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Statistical ensembles of networks, i.e., probability spaces of all networks that are consistent with
given aggregate statistics, have become instrumental in the analysis of complex networks. Their
numerical and analytical study provides the foundation for the inference of topological patterns,
the definition of network-analytic measures, as well as for model selection and statistical hypothesis
testing. Contributing to the foundation of these data analysis techniques, in this Letter we introduce
generalized hypergeometric ensembles, a broad class of analytically tractable statistical ensembles of
finite, directed and weighted networks. This framework can be interpreted as a generalization of
the classical configuration model, which is commonly used to randomly generate networks with a
given degree sequence or distribution. Our generalization rests on the introduction of dyadic link
propensities, which capture the degree-corrected tendencies of pairs of nodes to form edges between
each other. Studying empirical and synthetic data, we show that our approach provides broad
perspectives for model selection and statistical hypothesis testing in data on complex networks.

PACS numbers: 89.75.Hc, 02.50.Sk, 89.75.Kd

The analysis of data from the perspective of graphs
or networks is a cornerstone in the study of complex
systems. Examples for network-based methods include
(i) algorithms to detect communities of similar nodes,
e.g., in social networks, (ii) statistical measures quan-
tifying correlations like assortative mixing or clustering,
and (iii) statistical techniques to infer significant patterns
in biological or social systems. Many of these methods
are based on statistical ensembles, probability spaces of
networks with constraints imposed on characteristics like
size, degree distribution, community structure, or mo-
tif statistics [1–7]. The numerical and analytical study of
such ensembles is of fundamental importance. First, they
serve as null models, randomizing empirical networks to
establish a baseline of what is expected at random. These
are crucial to define quantitative measures [8, 9], to dis-
tinguish structural patterns from noise [3, 7, 8, 10], and to
study multi-layer [11, 12] and temporal networks [13–17].
Moreover, they provide a foundation for model fitting and
selection, with applications in community detection and
hypothesis testing [2, 18–21].

Existing formulations of network ensembles generally
fall into two classes. A first class is based on gener-
ative models, stochastic models that randomly generate
networks satisfying given constraints. Examples include
classical models for random graphs with fixed number
of nodes and edges [22], the configuration model gen-
erating networks with given degree sequence [23], or
the stochastic block model generating topologies with
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known communities [3]. They can be used to define
ensembles where (i) the characteristics of network real-
izations match those of an empirical network, and (ii)
the probability of particular realizations is given by the
underlying stochastic model. While generative models
provide a principled approach to define null models based
on a well-defined random process, their application in
practice is challenging. Each generative model preserves
only particular characteristics, thus limiting its applic-
ation as null model to specific scenarios. Moreover, the
analytical treatment of random processes generating net-
works, accurately satisfying given constraints, quickly
becomes intractable [24]. Thus, analytical solutions for
such ensembles are scarce, instead relying on approxima-
tions obtained by generating a large number of samples.

A second class of ensembles addressing these limita-
tions is the family of Exponential Random Graph Models
(ERGMs) [18]. Different from generative models that
preserve particular quantities, ERGMs allow to fix ex-
pectations of arbitrary characteristics observed in em-
pirical networks. Analogous to the grand canonical en-
semble in equilibrium statistical mechanics [2], the expo-
nential distribution naturally arises from the maximum
entropy principle. A benefit of ERGMs is that they
provide a broad class of ensembles with tunable char-
acteristics, making no assumptions about the underlying
network generation process. However, this generality also
introduces problems. Their analytical treatment requires
a closed-form solution of the partition function, which
can generally be derived only for infinite networks with
statistically independent links [2, 18]. At the same time,
sampling-based approximations are complicated by com-
putational requirements and phenomena that can break
ergodicity [2, 7, 25]. Finally, the lack of knowledge about
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network formation processes, expressed in the choice of
the maximum entropy distribution, poses problems in
situations where we are interested in null models that
capture specific random network generation processes.
These issues limit our ability to study patterns in large,
but finite networks.

