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Abstract Complex software development projects rely on the contribution of teams of
developers, who are required to collaborate and coordinate their efforts. The productivity of
such development teams, i.e., how their size is related to the produced output, is an impor-
tant consideration for project and schedule management as well as for cost estimation. The
majority of studies in empirical software engineering suggest that - due to coordination
overhead - teams of collaborating developers become less productive as they grow in size.
This phenomenon is commonly paraphrased as Brooks’ law of software project manage-
ment, which states that “adding manpower to a software project makes it later”. Outside
software engineering, the non-additive scaling of productivity in teams is often referred to as
the Ringelmann effect, which is studied extensively in social psychology and organizational
theory. Conversely, a recent study suggested that in Open Source Software (OSS) projects,
the productivity of developers increases as the team grows in size. Attributing it to collec-
tive synergetic effects, this surprising finding was linked to the Aristotelian quote that “the
whole is more than the sum of its parts”. Using a data set of 58 OSS projects with more than
580,000 commits contributed by more than 30,000 developers, in this article we provide
a large-scale analysis of the relation between size and productivity of software develop-
ment teams. Our findings confirm the negative relation between team size and productivity
previously suggested by empirical software engineering research, thus providing quantita-
tive evidence for the presence of a strong Ringelmann effect. Using fine-grained data on
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the association between developers and source code files, we investigate possible explana-
tions for the observed relations between team size and productivity. In particular, we take
a network perspective on developer-code associations in software development teams and
show that the magnitude of the decrease in productivity is likely to be related to the growth
dynamics of co-editing networks which can be interpreted as a first-order approximation of
coordination requirements.

Keywords Software engineering · Repository mining · Productivity factors ·
Social aspects of software engineering · Open source software · Coordination

1 Introduction

Most of today’s software projects are so complex that they cannot be developed by a single
developer. Instead, potentially large teams of software developers need to collaborate. This
necessity of collaboration in large teams raises a simple, yet important question: How pro-
ductive is a team of developers compared to a single developer? Or, in other words: How
much time do n developers need to finish a software project compared to the time taken
by a single developer? This question is of significant importance not only for project man-
agement but also for the development of reasonable cost estimation models for software
engineering processes. One may naively assume that the productivity of individual team
members is additive, i.e., that, compared to the time taken by a single developer, a team
of n developers will speed up the development time by a factor of n. However, this naive
perspective misses out two important factors that can give rise to a non-additive scaling of
productivity.

First, the collaboration of developers in a team can give rise to synergy effects, which
result in the team being more productive than one would expect from simply adding up
the individual productivities of its members. Under this assumption, the average output per
team member can be increased by simply adding developers to the team, a fact that has
recently been related to Aristotle’s quote that “the whole is more than the sum of its parts”
(Sornette et al. 2014). A second, contrary factor that influences the productivity of
software development teams is the communication and coordination overhead which is
becoming more pronounced as teams grow larger. This increasing overhead can impact
productivity and it has thus been discussed extensively in the software engineering
and project management literature. In particular, it has been argued that coordination
issues can lead to situations where the average output per team member decreases
as the size of the team is increased. Studies showing that growing team sizes neg-
atively affect productivity can be traced back to early studies of Maximilian Ringel-
mann, and the effect has accordingly be named the “Ringelmann effect” (Ringelmann
1913). In the context of software engineering, it can be related to Brooks’ law of
software project management, which states that “adding manpower to a late soft-
ware project makes it later”, and Brooks rejects the idea of additive, or even super-
additive productivity by adding that “nine women can’t make a baby in one month”
(Brooks 1975).

Apart from very few exceptions, there is a broad consensus in the software engineering
literature that the size of software development teams, both in traditional closed source and
open source environments negatively affects the average productivity. However, quantitative
evidence for this fact that would go beyond small-scale case studies or surveys is relatively
sparse. At the same time, there is significant confusion over the question which quantitative
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indicators can reasonably be used to measure the productivity of software development
teams or individual developers.

Using a large-scale data set covering the full history of 58 Open Source Software (OSS)
projects hosted on the social coding platform GITHUB, in this paper we quantitatively
address the question of how the size of a software development team is related to produc-
tivity. Based on a time-slice analysis of more than 580,000 commit events over a period
of more than 14 years, we analyse the output of projects in terms of code and study how
their time-varying productivity relates to the number of active software developers. The
contributions of our empirical analysis are as follows:

1. Using the distribution of inter-commit times, we first identify reasonable time windows
for the definition of team size and the analysis of commit activities in OSS projects.

2. Based on a microscopic, textual analysis of commit contents, we measure the contribu-
tions of individual commits and highlight their huge variance. By this, we quantitatively
prove that the mere number of commits should not be used as a reasonable measure of
productivity, and that an analysis of actual commit content is needed.

3. We define a more reasonable measure for the contribution of developers which is based
on the so-called Levenshtein edit distance (Levenshtein 1966) between consecutive
versions of source code files.

4. Using this fine-grained measure of code contributions, we quantitatively show that
in all of the studied OSS projects the average productivity of developers decreases
as the team size increases, thus providing quantitative evidence for the Ringelmann
effect.

5. Addressing possible mechanisms behind the Ringelmann effect, we finally take a net-
work perspective on evolving coordination structures that is based on a fine-grained
analysis of diffs between commits occurring within certain time windows. In particular,
using the association between source code regions and developers, we construct time-
evolving co-editing networks. These networks can be seen as language-independent
first-order approximations for coordination structures that can be constructed solely
based on widely available repository data.

6. Finally, we analyse the growth dynamics of co-editing networks constructed from
repository data. For all projects in our data set, we observe a super-linear growth of co-
editing networks, which can be seen as one potential mechanism behind the observed
Ringelmann effect.

Using a large and open data set, our study validates the common assumption in soft-
ware engineering that the size of a team negatively affects the average productivity of its
members. This highlights the fact that, possibly due to the duplication of efforts, increasing
coordination overhead, as well as decreasing accountability, software development projects
represent diseconomies of scale.

We argue that both our results as well as our methodology are useful to refine and cal-
ibrate existing software development cost models based on empirical data from software
development repositories. Our investigation of commit numbers and the size distribution of
commits further calls for a cautious use of commit-based productivity measures, since their
naive application can easily yield erroneous results.

The remainder of this paper is structured as follows. In the following Section 2 we care-
fully review the extensive body of literature on team productivity which has been published
in software engineering, but also in fields such as sociology, social psychology and orga-
nizational theory. We then continue by providing a detailed description of our data set,
our time-slice analysis and our measure for productivity in Section 3. Empirical results on
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the scaling of productivity are presented and discussed in Section 4. Investigating potential
mechanisms behind the observed scaling relations, in Section 5 we take a network perspec-
tive on the association between developers and edited source code regions in OSS projects.
Having discussed potential threats to validity and future work in Section 6, we conclude our
paper in Section 7.

2 Background and Related Work

We start our investigation by a review of the existing body of literature on pro-
ductivity factors in software development projects. Rather than limiting our focus on
the field of empirical software engineering, we additionally review works studying
how the size of teams, groups or organizations affects their performance which have
been completed in fields such as sociology, social psychology, management science or
organizational theory.

In what has since been named one of the foundational experiments of social psychol-
ogy, the French agricultural engineer Maximilian Ringelmann (Kravitz and Martin 1986;
Ringelmann 1913) quantitatively studied the efficiency of a group of human workers
jointly pulling on a rope. He showed that the individual performance decreased with
increasing group size, an effect later termed as “Ringelmann effect” in social psychology
(Ingham et al. 1974). Ringelmann attributed the effect mainly to the increasingly challeng-
ing coordination in larger groups. He additionally highlighted the potential influence of
social factors that may affect the motivation of individual group members (Steiner 1972).
These social factors have since been investigated in detail in a number of studies from
psychology, organizational theory and management science. Here, the tendency of group
members to spend less effort in larger groups has been named “free-riding”, the “sucker
effect” or “social loafing” (Shepperd 1993). It is generally attributed to situations charac-
terized by a lack of individual accountability and shared responsibility (Latane et al. 1979;
Williams et al. 1981; Williams and Karau 1991; Wagner 1995) and it has been shown to
be a robust phenomenon in various contexts and - with varying strength - across cultures
(Yetton and Bottger 1983; Jackson and Harkins 1985; Earley 1989; Karau and
Williams 1993, 1995; Chidambaram and Tung 2005; Shiue et al. 2010.)

Notably, both the coordination challenges and the motivational factors which have
been investigated as potential mechanisms behind the Ringelmann effect, play an impor-
tant role in software development. Especially in large and fluid teams with no fixed
assignment of responsibilities, based on findings from social psychology, the lack of
accountability could potentially negatively affect the amount of contributions. Further-
more, complex collaborative tasks such as software development entail a need for
coordination which is likely to become more challenging as the size of the team
increases.

If and how these factors affect the productivity of software development teams has
been studied extensively since the early days of empirical software engineering research.
According to Brooks’ law of software project management (Brooks 1975), the size of a
development team negatively affects its productivity. Brooks’ rationale behind this “law”
is based on two main factors: (i) the significant “ramp-up” time needed by new developers
before they become productive, and (ii) the super-linear coordination cost which is due to
the quadratic scaling of the number of possible communication channels.

These intuitive arguments have been substantiated by a a number of empirical studies
showing that the size of the development team negatively affects software development
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productivity. Based on a survey with 77 software developers from eleven software compa-
nies, Paiva et al. (2010) argue that developers assess the size of a development team as one
of those factors that have the strongest negative impact on productivity. Blackburn et al.
(1996) empirically studied software development projects in Japan, the United States and
Western Europe across a time period of four years. The authors found a negative correla-
tion between the productivity of software development teams and their size, referring to the
phenomenon as the “productivity paradox”. Using data on 99 software projects of the Euro-
pean Space Agency with a total of more than 5 Million lines of code, Maxwell et al. (1996)
studied a number of factors influencing productivity. The authors found that productivity
significantly decreases with increasing team size and argue that this “is probably due to the
coordination and communication problems that occur as more people work on a project.”
(Maxwell et al. 1996).

A first step to investigate the coordination cost associated with larger development
teams was taken by works studying how work is distributed among team members.
Using the Open Source projects APACHE HTTPD and MOZILLA FIREFOX as case studies,
Mockus et al. (2000) and (2002) found that a small core of developers is responsible for
the vast majority of code changes. They further argue that in OSS projects “communication
and coordination overhead issues [. . . ] typically limit the size of effective teams to 10-15
people” (Mockus et al. 2000). The finding that the majority of code is developed by a small
core group of developers has been validated in a number of empirical studies studying the
distribution of code distributions (Lerner and Tirole 2002; German 2006).

A number of further works have studied the question of how coordination costs
affect software development productivity. Analyzing the congruence between coordina-
tion patterns and coordination needs in software development teams, the fact that a
lack of coordination negatively affects software development productivity was shown in
(Cataldo et al. 2008; Cataldo and Herbsleb 2013). The scaling of coordination costs and pro-
ductivity in OSS projects was studied by Adams et al. (2009), finding a non-linear scaling
that is in line with earlier studies suggesting an optimum team size. In particular, the authors
identify a first regime with comparable coordination effort for development teams consist-
ing of less than ten developers. A second regime in which the growing number of developers
does not lead to a proportionate increase of coordination efforts is likely due to the emer-
gence of modular team structures which mitigate coordination efforts. A third regime is
identified beyond a critical team size, in which coordination efforts quickly increase in a
super-linear fashion. The negative impact of coordination requirement observed in empir-
ical studies has finally been integrated in a number of cost estimation models, such as
the Constructive Cost Model (COCOMO) or its successor COCOMO II (Boehm 1984;
Boehm et al 2000), which are commonly used in project management.

Apart from social psychology and empirical software engineering, management science
and organizational theory are two further fields of study which have extensively addressed
the question of how the productivity in a project is related to its size. Here, the question how
the productivity, or cost, of software projects is related to their size is commonly rephrased
in terms of whether software projects are economies or diseconomies of scale (Stigler 1958).
This question has been addressed from different perspectives.

