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How damage diversification can reduce systemic risk
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We study the influence of risk diversification on cascading failures in weighted complex networks, where
weighted directed links represent exposures between nodes. These weights result from different diversification
strategies and their adjustment allows us to reduce systemic risk significantly by topological means. As an
example, we contrast a classical exposure diversification (ED) approach with a damage diversification (DD)
variant. The latter reduces the loss that the failure of high degree nodes generally inflict to their network
neighbors and thus hampers the cascade amplification. To quantify the final cascade size and obtain our results,
we develop a branching process approximation taking into account that inflicted losses cannot only depend
on properties of the exposed, but also of the failing node. This analytic extension is a natural consequence of
the paradigm shift from individual to system safety. To deepen our understanding of the cascade process, we
complement this systemic perspective by a mesoscopic one: an analysis of the failure risk of nodes dependent on
their degree. Additionally, we ask for the role of these failures in the cascade amplification.

DOI: 10.1103/PhysRevE.93.042313

I. INTRODUCTION

In the course of globalization and technical advancement,
systems become more interconnected and system compo-
nents more dependent on the functioning of others [1–3].
In particular for socioeconomic networks [4] and financial
networks [5,6] we observe an increase in coupling strength
and complexity at the same time. Examples are global supply
chains, but also technical systems, as, e.g., power-grids in the
USA and Europe [7].

Increased dependence, under normal conditions, has advan-
tages for the efficient operation of a system. It also leads to
an increased risk diversification of its components, since the
dependence on single other components is reduced. According
to classical risk management theories [8], a higher connectivity
thus decreases the vulnerability of the system as a whole,
even with respect to cascading failures. Several authors, e.g.,
Refs. [9–13], pointed out that a higher connectivity can also
increase systemic risk, i.e., in our context the expected cascade
size.

Although these findings are partially model-dependent,
they can be explained intuitively by a basic tradeoff between
diversification and system connectivity that is reflected in the
risk exposures. In fact, most of these works are based on
Watts’s cascade model [14] that introduces this tradeoff, and
can be interpreted as a study of simple diversification strategies
of system components or agents that are represented as nodes
in a network. Links between two nodes stand for a dependency
between them and they are called network neighbors. Here,
we call this model the exposure diversification approach (ED),
since increased diversification of system components reduces
their exposure to the failure of single other components. But
at the same time, it increases the connectivity of the overall
system. Especially, if well connected components, so called
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hubs, fail they affect a high number of other nodes. Even if
the inflicted damage is only little, if it is enough to trigger a
few other failures, the cascade might continue and span a large
fraction of the entire system.

This implies that hubs, because of their large number of
neighbors, considerably affect the network in case of failure.
Consequently, policy discussions and risk reduction strategies
center around the question of how to prevent the failure of hubs,
e.g., by increasing their robustness (i.e., relative capital buffers
in finance [13,15] or immunization in epidemiology [16]).

Here, we test in a generic modeling approach a way to
complement such regulatory efforts and strategies by the
mitigation of the impact of the failures of well-connected
nodes. Thus, we contrast the ED approach with a scenario in
which the impact of a failing node (rather than its exposures)
is diversified. This damage diversification (DD) approach
has the potential to reduce systemic risk significantly, since
it counterbalances the failure amplification caused by hubs.
For instance, in a financial network this approach would
correspond to a policy where each financial institution is only
allowed to get into a limited amount of debt.

We are aware that our approach is abstract, and it is based
on simplifying assumptions that can deviate from real-world
application scenarios. For instance, insolvency proceedings of
financial institutions are complicated and last for longer time
periods. Not all concerned parties are affected in the same way,
and different financial products have different consequences
for the counterparties. Regarding epidemic spreading, people
respond differently to infections, have various incubation
times, and infections are often not transferred just by contact.
Also many ecological factors influence the propagation of
forest fires. Cascades generally do not proceed without any
(human) interventions and, often, the considered network
structures are not static.

Without question, adequate simplifications of the real
world lie at the core of every model. As a matter of fact,
one simplification is introduced by the approximation of
complicated interaction patterns by a simple network. The
topology of such a network is then one of the main influencing
factors of systemic risk.
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Research that is concerned with monitoring systemic
risk focuses on the inference of such network structures
by empirical observations. The studied networks vary in
properties like their degree distribution, clustering coefficient,
and mesoscopic structures. Despite their high relevance for
the application scenarios at hand, such works rarely allow for
the identification of the main drivers of systemic risk that are
common to a larger class of cascade processes.

Such classes are usually studied in a generic (and simplify-
ing) modeling approach. Often, random graph ensembles are
considered and average properties are measured to form an
expectation of the cascade size under network uncertainty, or
to summarize results for a big class of different networks.

In this paper, we follow a generic modeling approach for
systemic risk and we are especially interested in the role of
heterogeneous degrees and thus heterogeneous diversification
strategies. Thus, the configuration model [17,18] is the most
appropriate choice to generate random graph ensembles, as the
resulting network distribution maximizes the entropy under the
constraint of a given degree sequence.

We present simulations as well as analytic derivations for
network ensemble averages. The derivations are valid in the
limit of infinite network size, where two quantities on the
system level are given: (a) the degree distribution, which
defines the number of direct neighbors of a node, and thus
limits their respective diversification strategies; and (b) the
distribution of robustness, which is later defined by the failure
threshold. The analytic method (also known as heterogeneous
mean field or branching process approximation) has been
derived for the ED approach [12]. But, it does not capture
processes where the impact of a failing neighbor depends
on its specific properties (e.g., its degree or robustness) as
it is required for the treatment of the DD variant. Therefore,
we extend the branching process approximation to the latter
case and generalize it for the application to weighted random
network models. The weight statistics could be deduced
from data, taking also into account different properties of
neighboring nodes, or from specific model assumptions. This
way, we generalize the analytic treatment to match application
scenarios better.

Despite our generic modeling ansatz, our approach can
be of relevance to practitioners in cases when network
structures change rather quickly, which introduces network
uncertainty, or in cases when simulations are computationally
demanding. In the case of the latter, an analytic branching
process approximation is still feasible as a proxy for the
average cascade size. However, it is important to note that
many complicated microscopic network structures are not
considered in such a systemic risk analysis, although they
might have a high impact on the results. While studies for
the ED variant suggest that clustering does not seem to bias
a systemic risk analysis, a large mean intervertex distance
can be problematic [19]. In addition, strong degree-degree
correlations can also be of high relevance [20,21].

Our main methodological contribution is the study of
generic cascade models that do not aim at monitoring systemic
risk, but seek instead for system design principles that can
reduce systemic risk. Especially, our approach allows us to
deepen the understanding of the role of different risk diversifi-
cation strategies. In fact, it translates a recent paradigm shift to

an analytic setting. The focus has been shifted from individual
or componentwise risk assessments to systemic risk analysis.
Thus, the question of the failure risk of single components is
complemented by the question for the consequences of their
failure for the rest of the system. A systemic risk analysis is
often accompanied by the identification of so-called system-
relevant nodes. But this analysis is based on the assumption that
various components can have a different impact on the system
stability. This is considered in our framework, as failing nodes
can cause different damage to their network neighbors.

As a result of the tradeoff between system connectivity
and risk diversification, an increased diversification does not
need to reduce the failure risk, neither of the system nor its
components. Increased diversification does not even need to
decrease the failure risk of a component despite the fact that it
reduces systemic risk.

Because of this, we accompany our systemic risk
measure on the macro level, the average cascade size, with
a comparison of failure probabilities of nodes with different
diversification strategies on the meso level. The nodes’
systemic relevance can then be identified on the basis of their
cascade amplification role.