Extending the foundation of ensemble-based model se-
lection and hypothesis testing, in this Letter we intro-
duce an ab initio alternative to the grand canonical en-
semble formulation of complex networks. The resulting
class of generalized hypergeometric ensembles is based
on a simple generative model of complex networks. It
provides an analytically tractable generalization of the
configuration model [23] for directed, weighted networks
with a fixed, finite number of nodes and edges, con-
strained by a given sequence of expected degrees. Incor-
porating dyadic propensities, it further allows to encode
arbitrary degree-corrected tendencies of pairs of nodes to
form edges between each other. We show that this class
of ensembles provides a powerful framework for model
selection in complex networks. Furthermore, we demon-
strate (i) how hypotheses about topological patterns in
networks can be tested statistically, and (ii) that this
provides a new approach to test the statistical signific-
ance of community structures.

We introduce our methodology step by step. Let us
consider an empirical network consisting of repeated dy-
adic relations (i, j) between nodes i and j. Such re-
lational data can be represented as a multi-edge, or
weighted, network Ĝ = (V,E), with a set V of n nodes,
and a multiset E ⊆ V ×V of (directed) edges. We further

define an adjacency matrix Â, where entries Âij ∈ N0

capture the weight of edge (i, j) ∈ V × V , i.e. the mul-
tiplicity of edge (i, j) in the multiset E. For each node
i ∈ V we can define the (weighted) in- and out-degree

as k̂in(i) :=
∑
j∈V Âji and k̂out(i) :=

∑
j∈V Âij respect-

ively. For undirected networks, the adjacency matrix is
symmetric and k̂in(i) = k̂out(i) =: k̂i. By definition,
for the total number of multi-edges m := |E| we have

m =
∑
i,j∈V Âij =

∑
i∈V k̂out(i) =

∑
i∈V k̂in(i).

Our construction of a statistical ensemble follows the
idea of the Molloy-Reed configuration model [23], which
is to randomly shuffle the topology of a network G
while preserving node degrees. The configuration model
uses a node-centric sampling approach, generating edges
between randomly sampled pairs of nodes such that the
exact observed degrees of nodes are preserved. Different
from this, we utilize an edge-centric sampling of m edges
from the set of all possible edges such that the sequence
of expected degrees of nodes is preserved. For each pair of
nodes i, j, we first define the maximum possible number
Ξij of multi-edges that can exist between nodes i and j

as Ξij := k̂out(i)k̂in(j) (cf. [3, 8]), which can be conveni-
ently represented in matrix form as Ξ := (Ξij)i,j∈V for
all pairs of nodes.

We can hence define a statistical ensemble based on
the following generative model. For each pair of nodes
i, j, we sample edges from a set of Ξij possible multi-
edges uniformly at random. This can be viewed as an urn
problem [26] where edges to be sampled are represented
by balls in an urn. We specifically obtain an urn with
M =

∑
i,j Ξij balls having n2 = |V × V | different col-

ours, representing all possible edges between a given pair
of nodes. The sampling of a network corresponds then to
drawing exactly m balls from this urn. Each adjacency
matrix A, with entries Aij such that

∑
i,j Aij = m, cor-

responds to one particular realization drawn from this en-
semble. The probability to draw exactly A = {Aij}i,j∈V
edges between each pair of nodes is given by the mul-
tivariate hypergeometric distribution[27]

Pr(A) =

(
M

m

)−1∏
i,j

(
Ξij
Aij

)
. (1)

which provides an analytical expression for the probabil-
ity of the given corresponding network Ĝ.

For each pair of nodes i, j ∈ V , the probability to
draw exactly Âij edges between i and j is given by the
marginal distributions of the multivariate hypergeomet-
ric distribution

Pr(Aij = Âij) =

(
M

m

)−1(Ξij

Âij

)(
M − Ξij

m− Âij

)
. (2)

For each pair of nodes i, j we can further calculate the
expected number of edges as 〈Aij〉 = m

Ξij

M . Moreover,
we can calculate the expected (weighted) in-degrees of all
nodes by summing the columns (rows) of matrix 〈Aij〉
(analogously for out-degrees):

〈kin(j)〉 =
∑
i∈V
〈Aij〉 = m

∑
i∈V k̂out(i)k̂in(j)

M
= k̂in(j).