Measuring project size in terms of the size of the code base and productivity in terms of
person hours, Premraj et al. (2005) studied more than 600 software projects from Finnish
companies, finding no significant evidence for a non-linear relation between size of the code
base and productivity. A series of other works has argued that there exist both economies
and diseconomies of scale in the context of software development (Banker and Kemerer
1989; Banker et al. 1994; Banker and Slaughter 1997; Banker and Kauffman 2004).
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Notably, evidence for economies of scale has predominantly been found in software main-
tenance projects, which has been related to the possibility of batching modification requests
(Banker and Slaughter 1997). In a large-scale study comprising more than 4,000 indus-
trial software development projects, Comstock et al. (2011) studied the relation between
team size and the effort required to complete a project. Consistent with Brooks’ law,
they find that the time taken to develop a software does not decrease proportionally with
team size, concluding that “doubling the team size does not halve the time required”
(Comstock et al. 2011). In line with earlier works showing a non-linear and non-monotonous
relationship between team size and coordination costs (Adams et al. 2009), they further
argue that there exists an optimum team size that depends on project characteristics like
project size as well as other productivity parameters.

Due to the availability of fine-grained data containing project variables like cost, effort,
personnel and project performance, as well as the need for cost estimation models, the
majority of studies on software productivity, including the large-scale study performed
by Comstock et al. (2011), have studied industrial, and thus mainly closed-source soft-
ware projects. Fewer studies in management science have specifically addressed Open
Source Software communities, addressing the open question whether OSS projects are
economies or diseconomies of scale (von Krogh et al. 2003). Taking an economic per-
spective and defining productivity as the real value contributed per employee, Harison
and Koski (2008) compared the productivity of Open Source Software firms with those
of companies developing proprietary solutions. While they did not study productivity
in terms of code production, the authors find employees in OSS-based companies to
be less productive from an economic point of view. Disagreeing with studies show-
ing diminishing returns to scale prevalent in the software engineering literature, Sornette
et al. (2014) argued that the productivity of OSS communities increases with team size
in a super-linear fashion. Interpreting “commits” as “commitment”, the authors define
the productivity of a project as the total number of commits made within five day
time windows and find that a large number of contributors facilitates bursts of commit
activity.

Summarising the large body of interdisciplinary works outlined above, we conclude
that there is broad consensus in the software engineering community that increasing the
size of software development teams - at least beyond certain, comparably small num-
bers - negatively affects productivity. At the same time, there is an ongoing debate of
whetherOpen Source Software projects are economies or diseconomies of scale, results crit-
ically depending on (i) the type of software projects considered (i.e., software development
vs. maintenance projects), and (ii) the operationalization of project size and productivity.
Regarding the second aspect, it is important to note that recent results on a super-linear scal-
ing of productivity in OSS communities have been obtained using a productivity measure
that is based on the total number of commits, thus neglecting the actual commit contribution
in terms of code.

Contributing to this debate, in our work we first quantitatively show that this approach
of measuring productivity introduces a systematic error which results in an overestima-
tion of productivity that is due to (i) the skewed commit size distribution, and (ii) basic
software engineering and collaboration practices such as “commit early commit often”
which are likely to result in commit sizes becoming smaller as teams grow in size.
Defining a measure of productivity that encompasses both commits and - based on a
fine-grained textual analysis - the actual contents of these commits, we show that Open
Source Software Communities represent diseconomies of scale, in which the average pro-
ductivity of developers decreases as the team size grows. With this work, we contribute
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to the ongoing discussion on the scaling of productivity in software development projects,
showing that earlier results on the presence of the Ringelmann effect in industrial soft-
ware projects also extend to Open Source Communities. Our study further highlights the
importance for complex systems and data science studies to take into account basic prin-
ciples of collaborative software engineering, thus contributing to a knowledge exchange
between the disciplines of complex systems, management science, and empirical software
engineering.

3 Methodology

We study the research questions outlined above using a large-scale data set collected from
the collaborative software development platform GITHUB. It offers a free, web-based
hosting service for Open Source Software repositories centered around the distributed ver-
sion control system GIT. With more than 5 Million developers collaborating on more
than 10 Million repositories, GITHUB has recently become the most popular software
project hosting platform in the world (Gousios et al. 2014). This popularity is partly
due to the fact that, in addition to a mere version control of source code, GITHUB

offers a number of social features such as issue tracking, a wiki system and team man-
agement which support collaboration and coordination. A feature that makes GITHUB

particularly popular in the Open Source community is the ability to easily fork the
repositories of others. In a nutshell, this allows users to copy the source code of exist-
ing projects into their own repository, instantly enabling them to modify and advance
the code base without the need to coordinate the changes with the original develop-
ers. Changes that may be useful for others can then be propagated back to the original
repository via a so-called pull request, i.e., a request sent to the maintainers of the root
repository to pull the changes from the forked repository and merge them into the main
code base.

3.1 Data Set

For our study, we collected the full commit history of 58 OSS projects from the pub-
licly available GITHUB API.1 The initial choice of projects was based on the following
criteria: (i) the project should be among the 100 most frequently forked projects, (ii) it
should still be active, showing commit activity in the week when the data were collected,
(iii) there should be at least 50 different active developers across the whole project his-
tory, and (iv) there should be at least one year of activity. The data on these 58 projects
amount to a total of 581,353 commits contributed by 30,845 different users, with an
average of 10,023 commits and 531 unique developers per project. A detailed summary
of our choice of projects, the programming language used, the time period covered, as
well as the number of commits and developers is shown in Table 3 in the supplementary
information (SI).

In the GIT version control system the development history of a project consists of a
tree of commits, with the first commit representing the root and each subsequent com-
mit storing a parent pointer to the commit immediately preceding it. In this way, starting

1see https://developer.github.com/v3/

https://developer.github.com/v3/
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from the most recent commit of a project, the whole development history can be traced
back by following the parent pointers. The GITHUB API returns information about each
commit and the corresponding GIT tree. More specifically, for each commit our data set
includes:

– an SHA hash uniquely identifying the commit
– the name and email of the developer who authored the commit
– the time stamp of the commit (with a resolution of seconds)
– the list of files changed by this commit
– the diffs of all files changed by the commit, which allows to reconstruct the precise

changes to the source code at the level of individual characters
– the parent pointer (SHA hash) of the preceding commit

When project maintainers merge pull requests (i.e., code authored by others) from forked
repositories, a special merge commit can be created in the commit tree. We exclude such
commits from the analysis as they would wrongly attribute the diffs to the maintainer who
executed the merge and not to the developer who authored the pull request. For technical
details, we refer the reader to Section A2 in the Appendix.

We make both the raw and the preprocessed data used in our study freely avail-
able (Scholtes et al. 2015). In the following we provide a detailed description of how we use
this data set to analyse the relation between the size of a software development team and its
productivity.

3.2 Measuring Team Size

Understanding the relation between team size and productivity first requires a reasonable
definition for the size of the development team of an OSS project. Being informal and fluid
social organisations, the simple question who belongs to the development team of an Open
Source project at a given point in time is not trivial to answer since there is - in general
- no “formalized” notion of who is a member of the project. This loose notion of team
membership is particularly pronounced in GITHUB, since the integration of pull requests
allows users to contribute code without the need for a prior procedure of obtaining commit
rights in the repository.

Using time-stamped commit data, a first naive approach to study team size could be
based on the analysis of activity spans of developers, i.e., taking the first and last com-
mit of each developer to the project and considering them as team members in between
the time stamps of those two commits. However, this simple approach generates sev-
eral problems: First, developers may leave the project, be inactive for an extended period
of time and then rejoin the project later. Secondly, our analysis is necessarily based
on a finite observation period. Close to the end of this observation period, the naive
approach outlined above will wrongly consider that developers left the project after their
last commit, even though in reality many of them are likely to commit again in the
future. Finally, Open Source Software projects feature a large number of one-time con-
tributors who - using this simple approach - will not be considered as project members
even though they both contribute to the development and impose coordination costs.
Figure 14 in the SI shows that this is indeed the case for our data set, where more than
40 % of all commits in the majority of the projects have been contributed by one-time
contributors.
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Fig. 1 Histogram and complementary cumulative distribution function of maximum inactivity times
aggregated across all projects

We avoid these problems by taking into account the intermittent nature of developer
activities. In particular, for each individual developer we analyse his/her whole commit his-
tory and calculate the maximum time of inactivity between any two consecutive commits.2

Doing this for all developers yields a maximum inactivity time distribution, which allows us
to estimate the probability with which a developer who has been inactive for a certain time
will commit again in the future. The left panel of Fig. 13 shows the histogram of maximum
inactivity times of all developers, aggregated across all projects. The right panel shows the
complementary cumulative distribution function (ccdf) of the distribution. Here, we observe
that 90 % of all consecutive commits occur within time periods of less than 295 days. In
other words, the chance of a developer committing again after having been inactive for more
than 295 days is less than 10 %.

Based on this finding, we utilize a a sliding window with a size of 295 days to define the
size of the development team at any given time t .4 Precisely, at time t we define the team
Tt of a project to consist of all developers who have committed at least once within the time
window [t − δteam, t] of window size δteam.

3.3 Measuring Software Development Productivity

Apart from a reasonable definition of the development team of a project, a second major
building block of our study is the definition of software development productivity. In
general, the productivity of an individual or an organization is defined as the output pro-
duced per time unit. In our study we exclusively focus on the output in terms of source
code artifacts produced by software developers. A number of earlier studies have used
similar approaches to study the productivity of software development teams based on
data from software repositories: The simplest possible approach to measure productivity

2Notably, we avoid a bias towards large inactivity times, by not taking into account developers who
committed only once.
3please note the log scale on the x-axis.
4effectively, we accept a less than 10 % chance of falsely excluding from the team at time t a developer who
eventually commits after more than 295 days of inactivity.
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is to calculate the total number of commits in a given time period (Adams et al. 2009;
Sornette et al. 2014). However, this approach introduces multiple problems: First and fore-
most, a number of prior studies have shown that the size of commits follows a highly skewed
distribution (Robles et al. 2004; Hindle et al. 2008; Alali et al. 2008; Arafat and Riehle
2009; Hofmann and Riehle 2009), arguing that it is typically a very small number of large
commits which are fundamentally important in the evolution of software, while the major-
ity of commits are minor contributions. As such, the size of a commit has to be taken into
account when measuring the productivity of developers in software projects.

Even more important for the purpose of our study, using the total number of commits
introduces a systematic error when studying the relation between the number of developers
in a development team and the total number of commits: First, the total number of commits
contributed by n developers active in a given time period cannot - by definition - be less than
n, which is why the total number of commits must scale at least linearly with team size.
Secondly, due to basic principles guiding the use of revision control systems, developers in
larger development teams tend to avoid generating conflicts by splitting their contributions
in increasingly atomic changes, a strategy commonly paraphrased as “commit early, commit
often”.

From the arguments above, we conclude that the mere number of commits of a developer
is not a good proxy for the developer’s contribution, unless the size of those commits is taken
into account. In our study we thus leverage the fact that our data set contains not only the
occurrence of commits, but also the associated diff records which allow us to analyse the
contents of commits.

Several methods can be used to turn this information into a quantitative measure of pro-
ductivity. A simple approach is to use diff records in order to calculate the number of lines
changed in a file, then calculating the commit size as the total number of lines changed in all
affected files (Gousios et al. 2008). This methods is a significant improvement over using
the mere number of commits. However, it still suffers from the fact that not all line changes
are equal. In particular, following this approach, commenting out 100 lines of source code
is seen as the same contribution as writing those 100 lines in the first place. For this rea-
son, other standard measures of software development productivity take into account the
semantics by extracting so-called function points (Albrecht 1979), i.e., larger units of source
code that are directly related to some functionality of the software. Since the source code
needs to parsed in order to extract these function points, this approach necessarily depends
on the programming language and does not allow for an easy comparison between projects
developed in different languages.