II. MODELING EXPOSURE VERSUS DAMAGE
DIVERSIFICATION

In a weighted (directed) network with N nodes a link with
positive weight wji � 0 between two nodes j and i, represents
an exposure of i to its network neighbor j . Each node j

can fail either initially or later in (discrete) time t because
of a propagating cascading process. Its (binary) state then
switches from si(t) = 0 (okay) to si(t) = 1 (failed), without
the possibility to recover.

If the node j fails, its neighbor i faces the loss wji . The
total amount of i’s losses sums up to

Li(t + 1) =
∑

j

wjisj (t). (1)

If Li exceeds the threshold θi (i.e., Li � θi), the node i fails
as well. Hence, θi expresses the robustness of node i. In this
way a cascade of failing nodes develops over time, which can
even span the whole network.

We call Li also load instead of, e.g., losses, and wji also
damage or impact of node j on node i to indicate that we do not
necessarily have financial systems in mind, and instead follow
a generic modeling approach where we focus on common
principles in cascade models. In fact, wij would often not
correspond to a loss, but to a loss relative to a node’s equity in
a financial setting. For an in-depth explanation of how to link
this model to a balance-sheet approach, we refer the interested
reader to Refs. [22,23]. Here, we just borrow the intuition for
cascading losses in a network.

We measure the cascade size by the final fraction of failed
nodes,

ρN = lim
t→∞

1

N

N∑
i=1

si(t), (2)
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when no further failures are triggered. Any cascade stops after
at most N time steps, since at least one node needs to fail at a
time to keep the process going.

The cascade dynamics are fully deterministic for given
thresholds and weights on a fixed network. Still, many
systems do not remain constant over time and may also
fluctuate by their exposure to large cascades. Consequently,
it is reasonable to quantify the risk of large cascades with
respect to macroscopic distributions that allow for microscopic
variations of the weighted network and the thresholds. The
average cascade size with respect to these distributions then
defines our measure of systemic risk.

In such a setting, we study the influence of two diversifi-
cation variants. The difference between the ED and the DD
approach is in defining the weights wji . Precisely,

w
(ED)
ji = 1

ki

; w
(DD)
ji = 1

kj

, (3)

for exposure diversifications (ED) and for damage diversifica-
tions (DD), respectively. Here, ki denotes the degree of node
i, i.e., the number of its neighbors.

In the ED case, every neighbor is treated identical; i.e., a
failure of any neighboring node j exposes a node i to the same
loss 1/ki . The higher the degree ki of node i, the better it
diversifies its total exposure of

∑
j∈nb(i) 1/ki = 1, where nb(i)

denotes the neighbors of node i; Thus, in the ED case, single
failures of neighbors j become less harmful to node i if it has
a larger number of neighbors. On the other hand, the failure of
a hub impacts many other nodes and is thus problematic from
a system perspective.

In the DD case, the impact of a hub is effectively reduced.
The failure of a hub j causes a total loss of

∑
i∈nb(j) 1/kj = 1,

which reduces the impact on a neighboring node i to 1/kj

(instead of 1
ki

in the ED case, where normally ki � kj ).
Hence, better diversified nodes damage each of their neighbors
effectively less in case of a failure.

We note that, in general, w(ED)
ji �= w

(ED)
ij and w

(DD)
ji �= w

(DD)
ij .

Still, we can assume an undirected skeleton network, i.e.,
we do not need to distinguish between in-degrees and out-
degrees. This differs from the usual approach for directed
networks [11,22,24], where the neighbors whose failures
impact a node are distinct from the ones who face a loss in
case of the node’s failure. In this case, one node is exposed
to the other, but not vice versa. In our case, however, once
there is a link between two nodes, each can impact the other,
but the amount of the loss can be different. Still, this does not
limit us to the study of undirected networks, since weights wji

in one direction can also be set to zero (wji = 0). Instead, it
allows us to model situations where some nodes are part of
mutual dependencies as well as one-way exposures. Thus, our
approach is a generalization. In the Appendix we provide an
example for an exclusively directed network by defining the
weights as net difference between weights in the DD approach:
w

(eff)
ji = max (1/kj − 1/ki, 0).
We are interested in how the heterogeneity of such

diversification strategies as ED and DD and the heterogeneity
of thresholds impact systemic risk for large systems. In both
model variants the diversification strategies are determined by
the degrees of the nodes.

Consequently, we study the fraction of failed nodes as
an average over a whole class of networks characterized
by a fixed-degree distribution p(k) and a fixed-threshold
distribution F�(θ ) in the limit of infinitely large networks
(N → ∞). The network generation method with fixed-degree
sequence, which can be drawn from a degree distribution p(k),
is known as configuration model [17,18]. There, all possible
network realizations are equally likely, but we condition on
the property that the network is simple, i.e., it has no multiple
edges or self-loops. This means in our numerical simulations
we do not regard networks with multiple edges and self-loops
similar to Ref. [25]. The thresholds are then assigned to nodes
independently of each other, and independently of their degree
according to F�(θ ), although the independence of the degree is
not a necessary assumption. In the next section, we will derive
our formula for the final cascade size for a more general case,
where the law F�(θ ) for the random threshold � of a node can
also depend on the node’s degree k. So we have F�(k)(θ ).

For the ED approach, the average fraction of failed
nodes at the end of a cascade can be calculated on random
networks with given degree distribution p(k) and threshold
distribution F�(θ ) [12]. To obtain the results, a branching
process approximation was used, also known as hetero-
geneous mean-field approximation (HMF) or as local tree
approximation (LTA) [20]. This approximation was studied
in many subsequent works. It was generalized for directed
and undirected weighted networks [22,26], it was shown to
be accurate even for clustered networks with small mean
intervertex distance [19], and the influence of degree-degree
correlations has been investigated [20,21]. According to a
general framework introduced by Lorenz et al. [27], the ED
and DD approach belong to the constant load class, where the
ED is called the inward variant, while the DD is identified as
the outward variant. Still, the risk reduction potential of the
latter has not been understood so far, since a system’s exposure
to systemic risk has been only explored on fully connected or
regular networks [27], where both model variants coincide.

In order to study the DD approach on more general
networks, we generalized and extended the existing approx-
imations, which were proven to be exact for the case of
ED [22,26]. Now, we can treat more general processes where
the directed weights in a directed or undirected network can
depend on properties of both nodes, the failing as well as the
loss facing one. Here, in contrast to Ref. [22], nodes can depend
on each other and properties of the failing node influence the
amount of loss faced, and in contrast to Ref. [26] nodes can
depend on each other in a nonsymmetric way. It is important
to note that our approach is still limited to cascade processes
where the exposures wji remain constant over the course of
a cascade. But if, for instance, accumulated load [28–30] or
overload [31,32] of a node is spread to functional network
neighbors, the order of failures and time of failure matter for
the cascade outcome. However, the arbitrary choice of weight
distributions introduce a significant modeling flexibility.

We show in Sec. IV that our approach leads to very good
agreements with simulations on finite Poisson random graphs
and scale-free networks. Many large systems belong to the
latter class [33–35]. But often, simulations would require more
computational time than our analytic approach or would even
be impossible, because nodes with degree in the far right tail
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of the degree distribution are only realized in large networks
that most times cannot be sampled with adequate accuracy.
Interestingly, right-skewed degree distributions seem to reduce
systemic risk for most parameters. An example for such a case
is provided in the Appendix.

