high productivity.

Co-evolution of urban structures

So far, we have outlined a conceptual approach to model 
trail systems and urban aggregation, separately. We now 
want to combine these two sub-systems into a model of 
co-evolution. As already explained, trail systems, or trans-
portation systems in general, allow to access space, which 
is the precondition of urban settlements. But existing urban 
aggregations also shape the way the transportation system 
evolves further, that is, there is a mutual feedback between 
transportation and aggregation as indicated in Figure 1.

We note that, within our conceptual approach, each of 
these sub-systems is described by an adaptive landscape, 
which is generated by the agents and feeds back on their 
further options, to move or to settle. So, it is natural to 
assume that the co-evolution is modeled by combining 
these two adaptive landscapes.

Figure 7 gives an example of such a combined land-
scape for a mice settlement.9 These mice live inside a barn 
(with the option to enter and leave), where they also find 
food. They shelter in different nestboxes and can freely 
move between them. These boxes represent the built-up 
areas that are attractive to the mice. There attractiveness is 
indicated in the adaptive landscape by narrow spikes that 
point down, that is, mice try to move to the minima of the 

Figure 6.  (Left) Sketch of the spatial distribution of central places of hierarchical importance.14 (Right) Emergence of economic 
centers from a broad spatial distribution economic activities.13

Figure 7.  Adaptive landscape of a mice settlement with trails 
and nest boxes.9
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landscape (because here the landscape is inverted for a bet-
ter view). The movement of the mice occurs along pre-
ferred routes in the barn that can be identified in the 
adaptive landscape as valleys with a straight orientation. 
The deeper the valleys, the more frequently they are used. 
Areas with higher elevation indicate that mice do not move 
there and also do not settle there.

While this picture gives us a graphic idea of how such a 
combined landscape, covering settlements and trail sys-
tems, shall look like, it has the major drawback of being 
static instead of dynamic. The locations of the nestboxes 
are given and the spikes are therefore imposed to the land-
scape, but at least the trail system in reality constantly 
adapts with respect to the usage by the mice.

To capture the co-evolution between transportation and 
aggregation structures, we utilize a two-layer approach, 
also shown in Figure 1. Each layer contains only one struc-
ture, either aggregation or transportation. To obtain the 
same for the information field, we need to disentangle the 
combined adaptive landscape, as it is shown in Figure 8. 
Both layers now contain different information, either about 
the existing transportation structure, h t( , )r , or about the 
existing urban aggregation, g t( , )r . But they use the same 
spatial coordinate system, that is, a specific location is rep-
resented in both layers at the same position r .

The main challenge is then to model the feedback 
between these two layers. This is indicated in Figure 1 by 
means of some “agents.” These are obviously not identical 
to the rather abstract agents representing either the need of 
accessing or occupying space, in each layer separately. 
Instead, these are meta-agents which combine these 

different needs, and they can be seen more like humans. To 
elucidate how such a combination could look like at a 
mathematical level, let us assume that agents on the trans-
portation layer are described by a function [ , , ( , )]x h tu r ,  
where x  denotes the agent, h t( , )r  denotes the informa-
tion field that couples the processes to collectively gener-
ate the transportation structure, and u  denotes a set of 
control parameters to represent the boundary conditions. 
Agents on the occupation layer, on the other hand, are 
described by a function [ , , ( , )]y g tv r , where y  denotes 
the agent, g t( , )r  denotes the information field that cou-
ples the processes to collectively generate the urban aggre-
gation, and v  denotes a set of control parameters to 
represent the respective boundary conditions. The meta-
agent z  then is described by a function Ω [ ]z, ,F K  that 
combines these two needs and, hence, considers the two 
different kinds of information stored in the adaptive land-
scapes h t( , )r  and g t( , )r . What sounds rather abstract is a 
mathematically convenient, and transparent, way of com-
bining the separate models. But we are not discussing spe-
cific forms for the functions Ω,  , and   here.

Figure 9 illustrates the co-evolution of the transporta-
tion and the aggregation layers by showing the respective 
adaptive landscapes. Changes in the urban aggregation 
feed back, at a later time step, on the transportation struc-
ture via the meta-agents that adjust their demand for trans-
portation based on the recent supply of built-up area. The 
resulting changes in the transportation structure in turn 
feed at the next time step on the aggregation structure. 
Precisely, a supply in transportation at a given time results 
in new attraction zones for the growth units that create the 

Figure 8.  Conceptual representation of the combined adaptive landscape (mixed color) and its decomposition into the two 
adaptive landscapes for transportation (orange) and urban aggregation (blue.
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built-up area afterwards. If new build-up areas are sup-
plied, this generates a new demand for transportation and 
so forth. Hence, both layers co-evolve in time.