Our data set contains projects written in a mix of different programming languages (see
Table 3 for details), which requires us to quantify productivity in a language-independent
way. Rather than counting commits or the changed lines of code, we take a fine-grained
approach which captures the changes of the source code at the level of individual characters.
Precisely, for each commit we extract the diff records of all affected files, which allows us
to unambiguously reconstruct the source code before and after the commit. We then calcu-
late the Levenshtein edit distance (Levenshtein 1966) between these versions of the source
code. The Levenshtein distance captures the number of single-character deletions, insertions
and substitutions required to change the version before the commit into the version after the
commit. For each of the more than 580,000 commits in our data set, we then sum the Lev-
enshtein edit distances of the files affected by a commit, defining this sum as the commit
contribution.

Apart from taking into account the size, or contribution, of commits, another important
aspect in the analysis of time-stamped commit data is that productivity evolves in time. As
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such, we need to be able to define the productivity of a project within a particular time
window. In order to define the productivity Pt at time t , we consider all commits occurring
within a window

[
t − δprod, t

]
of window size δprod. On the one hand, the time window

should be long enough to contain a sufficiently large number of commits. On the other
hand, the time window should be short enough such that it allows us to get an idea about
the instantaneous productivity at, or around, time t . Balancing these two requirements, we
can again address the optimum choice of the time window by studying the activity patterns
of developers.

Here, for each project we analyze the time line of all commits (i.e., from any developer)
and we calculate the time difference between any two consecutive commits. Doing this
for all commits in all projects, we obtain the inter-commit time distribution. This helps
us to understand how likely it is that multiple commits fall within a time window of a
particular size. The histogram of inter-commit times is shown in the left panel of Fig. 2.
As evident from the figure, the time difference between two consecutive commits varies
over several orders of magnitude, with pronounced peaks around time differences of 30
minutes (i.e., ≈ 0.02 days) as well as around time differences of one day. The right panel of
Fig. 2 shows the complementary cumulative distribution function (ccdf) of the inter-commit
time distribution. From this distribution, we can deduce that in 90 % of the cases the time
difference between consecutive commits of a project is less than 6 days.

Furthermore, we expect a strong weekly periodicity in commit activity due to the effect
of workdays and weekends. To ensure that this effect is equally pronounced in all time
windows, we choose the window size as a multiple of 7 days, i.e., δprod = 7.

With the so defined productivity time window, in Fig. 3 we display the relation between
development productivity as measured simply by the number of commits and by the Lev-
enshtein edit distance. We segment the commit history of each project in consecutive,
non-overlapping productivity windows of 7 days. For each window, we then record the
total number of commits and the mean commit contribution, computed as the sum of the
commit contributions of all commits divided by the number of commits. We use the mean
instead of the total commit contribution in order to eliminate the systematic linear scal-
ing arising from the fact that n commits necessarily have a total contribution of at least
n characters.

Figure 3 shows that the mean commit contribution varies across several orders of mag-
nitude for any number of commits observed in our data set. In the small commit ranges

Fig. 2 Histogram and complementary cumulative distribution function of inter-commit times aggregated
across all projects
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Fig. 3 Number of commits within a productivity time window versus the mean commit contribution of these
commits, measured in terms of the Levenshtein edit distance. An alpha channel has been added to the plot
for easier visualization of point densities

we observe variations of up to 6 orders of magnitude,5 and even though the fluctuations
decrease, the high commit range still exhibits variations of close to 3 orders of magnitude.
This indicates that the Levenshtein edit distance cannot be replaced as a productivity mea-
sure by the total number of commits, without losing a significant amount of information on
the contributions of those commits.6

3.4 Temporal Analysis of Productivity and Team Size

The procedure described above allows us to quantitatively assess the total production of
source code, as well as the team size, i.e., the number of developers involved in the source
code production at any given point in time. For each project, we use this methodology for a
temporal analysis of the full history of time-stamped commit actions as follows:

Using the productivity time window of 7 days, we first segment the history of the project
into consecutive, non-overlapping time slices of one week. For each productivity window
reaching up to time t we calculate the total source code production based on the cumulative
Levenshtein edit distance of all commit actions occurring within the interval [t − 7d, t].
We further compute the associated size of the developer team as the number of different
developers who have committed at least once within the time interval [t − 295d, t]. We
illustrate this procedure in Fig. 4.

Using this method, for each week in the history of all 58 projects in our data set, we
obtain a pair of values capturing the team size and the production of commit contributions.
This allows us to quantitatively analyse the relation between team size and productivity in
the following section.

5which is commonly due to the initial stages of a project when a relatively large code base is submitted with
the first few commits.
6Note that even though a regression model may produce a statistically significant relation between these two
measures, due to the large variation, such a result should not be mistaken as evidence that the mean commit
contribution can be replaced by the number of commits.
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timet

t-7d

productivity 
window

commit
event

[...]

t-295d team size 
window

Fig. 4 Illustration of our methodology for the temporal analysis of productivity and team size: The total
productivity is calculated as the sum of the Levenshtein edit distances of the five commits by two developers
(red and green) in the productivity window. The team size of four is calculated as the number of different
developers (red, green, blue and orange) who committed at least once within the team size window

4 Quantitative Analysis of Team Size and Productivity

In the following, we present the results of our quantitative analysis of developer productivity
in OSS projects. Notably, we first study productivity by exclusively using the productivity
time window of 7 days introduced above. For each project in our data set, we split the
entire commit history into subsequent productivity time windows. For each time window
we aggregate all commits by all developers active in that particular time window. For each
productivity window, we additionally calculate the number of active developers, i.e., the
number of those developers committing at least once within a productivity time window.
Compared to the estimation of the team size introduced above, this initial analysis is thus
based on a rather restrictive definition for the size of the development team. We include it
here to rule out the possibility that our results sensitively depend on the choice of the team
size window.

The left panel of Fig. 5 shows the relation between the mean number of commits per
active developer and the number of developers active in the productivity time window,
aggregated over all projects. For small numbers of active developers, the mean number
of commits per developer exhibits a large variance over more than two orders of magni-
tude. As the number of active developers increases, one observes a decrease in the mean
number of commits per developer. In particular, for projects with more than 50 developers
committing in a given week, we observe a mean number of about two commits per week,
while the mean number of commits for projects with a single active developer is about
ten times as large. Even if one were to consider the mean number of commits as a proxy

Fig. 5 Mean number of commits (left) and commit contribution (right) per active developer depending on
the active developers, i.e., the number of developers committing at least once within a given productivity time
window. An alpha channel has been added to the plot for easier visualization of point densities
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for developer productivity, this finding is inconsistent with an economy of scale in collab-
orative software development, recently found by a similar analysis on a different data set
(Sornette et al. 2014).

In Section 3 we have argued that different commits can have vastly different com-
mit contributions, when measuring the contribution of a commit in terms of the actual
code committed. In our analysis, we account for these differences by computing, for
each commit, the commit contribution in terms of the Levenshtein edit distance between
the versions of the source code before and after the commit. The total contribution of
all developers active in a given productivity time window can then be computed as the
cumulative Levenshtein edit distance of all commits occurring in that time window. The
right panel of Fig. 5 shows the relation between the mean commit contribution per active
developer and the number of active developers, i.e., the developers committing within
the same productivity time window. We again aggregate over all 58 projects. Similar to
the left panel of Fig. 5, a large variance can be observed for small numbers of active
developers. Furthermore, we do not find evidence for a super-linear increase in total pro-
ductivity, which would translate to an increase in the mean developer contribution. Similar
to the left panel of Fig. 5, we rather observe that for projects with more than 50 active
developers, the mean developer contribution is about 103 characters while it is - on aver-
age - at least one order of magnitude larger for projects with a small number of active
developers.

In Section 3 we argued that the number of developers committing within a time window
of 7 days does not provide us with a reasonable estimate for the size of the development
team. This is due to the inactivity time distribution shown in Fig. 1, in which we observe a
pronounced peak only around approximately 110 days. In particular, this shows that devel-
opers who have not been active in a given week should still be considered members of the
development team, as they are still likely to commit again in the future. To mitigate this
problem, we repeated our analysis using the window sizes illustrated in Fig. 4. For a given
time t we again computed the mean number of commits, as well as the mean developer con-
tribution with a productivity time window, i.e., within the time frame [t − 7d, t]. For the
estimation of the team size we then count all developers who committed within the team
size time window, i.e., in the time range [t − 295d, t]. In other words, we do not consider

Fig. 6 Mean number of commits (left) and commit contribution (right) per active developer depending
on the team size, i.e., the number of developers committing within a given team size window. Green lines
indicate the fitted slopes α0 and α1 (see Section 4.1). An alpha channel has been added to the plot for easier
visualization of point constellations
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Table 1 Estimation of two linear models for Fig. 6

β0 α0 r2 β1 α1 r2

1.01±0.02 −0.24±0.01 0.16 4.35±0.04 −0.36±0.02 0.08

MM-estimation was used to estimate the coefficients of the regressors. The coefficients are presented
together with their corresponding 95 % confidence intervals and are highly significant at p < 0.001. The
sample size for both models is 13998

developers to be members of the development team if they have not committed for more
than 295 days.

The results of this analysis are shown in Fig. 6. The left panel shows the relation between
the mean number of commits per active developer and the team size. Similar to Fig. 5, we
observe a decreasing mean number of commits as the teams size increases, which can be
interpreted as evidence for the Ringelmann effect. Finally, the right panel of Fig. 6 shows
the relation between the size of the development team and the mean commit contribution per
active developer, again aggregated across all projects. Comparing small team sizes (≈ 1−10
developers) to large teams (> 300 developers), one observes a significant decrease in the
mean developer contribution, on average dropping by more than two orders of magnitude.
That the decrease in the mean commit contribution is even more pronounced than for the
mean number of commits per developers indicates (i) that developers in large development
teams tend to commit less often, and (ii) that these commits tend to be smaller in terms of the
Levenshtein edit distance. Again, this finding can be interpreted as evidence for the Ringel-
mann effect or - in economic terms - for the fact that collaborative software engineering
projects represent diseconomies of scale. It furthermore quantitatively substantiates com-
mon software engineering wisdom, as paraphrased for instance by Brooks’ Law of software
project management.

4.1 Scaling Factors of Productivity

So far, our arguments about the scaling of productivity with the size of the develop-
ment team have been mostly visual. In the following, we substantiate these arguments by
means of a regression analysis. For 〈n〉 being the mean number of commits per active
developer, 〈c〉 being the mean commit contribution per active developer, and s being the
team size as defined above, we can perform a regression analysis using the following two
log-transformed linear models:7

log〈n〉 = β0 + α0 · log s

log〈c〉 = β1 + α1 · log s (1)

Table 1 shows the estimated coefficients of these models, inferred by means of a robust
linear regression. The observed negative values for the scaling factors α0 = −0.24 and α1 =
−0.36 quantitatively confirm the negative relation between team size and mean production
of active developers previously observed visually in Fig. 6.

The low r2 values reflect the high variability in the data, resulting from the inherent
sensitivity of the Levenshtein edit distance. In essence, our regression models allow us to

7all logarithms are in base 10.
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Fig. 7 Mean number of commits (left) and commit contribution (right) per team member, depending on the
team size, i.e., the number of developers committing within a given team size window. Green lines indicate
the fitted slopes α2 and α3. An alpha channel has been added to the plot for easier visualization of point
constellations

infer a significant negative trend, but prevent us from making predictions about the mean
production, given the team size8 (c.f. further arguments in Section A5 in the Appendix).

Importantly, in all of our results so far, we computed themean production (either in terms
of the number of commits or commit contribution) per active developer, i.e., we divided
the total production in a given productivity window by the number of developers who were
committing at least once within this time window. When studying the relation between
team size and mean production, one can alternatively compute a mean production per team
member by dividing the total production by the team size, rather than the number of active
developers. This is justified when interpreting the team size (i.e., all developers that have
committed in the past team size window) as the amount of resources available to a project,
and when considering productivity as the ratio between the generated outputs and these
resources.

It furthermore emphasizes the ability of a project to continuously engage members of the
development team, while a large number of inactive team members results in a decrease in
observed productivity. In Fig. 7 we thus provide results for the mean production per team
member. In both panels, we observe a significant decrease in terms of the mean number of
commits (left) and the mean commit contribution (right) per team member, as the size of
the team grows.

