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• We study systemic risk on a two-layer multiplex network with asymmetric coupling strength between layers.
• Systemic risk is underestimated or overestimated by the aggregated representation of a multi-layered system.
• Sharp phase transitions in the cascade size exist depending on the coupling strength.
• We derive mathematical approximations for the phase transitions and we confirm our findings by simulations.
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a b s t r a c t

We study cascades on a two-layer multiplex network, with asymmetric feedback that depends on the
coupling strength between the layers. Based on an analytical branching process approximation, we
calculate the systemic risk measured by the final fraction of failed nodes on a reference layer. The results
are compared with the case of a single layer network that is an aggregated representation of the two
layers. We find that systemic risk in the two-layer network is smaller than in the aggregated one only if
the coupling strength between the two layers is small. Above a critical coupling strength, systemic risk
is increased because of the mutual amplification of cascades in the two layers. We even observe sharp
phase transitions in the cascade size that are less pronounced on the aggregated layer. Our insights can
be applied to a scenario where firms decide whether they want to split their business into a less risky
core business and a more risky subsidiary business. In most cases, this may lead to a drastic increase of
systemic risk, which is underestimated in an aggregated approach.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Cascading failures in complex systems can be understood as
a process by which the initial failure of a small set of individual
components leads to the failure a significant fraction of the
system’s components. This is due to interconnections between
the different components of the system. Such a phenomenon can
occur in physical systems such as power grids (e.g. [1–3]), but
also in complex organizations like interbank systems (e.g. [4–7]). A
general framework to study such cascading failures in networked
systems was developed in [8], and extended recently to work in
more general topologies in [9].

In many situations, cascading failures can be influenced by
the combination of different types of interactions between the
individual components of the system. This is the case in interbank
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systems, where banks are exposed to each other via different
types of financial obligations (loans, derivative contracts, etc.) (e.g.
[10,11]). The bankruptcy of a bank can thus cascade to other banks
in non-standard ways. Another example is firms diversifying their
activities across different business units, each of which is exposed
to cascade risk in its own field of activity.

An important question we wish to investigate in this article is
how diversification across different types of interactions can affect
the risk of cascading failures. For that purpose, we study the case of
a firm that diversifies its activities across a core-business unit and
a subsidiary-business unit. Each business unit is exposed to other
firms’ business units in the same sector of business activity (either
core or subsidiary). This means that a business unit can fail (i.e. go
bankrupt) as a result of a cascade of failures (i.e. bankruptcies) in
the same sector of business activity.

The question of the structuring of a firm into sub-units has been
studied from a different angle in the financial economics literature
(e.g. [12,13]) and often focuses on the efficiency of the allocation
of its resources across different industries. Another question that

http://dx.doi.org/10.1016/j.physd.2015.10.004
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physd.2015.10.004&domain=pdf
mailto:fschweitzer@ethz.ch
http://dx.doi.org/10.1016/j.physd.2015.10.004


R. Burkholz et al. / Physica D 323–324 (2016) 64–72 65
Fig. 1. Illustration of a system with asymmetrically coupled layers. A failure (or
bankruptcy) on the Core Business layer implies a failure on the Subsidiary Business
layer. This coupling is illustrated by an inter-layer dependency link (red arrow).
On the other hand, a failure on the Subsidiary Business layer only decreases a
node’s failure threshold on the Core Business layer. This coupling is illustrated using
dashed black arrows. The intra-layer links represent business relations or other
forms of interactions due to normal business. (For interpretation of the references
to color in this figure legend, the reader is referred to theweb version of this article.)

has received some attention is that of whether a firm can diversify
the risk of its income streams by operating in different business
areas. Namely, Levy and Sarnat [14], Smith and Schreiner [15] and
Amihud and Lev [16] studied how conglomerates can diversify the
risk associated with their revenue streams from the perspective of
portfolio theory.

Here, we use a complex networks approach and we view
the system of firm activities as an interconnected multi-layered
network (see [17–20]). The distinct layers of this network contain
individual networks defined by a particular type of interactions
according to a given business activity, while the inter-connections
between layers allow for cross-layer interactions. In this setting
we develop a model where failures (i.e. bankruptcies) on two
different network layers affect firms asymmetrically: The first
layer represents exposures between the firms in the core business
while the second layer represents exposures between firms in
the subsidiary business. Failure (i.e. bankruptcy) of a firm’s core
business unit implies failure of its subsidiary business unit,
whereas failure of a firm’s subsidiary business unit only causes a
shock to the firm’s resistance threshold in its core business unit
(see Fig. 1 for an illustration). We find that when the coupling
strength from the core to the subsidiary layer is varied only slightly,
there is a sharp transition between a safe regime, where there
is no cascade of failures, and a catastrophic regime, where there
is a full cascade of failures. Moreover, when comparing the two-
layer network to the single-layer network formed by aggregating
the two layers, we find that cascades can be larger on the two-
layer network than on the aggregated one. On the other hand, by
varying the strength of the feedback between the two layers, we
identify the existence of a regime where the two-layer network
is safer than the aggregated one and another regime where the
reverse holds. This points to the critical importance of the coupling
of the layers when structuring a firm into different business units.
Also, dealing with aggregated network data that ignores the fine
structure of the coupling between different layers can lead to
significant underestimation or overestimation of cascade risk.