(3)
Eq. 3 confirms that the expected in- and out-degree

sequence of realizations drawn from the resulting statist-
ical ensemble corresponds to the degree sequence of the
given network Ĝ. We thus arrive at a hypergeometric
statistical ensemble, which (i) provides a generalization
of the configuration model for directed, multi-edge net-
works, (ii) has a fixed sequence of expected degrees, and
(iii) is analytically tractable for directed and undirected
networks with and without self-loops and multiple edges.
Furthermore, we obtain a framework for the generaliza-
tion of other generative models like, e.g., the multi-edge
version of the Erdös-Rényi model [28], where only n and
m are fixed, while there are no constraints on the degree
sequence [29].

The sampling procedure outlined above provides a
parsimonious stochastic model for weighted, directed net-
works in which (i) the expected in- and out-degrees of
nodes are fixed, and (ii) edges between these nodes are
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generated at random, This stochastic model serves as a
null model because it considers only combinatorial effects
and no additional correlations. The question is to what
extent the patterns in a given empirical network exhibit
statistically significant deviations from this null model.

To answer this question, we generalize the hypergeo-
metric ensemble as follows. We introduce a matrix Ω
whose entries Ωij capture relative dyadic propensities,
i.e., the tendency of a node i to form an edge specifically
to node j. In particular, we assume that an entry Ωij cap-
tures the propensity that goes beyond the tendency of a
node i to connect to a node j that results from combinat-
orial effects, i.e., a degree-corrected preference of i linking
to j which accounts for the in-degree of j and the out-
degree of i. The key idea of our generalized ensemble is to
use the dyadic propensities Ωij to bias the edge sampling
process described above. In analogy to the urn model,
a biased sampling implies that the probability of draw-
ing balls of a given color does not only depend on their
number but also on the respective relative propensities.
The probability distribution resulting from such a biased
sampling process is given by the multivariate Wallenius’
non-central hypergeometric distribution [30–32]:

Pr(A) =

∏
i,j

(
Ξij
Aij

)∫ 1

0

∏
i,j

(
1− z

Ωij
SΩ

)Aij

dz (4)

with SΩ =
∑
i,j Ωij(Ξij −Aij).

Similar to the un-biased sampling, the probability to
observe a particular number Âij of edges between a pair
of nodes i and j can again be calculated from the mar-
ginal distribution:

Pr(Aij = Âij) =

(
Ξij

Âij

)(
M − Ξij

m− Âij

)
·
∫ 1

0

[
(

1− z
Ωij
SΩ

)Âij
(

1− z
Ω̄\(i,j)

SΩ

)m−Âij ]
dz

(5)

where Ω̄\(i,j) = (M − Ξij)
−1
∑

(l,m)∈V×V \(i,j) ΞlmΩlm.

The entries of the expected adjacency matrix 〈Aij〉 can
be obtained by solving the system of equations described
in [31]. Note that for the special case of a uniform dyadic
propensity matrix Ω ≡ const, which corresponds to an
unbiased sampling of edges, the integral in Eq. 5 becomes(
M
m

)−1
and we thus recover Eq. 1.

A major advantage of the formalism outlined above is
that, by specifying different dyadic propensities matrices
Ω, we obtain a broad class of generalized hypergeomet-
ric ensembles. This allows us to encode a wide range of
dyadic patterns in networks, while still obtaining an ana-
lytically tractable statistical ensemble from a simple and
well-defined generative model. In the following, we show
how the class of generalized hypergeometric ensembles
can be used for model selection and hypothesis testing in
complex networks.