Using the data shown in Fig. 7, we can again perform a regression analysis. Like above,
we use the following two log-transformed linear models

log〈n′〉 = β2 + α2 · log s

log〈c′〉 = β3 + α3 · log s (2)

where 〈n′〉 and 〈c′〉 denote the mean number of commits and the mean contribution per team
member respectively. Table 2 shows the results of estimating the coefficients of this model
by means of a robust linear regression.

Again we find negative values for the scaling factors α2 and α3 which indicate a nega-
tive relation between team size and mean productivity. Importantly, with this we confirm a
negative scaling of productivity both for the active developers, which we computed using a

8Please note that we avoid regressing binned averages of log〈c〉 (or log〈n〉) as this would reduce the high
variability in the data and would thus yield a spuriously large value of r2.
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Table 2 Estimation of two linear models for Fig. 7

β2 α2 R2 β3 α3 R2

0.95±0.03 −0.75±0.01 0.44 4.28±0.05 −0.86±0.02 0.25

MM-estimation was used to estimate the coefficients of the regressors. The coefficients are presented
together with their corresponding 95 % confidence intervals and are highly significant at p < 0.001. The
sample size for both models is 13998

window size of 7 days, as well as for the team size, which we computed for a window size
of 295 days based on the maximum inactivity time statistics of our data set. This shows that
the presence of a negative scaling does not sensitively depend on the window size used to
calculate the number of contributors to a project.

Studying the total rather than the mean output produced, we can alternatively represent
the negative relation between team size and mean productivity in terms of two simple Cobb-
Douglas production functions that take the following form

N = β4 · sα4

C = β5 · sα5 . (3)

HereN andC denote the total production, measured in terms of the total number of commits
(N ) and the total commit contributions (C) by all members of the development team. A
log-transformation of these production functions yields the linear models

logN = β4 + α4 · log s

logC = β5 + α5 · log s. (4)

Since the mean quantities 〈n′〉 and 〈c′〉 are given as N
s
and C

s
, we can express the total

production quantities N and C as s · 〈n′〉 and s · 〈c′〉 respectively. Dividing both sides of (3)
by the team size s yields the following relation

α4 = 1 + α2

α5 = 1 + α3 (5)

between the scaling factors of the models. As such, negative scaling factors α2 and α3 in the
models for the mean production 〈n′〉 and 〈c′〉 correspond to exponents α4, α5 smaller than
1 in the Cobb-Douglas production functions for the total production N and C. In particular,
such exponents smaller than 1 indicate a regime of decreasing returns to scale. In our case,
we find values of α4 = 0.25 and α5 = 0.14, which provides further evidence to the fact
that Open Source Software development processes are indeed examples of diseconomies of
scale. Importantly, we emphasize that this finding is not an artifact of aggregating the data
of all projects. Section A3 in the Appendix shows that it holds also on the level of individual
projects.

From this we conclude that Open Source Software communities are indeed no magical
exceptions from the basic economics of collaborative software engineering. Not surpris-
ingly, we find that the productivity of large teams of irregularly contributing volunteers
experiences a significant decrease as projects grow in size. As such, at least for productivity
in OSS projects, it is safe to refute the Aristotelian interpretation that “the whole is more
than the sum”, finding - on the contrary - strong support for the Ringelmann effect.
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5 A Network Perspective on Coordination in Software Development

Considering our confirmation of the Ringelmann effect in OSS communities outlined above,
we will now go one step further and investigate possible explanations for the observed
relations between team size and productivity. In Section 3 we have argued that research
has generally highlighted two different aspects that contribute to the Ringelmann effect:
The first are motivational factors such as “free-riding” or “social loafing” which tend to
become stronger as teams grow in size. The second are coordination challenges that natu-
rally emerge as teams become larger. In line with a substantial body of work in empirical
software engineering, our study exclusively focuses on coordination challenges emerg-
ing in development teams. While motivational factors are likely to play an important
role as well, we argue that our available data do not allow us to quantitatively assess
these factors.

In recent years, a number of sophisticated approaches have been developed which allow
to operationalize coordination requirements in software development teams. Studying data
from a software development repository, Cataldo et al. (2006) generated a so-called Task
Assignment Matrix which captures the association between developers and the files they
have modified. Using an additional data set of modification requests which can be used to
identify interdependencies between files, the authors were then able to generate a Coordina-
tion Requirement Matrix. This matrix captures the need for coordination between developers
who are either i) modifying the same files, or ii) editing different files that depend on each
other due to a joint occurrence in the same modification request. Building on the general
idea of operationalizing coordination requirements, researchers in empirical software engi-
neering have generally highlighted the importance of fine-grained data on collaboration
events in software development. Using rich data from the team collaboration platform JAZZ,
Wolf et al. (2009) generated and analyzed developer communication networks in order
to identify coordination needs and improve knowledge management. Recent works, have
even gone beyond analyzing the mere presence of coordination needs, using time-stamped
and fine-grained data of developer actions from support tools like MYLIN to not only
detect (Blincoe et al. 2012), but also categorize coordination requirements into critical and
non-critical ones (Blincoe et al. 2013; Blincoe 2014).

We acknowledge the importance of such accurate methods to infer meaningful coordi-
nation requirements based on fine-grained data that capture developer communication and
developer actions beyond mere source code changes. However, in this paper we decided
to follow a simpler approach for multiple reasons: First, we do not have access to fine-
grained data on developer actions captured by collaboration tools such as MYLIN or
JAZZ. Secondly, the fact that our study is comprised of 58 rather heterogeneous projects
written in a total of 11 different programming languages, does not easily allow us to
automatically extract comparable and meaningful dependency structures at at the level of
programming language abstractions. And finally, rather than focusing on the microscopic
inference of coordination requirements between a particular pair of developers, the goal of
our study is a statistical categorization of team coordination structures at the macroscopic
level.

In this paper we thus take a rather simplistic approach which is in essence a variation of
the method proposed by Cataldo et al. (2006). In particular, using the file commit history of
each project in our data set, we construct a Task Assignment matrix, that captures the asso-
ciation between developers and the source code regions they have edited. We particularly
consider the time-stamps of commit actions, as well as the detailed code changes within all
of the committed files in order to build directed and weighted networks which capture the
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time-ordered co-editing of source code regions by different developers. We call the result-
ing network topologies time-ordered co-editing networks and throughout this article we will
use them as a first-order approximation for the emerging coordination overhead.

5.1 Constructing Time-Ordered Co-editing Networks

We first provide a detailed description of our methodology of constructing time-ordered co-
editing networks, which is further illustrated in Fig. 8. Let us denote each committed change
of a single source code line l in file f at time t by developer A by the 4-tuple {A, f, l, t}.
We infer a time-ordered co-editing relation A → B between developer A and B on file f ,
whenever developer A commits a change to a source code region of a file f , which was
last edited by developer B. More formally, we infer a directed link (A,B) in a co-editing
network whenever there are committed line changes {B, f, l1, t1} and {A, f, l2, t2} such that
t1 < t2 and l1 = l2. We further require that no other developer X has edited this particular
line in the meantime, i.e., we require �(X, f, l1 = l2, t

′) for some developer X �= B and
some time stamp t ′ ∈ [t1, t2]. In order to be able to differentiate between trivial and more
complex changes in the code, we further weight directed links by the size of the overlap
of the co-edited code regions. Using the notation of committed lines from above, we do so
by aggregating multiple links (A,B), each of which indicates a single co-edited line, to a
weighted link (A,B, w), where the weight w captures the number of co-edited lines within
a given productivity time window.

The method outlined above is enabled by a fine-grained analysis of the contents of
all commits to all files in the full history of a project. In particular, we calculate diffs
between two committed versions of a file whenever commits to this file occurred from dif-
ferent developers within a given productivity time window. For the technical details of our
approach, we refer the reader to Section A6 in the Appendix. In the following we illustrate
our method to construct time-ordered co-editing networks using the time-stamped commit
activities shown in Fig. 8. In this example, three developers A, B and C are committing
their changes to a total of three files, illustrated by differently colored document symbols
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Fig. 8 Extraction of co-editing networks (top panel) from the commit activity (bottom panel) of three devel-
opers (A, B and C) editing lines (highlighted in red) in three different source code files (orange, green and
blue)



Empir Software Eng (2016) 21:642–683 661

in the time line of commit activities shown in the bottom panel. For simplicity here each of
the files contains exactly three lines, and the lines edited in each of the commits are high-
lighted in red. In the left part of Fig. 8 (showing commit activities during time window 1)
the sequence of code changes of developers is such that three time-ordered co-editing links
emerge: developer B is connected to A since B edited two lines in the orange file which
were previously edited by A. The fact that the overlap in the edits comprises two lines is
reflected by an aggregate link weight of two in the co-editing network. Furthermore, devel-
oper A is connected to B, since A has edited line two in the orange file, which was last
edited by developer B. Finally, developer B is connected to C by a directed link with a
weight of two, since B has committed changes to lines one and three in the blue file, both
of which were last changed by developer C. Importantly, unrelated code changes occurring
in between the changes of two developers to the same lines will not result in a link in the
co-editing networks. This can be seen in time window 2 shown in the right part of Fig. 8.
Here, we infer a directed co-editing link with weight two from node C to node A, which is
based on the changes to lines one and two in the green file. Notably, the intermediate change
of line three in the green file by developer A does not result in a co-editing relation, even
though it occurs in between the changes by B and C.

Compared to much more sophisticated methods to infer coordination requirements which
have been outlined above, it is clear that our method merely generates an approximation for
real coordination structures. Nevertheless we argue that the questions (i) which source code
regions were changed by which developers, and (ii) in which order these changes occurred,
capture interesting aspects of the team organization that influence potential coordination
overhead emerging in a team. Indeed, much of the project management and architectural
design efforts in software engineering aim at maintaining a modular design, which allows
subcomponents of a system to be developed by specialized subgroups of developers, rather
than arbitrary team members. The resulting partitioning of development tasks is meant to
keep coordination requirements, and thus overhead, at a minimum level and to ensure that
coordination requirements correspond to actual social structures (Cataldo et al. 2008). The
association between edits to source code regions and developers captured by our time-
ordered co-editing networks can be seen as a first-order approximation for the partitioning
of development tasks.

To illustrate this, in the right panel of Fig. 8 we randomly shuffled the association
between source code and developers in the commit history. As a consequence, each of the
three files is now edited by each of the three developers, with no particular assignment of
developers to certain subsets of files. The time-ordered co-editing network resulting from
the commits in time window 2 thus becomes more densely connected. We interpret such
a densification of co-editing networks as indicator for task assignment procedures that are
likely to result in increasing coordination overhead. In particular, this densification implies
a super-linear growth in the number of links as the number of nodes increases. In line with
arguments about the super-linear increase in the number of possible communication chan-
nels which was quoted as one possible reason for Brooks’ law (Brooks 1975), it can be seen
as one possible explanation for decreasing productivity with increasing team size.

The fact that we study directed links whose directionality is defined based on the order
of committed changes, further allows us to differentiate between nodes that point to many
other nodes and nodes that are pointed to by many other nodes. Intuitively, by this we
capture whether i) a developer A has to build on changes by many other developers (corre-
sponding to a large out-degree of A), or ii) whether many other developers have to build on
the changes committed by developer A (corresponding to a large in-degree of A). In addi-
tion, we consider weighted links between pairs of developers which can either result from
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Fig. 9 Mean commit contribution per team member, depending on the team size for the projects SPECS
(red), ZF2 (blue)

multiple co-edited lines on the same file or from co-edits on different files (see examples in
Fig. 8). Considering weights in the resulting network topologies thus allows us to differenti-
ate between weaker or stronger coordination links, based on the actual source code changes
committed.

In summary, the approach outlined above allows us to capture both the topology and
strengths of co-editing links between developers. A macroscopic characterization of net-
work density allows us to quantitatively assess a proxy for potential coordination overhead
introduced by the association between developers and edited source code regions. Build-
ing on Brooks’ law, we hypothesize that co-editing network becomes increasingly dense as
the number of active developers grows. In other words, we hypothesize that the mean num-
ber of co-editing relations introduced per team member grows as the number of developers
increases.