III. ANALYTIC FRAMEWORK

A. Local tree approximation

In the configuration model a node i is characterized only by
its degree ki so that its failure probability P(si = 1|ki) depends
solely on this information. Hence, the (average) final fraction
of failed nodes is of the form

ρ =
∑

k

p(k)P(s = 1|k), (4)

where P(s = 1|k) denotes the failure probability of a node
conditional on the information that its degree is k.

The quantity ρ allows for two different interpretations. On
the system level, ρ measures the final fraction of failed nodes,
and P(s = 1|k) the fraction of failed nodes with degree k. On
the node level, ρ can be seen as probability for a node to be
failed, but if the node’s degree k is known, then its actual
failure probability is given by P(s = 1|k). In the following,
we proceed with successively decomposing P(s = 1|k) into
sums over products between conditional probabilities that
assume more information about the network neighborhood,
and probabilities that the neighborhood is in the assumed state.

1. The conditional failure probability

The computation of P(s = 1|k) relies on the assumption
of an infinite network size (N → ∞), since the clustering
coefficient for the configuration model vanishes in the limit, if
the second moment of the degree distribution is finite [36].
Consequently, the topology simplifies to locally treelike
networks [20], where neighbors of a node are not connected
among each other, as illustrated in Fig. 1. In this illustration,
the node under consideration with degree k is colored in
green and is called the focal node. Its failure probability
P(s = 1|k) decomposes into a sum over two factors. The
locally treelike network structure and the assumption that the
local neighborhood defines the state of a node already lead to:

P(s = 1|k) =
k∑

n=0

P(s = 1|k,n)b(n,k,π ). (5)

The factor b(n,k,π ) describes the general state of the neigh-
borhood, namely the probability that among the k neighbors
of a node exactly n have failed. The factor P(s = 1|k,n)
gives the probability that a node with degree k fails after
n of its neighbors have failed. Therefore, it takes into
account the ability of a node to withstand shocks (i.e., failing
neighbors).

If some of the neighbors of a node would be connected,
which violates the local tree-like assumption, we would need
to consider all possible (temporal) orders of their failures.
Instead, the configuration model allows for assigning every
neighbor the same failure probability π and each neighbor’s
failure can be regarded as independent of the failure of
the others because of the locally treelike network structure.

FIG. 1. Illustration of the local tree approximation. The green
node is the focal node. Its conditional failure probability P(s = 1|k =
5) can be computed according to Eq. (5), and depends on the state of its
neighbors: Here, the two red ones and the gray one have failed, while
the two blue ones are still functional. The neighbors’ conditional
failure probabilities P(snb = 1|k) rely on the failure probabilities of
their own neighbors without regarding the green focal point.

Consequently, the number of failed neighbors of a node
is binomially distributed so that n neighbors can fail with
probability

b(n,k,π ) =
(

k

n

)
πn(1 − π )k−n.

However, the probability P(s = 1|k,n) that such an event
causes the failure of the considered node with degree k may
depend on specific properties of the neighbors, like, e.g., their
degrees ki and their failure probabilities P(snb = 1|ki). By
allowing this dependence, we introduce a generalization of
the existing heterogeneous mean-field approximation, which
enables the analytical treatment of processes where failing
nodes have different influences on their neighbors according
to their degree.

Also the conditional failure probability P(s = 1|k,n) can
be decomposed into the sum over two factors,

P(s = 1|k,n) =
∑
knknkn∈In

p(knknkn|k,n)P(s = 1|k,knknkn), (6)

where the sum runs over all possible configurations of
neighbors’ degrees denoted by I n. knknkn is an abbreviation for
a vector (k1, . . . ,kn) of failed neighbors’ degrees and takes
values in I n. Generally, I = N or I = [c] := {1, . . . ,c} in
the presence of a finite cutoff c. Such a cutoff is inevitable
in numerical computations or in the observation of (finite)
real-world systems, while it guarantees the finiteness of the
second moment of p(k).

The probability p(knknkn|k,n) captures the precise state of the
neighborhood given that exactly n neighbors have failed. More
precisely, it is the probability that the n failed neighbors
of a node with degree k have degrees knknkn. This factor may
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depend on the failing probabilities of neighbors P(snb =
1|k1), . . . ,P(snb = 1|kn), while conditioned on these failures,
we denote P(s = 1|k,knknkn) the probability that a node with
degree k fails. The latter is determined by the specific
cascading model and will be discussed later for the cases of
our two diversification models.

2. The state of the neighborhood

In order to compute the failure probability,

P(s = 1|k) =
k∑

n=0

b(n,k,π )
∑
knknkn∈In

p(knknkn|k,n)P(F |k,knknkn), (7)

we need to derive the state of the neighborhood as described by
the average failure probability of a neighbor π , and the failure
probability p(knknkn|k,n) that the n failed neighbors have degrees
knknkn. Both depend on the degree distribution of a neighbor pn(k)
as well as its failure probability P(snb = 1|k).

It is important to note that a neighbor with degree k

(illustrated by the gray node in Fig. 1) does not fail with
probability P(s = 1|k), since one of its links leads to the focal
node (illustrated by the green node in Fig. 1). Conditional
on the event that the focal node has not failed yet, only the
remaining k − 1 neighbors of the gray neighbor (colored with
bold fringe) could have caused the failure of the gray neighbor
of the focal node. This property of a neighbor whose failure
does not regard the focal node is called without regarding
property (WOR) by Hurd and Gleeson [26]. Therefore, a
neighbor’s failure probability P(snb = 1|k) is

P(snb = 1|k) =
k−1∑
n=0

b(n,k − 1,π )

×
∑
knknkn∈In

p(knknkn|k,n)P(s = 1|k,knknkn). (8)

The notation P(snb = 1|k) is a short-cut for conditioning on
the event that one neighbor of a node with degree k has not
failed.

It remains to calculate p(knknkn|k,n) and the unconditional
failure probability of a neighbor π . Both depend on the degree
distribution pn(k) of a neighbor. Because of the local tree
approximation, it is independent of the degree distribution of
the other nodes in the network,

pn(k) := kp(k)

z
, (9)

where z := ∑
k kp(k) denotes the normalizing average degree.

pn(k) is proportional to the degree k in the configuration model,
because each of a neighbor’s k links could possibly connect
the neighbor with the focal node (see, e.g., Ref. [36]).

We, therefore, obtain the unconditional failure probability
π of a neighbor by

π =
∑

k

pn(k)P(snb = 1|k) =
∑

k

kp(k)

z
P(snb = 1|k). (10)

Similarly, the degree distribution of a neighbor conditional
on its failure can be written as P(snb = 1|k)p(k)k/zπ so that

we can calculate the probability p(knknkn|k,n) that the n failed
neighbors have degrees kn by

p(knknkn|k,n) =
n∏

j=1

p(kj )kjP(snb = 1|kj )

zπ
, (11)

since the neighbors are independent of each other, according
to the locally treelike network structure.

3. Fixed-point iteration for the conditional failure probability

In short, the vector

PPP(snb = 1|k) = (P(snb = 1|k))k∈{1,··· ,c} ∈ [0,1]c

turns out to be a fixed point of a vector valued function
G : [0,1]c → [0,1]c so that for the kth component we have

P(snb = 1|k) =
k−1∑
n=0

b(n,k − 1,π )
∑
knknkn∈In

P(s = 1|k,knknkn)

×
n∏

j=1

p(kj )kjP(snb = 1|kj )

zπ

= Gk[PPP(snb = 1|k)], (12)

where P(snb) denotes the failure probability of a neighbor
with degree k, b(n,k − 1,π ) = (

n

k

)
πn(1 − π )k−1−n belongs to

a binomial distribution with respect to the failure probability
π of a neighbor, p(k) is the degree distribution with mean z,
and P(s = 1|k,knknkn) stands for the probability of a node to fail if
exactly n of its k neighbors with degrees k1, . . . ,kn have failed
before.