Conclusion

Our article describes a conceptual approach, that is, a prin-
cipal way, to model the co-evolution of urban structures. It 
addresses an important issue for agent-based urban simu-
lations, for which we propose a novel approach. In this 
article, we do not implement this approach to run real com-
puter simulations, as this would imply considerable 
resources. Instead, in the following, we move the above 
discussion to a more general level, addressing some pros 
and cons of our conceptual approach.

System representation

There are different modeling approaches for the dynamics 
of systems comprising a large number of interacting ele-
ments. The so-called systems dynamics approach builds 
on representative agents, that is, instead of many similar 
agents interacting one typical agent is used to represent all 
agents of that kind. A prominent example is macro-eco-
nomics, where models use a small number of different 
agents, for example, the firm and the customer, to focus 
on the nonlinear feedback between these representative 
agents.

The multi-agent approach, on the other hand, builds on 
the interaction between a large number of individual agents 
and the focus is on the emergent system properties, not on 
the role of single agents. These agents are heterogeneous, 
that is, they are similar, but not identical, and there can be 
different types of agents in the model.

To model the emergence of urban structures, we have 
used two different types of agents, one representing the 
need of assessing space and the other one representing the 
need of occupying space. These agents are a rather abstract 
representation of a certain demand that has to be satisfied 

collectively. To model the co-evolution of urban structures, 
we combine these different needs in meta-agents that can 
be seen more like humans.

Bottom-up approach

Agent-based modeling is essentially a bottom-up approach, 
which means that in our model there is no hierarchical 
planning or centralized control of the processes generating 
urban structures. Instead, these structures emerge from the 
collective interaction once critical tipping points are 
crossed. As with all self-organizing processes, it remains a 
challenge to predict when this is the case and how these 
structures eventually will look like.

This raises the question how such processes can still be 
influenced. As any other processes, self-organization 
depends on boundary conditions that set limits, for exam-
ple, to the urban structures that can potentially emerge. In 
our case, these boundary conditions are given by the phys-
ical and political geography of the area (lakes, deserts, and 
borders), the topology of the landscape (mountains and 
valleys), and also by available resources, for example, by 
the free space that can be potentially accessed/occupied. 
Hence, it is possible to design (some) boundary conditions, 
for example, by restricting the access to space or by limit-
ing resources for transportation. These conditions then 
limit the possible urban structures, but do not explain 
which of these emerge.

We can also influence the interaction between agents, 
for example, their contribution to or their response to 
the information field generated collectively. If the 
attraction of existing urban structures is increased, this 
will lead to denser occupation patterns and more con-
centrated transportation structures. Hence, while our 
modeling approach does not lead to pre-determined 
structures, it still allows to vary, and to influence, some 
of the properties on the “macroscopic,” or systemic, 
level by controlling interaction properties on the “micro-
scopic,” or agent, level.

Figure 9.  Co-evolution of two different urban structures, aggregations (lower layer) and transportation structures (upper layer), 
illustrated by means of their respective adaptive landscape. Arrows indicate the feedback between the two layers.
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Statistical ensembles

Architects and town planners may wish for simulation tools 
that generate life-like visualizations of urban processes. 
This is precisely not the aim of our conceptual approach to 
model urban structures. Like a flight simulator, such simu-
lation tools can be quite helpful to learn to “fly,” but they 
are essentially not useful to understand the system, that is, 
to identify the driving factors of its dynamics.

We aim at a minimalistic modeling approach, to high-
light the generic features of a whole class of urban struc-
tures. We follow the principle of Occam’s razor, or lex 
parsimoniae, to only consider the minimal set of assump-
tions needed to explain a certain phenomenon. Therefore, 
our approach does not contain as much details as possible, 
but only as much as necessary to obtain emergent urban 
structures. This helps us to understand what assumptions 
are essentially not needed to make the outcome happen, 
but are a nice-to-have modeling ingredient to produce a 
more life-like outcome. In order to focus on the emergence 
of systemic properties, it is also important to not already 
encode the expected outcome into the model. For example, 
preferred areas for urban settlements have to be a result 
rather than an input of the model.