5.2 Co-editing Networks and Productivity

We first test this hypothesis by means of a case study, focusing on two specific large-scale
projects covered by our data set. For the selection of these projects, we computed the coef-
ficients α3 of a log-transformed linear model for the relation between the team size and
the mean commit contribution per team member (see Section 4.1 and (2) for details of the
model). Different from Section 4.1, here we perform this regression analysis per project,
while limiting ourselves to those 15 projects in our data set which have at least 10,000 com-
mits (Table 3). In Table 4 in the Appendix we report on the analysis of the fits. In order to
be able to compare the scaling exponents of these projects to each other, we further limit
our analysis to those 11 of the 15 large-scale projects, for which the log-transformed lin-
ear model from (2) provides the most reasonable fit (see Section A3 in the Appendix for
details).

From these 11 projects, we selected (i) ZF2 being the project with the smallest exponent
α3 ≈ −1.9, and (ii) SPECS being the project with the largest exponent α3 ≈ −0.12.9

Figure 9 shows the relation between the team size and the mean commit contribution per
team member for these two projects individually.

9Notably, all of the 15 large projects exhibit negative coefficients, which indicate the presence of the
Ringelmann effect.
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Using the methodology described above, we next create time-evolving co-editing net-
works for the two projects SPECS and ZF2 as outlined above. In Fig. 10 three representative
snapshots of the resulting networks are shown for each project. For these networks, we are
now interested in the question of how the co-editing links per developer scale with the size
of the network. Since we are using weighted networks, there are different ways of comput-
ing the co-editing links per developer. First, for each developer A, we can simply sum the
weights of all outgoing links (A,X). This weighted out-degree captures the total number of
co-edited lines, which can be seen as a proxy for coordination costs incurred by developer
A. Secondly, we can discard weights which capture the number of co-edited lines between a
particular pair of developers, instead solely focusing on the topological dimension. For this,
we compute the (unweighted) out-degree of each developer A, capturing with how many
different other developers a developer A has co-edited source code regions. In Fig. 11 we
show the relation between the size of the co-editing networks, computed in terms of the
number of nodes, and the mean coordination costs per developer, proxied by the different
degree-based measures outlined above.

For the ZF2 project, which exhibits the smallest coefficient α3 in our data set, we
observe a positive correlation between the size of the network and the mean (weighted and
unweighted) out-degree. We quantify this positive correlation using a linear regression anal-
ysis. Precisely, we calculate the coefficient of a linear model for the growth of the mean
degree. Since the mean degree in a network is bounded above by the the number of nodes,
this coefficient is necessarily smaller than one. At the same time, a coefficient of zero would
indicate a constant mean degree, and thus a linear growth of the number of links in the net-
work. For the growth of the mean (unweighted) out-degree in the ZF2 project, we obtain a
coefficient of 0.031 with an associated r2 value of 0.23. For the mean weighted out-degree,
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Fig. 10 Six representative coordination networks of (i) the SPECS project (red nodes) with sizes of 8, 16
and 20 developers, and (ii) the ZF2 project (blue nodes) with sizes of 8, 16 and 20 developers. The identity
of the developers is displayed as their email address (without domain name)
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Fig. 11 Mean degree versus size of coordination networks for the projects ZF2 (blue) and SPECS (red)

we use a linear regression model on log-transformed values for the weighted out-degree. We
then calculate the scaling coefficient for the exponent of a log-linear model. Again, a zero
coefficient would indicate a linear growth of the number of links, while any positive coef-
ficient indicates a super-linear growth. For the ZFS project, we obtain a coefficient of 0.04
with an associated r2 = 0.13. These positive values of the coefficients are evidence for a
super-linear growth of co-editing links as the number of developers increases, which can be
interpreted as a growth in the mean coordination cost per developer. The resulting tendency
of networks in the ZF2 project to become increasingly dense can be observed in the bottom
panel of Fig. 10.

For the SPECS project, which exhibits the largest coefficient α3 in our data set, we
observe a significantly less pronounced growth of the (weighted and unweighted) degree as
the network size grows. A regression analysis for the mean (unweighted) out-degree yields a
coefficient 0.008 with an associated r2 value of r2 = 0.27, while for the mean weighted out-
degree we obtain a coefficient 0.01 and r2 = 0.049. From this, we conclude that an increase
in the number of developers in the SPECS project results in a much less pronounced growth
of co-editing links, compared to the ZF2 project. The resulting, rather sparsely connected
networks in the SPECS project can be observed in the top panel of Fig. 10. This finding pro-
vides a possible explanation for the scaling exponent of α3 ≈ −0.12 which, compared to
all other projects, corresponds to rather slowly decreasing returns to scale. Conversely, the
fast, super-linear increase of co-editing links in the ZF2 project coincides with a particularly
small scaling exponent of α3 ≈ −1.9 which corresponds to rapidly decreasing returns to
scale. As such, the two case studies are consistent with our hypothesis that the decreasing
returns to scale in OSS communities are related to an increasing densification of co-editing
networks.

A closer look at the two projects in our case study allows us to further substantiate
our quantitative findings with project-dependent, intuitive explanations. The SPECS project
maintains a public repository for meta-information on APPLE COCOA modules, that can
be managed via the library dependency management tool COCOAPODS. In particular, the
repository consists of more than 7000 different libraries, each containing a set of JSON files
which are authored and maintained by different, small teams of developers. As such, SPECS
can be seen as a rather extremal example for amaximally modular project, in the sense that it
consists of thousands of independent modules each being developed by different developers
with no or at least minimal coordination needs.

The ZF2 project on the other hand, develops a component-oriented web framework
named Zend. Compared to the fully independent modules in the SPECS project, the code
base of ZF2 is likely to be much more integrated, thus not allowing for a non-overlapping
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Fig. 12 Scaling of the mean team-member contribution with team size (α3) vs. the scaling coefficients of the
mean out-degree and mean weighted out-degree with the size of the coordination networks. To make projects
comparable, we selected 48 of the 49 projects for which the log-log model is the best and significant fit for
the scaling of productivity. We removed one project, OH-MY-ZSH, for which we could not estimate a reliable
slope of the mean-degree. The coordination network for OH-MY-ZSH was so sparse that our robust regression
did not converge. Filled symbols indicate that the fitted scaling coefficients for the mean (weighted) out-
degree in the network is significant at p = 0.05. Dark blue symbols represent those projects which have at
least 10,000 commits

mapping between developers and source code regions. As such, the commit actions of a
large number of developers are likely to produce a much more densely connected co-editing
network. A particular additional feature of the ZF2 project is that it imposes rather rigorous
standards with respect to programming style, documentation and testing which are sum-
marized in a detailed contributor guide.10 These standards are targeted at improving both
maintainability and software quality and require, for instance, that any piece of contributed
code must be covered by unit tests. This focus on rigorous coding standards could be one
possible explanation for an increased coordination overhead and thus a significantly smaller
scaling exponent α3, while at the same time possibly translating to increased software
quality and maintainability.

In addition to this case study focusing on the two projects with the smallest and largest
decrease in productivity, we additionally perform an analysis for all 48 projects, for which
the log-log model is the best and significant fit for the scaling of productivity. The results of
this analysis are shown in Fig. 12. Here, the scaling exponent α3 for the scaling of produc-
tivity is shown on the x-axis, while the coefficient for the slope of the mean out-degree and
the mean weighted out-degree are shown on the y-axis of the left and the right panel respec-
tively. Dark blue symbols refer to projects with at least 10,000 commits, filled symbols
indicate projects for which the fitted scaling coefficient for the mean (weighted) out-degree
is significant at p = 0.05. The results highlight that all projects with strongly negative and
significant slopes α3 for the scaling of productivity also exhibit pronouncedly positive scal-
ing exponents for the growth of the mean (weighted) out-degree. Based on these empirical
results, we can thus not reject our hypothesis that the decrease in productivity for larger team
sizes is related to a super-linear growth of coordination links. While the spread in Fig. 12
does not indicate the presence of a strong linear correlation, one nevertheless observes a
general tendency of projects with larger (i.e., closer to zero) scaling exponents α3 to exhibit
smaller coefficients for the growth of the mean out-degree. We can quantitatively assess
the significance of such a relation by computing the normalized mutual information (NMI)

10see https://github.com/zendframework/zf1/wiki/Contributing-to-Zend-Framework-1

https://github.com/zendframework/zf1/wiki/Contributing-to-Zend-Framework-1
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between the slopes of the mean (weighted) out-degree and the exponents α3. This quantity
measures the extent to which knowing the value of one variable allows the inference of the
other. The NMI has a minimum of 0 when the two variables are independent, and a maxi-
mum of 1 when one variable completely determines the other. Referring to the left side of
Fig. 12, the NMI between α3 and the slope of the mean out-degree is 0.33. Similarly on the
right side, the NMI between α3 and the slope of the mean weighted out-degree is 0.24.

We further estimate the statistical significance of the obtained NMI values by means of
a bootstrapping approach. We shuffle α3 and the mean (weighted) out-degree 104 times
and compute the resulting NMI for each shuffled sample. Calculating the percentage of the
shuffled NMI values that are larger than the empirical ones allows us to derive a p-value
for the null hypothesis that the empirical NMI values of 0.33 and 0.24 can be obtained by
chance alone. The calculated p-values are 0 and 0.009 for the left and right side of Fig. 12
respectively, which allows us to reject the null hypothesis above. We therefore conclude that
the positive NMI values are significant, and thus substantiate the negative relation between
the scaling exponents α3 and the growth coefficients of the mean (weighted) out-degree.

6 Threads to Validity and Future Work

Prior to concluding our article, in the following we summarize a number of threats to validity
and open issues that highlight potential directions for future research.

First, and foremost, our study is based on a large-scale data set from the social cod-
ing platform GITHUB which comes, like any data set, with its own fallacies and potential
biases. The specific risks and opportunities awaiting researchers in the analysis of data from
GITHUB have recently been summarized by Kalliamvakou et al. (2014). A number of risks
are associated with the facts that i) GITHUB repositories are not necessarily equivalent to
projects, ii) the majority of repositories show low levels of commit activity, iii) the majority
of repositories are personal repositories not used for collaboration, iv) many repositories are
not related to software development, and v) many GITHUB repositories are actually not the
main development repository of projects. We avoided all of these risks by a careful selection
of projects which ensures that all analyzed repositories i) are the main development repos-
itories of OSS projects, ii) showed activity for at least one year, iii) showed recent activity
in the week of data selection, and iv) had commits by at least 50 different developers. A
second set of risks involves the use of so-called pull requests, and the way in which those
are recorded in the commit history. As mentioned in Section 3.1, by our special treatment
of merged pull requests we have carefully accounted for the potential resulting biases. In
particular for merged pull requests we only account for the contribution of the original com-
mit underlying the pull request. We further correctly attribute this contribution to the actual
author of the commit, and not to the maintainer who merged the pull request (see details in
Section A2) .

One shortcoming of our empirical analysis is that we have excluded motivational fac-
tors which have been shown to be important driving factors of the Ringelmann effect. We
expect that such factors play an important role as a further mechanism behind the decreas-
ing returns to scale observed in our study, and we thus highlight a large potential for future
research in this area. A particularly interesting question that results from our choice of
data from GITHUB, is whether the interaction mechanisms of this platform may mitigate
motivational factors contributing to the Ringelmann effect. In particular, a recent study has
highlighted the importance of publicly available developer activity information on GITHUB

(Dabbish et al. 2012), which is supposed to have a significant effect on the motivation of
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developers. Building on our quantitative approach, future work may search for quantitative
evidence for this effect, for instance by means of a large-scale comparison between the scal-
ing of team productivity on GITHUB and other platforms such as, e.g., SOURCEFORGE. In
order to facilitate such future work, we have made both the raw and the processed version
of our data set freely available to be reused for researchers (Scholtes et al. 2015).