Such a fixed point exists according to the Knaster-Tarski
theorem, since the function G is monotone with respect to
a partial ordering and maps the complete lattice [0,1]c onto
itself [37]. A proof is given in Appendix A.

Thus, starting from an initial vector P(snb = 1|k)(0), which
is defined by the considered cascading model, we can compute
the fixed point iteratively by

P(snb = 1|k)P(snb = 1|k)P(snb = 1|k)(t+1) = GGG(P(snb = 1|k)P(snb = 1|k)P(snb = 1|k)(t)), (13)

with

π (t) =
∑

k

pn(k)P(snb = 1|k)(t). (14)

Each iteration step (t) corresponds to one discrete time step of
the cascading process so that

ρ(t) =
∑

k

p(k)P(s = 1|k)(t) (15)

can be interpreted as average fraction of failed nodes in the
network at time t . Note that the relation betweenP(s = 1|k)P(s = 1|k)P(s = 1|k)(t)

and P(snb = 1|k)P(snb = 1|k)P(snb = 1|k)(t) is described by Eqs. (7) and (11).

4. Simplification for homogeneous failure probability

In case the impact of a failing neighbor does not depend
on its degree, the failure probability P(s = 1|k,knknkn) = P(s =
1|k,n) does not depend on the degrees knknkn of its n failed
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neighbors, and Eq. (12) can be simplified to

P(snb = 1|k) =
k−1∑
n=0

b(n,k − 1,π )P(s = 1|k,n)

×
n∏

j=1

1

π

∑
kj ∈I

p(kj )kjP(snb = 1|kj )

z

=
k−1∑
n=0

b(n,k − 1,π )P(s = 1|k,n), (16)

using Eq. (10). Inserting this into Eq. (10) leads to the fixed-
point equation

π =
∑

k

kp(k)

z

k−1∑
n=0

b(n,k − 1,π )P(snb = 1|k,n), (17)

which in this case involves the scalar π instead of the vector
P(snb = 1|k)P(snb = 1|k)P(snb = 1|k) in Eq. (12). With this information the final
fraction of failed nodes can be computed as

ρ =
∑

k

p(k)
k∑

n=0

b(n,k,π )P(s = 1|k,n), (18)

as already known from the literature [12,20]. Still, this simpler
approach is not able to capture the cascade dynamics of the
damage diversification model.

5. The ability of a node to withstand a shock

The only piece missing in our derivations is the model-
specific probability P(s = 1|k,knknkn), that a node with degree
k fails exactly after n of its neighbors with degrees knknkn have
failed. This probability captures the failure dynamics and is
thus defined by a node’s total loss L(k,knknkn) and its threshold
�(k). Here, we write �(k) to indicate that it is a random
variable that can depend on the degree k of a node. But later
on, in the Results section, we only test for cases where �

is independent from k. Each node i receives a threshold θi

randomly drawn initially according to the law F�(k) of the
random variable �(k), but θi itself stays constant for the whole
cascading process.

The given information about the degrees k,knknkn can in
principle enter both variables, L(k,knknkn) and �(k), although the
cumulative threshold distribution F�(k) tends to depend solely
on properties of the node itself, e.g., the degree k. Because a
node fails, if its total loss exceeds its threshold, we have

P(s = 1|k,knknkn) = P[�(k) � L(k,knknkn)]. (19)

Please note that initially the total loss of a node is zero, since
no neighbors have failed because of neighboring failures yet,
i.e., n = 0. Consequently, all nodes with threshold θi � 0 fail
in the beginning and trigger a cascade. In an infinitely large
network, these are F�(k)(0) of all nodes with degree k.

More generally, with respect to known weight distributions
pW (kj ,k) between a neighbor with given degree kj and a node
with degree k (and thus a weight of a link starting in a neighbor
with degree kj and ending in a node with degree k), Eq. (19)

reads

P(s = 1|k,knknkn) = P

⎛
⎝�(k) �

n∑
j=1

W (kj ,k)

⎞
⎠

=
∫

F�(k)(w)(pW (k1,k) ∗ . . . ∗ pW (kn,k))(w) dw .

(20)

The last equation holds if the weight distributions pW (kj ,k) are
independent, and the symbol ∗ denotes a convolution.

In the simpler case of our two model variants, the weights
W (kj ,k) are completely deterministic. In accordance with the
definition of the weights in Eq. (3), we calculate for the ED
case

P(s = 1|k,knknkn)(ED) = P(s = 1|k,n)(ED) = F�(k)

(n

k

)
, (21)

which is independent of the neighbors’ degrees. Consequently,
the calculation of the average final fraction of failed nodes can
be simplified as outlined in Sec. III A 4.

For the DD case, the fixed point iteration needs to take into
account all degrees of the failed neighbors, since they define
the loss 1/kj that the focal node faces. Thus, we have

P(s = 1|k,knknkn)(DD) = F�(k)

⎛
⎝ n∑

j=1

1

kj

⎞
⎠. (22)

6. DD case: Correct Heterogeneous mean-field
approximation (cHMF)

The probability of the failure of a node or neighbor
with degree k and n failed neighbors P(s = 1|k,n)(DD) given
by Eq. (6) needs to be recalculated for each fixed point
iteration step. For the DD case, this involves the calculation
of the convolution of the impact distribution (or inflicted
loss distribution) pimp of a failed neighbor, which depends
on the iteratively updated failure probability P(snb = 1|k).
More precisely, one failed neighbor inflicts the loss 1/k with
probability

pimp

(
1

k

)
= P(snb = 1|k)

kp(k)

zπ
(23)

(that is conditioned on its failure) independently of the other
failed neighbors. Thus, the total loss L(k,n) of a node with
degree k and n failed neighbors is distributed according to the
nth convolution of this impact distribution p∗n

imp and we have

P(s = 1|k,n) = P(�(k) � L(k,n)) =
∑

l

p∗n
imp(l)F�(l),

where the inner sum runs over all possible values of the total
loss L.

Since the convolutions are computationally demanding (in
terms of time and especially memory), we approximate p∗n

imp
by first binning it to an equidistant grid and then using fast
Fourier transformations (FFT) in order to take advantage of
the fact that convolutions correspond to simple multiplications
in Fourier space (see, for instance, Refs. [38,39]). This reduces
the computation of the fraction of failed nodes for fixed
threshold and degree distribution parameters in our setup to
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FIG. 2. (a) The studied degree distributions: Poisson distribution
with parameter λ = 2.82 and cutoff degree c = 50 (blue), scale-free
distribution with exponent γ = 3 and maximal degree c = 200 and
average degree z = 3 (red) in log-log scale. (b) Comparison of the
final fraction of failed nodes obtained by simulations (symbols)
on networks with 100 000 nodes as average over 500 independent
realizations with numerical results from the cHMF (lines) for the
DD case. The thresholds � are normally distributed with mean
μ and standard deviation σ (� ∼ N (μ,σ 2)). Nodes with negative
thresholds fail initially. Results for scale free networks are depicted
in blue for σ = 0.2 and red for σ = 0.5. Results for networks with
Poisson degree distribution are shown in black for σ = 0.2 and green
for σ = 0.5.

a few minutes. Although this is numerically accurate enough
for the calculation of the final fraction of failed nodes, for
the reporting of the vectors PPP(s = 1|k) and PPP(snb = 1|k) we
use a more precise direct convolution of the binned impact
distributions pimp, as is described in Appendix B. Figure 2(b)
shows that our numerical results coincide with simulations.