How does our approach cope with the mentioned lim-
ited predictability of urban structures? Of course, when we 
run computer simulations of the agent-based model imple-
mented, we will receive in each run a (slightly) different 
outcome for the aggregation and transportation patters. 
This way, our modeling approach generates a statistical 
ensemble of possible outcomes that are all compatible with 
the given interactions and boundary conditions. That is, it 
highlights the inherent potential for the urban develop-
ment, instead of focusing on a designed solitary solution.

Hence, our approach results in a so-called null model 
for urban structures that defines a class of possible solu-
tions. A null model is a powerful tool for testing statistical 
hypotheses. If it is a good null model, then the (one) real-
ized solution will be part of this ensemble. But even if it is 
not, we can get a more fundamental understanding of 
urban processes by analyzing the differences between the 
modeled structures and the real ones. Such deviations then 
may lead us to the heart of urban planning, distinguishing 
the outcome of generic principles from the impact of 
design, to obtain an optimized solution.

Calibration and validation

How can we then know that our modeling approach is still 
correct? We argue that the model is valid if it is able to 
reproduce stylized facts which are, according to the econo-
mist Nicholas Kaldor,15 “stable patterns that emerge from 
many different sources of empirical data, that is, observa-
tions made in so many contexts that they are widely under-
stood to be empirical truths, to which theories must fit.”

Such stylized facts are, with respect to economic geog-
raphy, already summarized in Walter Christaller’s central 
place theory,14 pointing out to characteristic distances 
between urban centers at different levels of hierarchy. For 
the case of non-planned settlements and transportation 
systems, the stylized facts about urban structures are cap-
tured in the eminent book by Eda Schaur.4 For more spe-
cific observations, like the fractal structure of urban 
settlements, books by Klaus Humpert,5,16 Pierre 
Frankhauser17 or Michael Batty18 have contributed to iden-
tify stylized facts about the shape, the cluster sizes, and the 
spatial distribution of built-up areas.

For our modeling approach, stylized facts form the refer-
ence point, rather than specific, and often singular, historic 
observations. From these “robust patterns,” we derive input 
parameters needed to set up agent-based computer simula-
tions, such as the mean density of settlements, its fractal 
dimension, and characteristic distances between centers, 
but also extrapolations for the demand for built-up area. We 
cannot, however, infer from these patterns specific model 
parameters such as the attraction strength of existing aggre-
gations, the decay rate of the information field, and the sen-
sitivity toward such information. Those model parameters 
can be only found by comparing the simulation outcome 
with the stylized observations. Hence, in all cases, we need 
a sensitivity analysis to estimate the impact of certain model 
parameters on the aggregated outcome.

A multi-layer approach

The emphasis of our modeling approach is not on simply 
reproducing settlement patterns or transportation struc-
tures, a task already addressed in the stand-alone models. 
Our main focus is on the co-evolution of these two urban 
structures that are very different in their origin and func-
tion. To capture this co-evolution as shown in Figure 9, we 
utilize a two-layer approach. Each layer contains only one 
structure, either aggregation or transportation, and its 
dynamics is governed by different kinds of agents repre-
senting different needs. The important idea in our approach 
is the feedback between these two layers, modeled by 
meta-agents that combine the different agents from each 
layer. This allows to consider the impact of one structure 
on the other one, for example, the impact of transportation 
on the adaptation of the urban settlement pattern. This 
adaptation causes an impact back on the transportation 
structure to cope with the further demand resulting from 
the existing urban settlement and so forth.

The driving force behind this urban co-evolution is the 
demand for new built-up areas, which is essentially driven 
by the growth of population in urban areas. This is assumed 
as exogenous to our modeling approach. This demand, 
together with the availability of free space, determines the 
growth rate of the urban settlement (“how much?”), but 
not the spatial distribution (“where?”). The latter depends 
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on the attraction of the existing built-up area, and also on 
the availability of transportation means, to access space. 
Without existing settlements, there is no demand to expand 
transportation, and without existing transportation, there is 
no possibility to expand urban settlements. Hence, it is 
essentially not possible to understand, or to model, the 
change of urban settlement structures without the perspec-
tive of co-evolution.
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