The article is structured as follows. In Section 2, we describe
the two-layer cascade model. In Section 3, we derive a branching
process approximation as an approximation for large networks
and use it to analyze the aforementioned phenomena. These
phenomena are presented in Section 4 where we compare
our analytical results with simulations and analyze further the
observed phase transitions. In Section 5, we conclude and
interpret the consequences of our theoretical investigations for the
application to networks of firms that might decide about merging
their core and their subsidiary business.

2. Model

We first consider a finite model with N firms. Each firm can be
represented by a node i present on each of two different layers:
layer 0 (the core-business layer) and layer 1 (the subsidiary-business
layer). Each layer l ∈ {0, 1} has a topology represented by an
adjacency matrix Gl. On each layer l, node i can be in one of two
states sil ∈ {0, 1}, healthy (sil = 0) or failed (sil = 1). si0 = 1
represents the bankruptcy of firm i’s core-business unit, whereas
si1 = 1 represents the bankruptcy of its subsidiary-business unit.
This state is determined by two other variables: a node’s fragility
on a given layer φi

l , which accumulates the load a node carries,
and its threshold θ i

l on that layer, which determines the amount of
load it can carrywithout failing.Whenever the fragility exceeds the
threshold φi

l ≥ θ i
l , the node fails on that layer and cannot recover

at a later point in time.
On each layer, we assume that a cascade of failures spreads

according to the threshold failuremechanism ofWatts [21]. Thus a
node fails if a sufficient fraction of its neighbors have failed. The
fragility of a node i of degree kil on layer l (i.e. a node with kil
neighbors on layer l) can be expressed as

φi
l(k

i
l) =

1
kil


j∈nbl(i)

sjl =
ni
l

kil
(1)

where nbl(i) is the set of nodes in i’s neighborhood on layer l
and ni

l is the number of failed neighbors on layer l. This failure
mechanism is useful to model a firm diversifying its exposure to
failure risk across neighbors: the more neighbors a node has, the
less it is exposed to the failure of a single neighbor. A cascade
of failures thus starts with an initial fraction of failed nodes.
These failures can then spread to their neighbors in discrete time
steps. The load φi

l of a node i is thus updated at each time
step t . This model has been studied extensively on single-layer
networks, in the context of configuration model type random
graphs with a given degree distribution [22–24,7,25], and has
been adapted to financial networks of interbank lending [5,6,26].
In [9] a mesoscopic perspective is added by studying conditional
failure probabilities given the degree of node. Generalizations of
the model to weighted networks can be found in [7,27,9].

In a financial or economic setting, where the nodes are assumed
to represent firms that possess simplified versions of balance
sheets, the fragility and threshold can be expressed in terms of
the liability and capital of a firm. In this case, the fragility φ l

i of a
node i represents the loss that a firm encounters divided by its total
liability Lil in layer l. According to the Watts model, i has the same
financial obligation wi

l = Lil/k
l
i to each of its neighbors in layer l,

we therefore have


j∈nbl(i)
wi

l = Lil and

φi
l(k

i
l) =


j∈nbl(i)

sjlw
i
l

Lil
=

ni
l

kil
. (2)

The threshold θ l
i of a node in layer l signifies similarly the ratio

between a node’s capital buffer C i
l and its total liabilities Lil:

θ i
l =

C i
l

Lil
. (3)

Consequently, when a node i fails and its fragility exceeds its
threshold (φi

l(k
i
l) ≥ θ l

i ), equivalently its loss n
i
lw

i
l exceeds its capital
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buffer C l
i . A more detailed explanation of the Watts model in the

context of balance sheets can be found, e.g., in [6,28].
This financial interpretation (among other reasons) inspired

several authors to extend the Watts’ model to a multiplex set-
ting [29–31,28]. In [29,30] the failure of a node is determined
by considering or aggregating weighted variables of all network
layers, while Lee et al. [31] combine the approach of Brummitt
et al. [29] with dependency links [32]. Yağan and Gligor [30] as-
sume a hierarchy of layers that is interpreted as debts of different
seniority in financial networkswhere a failure in one layer can only
occur after the failure of the node in all preceding layers.

Here we investigate an asymmetry between layers, through
which both layers can affect each other via a non-symmetric
dependence. More precisely, the two network layers are related
by partial dependency links (see Fig. 1). These are directed links
connecting a node on layer 0 to its alter ego on layer 1. These links
are characterized by weights r01, r10 ∈ [0, 1] affecting the size of a
shock to a node’s threshold on a given layer following a failure on
the other layer. Namely, the failure of node i on layer 1 reduces its
threshold θ i

0 on layer 0 in the following way

θ
i,r
0 = (1 − r10)θ i

0, (4)

while the failure of node i on layer 0 reduces its threshold θ i
1 on

layer 1 in the following way

θ
i,r
1 = (1 − r01)θ i

1. (5)
In the remainder of this article, we will set r01 = 1. Thus, the

failure of node i on layer 0 (the core-business layer) automatically
leads to its failure on layer 1 (the subsidiary-business layer), since
its shocked threshold becomes θ

i,r
1 = 0 and the failure condition

φi
1 ≥ θ

i,r
1 is trivially satisfied even in the absence of any failed

neighbors on layer 1. On the other hand, we allow r10 to take values
in [0, 1].