7. Neglecting the neighbors’ degrees in the failure
probability (simpHMF)

Considering the computational complexity of the cHMF
approach we described above, it is worth asking whether we
can approximate it with a simpler version as, e.g., the one de-
scribed in Sec. III A 4, and still obtain reasonably good results.

This would require the probability P(s = 1|k,knknkn) to be
independent of the neighbors’ degree. Consequently, we would
assume that every failed neighbor inflicts the loss 1/k with
probability

psimp

(
1

k

)
= kp(k)

z
, (24)

although its degree does not need to coincide with k. Therefore,
by computing

P(s = 1|k,knknkn) =
∑

l

p∗n
simp(l)F�(l) = P(s = 1|k,n), (25)

we can calculate the failure probability initially without the
need to update it in each fixed-point iteration. Although
this approach is more convenient, as shown in Fig. 3, it is
inadequate for the damage diversification variant, especially
in combination with skew degree distributions (as, e.g., in
case of scale free networks). This is because if we follow
this simplified calculation, we lose the risk-reducing effect by
hubs that are connected to more nodes, and we would draw
opposite conclusions about systemic risk. So, as shown in
Fig. 3, it is crucial to use the correct HMF to explain our
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FIG. 3. (a) Fraction of failed nodes obtained by (simpHMF) for
the DD case on Poisson random networks with λ = 2.82, z = 3, and
c = 50. (b) Difference between the correct version (cHMF) and (a).
(c) Fraction of failed nodes obtained by (simpHMF) for the DD case
on scale free networks with γ = 3, z = 3, and c = 200. (d) Difference
between the corresponding correct version (cHMF) version and (c).
The thresholds � are normally distributed with mean μ and standard
deviation σ (� ∼ N (μ,σ 2)).

simulation results. The simplified method simpHMF leads to
an overestimation of the final fraction of failed nodes.

IV. NUMERICAL RESULTS

Hereafter, we show how the DD variant can reduce systemic
risk in comparison to the ED variant by calculating the
fraction of failed nodes for both variants and several degree
distributions. Alongside, we study the influence of the presence
of hubs and the degree variance. This allows us to discuss up
to which extent the overall diversification reduces or increases
systemic risk. Later on, we also compare how a higher or
lower diversification influences the failure risk of a node on
the mesoscopic level.

Our findings do not only lead to different conclusions for
the two model variants, but also depend on the threshold
distribution parameters under consideration.

Similar to Refs. [14] and [12], we study normally distributed
thresholds � ∼ N (μ,σ 2) with mean μ and standard deviation
σ , but we explore the role of the thresholds’ heterogeneity
as well as their mean size more extensively by providing
a 2D phase diagram as in Ref. [27]. Although our analytic
framework also applies to more general cases, here we assume
the thresholds to be independent from the degree k of a node.

The initial fraction of failed nodes is determined by the
nodes with negative thresholds (� � 0) and is thus given by
F�(0) = 	(−μ

σ
), where 	 denotes the cumulative distribution

function of the standard normal distribution.

A. Systemic perspective

In principle, all phase diagrams are of similar shape as the
one for fully connected networks of infinite size that has been
calculated in Ref. [27] and is depicted in Fig. 4(a). It shows
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FIG. 4. Phase diagram for the fraction of failed nodes ρ with normally distributed thresholds (� ∼ N (μ,σ 2)) for (a) fully connected
networks, and (c) regular networks with degree z = 3. The darker the color the higher is the systemic risk. The middle panel (b) shows their
difference ρ(a) − ρ(b).

the effect of perfect diversification. Both variants, ED and DD,
coincide for this case as well as for regular networks where
every node has the same degree z.

We observe that increasing the standard deviation can also
reduce systemic risk—even though this increases the fraction
of initial failures. Of special prominence is the sharp regime
shift from a region of small systemic risk to an almost complete
system breakdown. The existence of such a regime shift has
been first identified for Poisson random graphs and the ED
variant in Ref. [12]. It is present for most other topologies as
well—for both variants ED and DD. The regime shift separates
the white region in Fig. 4(a), where perfect diversification is
(nearly) optimal, from a region where other topologies could
expose the system to a lower systemic risk. For instance,
regular networks with degree z reduce the risk for larger
threshold parameters σ , but also increase the risk for small
μ and σ . Figure 4(c) shows the respective phase diagram for
z = 3. Consequently, we cannot expect that other topologies
different from the fully connected one lead to smaller systemic
risk for all parameters. But the DD variant can expose the
system to a lower systemic risk in comparison with ED on the
same topology. And both variants can show lower systemic
risk for such a topology than fully connected networks for
certain threshold parameters.

We test two degree distributions where the ED and DD
variants differ. Figure 5 presents the final fraction of failed
nodes for Poisson random graphs and scale-free networks with
degree distributions

pP (k) := 1

SP

λk

k!
, pS(k) := 1

SS

1

kγ

for k ∈ {1, · · · ,c} with normalizing constants

SP :=
c∑

k=1

λk

k!
and SS :=

c∑
k=1

1

kγ
,

where we adjust pS(1) (and SS) to set the average degree z of
pS to a specific value in the aftermath. The Poisson random
graphs are of interest as limit of the well-studied Erdös-Rényi
random graphs [40], and in comparison to the simulations
serve as benchmark for our method [see Fig. 2(b)]. However,
many real-world systems are expected to be of scale-free na-
ture [33,41,42]. The scale-free degree distribution is especially

interesting for our diversification analysis, since a considerable
fraction of nodes has a higher degree than others and can there-
fore be called hubs. These hubs are the well-diversified nodes.

In Fig. 5 we compare the two variants ED and DD for
the two degree distributions with the same average degree
z = 3 so that we can study the influence of the presence
of hubs rather than the overall connectivity indicated by
z. We observe that the outcome for the ED variant differs
for the two degree distributions only in a narrow threshold
parameter range. While the DD variant exposes the system to
a smaller systemic risk than the ED variant for all parameters,
it especially proves risk reducing for higher degree variation.
Scale-free random graphs expose the system to lower systemic
risk than Poisson random graphs, and Poisson random graphs
have lower systemic risk than regular random graphs. The
presence of hubs, whose failure causes only small damage
in their environment, seems to limit the cascade risk. But in
general, a majority of hubs does not reduce systemic risk.
Cascades in fully connected networks, where every node is
a hub, are more amplified for already identified threshold
parameters than in other studied topologies. The DD variant
together with a high diversity of degrees, so that a small
fraction of high degree nodes is combined with a majority
of small degree nodes whose failure does not affect a high
proportion of other nodes, lowers systemic risk considerably
in threshold parameter regions where the system is vulnerable
to failure cascades.

We present further examples in the Appendix. In fact, a
small set of threshold parameters can be found where the ED
variant exposes the system to lower systemic risk than DD.
This can also be observed for a degree distribution measured
from a snapshot of the Italian interbank market in October 1,
2002, as published in Ref. [43]. But the DD variant shows
lower systemic risk than ED for most parameters also in this
case. Additionally, we provide an example where the sudden
regime shift in the phase diagram vanishes. Scale free random
graphs with very low average degree z show in general only
small systemic risk (that is even smaller for DD than ED).