Starting with the first, we introduce a method to se-
lect which of the ensembles defined by different Ω is the
most plausible model for a given empirical network Ĝ.
We recall that an (unbiased) random generation of edges
between nodes with fixed (expected) in- and out-degrees
corresponds to the generalized configuration model with
Ω ≡ const. Different models for the patterns present in
the topology of a network Ĝ can be encoded in terms
of different dyadic propensities Ω. Better models cor-
respond to ensembles statistically closer to the observed
network. The statistical distance between Ĝ and the en-
semble identified by Ωr can be assessed by the Mahalan-
obis distance [33]. This multivariate generalization of the
Z-score captures how many standard deviations an ob-
servation is away (in the corresponding direction) from
the expectation. For each Ωr, this provides a simple
method to compare an empirical network Ĝ with adja-
cency matrix Â to the expected adjacency matrix 〈A〉r
(with associated covariance matrix Σr). The square of
the Mahalanobis distance is

D2
r(Â) =

(
Â− 〈A〉r

)T
Σ−1
r

(
Â− 〈A〉r

)
. (6)

For the distribution given by Eq. 4, 〈A〉r can be cal-
culated analytically and its covariance matrix Σr can
be approximated numerically [34]. From a set of can-
didate models, the one with the smallest Mahalanobis
distance is to be preferred, since the corresponding en-
semble is statistically closest to an observed empirical
network. It thus best captures the topological patterns
present therein.

In the following, we illustrate the resulting model selec-
tion procedure using a synthetic toy example. We gen-
erate observations according to the small-world lattice
model proposed in [35]. Starting from a ring lattice topo-
logy with n = 30 nodes and m = 750 directed multi-edges
where each node is connected to its K = 5 nearest neigh-
bours via L = 5 multi-edges each, we randomly rewire
all edges with probability β ∈ [0, 1] retaining the in- and
out-degree sequences. This procedure produces synthetic
network realizations Ĝβ with adjacency matrices Âβ that
exhibit ring patterns with varying intensity – from the
perfect ring lattice when β = 0 to a completely random
network when β = 1. To demonstrate the model selection
procedure let us, without loss of generality, consider two
candidate models: the configuration model which gener-
ates no ring pattern, and a model which generates the
correct ring pattern with varying strength. Both can be
encoded within the class of generalized hypergeometric
ensembles in terms of dyadic propensities

Ωcij =

{
1 for j ∈ [i+ 1 mod n, i+K mod n],

c otherwise,with c ∈ [0, 1].
(7)

The parameter c defines the intensity of the pattern, such
that c = 0 corresponds to perfect rings, while c = 1
corresponds to the configuration model with no pattern.
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For the observed network Âβ we compute its Mahalan-
obis distance from the configuration model (Ω ≡ 1). The
dashed line in Fig. 1 shows the results for networks ob-
tained varying β. As expected, the higher the rewiring
probability β, the smaller the distance for the config-
uration model. For each Âβ we compute the distance

Figure 1. Mahalanobis distance D2
c(Â

β) for multiedge Watts-
Strogatz networks with varying parameter β ∈ {0, 0.1, . . . 1},
with 100 realizations for each. The dashed curve corresponds
to configuration model. Colored curves represent the average
interpolated distance for the model with a ring pattern, with
five different parameters c ∈ [0.1, 0.8]. The black curve is the
average distance for the best fitting ring model.

D2
c (Â

β) for different c, as shown in Fig. 1. Minimizing
D2
c (Â

β) over c corresponds to fitting the model to the
given network, using Mahalanobis distance as goodness-
of-fit measure. Fig. 1 shows that, as expected, the fitted
c grows with β. We now compare the best fit of the ring
model (c < 1) to the configuration model (c = 1). As
expected, the fitted ring model is the best model for all
β < 1, while for β = 1 the two models coincide.

Above, we demonstrated how our ensemble formula-
tion can be used to select (and fit) candidate models for
complex networks. Each of these models corresponds to
a hypothesis about topological patterns present in an em-
pirical network. Beyond the relative comparison of can-
didate models, a major contribution of our framework is
the ability to test hypotheses about patterns in complex
networks. Consider an empirical network Ĝ with adja-
cency matrix Â. A hypothesisH0 about the network (e.g.
the presence of a ring pattern or community structures)
can be encoded in terms of edge propensities Ω0. We then
need to compute a p-value, i.e., the probability to draw a
random realization that is, compared to the observed net-
work, more extreme with respect to a test statistic. For
the multivariate distribution in Eq. (4), the Mahalanobis
distance (cf. Eq. (6)) is a suitable statistic. Therefore, a
p-value for H0 can be given in terms of the complement-

ary cumulative distribution Pr
[
D2

0(A) ≥ D2
0(Â)

]
where

A is a random realization drawn from the generalized
hypergeometric ensemble defined by Ω0. Under cer-
tain conditions [36], there are closed-form expressions for
Pr
[
D2

0(A) ≥ x
]
. However, in the following we resort to a

sampling procedure, which is facilitated by the simplicity
of the underlying generative model.