For r10 = 1, both layers are fully inter-dependent, meaning that
the failure of a node on one layer implies its failure on the other.
In this special case we have normal dependency links between the
two layers as introduced in [32]. For r10 = 0, the failure of a node
on layer 1 does not affect its failure on layer 0. For r10 ∈ (0, 1),
we have an asymmetric inter-dependency between layers. In the
remainder we call r10 the coupling strength between the two layers.

This models our case of interest, where layer 0 is interpreted as
a firm’s activities in a core business, whereas layer 1 can be inter-
preted as a firm’s activities in a subsidiary business. The failure of
the firm in the subsidiary business does not necessarily imply its
failure in the core business, but the loss incurred reduces its ability
to withstand the failure of neighbors in the core-business. The size
of this loss is given by a fraction of a firm’s threshold, i.e. r10 · θ i

0. In
the following we test for the consequences of varying values of r10.
In the extreme case of r10 = 0, the subsidiaries are bankruptcy re-
mote, i.e. their failure (interpreted as bankruptcy) has no negative
effect on their core-business. At least in the financial crisis of 2008,
this has been rarely the case and subsidiaries thatwere designed to
be bankruptcy remote (as for example structured investment vehi-
cles or special purpose entities) inflicted a loss to their parents, as
for example it was the case of Citi (p.60, [33]). Therefore, in reality
usually it is r10 > 0.

On the other hand, the failure of the firm in the core business
however implies its failure in the subsidiary business. It is thus
logical to choose the fraction of failed nodes on layer 0 when the
cascade has reached steady state as the appropriate measure of
systemic risk, i.e.

ρ
(N)
0 = lim

t→∞

1
N

N
i=1

si0. (6)

This quantity can also be interpreted as the failure or default
probability of a firm in the core business layer 0.
2.1. Aggregation

We compare ourmeasure of systemic risk in amultiplex setting
ρ

(N)
0 with the corresponding measure in a network where we

aggregate the two layers to a single one. This aggregation could
be interpreted as decision of all (or most) of the firms to merge
their businesses of the core and subsidiary layer. Accordingly, the
liabilities as well as the capital buffers of both layers are added to
form the liabilities and capital buffer of an aggregated firm:

Liagg = Li0 + Li1, C i
agg = C i

0 + C i
1. (7)

For simplicity, we also assume a simple Watts model on the
aggregated network. Consequently, merged businesses are equally
exposed to all of their neighbors. Thus, a node i that had degree ki0
in layer 0 and degree ki1 in layer 1 has now degree kiagg = ki0 + ki1

1

and is exposed equally to each neighbor by wi
agg = Liagg/k

i
agg .

Sincemerging the businesses should not change the size of their
exposures, we assume wi

agg = wi
0 = wi

1 for consistency with the
Watts model. It follows from

Li0 + Li1
ki0 + ki1

=
Li0
ki0

=
Li1
ki1

(8)

and C i
l = θ i

l · Lil that the thresholds in this case will be given by:

θ i
agg =

C i
agg

Liagg
=

ki0θ
i
0 + ki1θ

i
1

kiagg
. (9)

3. Local tree approximation

In order to make the model analytically tractable, in this
section we restrict ourselves to a special class of configuration
type multiplex networks. For these, we assume that each node
is characterized by two degrees, k0, k1, and two thresholds, θ0,
θ1, which can be different on layers l ∈ {0, 1}. These values are
drawn independently from the degree distributions pl(kl) and the
cumulative threshold distributions Fl(θl).

In the limit of infinite networks, the clustering coefficient that
quantifies the chance that any two neighbors of a given node
are also neighbors converges to zero. It means that the network
is locally tree-like, i.e., it does not contain short cycles. This
then allows us to develop a branching process approximation for
the final fraction of failed nodes ρl := limN→∞ ρ

(N)
l on each

layer l in the limit of infinite network size (N → ∞). This
approximation is valid for arbitrary degree distributionswith finite
second moments [34,35]. For our model, the risk measure is ρ =

ρ0, i.e., the fraction of failed nodes in layer 0 only. However, in order
to calculate ρ, we need to calculate both ρl, as failures on the two
layers are mutually dependent.