The presented results demonstrate that not only the overall
connectivity z and robustness (represented by the threshold
parameters) determine the final cascade size. Other topological
system properties as the specific distributions of degrees and
link weights wij have risk reduction potential as well.
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FIG. 5. Phase diagrams for the final fraction of failed nodes ρ calculated numerically for different degree distributions with average degree
z = 3, diversification variants ED and DD, and their differences. The thresholds � are normally distributed with mean μ and standard deviation
σ (� ∼ N (μ,σ 2)). The fraction of initially failed nodes is given by F�(0). The darker the color the higher is the systemic risk. First row: Poisson
distribution with parameter λ = 2.82, and cutoff degree c = 50 for the ED (left) and DD (right). The middle panel shows their difference
ρ(ED) − ρ(DD). Second row: The difference between the diagrams with Poisson and scale-free degree distributions for the ED variant (left).
Similarly for the DD variant (right). In the middle panel the initial fraction of failed nodes ρ(0) is illustrated. ρo := ρ(0) is constant along the
lines σ = μ/	−1(ρ0). Third row: Scale-free distribution with exponent γ = 3, and maximal degree c = 200 for the ED (left) and DD (right).
The middle panel again shows their difference ρ(ED) − ρ(DD).

The interplay of hubs and leaves seems to have an
important effect. To understand their different roles in the
cascade amplification, we study next the failure risk of nodes
conditional on their degree.

B. Mesoscopic perspective

Two quantities reveal the role of the nodes with a given
degree k in a cascade process: (a) their failure probabil-
ity P(s = 1|k) and (b) the cascade amplification that their
failure triggers. We measure the second quantity (b) as the
increase of the fraction of failed nodes ρ as response to an
increase of a neighbors’ failure probabilityP(snb = 1|k). Thus,
we call the partial derivative,

∂ρ

∂P(snb = 1|k)
,

cascade amplification by a node with degree k.

For the ED variant the conditional failure probability (a)
does not depend explicitly on the degree distribution and
thus, on the diversification strategies of the other nodes. It
is determined only by the failure probability of a neighbor π ,
which indicates the state of the system in the cascade, and the
threshold distribution. Equations (17) and (21) give

P(s = 1|k) =
k∑

n=0

b(n,k,π )F�

(n

k

)
.

We would expect that large degree, and thus, high diversifi-
cation decreases the failure risk, since the failure of a high
number of neighbors is less probable than the failure of fewer
neighbors. As shown in Fig. 6(a), this intuition applies only
to cases of small risk where the failure probability π of a
neighbor is small. Here, π is chosen independently of a cascade
evolution. For a few parameters with small threshold standard
deviation σ , also more irregular shapes of the conditional
failure probability are possible (see, e.g., the red circles in
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FIG. 6. (a) Conditional failure probability for ED and normally distributed thresholds with parameters (μ,σ ) = (0.3,0.2) with π = 0.2
(black triangles), (μ,σ ) = (0.15,0.01) with π = 0.1 (red circles), and (μ,σ ) = (0.7,0.2) with π = 0.3 (blue diamonds). Here, π is
chosen independent of a cascade process. (b) Conditional failure probability for ED and normally distributed thresholds with parameters
(μ,σ ) = (0.27,0.09) (red), (μ,σ ) = (0.3,0.3) (blue), (μ,σ ) = (0.34,0.19) (black), (μ,σ ) = (0.7,0.6) (green), and π defined by cascade
equilibrium. Lines indicate a scale free distribution with γ = 3, c = 200, and z = 3, while symbols indicate Poisson random graphs with
λ = 2.82, z = 3, and c = 50. (c) As in (b), but for DD while in this case green color refers to parameters (μ,σ ) = (0.5,0.5). Nodes with degree
k > 10 have a similar failure probability as a node with degree k = 10.

Fig. 6(a)). Still, in a real cascade process, the cascade is
ongoing in those cases until most nodes are failed. Results
of real ED cascade processes are depicted in Fig. 6(b), where
π is calculated in a fixed point iteration corresponding to the
studied threshold distribution. In this case, hubs have a higher
risk to fail in a cascade than leaves for almost all threshold
parameters. Exceptions occur, e.g., (μ,σ ) = (0.7,0.6), but
then the difference in failure risk between hubs and leaves is
negligible. Initially, hubs often have a smaller failure risk than
leaves. But if cascades get amplified and π increases, hubs face
a larger failure risk than leaves. High diversification becomes
unfavorable. Intuitively, nodes with a higher degree are more
exposed to an ongoing cascade, as they have a higher chance to
be hit by it. But the diversification effect most often saturates
for degrees k > 10. Because of this we restrict Fig. 6(a) to k �
10. The failure probability of a node with degree k = 10 differs
only marginally from the one of a node with higher degree.

This explains why we observe similar phase diagrams for
Poisson and scale-free random graphs for the ED variant. The
ED variant responds barely to changes in the tail of a degree
distribution, as nodes with large degrees have almost identical
failure risk.

In contrast, for the DD variant, the outcome ρ depends
crucially on the degree distribution. Still, hubs have a higher
failure risk than nodes with a smaller degree in general; see
Fig. 6(c). Each additional neighbor introduces the possibility
of a loss, if it fails. Thus, the shape of the conditional failure
probability,

P(s = 1|k) =
k∑

n=0

b(n,k,π )
∑

l

p∗n
imp(l)F�(l),

always looks similar as the ones presented in Fig. 6(c).
Consequently, too many nodes with high degrees would
increase the vulnerability of the system.

However, the presence of a few hubs also decreases the
overall failure risk by decreasing some of the possible losses.
We gain this insight by studying the second indicator (b) that
describes the role of nodes in the cascade amplification. For
both variants, ED and DD, the partial derivative of ρ is of the

form

∂ρ

∂P(snb = 1|k)
= p(k)k[CED/DD − π ]. (26)

The constant CED/DD can be interpreted as failure probability of
a neighbor where one of its neighbors is failed and has degree
k. Thus, the infinitesimal change in ρ is in fact proportional to
the increase of the failure probability of a neighbor.

In the case of the ED variant, the constant CED does not
depend on the degree k of a node whose failure probability has
increased:

CED =
∑

d

p(d)d

z

d−1∑
n=0

b(n,d − 1,π )F�

(
n + 1

d

)
.

Consequently, the failure of hubs is especially problematic, as
the cascade amplification is proportional to the degree k of
a failed node. The only way to reduce systemic risk (while
preserving the average degree z) in comparison to regular
random graphs is to introduce nodes to the system with smaller
degree than z. Then, only a small fraction of hubs needs to exist
in order to preserve the average degree z. But the risk reduction
is obtained by the high number of small degree nodes.

In the case of the DD variant, risk reduction is also obtained
by the existence of hubs. The constant CDD decreases with
degree k:

CDD =
∑

d

p(d)d

z

d−1∑
n=0

b(n,d − 1,π )
∑

l

p∗n
imp(l)F�

(
l + 1

k

)
.

The cascade amplification [Eq. (26)] role of a node is decided
by the tradeoff between the increasing factor p(k)k and the
decreasing factor CDD − π . Especially less diversified nodes,
which have a chance to survive also large failure cascades, can
benefit from the diversification of others.

V. DISCUSSION

Although risk diversification is generally considered to
lower the risk of an individual node, on the system level
it can even lead to the amplification of failures. With our
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work, we have deepened the understanding of cascading failure
processes in several ways.

At first, we generalize the method to calculate the systemic
risk measure, i.e., the average cascade size, to include directed
and weighted interactions. The loss that a node experiences
because of the failure of a neighbor can depend now also on
properties of the neighbor and not only on properties of the
node itself.

The final cascade size as macro measure is complemented
by a measure on the meso level, by calculating individual
failure probabilities of nodes based on their degree (diversifi-
cation).