We illustrate the testing procedure using Zachary’s
Karate Club network, denoted as Â, with a well-known
community structure [37] shown in Fig. 2(a). Our first
(null) hypothesis H01 is that the network contains no pat-
terns that cannot be explained by its degree sequence.
This hypothesis can be encoded by means of Ω01 ≡ 1,
which corresponds to the configuration model. We test

this hypothesis by computing Pr
[
D2

01(A) ≥ D2
01(Â)

]
based on the distribution of Mahalanobis distances for
random realizations drawn from the ensemble (see top
panel of Fig. 2(d)). As expected, we obtain p ≈ 0, i.e. we
can safely reject hypothesis H01. This can be intuitively
confirmed by visually comparing the empirical network
in Fig. 2(a) to a random realization of the (unbiased)
ensemble with Ω01 ≡ 1 shown in Fig. 2(b).
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Figure 2. (a) shows the empirical Karate club network, (b)
shows a random realization drawn from the (unbiased) hy-
pergeometric ensemble (cf. Eq. 1), while (c) shows a random
realization drawn from a generalized hypergeometric ensemble
with a block matrix Ω (cf. Eq. 4). The top panel of (d) shows
the ccdf of Mahalanobis distances obtained for 5000 random
realizations of the (unbiased) hypergeometric ensemble. The
bottom panel of (d) shows the CCDF of Mahalanobis dis-
tances for the generalized hypergeometric ensemble with block
matrix Ω. Dashed lines indicate the Mahalanobis distance for
the observed network in the two ensembles.

As the second (null) hypothesis H02 we consider that
the network topology is solely explained by the presence
of two communities, where pairs of nodes within a com-
munity have higher propensities than nodes in different
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ones. Similar to a stochastic block model [38], this hypo-
thesis can be encoded by a simple block matrix structure,
where we set Ωij = 1 for all pairs i, j in the same com-
munity, while Ωij = α < 1 otherwise. Choosing α as the
observed fraction of edges across communities allows us
to calculate the distribution of Mahalanobis distances for
random realizations of the resulting statistical ensemble
(cf. bottom panel of Fig. 2(d)). From this, we obtain
p = 0.158367, which does not allow us to reject hypo-
thesisH02. Again, this result can be intuitively confirmed
by visually comparing the empirical Karate club network
shown in Fig. 2(a) with the random realization generated
from the block matrix model shown in Fig. 2(c). The
example shows that a generative model only accounting
for heterogeneous node degrees and community structure
is sufficient to explain the observed network. Moreover,
this highlights how the known functional form of distri-
bution, expected values and covariance provided by our
ensemble formulation provides a novel approach to (i)
statistically test hypotheses in networks, and (ii) assess
the significance of community structures.

In conclusion, we introduced generalized hypergeomet-
ric ensembles, a broad class of statistical ensembles that
allows to encode a wide-range of topological patterns.
Unlike similar approaches, it provides analytical expres-
sions for important statistical quantities like expected
values and covariance. Through this, the novel class of
ensembles introduced in this Letter provides broad per-
spectives for the analysis of complex networks, with ap-
plications in pattern recognition, hypothesis testing and
statistical inference. It opens new paths for the analytical
study of widely-used ensembles defined, e.g., by the con-
figuration model, the stochastic block model or Exponen-
tial Random Graph Models. Our work thus contributes
to the fundamentals of network analysis, with applica-
tions in the interdisciplinary study of complex systems
in physics, biology, and (computational) social science.
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