A node fails initially if it has a negative threshold. Consequently,
F0(θ0 = 0) and F1(θ1 = 0) define, for each layer, the initial fraction
of failed nodes. These failures can lead to cascades that evolve until
the steady states ρl on the two layers are reached. We can express
the ρl as averages with respect to the degree distribution pl(kl)
which we take as input to our model:

ρl =


kl

pl(kl)P(sl = 1|kl) (10)

1 The probability that a node i has common neighbors in layer 0 and layer 1
vanishes in the limit of infinite network size N → ∞. Therefore, joining the
set of neighbors in layer 0 and layer 1 leads to a set of new neighbors with size
kiagg = ki0 + ki1 .
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P(sl = 1|kl) is the conditional probability that a node with a
given degree kl on layer l fails in layer l. In order to calculate this
probability, the local tree approximation is essential as it allows
us to treat failures of neighbors of a given node as independent
events that happen with a failure probability πl. Consequently,
the number nl of failed neighbors of a node of degree kl in layer l
follows a binomial distribution so that nl neighbors are failed with
probability

B(nl, kl, πl) :=


kl
nl


(1 − πl)

kl−nl (πl)
nl . (11)

This allows us to express P(sl = 1|kl) as:

P(sl = 1|kl) =

kl
nl=0

B(nl, kl, πl)P

sl = 1|kl, nl, ρs,1−l


, (12)

where P(sl = 1|kl, nl, ρs,1−l) is the probability that a node fails
in layer l given that exactly nl of its kl neighbors failed. This failure
results from the fact that the fraction of failed nodes nl/kl exceeded
the threshold. This was the original threshold θl with a probability
(1−ρs,1−l)because the node did not fail in layer (1−l). Or itwas the
reduced threshold θl(1 − r(1−l)(l)) with a probability ρs,1−l because
the node failed in layer (1 − l) before. Consequently, we have:

P

sl = 1|kl, nl, ρs,1−l


=


1 − ρs,1−l


Fl


nl

kl


+ ρs,1−lFl


cl
nl

kl


.

(13)

Fl (nl/kl) is the probability that the original threshold is exceeded,
whereas Fl (clnl/kl) is the probability that the reduced threshold is
exceeded, where c0 := 1/(1 − r10) and c1 := ∞.

Note that ρs,1−l differs from ρ∗

1−l used in Eq. (10). It gives us only
the conditional probability that the node has failed in layer (1− l),
given that it has not failed in layer l. It depends on a neighbor’s
failure probability on the other layer, π∗

1−l, via

ρs,1−l =


k1−l

p1−l(k1−l)

k1−l
nl=0

B(nl, k1−l, π
∗

1−l) F1−l


n1−l

k1−l


. (14)

Eq. (14) has the same structure as the branching process
approximation for the fraction of failed nodes on single layers [22].
It also has a structure similar to Eqs. (10)–(12), with the
only difference of a simpler response function, i.e., P(sl =

1|kl, nl, ρs,1−l) = F1−l(n1−l/k1−l), which is the probability that the
fraction of failed neighbors exceeds the original threshold in layer
(1 − l).

In order to compute Eq. (12), we need to know the failure
probability πl of a neighbor in layer l. To achieve this, we
iteratively solve a system of coupled fixed-point equations for the
probabilities πl, defined as

πl = Ll (πl)

:=
1
zl


kl

pl(kl)kl
kl−1
nl=0

B(nl, kl − 1, πl)P

sl = 1|kl, nl, ρs,1−l


(15)

where zl =


kl
pl(kl)kl and P(sl = 1|kl, nl, ρs,1−l) is defined by

Eq. (13).
We note again similarities between Eq. (15) that describes the

failure probability of a neighbor and Eqs. (10), (13) that describe the
failure probability of a node, but also two main differences:

The first difference is that in Eq. (15) the degree distribution
of a neighbor follows pl(kl)kl/zl instead of pl(kl) for a node [36].
It is proportional to the degree kl, since every link of a neighbor
increases the probability of the neighbor to be connected to the
node under consideration, i.e. a randomly selected node that fails
with probability ρl in layer l.

The second difference is that the binomial distribution in
Eq. (15) depends on kl − 1 instead of kl because we have to take
into account the neighbors of the neighbors of the node under
consideration in order to determine the failure probability of the
node’s direct neighbors. The set of all neighbors of a node is also
called its first order neighborhood, while the set of neighbors of
the neighbors the node’s second order neighborhood. We take the
failure probability of a neighbor as input to calculate the failure
probability of the node under consideration as in Eqs. (10), (13).
Therefore, πl is conditioned on the event that the node under
consideration has not failed before the neighbor. Only kl − 1
neighbors of the neighbor with degree kl can have possibly failed
before, because the node under consideration is a neighbor of this
neighbor.

3.1. Aggregation

The fraction of failed nodes on a single aggregated layer ρagg can
be computedwith less effort andwith a similar approach as in [22],
although the thresholds depend on the nodes’ degrees as in [9].