This allows us to compare two different diversification
mechanisms: ED (exposure diversification) and DD (damage
diversification). As we demonstrate, nodes that diversify their
exposures well (i.e., hubs), have a lower failure risk only as
long as the system as a whole is relatively robust. But above
a certain threshold for the failure probability of neighboring
nodes, such hubs are at higher risk than other nodes because
they are more exposed to cascading failures. This effect tends
to saturate for large degrees.

In general, most regulatory efforts follow the too big to
fail strategy and focus on the prevention of the failures of
systemic relevant nodes—the hubs. This is mainly achieved by
an increase of the thresholds, i.e., capital buffers in a financial
context or immunization in case of epidemic spreading. But in
reality, this is often very costly.

With our study of another diversification strategy, the
damage diversification, we suggest to accompany regulatory
efforts by mitigating the failure of hubs. By limiting the loss
that every node can impose on others, the damage potential
of hubs and, thus, the overall systemic risk is significantly
reduced. While this is systemically preferable, the DD strategy
is a two-edged sword: Hubs face an increased failure risk, but
many small degree nodes benefit from the diversification of
their neighbors. This lowers the incentives for diversification
as long as no other benefit, e.g., higher gains in times of normal
system operation, comes along with a high degree.

As we show, the systemic relevance of a node is not solely
defined by its degree, or connectivity. The size of its impact in
case of its failure, and thus its ability to cause further failures,
is crucial. It is a strength of our approach that we can calculate
this impact analytically and obtain a more refined and realistic
identification of system-relevant nodes. A possible indicator
for system relevance is the cascade amplification measure that
we have derived.

Additionally, our approach can be transferred to degree-
degree correlated networks [20,21]. We would expect that
a high-degree assortativity in the DD could further reduce
systemic risk, since the failure risk of diversified nodes could
be reduced by connections to hubs whose failures would
impact their neighborhood only little.

With our work we have given one example for systemic risk
reduction by topological means. Further possibilities can be
explored with the analytical framework that we have provided.
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APPENDIX A: EXISTENCE OF A FIXED POINT

We are going to prove with the help of the Knaster-Tarski
Theorem that the function G in Eq. (12),

P(snb = 1|k) =
k−1∑
n=0

b(n,k − 1,π )
∑
knknkn∈In

P(s = 1|k,knknkn)

×
n∏

j=1

p(kj )kjP(snb = 1|kj )

zπ

=Gk[PPP(snb = 1|k)],

attains a fixed point. We need to show that G is monotone with
respect to a partial ordering and maps the complete lattice
[0,1]c onto itself.

The partial ordering on [0,1]c is defined by the following:
For any two vectors x, y ∈ [0,1]c holds x � y, if and only if
xi�yi holds for all their components i ∈ I .

First, we note that for the zero vector 0 ∈ [0,1]c (with 0 in
each component) is smallest vector in [0,1]c with respect to
this ordering, while 1 ∈ [0,1]c (with 1 in each component) is
the biggest one. (And both vectors can be compared with each
other vector in [0,1]c.)

Consequently, the properties G(0),G(1) ∈ [0,1]c and G
monotone imply that G is also onto, i.e., G([0,1]c) ⊆ [0,1]c.

We can see immediately that G(0) = (F�(0))k=1,...,c ∈
[0,1]c. For 1 ∈ [0,1]c and thus P(snb = 1|k) = 1 we have

π =
∑

k

P(snb = 1|k)kp(k)/z =
∑

k

1 · kp(k)/z = 1,

so that we obtain for the dth component of G(1),

Gd (1) =
∑

kd−1∈I d−1

P(s = 1|d,kd−1)
d−1∏
j=1

p(kj )kj

z
∈ [0,1],

since 0 � P(s = 1|d,kd−1) � 1.
It is left to show that G is monotone with respect to the

introduced partial ordering.
We recall that G maps a vector v ∈ [0,1]c, whose kth

entry vk can be interpreted as conditional failure probability
of a neighbor with degree k, to another vector G(v) that we
interpreted as well as conditional failure probabilities, but one
iteration further in a cascade.

This allows us to reformulate Gd (v) in a way that simplifies
the analysis of its monotonicity. As failure probability of a
neighbor with degree d we can express Gd (v) in terms of the
inflicted loss distribution by a single neighbor on the focal
neighbor under consideration: pil. We write pil instead of pimp

as for the impact distribution, since we do not condition on the
failure of a neighbor as in pimp. Thus, if a neighbor has not
failed, it simply inflicts the loss 0. This event is considered in
the first summand (given the fact that a neighbor with degree
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k fails with probability vk):

pil(0) :=
∑

k

(1 − vk)
p(k)k

z
+

+
∑

k

vk

p(k)k

z
P(W (k,d) = 0)

=(1 − π ) +
∑

k

vk

p(k)k

z
P(W (k,d) = 0).

The second sum adds the probability of the event that the
neighbor has failed but does not inflict a loss. For x > 0 we
have

pil(x) :=
∑

k

vk

p(k)k

z
P(W (k,d) = x),

since a neighbor has a degree k with probability p(k)k/z,
conditional on that is failed with probability vk and inflicts a
loss x with probability P(W (k,d) = x) to a node with degree
d.

If instead of a single neighbor, d − 1 neighbors can inflict
a loss the total loss (or loss of the neighbor that experiences
the losses) is distributed by the (d − 1)th convolution of the
inflicted loss distribution by a single neighbor: p∗d−1

il .
Consequently, we can write

Gd (v) =
∑

x

p∗d−1

il (x)F�(d)(x) (A1)

or

Gd (v) =
∫ ∞

0
p∗d−1

il (x)F�(d)(x) dx, (A2)

if the weights W (k,d) are (absolutely) continuously dis-
tributed.

In this form, it is straightforward to see that G is monotone.
Let’s assume that we have two vectors v,w ∈ [0,1]c with v �
w. Without loss of generality we further assume that they only
differ in one component j , i.e., � := wj − vj . If they differ
in more than one component, we can argue as we proceed
separately for each component.

We denote the inflicted loss distribution with respect to v by
pil,v and for w with pil,w. From their definition we can deduce
the relation

pil,w(x) = pil,v(x) + �
p(j )j

z
P(W (j,d) = x)

for x > 0, while for x = 0 we observe with

pil,w(0) = pil,v(0) − �
p(j )j

z
(1 − P(W (j,d) = 0))

a decrease in probability mass (if � > 0). Thus, the inflicted
loss distribution by a single neighbor is shifted for w toward
higher losses. Consequently, the same holds for its convolution
p∗d−1

il,w (x), the distribution of the sum of losses inflicted by
d − 1 independent neighbors. Since F�(d) is monotonously
increasing as cumulative distribution function we can conclude
from Eqs. (A1) and (A2) that Gd (v) � Gd (w) as was to be
shown.

The essence of the proof is that the increase of the failure
probability of a neighbor with degree k also increases the

probability that a loss is inflicted to any of its neighbors. This
higher probability of a loss can only increase the failure risk
(of each node or neighbor).