One concern about the validity of our results on the scaling exponents of productivity
may arise due to our estimation of the size of development teams. To define a reasonable
size of the time-window for our analysis, we used the statistics of developer activity, i.e., the
maximum time of inactivity between any two commits of a developer. Notably, one-time
contributors, i.e., developers who committed only once, were not included in the statistics
of inactivity in order to avoid a bias towards large inactivity times. However, the question
whether the large fraction of one-time contributors for some projects may result in a bias
needs to be addressed. On the one hand, a large number of one-time contributors with minor
commit contributions could result in a spuriously large team size that results in an underes-
timation of productivity scaling exponents. On the other hand, even though the fraction of
single-commit developers is large for some projects, by definition these developers commit-
ted only once, thus limiting the magnitude of the effect. While there is no obvious answer
to the question of how to account for single-commit contributions and whether to count
one-time contributors as members of a development team, we carefully avoided potentially
wrong conclusions in two ways: First, in Section 4, we confirmed a sub-linear scaling of
productivity both for the size of the team and the number of active developers. The latter
number is defined using a time window of 7 days, which significantly mitigates potential
biases that may affect an analysis based on the much larger team size window. Secondly, to
avoid wrong conclusions based on our results on the effect of the team size, we reanalyzed
all of our data focusing on a stricter notion of core developers which excludes all one-time
contributors. We report these results in Section A4 both at the aggregate and the project
level. The scaling exponents shown in Tables 5 and 6 confirm that one-time contributors do
not significantly influence our results and that they do not qualitatively change any of our
conclusions.

Finally, a further limitation of our work is our rather simplistic perspective on coor-
dination structures in software development teams. As discussed in Section 5, this
perspective was chosen due to the available repository data, the heterogeneity of the
projects investigated, as well as the macroscopic approach which is the focus of our
study. An interesting extension of our work is thus to relate our results on the scaling
of team productivity with more meaningful and fine-grained abstractions for coordina-
tion requirements, like those investigated in Cataldo et al. (2008), Wolf et al. (2009), and
Blincoe et al. (2012, 2013). Such a study would need to combine data on a sufficiently large
set of projects with detailed data from task repositories. A second approach to extend our
study could be the focus on projects developed in particular programming languages which
would allow for an automated extraction of dependency networks, and thus a more reason-
able notion of coordination requirements that goes beyond the co-editing of source code
regions.

7 Conclusion

In the following, we conclude our article by summarizing our main findings and
contributions.
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Using a data set covering more than 580,000 commits from 58 Open Source Software
projects hosted on GITHUB, we first investigated reasonable measures of productivity which
can be defined based on commit log data. In addition to studying the number of commits,
we take into account the distribution of commit contributions measured in terms of the
Levenshtein distance between the version of source code files before and after a commit.
Using a time-slice analysis, we first showed that the mean contribution of commits exhibits
a large variance over several orders of magnitude. We argue that - due to this large vari-
ance - reasonable quantitative proxies for productivity need to take into account the actual
contribution of commits rather than being based on their mere number.

Using a notion of productivity that encompasses both the number of commits, as well
as the contributions of those commits in terms of source code changes, we studied the rela-
tion between the size of the development team and the productivity of team members. We
find strong evidence for a negative relation between team size and productivity. Through a
log-transformed robust linear regression analysis, we further computed a scaling exponent
for the relation between productivity and team size. Our results confirm negative scaling
exponents both for the aggregated data containing all projects, as well as for all of the 58
projects individually. With this, our study provides quantitative evidence for the presence
of the Ringelmann effect in Open Source Communities. By means of the expression of the
observed scaling relations in terms of a Cobb-Douglas production function, we further con-
clude that all of the studied projects represent diseconomies of scale, exhibiting diminishing
returns to scale.

Investigating possible explanations for the decrease in productivity as teams grow in size,
we have taken a network perspective in order to study the growth of coordination overhead.
Based on the association between developers and committed source code regions, as well as
the timing and ordering of these commits, we infer directed and weighted networks which
capture the co-editing of source code regions between developers. We performed a case
study on two extremal projects in our data set which show the most and the least pronounced
decrease in productivity as teams grow larger. For these two projects we were, through a
detailed analysis of the time-evolving co-editing networks, able to confirm our hypothesis
that the scaling of productivity is related to the growth dynamics of links in the coordination
network. Extending this analysis to all 49 projects for which we could infer a significant
fit to the scaling of productivity, we further show that i) all projects with a substantially
negative scaling of productivity exhibit a strong super-linear growth of links in co-editing
networks, ii) there is a statistically significant relation between the growth of co-editing
networks and the scaling coefficient of productivity.

In summary, our results confirm the intuition that - due to the overhead of coordinating
the work of a large number of developers - large-scale Open Source Software projects are
examples for diseconomies of scale. As such, we find that OSS communities are no excep-
tions from basic software engineering economics, which suggests the emergence of negative
non-additive effects in increasingly large teams of collaborating developers. We thus con-
clude that it is safe to reject the presence of synergetic effects which have been associated
with the Aristotelian quote that “the whole is more than the sum of its parts”. We instead find
that, like other collaborative software engineering projects, OSS communities are examples
for collaborative human endeavours exhibiting a pronounced Ringelmann effect.
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Appendix A

A1 Data Set

Table 3 summarises the 58 projects in our data set. For each project we show the project
name and programming language, the time span of the data retrieved, as indicated by the
times of the first and last retrieved commits, the total number of commits and the total
number of unique developers during the analysed time span.

Table 3 Summary of the 58 OSS projects in our data set

Project Language From To Commits Committers

antirez/redis C 2009-03-22 09:30:00 2014-10-29 11:48:22 4361 173

mono/mono C# 2001-06-08 18:45:34 2014-11-21 14:20:40 96688 738

xbmc/xbmc C++ 2009-09-23 01:49:50 2014-10-30 13:39:03 25810 543

TrinityCore/TrinityCore C++ 2008-10-02 21:23:55 2014-10-30 06:38:55 22275 487

cocos2d/cocos2d-x C++ 2010-07-06 02:19:51 2014-10-30 04:45:22 16400 448

Itseez/opencv C++ 2010-05-11 17:44:00 2014-10-28 13:06:36 11972 383

bitcoin/bitcoin C++ 2009-08-30 03:46:39 2014-10-30 06:31:34 4624 314

dogecoin/dogecoin C++ 2009-08-30 03:46:39 2014-08-24 14:57:20 4036 269

litecoin-project/litecoin C++ 2009-08-30 03:46:39 2014-09-16 09:50:58 2935 190

twbs/bootstrap CSS 2011-04-27 20:53:51 2014-10-30 16:13:39 7461 670

zurb/foundation CSS 2011-10-13 23:09:47 2014-10-28 23:54:09 5525 676

docker/docker Go 2013-01-19 00:13:39 2014-10-29 23:43:18 7216 752

elasticsearch/elasticsearch Java 2010-02-08 13:30:06 2014-10-30 11:32:53 9838 378

libgdx/libgdx Java 2010-03-06 16:05:53 2014-10-30 12:56:30 7955 332

github/android Java 2011-10-12 22:36:58 2014-08-08 11:09:08 2305 67

jquery/jquery-mobile JavaScript 2010-09-10 22:23:13 2014-10-29 23:13:23 10847 285

meteor/meteor JavaScript 2011-11-18 02:35:20 2014-07-25 20:57:47 8162 146

adobe/brackets JavaScript 2011-12-07 21:20:16 2014-10-30 15:35:15 8068 232

mrdoob/three/js JavaScript 2010-04-24 03:01:19 2014-10-28 22:33:52 7557 440

joyent/node JavaScript 2009-02-16 00:02:00 2014-10-02 16:00:40 6918 510

jquery/jquery-ui JavaScript 2008-05-22 15:38:37 2014-10-25 16:18:17 6146 285

angular/angular/js JavaScript 2010-01-06 00:36:58 2014-10-30 15:04:41 5930 1147

jquery/jquery JavaScript 2006-03-22 03:33:07 2014-10-30 13:16:32 5376 249

emberjs/ember/js JavaScript 2011-04-30 22:39:07 2014-10-30 12:54:26 5078 504

ajaxorg/ace JavaScript 2010-04-02 13:39:45 2014-10-30 00:09:09 4695 241

mozilla/pdf/js JavaScript 2011-04-26 06:33:36 2014-10-28 18:56:55 4630 201

strongloop/express JavaScript 2009-06-26 18:56:18 2014-10-29 05:15:58 4459 183

cocos2d/cocos2d-html5 JavaScript 2012-01-29 09:14:21 2014-12-17 03:33:02 3468 93

mbostock/d3 JavaScript 2010-09-27 17:23:59 2014-10-23 17:05:38 2640 86

tryghost/Ghost JavaScript 2013-05-04 11:09:13 2014-12-15 17:09:24 2529 210

jashkenas/backbone JavaScript 2010-09-30 19:48:05 2014-10-28 01:52:45 1938 265

tastejs/todomvc JavaScript 2011-06-03 20:04:08 2014-10-30 00:58:23 1491 226

ivaynberg/select2 JavaScript 2012-03-04 18:58:26 2014-10-29 21:36:54 972 316
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Table 3 (continued)

Project Language From To Commits Committers

AFNetworking/ Objective-C 2011-05-31 21:27:34 2014-10-25 02:34:33 1579 253

AFNetworking

WordPress/WordPress PHP 2003-04-01 06:17:43 2014-10-16 22:07:20 27101 55

zendframework/zf2 PHP 2009-04-28 10:23:49 2015-01-13 10:14:03 16810 890

symfony/symfony PHP 2010-01-04 14:26:20 2014-10-27 18:25:03 12945 1236

cakephp/cakephp PHP 2005-05-15 21:41:38 2014-10-30 01:43:18 12224 349

bcit-ci/CodeIgniter PHP 2006-08-25 17:25:49 2014-10-29 11:18:24 5987 372

laravel/laravel PHP 2011-06-09 04:45:08 2014-09-29 14:08:27 3155 264

yiisoft/yii PHP 2008-09-28 12:03:53 2014-10-24 15:29:38 2415 220

django/django Python 2005-07-13 01:25:57 2014-10-30 12:53:20 18266 798

ansible/ansible Python 2012-02-05 17:48:52 2014-10-29 04:59:46 8825 1131

kennethreitz/requests Python 2011-02-13 18:52:37 2014-10-26 13:45:12 2778 371

mitsuhiko/flask Python 2010-04-06 11:12:57 2014-10-27 10:54:30 1629 270

rails/rails Ruby 2004-11-24 01:04:44 2014-10-30 16:01:18 39509 3046

CocoaPods/Specs Ruby 2011-09-08 19:46:11 2014-10-30 15:52:28 25412 4107

rapid7/metasploit- Ruby 1970-01-01 00:02:02 2014-10-28 17:10:19 22354 387

framework

spree/spree Ruby 2008-02-25 18:23:50 2015-01-13 09:12:45 14171 742

diaspora/diaspora Ruby 2010-06-11 17:40:49 2014-10-23 05:12:26 9773 360

gitlabhq/gitlabhq Ruby 2011-10-08 21:34:49 2014-10-30 12:44:29 8991 690

fog/fog Ruby 2009-05-18 07:13:06 2014-10-30 12:08:47 8548 752

discourse/discourse Ruby 2011-10-15 18:00:00 2014-10-30 16:11:33 7026 338

mitchellh/vagrant Ruby 2010-01-21 08:35:06 2014-10-25 14:10:37 3210 322

activeadmin/activeadmin Ruby 2010-04-15 13:23:16 2014-12-15 22:00:26 2754 433

plataformatec/devise Ruby 2009-09-16 12:17:43 2014-10-29 14:59:33 2368 414

jekyll/jekyll Ruby 2008-10-20 02:07:26 2013-06-08 17:47:34 1486 210

robbyrussell/oh-my-zsh Shell 2009-08-28 18:14:03 2014-10-22 13:16:15 1732 796

A2 GitHub Data Set

For each project in our data set we queried the GITHUB API with the query
https://api.github.com/repos/<owner>/<repo>/commits?page=<n>, where<owner> is a
GITHUB user account and <repo> is the name of a project repository belonging to this
user. The query returns a paginated json list of the 30 most recent commits in the master
branch of the project. By varying the parameter <n>, we control the pagination and can
trace back the commit history until the very first commit.