For given degrees k0 in layer 0 and k1 in layer 1 we denote
the cumulative distribution function of θagg by F (k0,k1)

agg to signify its
degree dependence. Thenwe iteratively solve the scalar fixed point
equation

πagg =


k0,k1

p0(k0)p1(k1) (k0 + k1)
z0 + z1

×

k0+k1−1
nagg=0

B(nagg , k0 + k1 − 1, πagg)F (k0,k1)
agg


nagg

k0 + k1


(16)

for the failure probability of a node’s neighbor πagg . Then, its
solution π∗

agg serves as input for the calculation of the average
fraction of failed nodes on the aggregated network using:

ρagg =


k0,k1

p0(k0)p1(k1)
k0+k1−1
nagg=0

B(nagg , k0 + k1 − 1, π∗

agg)

× F (k0,k1)
agg


nagg

k0 + k1


. (17)

4. Results

4.1. Comparison with computer simulations

We now compare our numerical solution of the fixed point
equations (15) for the multiplex model with computer simula-
tions, using the illustrative case of an uncorrelated, two-layer
Erdős–Rényi network [37]. For the computer simulations, we im-
plement the time-dependent model as described in Section 2,
i.e. we simulate the evolution of cascades until they reach the
steady state. The network size is N = 10,000 for each layer.
Further, we sample over 100 network realizations for every initial
condition. The degree distributions pl(kl) on each layer are approx-
imately Poisson distributions

pl(kl) =
zkll
kl!

e−zl (18)

with identical mean degrees z0 = z1. The thresholds are normally
distributed, i.e. θ0 ∼ N (µ0, σ

2
0 ) and θ1 ∼ N (µ1, σ

2
1 )with different

parameters µl, σl. In our case, we fix the threshold distribution on
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Fig. 2. Sharp regime change in threshold-feedback model: ρ0 for different
combinations of threshold distributions, as the coupling strength r10 is varied.
The threshold distribution on the core-business layer is set to N (0.3, 0.12) while
the threshold distribution on the subsidiary-business layer is N (0.6, 0.12) (black
curve), N (0.5, 0.52) (green curve) and N (0.2, 0.52) (blue curve). The two layers
are independent Erdős–Rényi networks with mean degrees z0 = z1 = 5. The
dotted lines are the curves predicted by our analytics, while with the open symbols
we show simulation results on Erdős–Rényi networks with 10000 nodes where
each point is averaged over 100 realizations. The error bars indicate the size of the
standard error. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

layer 0 to parameters µ0 = 0.3 and σ0 = 0.1, which ensures
that the failure probability for the nodes in an uncoupled network
would be very small, i.e., 0.0045. We vary the parameters µ1 and
σ1 of layer 1, to study the emergence of large cascades on layer 0
because of the coupling with strength r10.

Fig. 2 demonstrates that a small variation in the coupling
strength r10 may result in a rapid shift from a regime with almost
no failures (ρ0 ≈ 0) to a regime of complete system failure
(ρ0 ≈ 1). The coupling strength at the onset of this regime shift,
rc10, depends on the parameters of the threshold distribution on
layer 1 (i.e. µ1 and σ1). Namely, rc10 is increasing in µ1. For certain
parameter constellations (e.g. µ1 = 0.6 and σ2 = 0.1), we also
find no failure cascades at all, which will be further discussed in
Fig. 4. Finally, we note the excellent match between the numerical
and the simulation results. The differences in the slope result from
the fact that we have simulated finite networks, whereas the fixed
point equations hold for infinite networks.

4.2. Impact of the coupling strength

To gain a broader understanding of how the coupling between
the two layers can cause such a rapid transition from a low-risk
regime (i.e. ρ0 ≈ 0) to a catastrophic one (i.e. ρ0 ≈ 1), we calculate
the (µ1, σ1) phase diagram for various coupling strengths. The
results are shown in Fig. 3, where dark areas indicate parameter
constellations with a very high fraction of failed nodes. The left
column shows themeasure of systemic risk ρ0, which is equivalent
to the fraction of failed nodes in layer 0, whereas the middle
column shows the corresponding fraction of failed nodes in layer 1.

As a reference case, the right column shows a single-layer
network, which we constructed in order to put the results for
the two-layer network into perspective. Nodes in this combined
single-layer network have a degree kagg = k0 + k1 and a threshold
θagg = (k0θ0 + k1θ1)/(k0 + k1), as we discussed already in
Section 2.1, by deriving a node’s new balance sheet that results
from merging the core business and the subsidiary.

In Section 3.1 we have explained how to compute our systemic
risk measure from the given degree distributions. Since in our
example the thresholds θ0 and θ1 follow independent normal
distributions, the aggregated thresholds are normally distributed
as well for given degrees k0 and k1. Their distribution can be found
by taking the convolution of the probability density functions
of θ0k0/(k0 + k1) and θ1k1/(k0 + k1). This yields θagg ∼

N (µagg , σ
2
agg), where µagg = (µ0k0 + µ1k1)/(k0 + k1) and σagg =

(σ0k0)2 + (σ1k1)2/(k0 + k1).
Our reference case is motivated by two considerations:

(a) We want to estimate the error made if a multiplex network
is approximated by a single layer network, i.e. the properties of
the different layers are simply aggregated in one layer. (b) For the
application scenario at hand, namely the management decision of
firms to merge their core and subsidiary business units into one
business, we want to understand the impact on the resulting risk
exposure. To calculate the phase diagram, we assume that all firms
make the same decision, which for example could bemotivated by
herding behavior.