APPENDIX B: APPROXIMATION OF THE CONVOLUTION

For the DD it is necessary but computationally expensive
to calculate the convolution p∗n

imp, where

pimp

(
1

k

)
= P(snb = 1|k)

kp(k)

zπ

denotes the probability of a loss L(n = 1) = 1/k caused by
the failure of one single neighbor with degree k. Given that
n neighbors have failed, a node faces a loss L(n), which is a
random variable following the law p∗n

imp.
However, the number of values l with nonzero probability

mass that L(n) attains, which are of relevant size for good
accuracy, as well as the number of accumulation points grow
exponentially with the order n. But, in the end we are only inter-
ested in calculating the failure probability

∑
l p

∗n
imp(l)F�(l) of

a node. So it suffices to compute p∗n

imp accurately on an interval
[0,b] ⊂ R, where the threshold distribution F� is effectively
smaller than 1. For l ∈ R/ [0,b] outside of this interval (which
means that l > b since l � 0) we consider the summand∑

l>b

p∗n
imp(l)F�(l) � 1 −

∑
l�b

p∗n
imp(l),

since we can approximate F�(l) by 1 in this region.
We vary the parameters μ and σ of the threshold distribution

between 0 and 1 so that we can safely set b = 5. Next,
we partition [0,b] into J small intervals Ij = ](j − 1)h,jh]
of length h, with j = 1, . . . ,J . For small enough h (here
h = 10−5) it is numerically precise enough to assume the
approximation of p∗n

imp to be constant on each Ij or having
its probability mass in an interval Ij concentrated in one point
in Ij .

1. Convolution with the help of FFT

In the standard (and faster) algorithm that we use, we simply
bin pimp for DD to [0,b] by

p̂imp(jh) :=
{∑

k:(j−1)h< 1
k
�jh p(k) j = 1, . . . ,J,

0 otherwise.

Then, we apply the fast Fourier transformation (FFT) [38,39],
take the nth power of the resulting distribution and transform
it back to obtain p̂∗n

imp.
This is numerically accurate enough for the calculation of

the final fraction of failed nodes ρ. But sometimes it fails in
deducing the correct shape of P(s = 1|k). For this purpose we
have implemented a more precise alternative.

2. Alternative convolution algorithm

Here we assume p̂∗n

imp to have its probability mass in an
interval Ij to be uniformly distributed on Ij . For any (discrete)
probability distribution pX we can define an approximation
function a(·) that bins a (discrete) probability distribution pX
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FIG. 7. Phase diagrams for the final fraction of failed nodes ρ calculated numerically for different degree distributions, diversification
variants, and their differences. The thresholds � are normally distributed with mean μ and standard deviation σ (� ∼ N (μ,σ 2)). The fraction
of initially failed nodes is given by F�(0). The darker the color the higher is the systemic risk. First row: Poisson distribution with parameter
λ = 8 and cutoff degree c = 50 for the ED (left) and DD (right). The middle shows their difference ρ(ED) − ρ(DD). Second row: Degree
distribution of the Italian interbank lending network on October 1, 2002, for the ED (left) and DD (right). The middle shows their difference
ρ(ED) − ρ(DD). Third row: Scale-free distribution with exponent γ = 3 and maximal degree c = 200 for the ED (left) and DD (right). The
middle shows their difference ρ(ED) − ρ(DD).

10
0

10
1

10
2

k

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

p(
k)

FIG. 8. The studied degree distributions: Poisson distribution
with parameter λ = 8 and cutoff degree c = 50 (blue), scale-free
distribution with exponent γ = 3 and maximal degree c = 200 (red),
and degree distribution measured from a snapshot of the Italian
interbank market on October 1, 2002 (black), in log-log scale.

in this way to the intervals I1, . . . ,IJ . We set for x ∈ [0,b],

a(pX)(x) :=
J∑

j=1

x − (j − 1)h

h
1{(j−1)h<x�jh}

×
∑

y:(j−1)h<y�jh

pX(y).

Thus, we get for pimp

a
(
pimp

)
(x) :=

J∑
j=1

x − (j − 1)h

h
1{(j−1)h<x�jh}

×
∑

k:(j−1)h< 1
k
�jh

P(snb = 1|k)p(k)k

zπ
.

This is the initial distribution of an iterative approximation
algorithm in which we compute an approximation p̂∗n

imp of the
nth convolution of pimp in the nth step by convoluting first
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exactly ̂p∗n−1

imp of the previous step with the nonapproximated
pimp. Afterwards we bin the result of the convolution by a(·)
to the intervals Ij again,

p̂∗n

imp := a
(
̂p∗n−1

imp ∗ pimp
)
,

with

p̂∗1

imp := a(pimp).

APPENDIX C: SYSTEMIC RISK FOR FURTHER
TOPOLOGIES

We calculate the final fraction of failed nodes for Poisson
random graphs and scale free networks with degree distribu-
tions

pP (k) := 1

SP

λk

k!
, pS(k) := 1

SS

1

kγ

for k ∈ {1, · · · ,c} with normalizing constants

SP :=
c∑

k=1

λk

k!
and SS :=

c∑
k=1

1

kγ
,

and additionally for a degree distribution measured from a
snapshot of the Italian interbank market on October 1, 2002,
as published in Ref. [43] and shown in the second row of Fig. 7.
The last case we present as illustration of a real world system.
Figure 8 depicts the studied degree distributions.

We do not claim a deeper financial interpretation, since this
would require incorporating empirical weights as well. This
is outside the scope of this paper, which studies the effect of
basic diversification strategies.

We observe that the DD variant leads to lower systemic
risk for most threshold parameters. Still, close to the sudden
regime shift, the ED variant can expose the system to lower
risk. This can also be observed for the degree distribution
measured from interbank lending data. For other threshold
parameters, the DD variant is especially effective for systemic
risk reduction in comparison with ED.

The consistently observed regime shift vanishes in the
case of both model variants for small connectivity. Scale-free
random graphs with z = 1.36 show only continuous changes
of the final fraction of failed nodes with respect to the threshold
parameters.

APPENDIX D: SYSTEMIC RISK FOR NET EXPOSURES

Last, we demonstrate that our analytic approach is not
limited to undirected networks.

In many real-world applications, only a net exposure
leads to a loss. For example, netting agreements in financial
interbank lending networks or flow cancelations leads to
effective weights

weff
ji := max{wji − wij ,0}.

Thus, there exists only an exposure in the direction of the
higher weight between two nodes i and j .

In the case of the DD variant, the effective link points from
a node with higher degree ki to a node with lower degree kj .
We have weff

ji = 1/kj − 1/ki and weff
ij = 0, if kj < ki .
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FIG. 9. Final fraction of failed nodes ρ in case of the DD variant
for random networks with Poisson degree distribution parametrized
by λ = 8 and cutoff c = 50. The thresholds are normally distributed
with varying mean μ and standard deviation σ = 0.31 (red), σ = 0.51
(blue), and σ = 0.71 (black). Circles belong to weights defined as
wDD

ji , while solid lines belong to net exposures weff
ji .

Consequently, Eq. (22) reads now as

P(s = 1|k,knknkn)(DD,eff) = F�(k)

⎛
⎝ n∑

j=1

max

{
1

kj

− 1

k
,0

}⎞
⎠.

To save the computational effort of adding zero weights, we
can equivalently restrict the sum only to failed neighbors that
have a degree kj that is smaller than k. A neighbor is failed
and exposes a node with degree k to a nonzero loss with
probability

πk :=
k−1∑
d=1

p(d)d

z
P(snb = 1|k).

The failure probabilities of a neighbor with given degree solves
then the coupled fixed point equations,

P(snb = 1|k) =
k−1∑
n=0

b(n,k − 1,πk)
∑

l

p∗n
k,eff(l)F�(l),

where the effective impact distribution pk,eff considers only
nonzero weights,

pk,eff

(
1

d
− 1

k

)
= p(d)d

zπk

P(snb = 1|d),

for all d < k.
In this setting, the final cascade size ρ is smaller than for

the undirected case, since in total the exposures are smaller, as
can be seen in Fig. 9.
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