Each element in the json list represents a commit with all GIT-relevant information (see
Section 3.1). More specifically, it contains the names and email addresses of both the author
and the committer.11 The author is the person who authored the code in the commit and
the committer is the one with write permissions in the repository who merged the commit
in the project code base. These two identities may not be the same when pull requests are

11Developers who use Git input this basic information in the configuration of their Git clients.

https://api.github.com/repos/<owner>/<repo>/commits?page=<n>
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Fig. 13 Simplified illustration of merging a pull request. A potential contributor forks the main branch of a
project (light blue) into his/her own local repository (green). After some activity in both repositories a pull
request is created and merged as indicated by the dashed arrow. This results in two commits - C5’ and C6 -
in the main branch. The merge commit C6 (dark blue) has two parent links and should be excluded

considered, as the developers requesting the pull typically do not have write access. Since
we quantify contributions in terms of amount of code written, we take the author email from
the commit data as a unique identifier for individual developers. In cases where the author
email is empty, we conservatively skip the commit.

The commit SHA contained in the json list can be used to execute a commitspecific
query in the GITHUB API of the form:

https://api.github.com/repos/<owner>/<repo>/commits/<SHA>

The result is again a json list which provides detailed information about the list and diffs
of all files changed in the commit. We retrieve this additional information and use it to (i)
quantify the precise contribution to the source code at the level of individual characters and
(ii) construct the time-varying coordination networks of developers who have co-edited files
(see Section 5.1).

A2.1 Merged Pull Requests

Upon merging a pull request, typically through the GITHUB interface, the commit tree of
the project is modified by including a special merge commit. The basics of this process is
illustrated in Fig. 13.

In this example, a potential contributor forks the main branch after the second commit.
Subsequent local changes are then made to the master branch and to the remote repository,
represented by commits C4 and C5 respectively. After C5, the potential contributor creates a
pull request asking for the changes in C5 to be incorporated in the main code base. Assuming
the pull request is approved and no conflicts exist, C5 is merged by creating two commits
- C5’ and C6. C5’ is almost identical to C5 in that it has the same author and committer
fields as well as diffs.12 C6 is a special merge commit that contains the same diffs as C5 and
C5, but differs on the author and committer information. The author and committer in C6
are those of the maintainer who approved and merged the pull request, and not those of the
developer who originally wrote the code in C5 and C5’. Thereby including commit C6 in
the analysis would wrongly attribute the contained diff to the maintainer and inflate his/her
contribution in terms of code written.

We deal with this problem by noticing that merge commits always have at least two
parent pointers - one to the replicated commit from the forked repository, and one to the

12The differences pertain to the hashes of the corresponding physical files, which are irrelevant for us.

https://api.github.com/repos/<owner>/<repo>/commits/<SHA>
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last commit in the main branch. In some cases when changes are merged from more than
one remote branches, the merge commit will have a parent pointer to each of these remotes.
Since the parent pointers are also available in our data set, we exclude all commits that have
two or more parent pointers.13

An additional complication is that GIT also allows integrating changes by socalled rebas-
ing. Different from pull requests, which generate a merge commit, in rebasing all changes
are applied on top of the last commit of the branch being rebased into. The result is a sin-
gle commit with only one parent link that is added at the end of the rebased branch and that
incorporates these changes. Since we cannot distinguish the developer who rebased from
those who authored the changes, we exclude such commits from our analysis. Even though
the parent pointer rule cannot be applied here, most well-structured projects contain indica-
tive commit messages that can be used to this end. We exclude all commits with commit
messages that contain any of the keywords merge pull request, merge remote-tracking, and
merge branch, regardless of punctuation.

We note that all summary statistics regarding the number of commits in this paper (e.g.
Table 3) are calculated after applying the above two exclusion methods.

A3 Model Fits for Project-Wise Scaling of Productivity

For each project in our data set, we estimated the model in (2) relating the team size s to the
mean team-member contribution 〈c′〉. For a small number of those projects, the team size
s varies in a rather narrow range, thus questioning logarithmic transformations of both the
parameter s and 〈c′〉 in the linear model of (2).14 We thus additionally use a model variation
with a logarithmic transformation of 〈c′〉, while keeping s linear, i.e.:

log〈c′〉 = β̂3 + α̂3 · s (6)

We denote this model as Log-Lin, while referring to the original model in which we perform
a logarithmic transformation of both parameters as Log-Log.

For each project, we fit both models and select the one which yields the largest
coefficient of determination r2 as the appropriate model for this project. The resulting
project-dependent scaling coefficients are summarized in Table 4.

The result confirms that our finding of decreasing returns to scale at the aggregate level
(Section 4.1) also holds for individual projects. Virtually all projects exhibit negative scaling
of the mean team-member contribution with the team size, except for two projects for which
no significant scaling coefficient could be determined. At any rate, the absence of significant
positive coefficients for any of the projects allows us to conclude that there is no evidence
for super-linear scaling in our data set.

13Note that this method is valid also when changes are merged from other local branches, and not from forked
repositories. The corresponding merge commit still contains parent pointers linking it to these branches.
14Note that due to the sensitivity of the Levenshtein index, it varies across several orders of magnitude,
regardless of the project size, hence a log transformation on 〈c′〉 is justified.
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Table 4 Robust linear regression of the Log-Log and Log-Lin models for all projects

Log-Log Log-Lin

Project α3 r2 α̂3 r̂2

zendframework/zf2 −1.892 (−2.038) 0.466 (0.462) −0.006 (−0.008) 0.416 (0.440) ≥ 10, 000

xbmc/xbmc −1.566 (−1.701) 0.330 (0.274) −0.007 (−0.010) 0.304 (0.255) commits

cakephp/cakephp −1.392 (−1.430) 0.717 (0.680) −0.018 (−0.024) 0.715 (0.681)

spree/spree −1.326 (−1.351) 0.504 (0.466) −0.006 (−0.011) 0.311 (0.296)

TrinityCore/TrinityCore −1.136 (−1.151) 0.814 (0.791) −0.011 (−0.014) 0.684 (0.641)

Itseez/opencv −0.972 (−0.975) 0.825 (0.799) −0.012 (−0.017) 0.783 (0.763)

rails/rails −0.894 (−0.900) 0.764 (0.714) −0.003 (−0.004) 0.675 (0.620)

django/django −0.856 (−0.850) 0.475 (0.360) −0.004 (−0.006) 0.356 (0.257)

cocos2d/cocos2d-x −0.620 (−0.590) 0.257 (0.232) −0.004 (−0.005) 0.132 (0.132)

WordPress/WordPress −0.459 (−0.459) 0.042 (0.048) −0.017 (−0.019) 0.025 (0.032)

jquery/jquery-mobile −0.352 (0.260) 0.01 (0.004) −0.001 (0.002) −0.004 (−0.002)

CocoaPods/Specs −0.116 (−0.085) 0.229 (0.117) 0 (0) 0.053 (0.006)

mono/mono −2.276 (−1.122) 0.37 (0.170) −0.013 (−0.016) 0.490 (0.284)

rapid7/metasploit- −0.511 (−0.48) 0.263 (0.22) −0.006 (−0.006) 0.288 (0.247)

framework

symfony/symfony −1.085 (−1.099) 0.543 (0.484) −0.004 (−0.006) 0.57 (0.508)

mitsuhiko/flask −3.785 (−3.827) 0.278 (0.181) −0.051 (−0.093) 0.268 (0.148) < 10, 000

github/android −2.254 (−2.861) 0.486 (0.364) −0.062 (−0.154) 0.477 (0.353) commits

laravel/laravel −2.107 (−2.290) 0.406 (0.374) −0.012 (−0.028) 0.196 (0.234)

plataformatec/devise −1.946 (−1.909) 0.429 (0.269) −0.024 (−0.035) 0.344 (0.136)

jashkenas/backbone −1.796 (−1.141) 0.142 (0.059) −0.008 (−0.011) 0.023 (0.014)

AFNetworking/ −1.679 (−1.889) 0.364 (0.264) −0.018 (−0.051) 0.264 (0.206)

AFNetworking

ivaynberg/select2 −1.554 (−1.887) 0.476 (0.443) −0.013 (−0.058) 0.323 (0.380)

discourse/discourse −1.542 (−1.501) 0.327 (0.335) −0.004 (−0.008) 0.16 (0.187)

yiisoft/yii −1.510 (−1.638) 0.531 (0.527) −0.017 (−0.027) 0.298 (0.316)

mozilla/pdf.js −1.505 (−1.584) 0.476 (0.386) −0.022 (−0.04) 0.428 (0.399)

activeadmin/ −1.378 (−1.54) 0.637 (0.538) −0.016 (−0.031) 0.633 (0.565)

activeadmin

jquery/jquery-ui −1.340 (−1.87) 0.267 (0.139) −0.014 (−0.037) 0.173 (0.096)

emberjs/ember.js −1.315 (−1.399) 0.462 (0.440) −0.004 (−0.006) 0.189 (0.187)

cocos2d/cocos2d-html5 −1.278 (−1.237) 0.407 (0.314) −0.031 (−0.037) 0.338 (0.238)

tastejs/todomvc −1.205 (−1.114) 0.129 (0.084) −0.016 (−0.024) 0.098 (0.052)

mitchellh/vagrant −1.158 (−1.279) 0.438 (0.355) −0.009 (−0.027) 0.429 (0.418)

kennethreitz/requests −1.125 (−1.212) 0.245 (0.237) −0.009 (−0.019) 0.188 (0.199)

libgdx/libgdx −1.109 (−1.121) 0.496 (0.451) −0.011 (−0.016) 0.391 (0.356)

twbs/bootstrap −1.107 (−1.108) 0.293 (0.233) −0.004 (−0.009) 0.138 (0.126)

tryghost/Ghost −1.106 (−1.136) 0.549 (0.386) −0.008 (−0.014) 0.382 (0.253)

adobe/brackets −1.092 (−1.095) 0.500 (0.469) −0.010 (−0.012) 0.350 (0.330)

gitlabhq/gitlabhq −1.081 (−1.085) 0.589 (0.488) −0.004 (−0.009) 0.523 (0.436)

ansible/ansible −1.062 (−1.079) 0.667 (0.598) −0.002 (−0.003) 0.395 (0.356)
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Table 4 (continued)

Log-Log Log-Lin

Project α3 r2 α̂3 r̂2

litecoin−project/litecoin −1.009 (−0.972) 0.270 (0.202) −0.016 (−0.020) 0.157 (0.091)

elasticsearch/elasticsearch −0.990 (−0.984) 0.685 (0.625) −0.005 (−0.013) 0.182 (0.203)

mrdoob/three.js −0.971 (−1.009) 0.418 (0.373) −0.008 (−0.013) 0.414 (0.362)

jekyll/jekyll −0.946 (−0.451) 0.057 (0.009) −0.001 (0.002) −0.007 (−0.008)

meteor/meteor −0.930 (−0.869) 0.447 (0.361) −0.014 (−0.018) 0.340 (0.287)

zurb/foundation −0.925 (−0.926) 0.145 (0.136) −0.003 (−0.007) 0.113 (0.116)

joyent/node −0.883 (−0.868) 0.422 (0.342) −0.008 (−0.015) 0.315 (0.263)

dogecoin/dogecoin −0.861 (−0.853) 0.294 (0.234) −0.014 (−0.021) 0.251 (0.191)

angular/angular.js −0.831 (−0.796) 0.485 (0.291) −0.002 (−0.006) 0.352 (0.220)

docker/docker −0.802 (−0.760) 0.617 (0.493) −0.002 (−0.004) 0.423 (0.337)

robbyrussell/oh-my-zsh −0.796 (−0.79) 0.099 (0.072) −0.004 (−0.009) 0.081 (0.048)

fog/fog −0.777 (−0.761) 0.575 (0.504) −0.006 (−0.008) 0.489 (0.426)

jquery/jquery −0.737 (−0.579) 0.109 (0.041) −0.011 (−0.012) 0.080 (0.023)

bitcoin/bitcoin −0.729 (−0.713) 0.277 (0.216) −0.007 (−0.012) 0.131 (0.109)

bcit-ci/CodeIgniter −0.694 (−0.625) 0.188 (0.128) −0.006 (−0.006) 0.089 (0.048)

strongloop/express −2.114 (−1.885) 0.352 (0.188) −0.043 (−0.112) 0.363 (0.180)

mbostock/d3 −1.825 (−1.909) 0.409 (0.343) −0.084 (−0.116) 0.417 (0.337)

antirez/redis −1.542 (−1.619) 0.367 (0.244) −0.031 (−0.064) 0.381 (0.245)

ajaxorg/ace −1.249 (−1.169) 0.233 (0.215) −0.027 (−0.037) 0.247 (0.195)

diaspora/diaspora −0.221 (−0.126) 0.003 (−0.003) 0.003 (0.005) 0.040 (0.035)

MM-estimation was used to estimate the coefficients of the regressors. Bold values for α3 or α̂3 indicate (i)
significance at p < 0.01 and (ii) that the corresponding model has a larger coefficient of determination r2.
Only the first 15 projects have at least 10, 000 commits. Of those, 11 had the Log-Log model as a significant
and most reasonable fit, and were used as a selection pool for building coordination networks in Section 5.2.
Brackets enclose the corresponding quantities after the commits of single-commit developers have been
removed from the analysis

A4 Effect of One-Time Contributors

In order to quantify the extent to which our results of team productivity may be influenced
by contributors who committed to a project only once, we identified single-commit devel-
opers in all of the studied projects. Figure 14 shows the fraction of one-time contributors in
all of the studied projects, validating the intuition that they comprise a sizable part of the
development team.