Since we vary only (µ1, σ1), we plot all phase diagrams
with respect to these two parameters. Because the combined
layer network no longer contains the coupling strength r10, the
respective phase plots do not change by varying r10. They are
merely repeated for the purpose of comparison with the other
columns. We hypothesize that nodes in the combined layer
network have a smaller failure probability compared to the two-
layer network because they share their capital buffers. Their degree
is also larger, which additionally implies that the risk is better
diversified among the neighbors. On the other hand, because of the
larger degrees, there is a higher connectivity in the combined layer
network. This has the potential to amplify small cascades more
than in the less connected separate layers. We will investigate, by
means of numerical solutions of the fixed point equations, which
of these antagonistic effects may dominate in a given parameter
region.

By comparing the first and third columns in Fig. 3, we can
identify a different risk profile for small and for large coupling
strengths. For small values of r10 the cascades on layer 1 cannot
propagate to layer 0, therefore we do not observe any systemic
risk. This is different for the combined layer network, where large
cascades can occur for a small range of parameters.

The picture is inverted for larger values of r10. Here we find,
by increasing r10, an increasing region of high systemic risk that
is driven by the mutual amplification of cascades between the
two layers. This leads to a very sharp phase transition, i.e. a clear
separation of regions with complete breakdown and regions with
no breakdown. We note that this differs from the observation
for the combined layer network, where the phase transition can
also be observed. However, there are extended regions where the
systemic risk is at intermediate levels, as indicated by the gray
areas.

We also wish to identify how the onset of systemic risk on
layer 0 depends on the coupling strength r10. Thus, in addition to
fixing µ0 and σ0, we set σ1 to a small value and plot the phase
diagram with respect to (µ1, r10). Fig. 4, for the same columns
as in Fig. 3, shows that there is indeed a critical value rc10 which
is independent of µ1. Below rc10, we do not observe any systemic
risk in layer 0, whereas in the combined layer network, we find a
considerable systemic risk for small values ofµ1. Above rc10, we see
in the two-layer network a sharp phase transition between full and
no systemic risk that depends on a critical value µc

1. Consequently,
we study the transition line r10(µ1) in the following subsection.

4.3. Scaling behavior

In Fig. 3 we observe that the sharp phase transition scales
almost linearly for large enough coupling strength r10, i.e.

σ1 = m1µ1 + m0 for µ1 ≥ 0.4, r10 ≥ rc10. (19)
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Fig. 3. Sharp regime change in threshold-feedback model: ρ0 and ρ1 for µ0 = 0.3, σ0 = 0.1 and (µ1, σ1) ∈ [0, 1]2 as r10 is varied. The two layers are independent
Erdős–Rényi networks with mean degrees z0 = z1 = 5 and thresholds on each layer are independently distributed, i.e. θ0 ∼ N (0.3, 0.12) and θ1 ∼ N (µ1, σ

2
1 ), where

(µ1, σ1) ∈ [0, 1]2 . ρ∗
agg is the fraction of failures on the aggregated network, i.e. a network where kagg = k0 + k1 and θagg = (k0θ0 + k1θ1)/(k0 + k1).
Fig. 4. Sharp regime change in threshold-feedback model: ρ0 and ρ1 for µ0 = 0.3, σ0 = 0.1 and σ1 = 0.3 as µ1 and r10 are varied. The two layers are independent
Erdős–Rényi networks with mean degrees z0 = z1 = 5 and the thresholds on each layer are independently distributed, i.e. θ0 ∼ N (0.3, 0.12) and θ1 ∼ N (µ1, 0.32), where
µ1 ∈ [0, 1]. ρ∗

agg is the fraction of failures on the aggregated network, i.e. a network where kagg = k0 + k1 and θagg = (k0θ0 + k1θ1)/(k0 + k1).
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Fig. 5. (Left): red circles: Slopem1 of the linear phase transition obtained by linear regression of ρ∗

0 that we calculated by solving the fixed point equations (15) numerically
for different values of r10 . The blue curve shows the approximate values for the slopes provided by Eq. (26). (Middle): Phase diagram for the final cascade size on a single
layer without threshold feedback for Poisson random graphs with average degree z = 5 and normally distributed thresholds Fθ ∼ N


µ, σ 2


. (Right): Final cascade size on

layer 0, i.e. ρ∗

0 , for r10 = 0.3. The red line marks the phase transition defined by the criterion ρ∗

single ≥ ρc
s,1 . The green line corresponds to ρ∗

single ≥ 0.45. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
In order to determine the scaling parameter m1, we take the
phase transition line from the phase diagrams of Fig. 3, which
were also calculated for r10 = 0.3, 0.5, 0.6, 0.7, 0.9. These lines
are approximated by a linear regression, and the slopes obtained
this way are plotted in Fig. 5 (left, red dots) against the coupling
strength r10. We observe a non-monotonous dependence of the
slope, with a saturation effect for large r10. Thus, we want to
determine rc10 and m1(r10) for r10 ≥ rc10.

To better understand this dependence, we perform a linear
approximation of L0 in Eq. (15) as

L0 (π0) ≈ a + bπ0 (20)

which is valid for small values of the failure probability π0. Instead
of solving the full system of fixed point equations, Eq. (15), we
only solve the linearized system in order to deduce criteria for the
growth behavior of π0 in the fixed point iterations. The fixed point
of the linear equation (20) exceeds one if

a
1 − b

≥ 1. (21)

Under this condition, initial failures in both layers result to large
cascades in layer 0.

Eq. (21) leads to conditions for the parameters µc
1, σ

c
1 and rc10 if

we know the expressions for a and b. These are obtained from the
linearization of Eq. (15):

a =P

s0 = 1|k0, n0 = 0, ρ∗

s,1


,

b =

∞
k0=1

k0(k0 − 1)
z0

p0 (k0)

×

P


s0 = 1|k0, n0 = 1, ρ∗

s,1


− P


s0 = 1|k0, n0 = 0, ρ∗

s,1


. (22)

These parameters depend on the failure probability ρ∗

s,1 of a node
in the other layer, i.e. layer 1.

For the following discussion, we first concentrate on the worst
case scenario ρ∗

s,1 = 1, i.e. all nodes failed on layer 1. We are
interested in identifying the regime where even in the worst case,
cascades in layer 1 do not propagate to layer 0. In other words, we
want to approximate the critical coupling rc10 above which we can
observe regions of high systemic risk in the left column of Fig. 4.
With ρ∗

s,1 = 1 the parameters a and b simplify to

a = F0(0),

b =

∞
k0=1

k0(k0 − 1)
z0

p0 (k0)

F0


1

k0 (1 − r10)


− F0(0)


.

(23)

We note that these are independent of µ1, σ1. For the set of
parameters used in Fig. 4, we obtain with the help of Eqs. (21)
and (21) the value of the critical coupling rc10 = 0.204. In
comparison with the numerical calculation r10 = 0.18, which
takes the full set of fixed point equations into account, this is
a good approximation. That means large cascades can propagate
from layer 1 to layer 0 above a critical coupling strength rc10 ≃ 0.2.
This holds independently of µ1 and σ1.

Next we explain the dependence m1(r10) as shown in Fig. 3.
By this we estimate the slope of the phase transition line (which
is of the form σ1 ∝ m1µ1). Again, we deduce this relation from
Eqs. (21), (21), but this time we cannot use ρ∗

s,1 = 1. For
ρ∗

s,1 ≠ 1, we automatically obtain a dependence on the threshold
parameters µ1 and σ1 of layer 1. Combining Eqs. (21) and (21),
we can define a critical value ρc

s,1 such that Eq. (21) is satisfied for
ρ∗

s,1 ≥ ρc
s,1:

ρc
s,1 :=

1 + F0(0)(z0 − 1) − c0(0)
c0(r) − c0(0)

, (24)

where

c0(r) :=

∞
k0=1

k0(k0 − 1)
z0

p0 (k0) F0


1

k0 (1 − r10)


. (25)

This is a reformulation of Eq. (21), which gives us an estimation
of when to expect large cascades in layer 0. Still, we do not know
ρ∗

s,1 without solving the full system of fixed point equations (15).
In the following we test two approximations for ρ∗

s,1 which lead us
to a linear dependence between µ1 and σ1.
Case (1) The initial value ρs,1(t = 0) = F1(0) = Φ (−µ1/σ1) is
already enough to determine the growth of π0 in the early stages
of the fixed point iterations. Especially for larger values of r10, a
large cascade in layer 0might be already triggered just by the initial
failures in layer 1. Therefore, we set ρc

s,1 ≃ F1(0), which results in

σ1 ∝ −µ1/Φ
−1 

ρc
s,1


, (26)

i.e.,

m1 = −1/Φ−1 
ρc
s,1


(27)

where Φ−1 denotes the cumulative distribution function of the
standard normal distribution. We plot this slope using a blue
line in Fig. 5 (left), to demonstrate the good agreement of our
approximation with the numerical slopesm1 for r10 ≥ 0.4.
Case (2) For smaller coupling strengths r10 we test a second proxy
for ρ∗

s,1. A lower bound for ρ∗

s,1 is given by the final cascade size on
a single layer ρ∗

single, where no feedback mechanism with another
layer exists. This would coincide with ρ∗

s,1, if layer 0 would not
exist. That means, the layer 0 cannot further amplify the failures.
Cascades in single layers have been studied in [22,9]. We use their
approach to plot a phase diagram for the final cascade size for
Poisson random graphs with average degree z = 5, shown in the
middle panel of Fig. 5.
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When we compare the plots of Fig. 3 (left) with Fig. 5 (middle),
we observe that in the parameter regions in Fig. 3 (left) where
no cascades occur, also no cascades occur in Fig. 5 (middle). This
holds only for strong couplings r10. Consequently, in this limit,
our second approximation for ρ∗

s,1 gives similar results as our first
approximation.