In order to ensure that our results about the scaling of productivity are not qualitatively
affected by the large fraction of single-commit developers, we have additionally filtered
the commit logs of all projects, filtering out the commits of all developers who committed
only once. By this study, we focus on the contributions of a core team of that particularly
rules out single-commit developers. Using this filtered commit log, we then recomputed all
model fits in the paper. In Tables 5 and 6, we report the scaling exponents. We observe no
qualitative changes regarding our observation of decreasing returns to scale. We addition-
ally reanalyzed all individual projects, again filtering out all contributions by single-commit
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Fig. 14 Fraction of commits submitted by one-time contributors, i.e., developers who never contributed a
second commit

Table 5 Estimation of two linear models for Fig. 6 with single-commit developers removed

β0 α0 r2 β1 α1 r2

0.95±0.02 −0.20±0.01 0.10 4.21±0.04 −0.27±0.02 0.04

MM-estimation was used to estimate the coefficients of the regressors. The coefficients are presented
together with their corresponding 95 % confidence intervals and are highly significant at p < 0.001. The
sample size for both models is 13776

Table 6 Estimation of two linear models for Fig. 7 with single-commit developers removed

β2 α2 R2 β3 α3 R2

0.82±0.03 −0.64±0.02 0.32 4.07±0.05 −0.71±0.03 0.22

MM-estimation was used to estimate the coefficients of the regressors. The coefficients are presented
together with their corresponding 95 % confidence intervals and are highly significant at p < 0.001. The
sample size for both models is 13776
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developers. We report on the project-wise scaling exponents in the bracketed values in
Table 4, again not observing any qualitative changes of our results for individual projects.

A5 Inference Versus Prediction from Linear Models

In Section 4.1 we introduced two linear models15 as a means of quantifying the negative
trends observed in Figs. 6 and 7. In particular we introduced

log〈n〉 = β0 + α0 · log s + ε0

log〈c〉 = β1 + α1 · log s + ε1

log〈n′〉 = β2 + α2 · log s + ε2

log〈c′〉 = β3 + α3 · log s + ε3 (7)

where 〈n〉 is the mean number of commits per active devel 〈n′〉 is the mean number of
commits per team member, 〈c〉 is the mean commit contribution per active developer, 〈c′〉
is the mean contribution per team member and ε0,1,2,3 denote the errors of the models.

We note that for these models to provide reliable predictions16 the following conditions
must be met: (a) Var(ε0,1,2,3,4| log s) = σ 2, for all s (homoskedasticity), (b) ε0,1,2,3 ∼ N (0,
σ2) (normality of the error distribution) and (c) E(ε0,1,2,3| log s) = 0 (linear model is
correct).

We test for homoskedasticity by running the Koenker studentised version of the Breusch-
Pagan test (Koenker 1981). This test regresses the squared residuals on the predictor in
(7) and uses the more widely applied Lagrange Multiplier (LM) statistics instead of the
F-statistics. Although more sophisticated procedures, e.g. Whites test, would account for
a non-linear relation between the residuals and the predictor, we find that the Breusch-
Pagan test is sufficient to detect heteroskedasticity in our data. The consequence of
violating the homoskedasticity assumption is that the estimated variance of the slopes
α0,1,2,3 will be biased, hence the statistics used to test hypotheses will be invalid. Thus,
to account for the presence of heteroskedasticity, we use robust methods to calculate
heteroskedasticity-consistent standard errors. More specifically, we use an MMtype robust
regression estimator, as described in and provided by the R package robustbase.

As for normality of the errors ε0,1,2,3, a violation of this assumption would render exact
t and F statistics incorrect. However, our use of a robust MM estimator addresses possible
non-normality of residuals, as it is resistant to the influence of outliers.

The last assumption pertains to the overall feasibility of the linear model. A common way
to assess it is to plot the residuals from estimating (7) versus the fitted values, commonly
known as a Tukey-Anscombe plot. A strong trend in the plot is evidence that the relationship
between the dependent and independent variable is not captured well by a linear model. As a
result, predicting the dependent variable from the calculated slope is likely to be unreliable,
especially if the relationship between the variables is highly non-linear.

In Fig. 15 we show the Tukey-Anscombe plots for the four regression models in (7).
While we cannot readily observe a prominent trend, we, nevertheless, see two qualitatively
different regimes. Specifically the residuals in the lower ranges are close to zero, while they
are relatively symmetrically distributed beyond this range. Looking at the line fits in Figs. 6

15see (1) and (2).
16i.e., to predict the productivity of a team with an arbitrary size given the productivity of a team with a
certain size.
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Fig. 15 Residuals versus fitted values for (7). The titles above each plot correspond to the respective
scatterplots in Figs. 6 and 7

and 7 we see that the reason for this discrepancy are the outliers in the region of large team
sizes, which fall close to the fitted regression lines. Therefore the residuals corresponding
to these outliers will be close to zero. Investigating these specific data points reveals that
they belong exclusively to the Specs project.

To actually quantify a possible trend in Fig. 15 we calculate the normalized mutual infor-
mation (NMI) between the residuals and the fitted values.17 As expected the NMI is rather
low - 0.04 (top-left), 0.02 (top-right), 0.04 (bottom-left) and 0.03 (bottom-right) - an indica-
tion that there is no pronounced systematic error in the linear model. However, even though
the NMI values are low, we find that there are all statistically different from zero at p =
0.05.18

Therefore, despite the evidence against a systematic error in these linear models, assump-
tion (c) cannot be technically satisfied. We, thus, conservatively avoid using the linear
models for predictive means. Since the NMI values, however, are rather low, the regression
models are sufficient for our purposes of simply quantifying the observed negative trends.
We argue that the practical significance of such small effect sizes is negligible with respect
to introducing strong systematic errors that could obscure a salient non-linear relationship.
Effectively, we can only retroactively infer a significant negative relationship between team
size and productivity, but cannot forecast team production given team size. We caution that
such inference is also a subject to high variability, as indicated by the low r2 values (see
Section 5.2), and is thus valid only on average.

Finally, an argument against the significance of the slopes in (7) is the relatively large
sample size of N = 13998. Known as the “p-value problem” (Lin et al. 2013), the issue

17see Section 5.2 for introduction of the NMI.
18statistical significance is judged by the bootstrap approach presented also in Section 5.2
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pertains to applying small-sample statistical inference to large samples. Statistical inference
is based on the notion that under a null hypothesis a parameter of interest equals a spe-
cific value, typically zero, which represents “no effect”. In our example, we are interested
in estimating the slopes α0,1,2,3 with an associated null hypothesis that sets them to zero. It
is precisely this representation of the “no effect” by a particular number that becomes prob-
lematic with large samples. In large samples the standard error of the estimated parameter
becomes so small that even tiny differences between the estimate and the null hypothesis
become statistically significant. Hence, unless the estimated parameter is equal to the null
hypothesis with an infinite precision, there is always a danger that the statistical significance
we find is due to random fluctuations in the data. One way to alleviate the issue is to con-
sider the size of the effect (as we did above) and assess whether the practical significance of
the effect is important for the context at hand, even if it is significant in the strict statistical
sense.

Another way is to demonstrate that the size and significance of the effect cannot arise by a
random fluctuation. To this end we again resort to a bootstrap approach. For each scatterplot
in Figs. 6 and 7, we generate 10, 000 bootstrap samples by shuffling the data points. We then
estimate the regression models on each bootstrap sample and record the corresponding slope
estimate α̂0,1,2,3, regardless of its statistical significance.19 We find that the slopes of the
10, 000 bootstrapped regression models are restricted in the ranges [−0.02, 0.02], [−0.04,
0.04], [−0.04, 0.03] and [−0.04, 0.06] for α̂0, α̂1, α̂2 and α̂3, respectively. Comparing those
ranges to the empirical slopes in Tables 1 and 2, we see that by eliminating the relationship
between team size and productivity we cannot reproduce the strength of the negative trend
found in the dataset. It is the information lost from the shuffling procedure that accounts for
the statistical significance of α0,1,2,3. Hence, it is safe to conclude that our analysis does not
suffer from spuriously significant results introduced by large samples.

A6 Calculating Overlapping Source Code Regions

Our method of identifying overlapping source code changes between co-edits of the same
file is based on the information in the chunk header of a diff between two versions of a
committed file. Such a file diff shows only those portions of the file that were actually
modified by a commit. In git parlance these portions are known as chunks. Each of these
chunks is prepended by one line of header information enclosed between@@ . . .@@. The
header indicates the lines which were modified by a given commit to this file. Therefore,
from all chunk headers within a file diff we can obtain the line ranges affected by the
commit and eventually calculate the overlapping source code regions between two different
commits to the same file.

As a concrete example, assume a productivity time window of 7 days in which the file
foo.txt was modified first by developer A and then by developer B in commits CA and CB ,
respectively. The diff of foo.txt in commit CA may contain the following chunk header:

@@ -10,15 +10,12 @@

The content of the header is split in two parts identified by “−”and “+”: −10,15 and
+10,12. The two pairs of numbers indicate the line ranges, outside which the two versions
(before and after CA) of foo.txt are identical. More specifically, -10,15 means that starting
from line 10, CA made changes to the following 15 lines, i.e., it affected the line range

19α̂ refers to the slope of a bootstrap sample, whereas α is the slope of the original regression models.
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[10 - 25]. What the result of these changes was is given in the second part of the header.
+10,12 indicates that starting from line 10 in the new state of the file, the following 12 lines
are different compared to the [10 - 25] line range. Beyond these 12 lines, the old and the new
state of foo.txt are identical, provided there are no more chunks in the file diff. Therefore,
the line range [10 - 25] in the old state of foo.txt and the line range [10 - 22] in the new
state after CA, are the only differences introduced by the commit. This could be caused for
example by the removal of three lines from the line range [10 - 25], together with other
modifications in the same range.

Since CA comes prior to CB in our example, we associate the second part of the chunk
header, i.e., line range [10 - 25], to CA as it represents the state of foo.txt after the changes
from CA were applied and before those from CB . Now assume that the diff of foo.txt in CB

has only one chunk with the following header:

@@ −10,30 +10,40 @@

In other words, lines [10 - 40] from the old state of foo.txt were modified by CB , and
the changes are reflected in lines [10 - 50] in the new state of foo.txt after CB .20 Note
that, lines [10 - 40] represent the state of foo.txt after CA, but before CB . Therefore to
compute the overlapping source code ranges between CB and CA, we need to compare
the line ranges [10 - 40] and [10 - 25] and calculate the overlap. In this case, the overlap
is 15 lines, which is the weight we attribute to the coordination link from developer B

to A in this particularly simple example. The procedure described above is applied to all
pairs of commits by different developers which have edited a common file within a given
productivity time window of 7 days. Processing the chunk information in the above way thus
allows us to extract linebased, weighted and directed co-editing networks which capture the
association between developers and source code regions.
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