However, the second case for ρ∗

s,1, is themore general one aswe
can also correctly cover the transition line for values of 0.2 ≤ µ1 ≤

0.4. In this range, the transition line is largely independent of the
value r10. It basically coincides with the transition line for ρ∗

single,
the fraction of failed nodes for single layer networks.

For values of µ1 larger than 0.4 and for weak coupling, e.g. for
r10 = 0.3, we observe in Fig. 5 (right, red line) that the transition
line is no longer accurately described. The condition ρ∗

single ≥

ρc
s,1 = 0.55 gives only an upper bound for the transition line, but

not a lower one. We observe that already cascade sizes of ρ∗

single ≥

0.45 lead to large cascade amplification on layer 0, due to nonlinear
effects. I.e. the green dotted line in Fig. 5 (right) gives an almost
perfect match with the numerically calculated transition line.

That means, we can even generalize our statement that the
transition line forρ∗

single determines the phase transition. This holds
not only for small µ1, but also for larger µ1 and a broad range of
the coupling strength r10.

5. Conclusions

Our paper essentially addresses the problem of whether
systemic risk is increased or decreased if, instead of a single-
layer network, a two-layer representation is used. In the latter, the
nodes of the network appear on two layers 0 and 1 with different
properties. Specifically, they have different degree distributions
p0 (k0), p1 (k1) and different threshold distributions F0 (θ0), F1 (θ1).
There is an asymmetric coupling between the two layers such that
nodes that failed on layer 0 also fail on layer 1. However, nodes that
did not fail on layer 0, may still fail on layer 1 because of a cascade
dynamics on layer 1. In this case, their failing threshold on layer 0 is
reduced by a fraction r10, where r10 denotes the coupling strength
between the two layers.

The mutual feedback between the two layers can then result in
the amplification of failure cascades, which we study analytically.
We can calculate a variable ρ∗

l which is the final fraction of failed
nodes on each layer l ∈ {0, 1}. Our measure of systemic risk is
ρ∗

≡ ρ0, i.e.we only considerwhether nodes have failed on layer 0.
Obviously, if r10 is small, no failure cascade in layer 1 can propagate
to layer 0. In this case, whether or not we observe failure cascades
only depends on the conditions in layer 0. These conditions are
expressed by the parameters of the threshold distribution, µ0
and σ0, which are chosen so that no failure cascade occurs. By
varying r10, we then study the impact of failures on layer 1 on
failures on layer 0. We derive an analytical approach to calculate
ρl, which leads to a system of coupled fixed point equations solved
numerically.

Our results are visualized through phase diagrams showing,
for various parameter constellations, the value of the main risk
measure ρ∗

= ρ∗

0 . The most prominent feature is the existence
of a very sharp phase transition between a regime of no systemic
risk and a regime of full collapse. This means that small changes
in the parameters µ1 and σ1, describing the threshold distribution
on layer 1, can lead to an abrupt regime shift. Our task was then to
approximate this line of transition in termsof the coupling strength
r10 and the parameters of the threshold distribution. Subsequently,
we use these insights to compare the systemic risk in single-layer
and two-layer networks.

The derivation of mathematical approximations for the phase
transitions that are compared, and confirmed, by numerical
solutions of the full problem has a value on its own. Here, we focus
on the conclusions that can be made based on these calculations.
First of all, we understand that systemic risk is reduced in the two-
layer network only if the coupling strength between the two layers
is rather small. Above a critical value rc10 = 0.2, which is also
estimated analytically, failures on layer 1 are amplified on layer 0
and thus lead to an increase of the systemic risk. If we compare this
with the reference case of a single layer network, we find that the
systemic risk is smaller there, for most ranges of the parameters.
Hence, above a critical coupling, it is not beneficial to split the
network into two layers, if systemic risk shall be mitigated.

Our findings can be applied to a scenario where firms have
to decide whether to split their business into a less risky core
business, essential for their survival, and a subsidiary business,
which can be more risky. Such a split leads to the representation
of the (same) firm on two different levels 0 and 1, where the latter
has a larger risk of failure cascades. This decision only leads to less
failure risk for the firm if the coupling between the core business
layer and the subsidiary business layer is weak enough. Close to
the transition line between the no-risk and the high-risk regime,
slight changes in the firms’ failure thresholds or in the coupling
between the different businessesmay potentially cause the system
to collapse completely.

There is another important conclusion to be drawn for firms
that already have their activities split between a less risky
core business and a more risky subsidiary business. If such
firms estimate systemic risk based on an aggregated network
representation with only one layer instead of the two-layer
representation, they may systematically underestimate the real
risk, in particular if the coupling is still strong. As we have
shown, under such conditions the systemic risk in the aggregated
network is lower than in the two-layer network. Hence, there can
be drastic consequences from drawing conclusions based on an
inappropriate aggregated picture.

Closing, we would like to point out that other network proper-
ties could influence systemic risk calculations. For example assor-
tativity is known to affect the dynamics of a network [38,39], and
can influence the evolution of cascades especially during crisis pe-
riods where it may vary due to network re-organization. However,
studying such influence is out of the scope of our currentwork, and
is left for future study.
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