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Structured Abstract  
 
Purpose – We develop an agent-based model to reproduce the processes of link 
formation and  knowledge exchange in a Research and Development (R&D) inter-
organizational network. 
 
Methodology – In our model, agents form links based on their network features, i.e. their 
belonging to one of the network's circles of influence and their previous alliance history, 
and then exchange knowledge with their partners, thus modifying their positions in a 
metric knowledge space. Furthermore, we validate the model against real data using a 
two-step approach. Through the Thomson Reuters SDC alliance dataset, we estimate the 
model parameters related to the link formation, thus reproducing the topology of the 
resulting R&D network. Subsequently, using the NBER data on firm patents, we estimate 
the parameters related to the knowledge exchange process, thus evaluating the rate at 
which firms exchange knowledge and the duration of the R&D alliances themselves. 
 
Originality – The underlying knowledge space that we consider in our real example is 
defined by IPC patent classes, allowing for a precise quantification of every firm's 
knowledge position. Our novel data-driven approach allows us to unveil the complex 
interdependencies between the firms' network embeddedness and their technological 
positions. Through the validation of our model, we find that real R&D alliances have a 
duration of around two years, and that the subsequent knowledge exchange occurs at a 
very low rate. Most of the alliances, indeed, have no consequence on the partners' 
knowledge positions: this suggests that a firm's position – evaluated through its patents – 
is rather a determinant than a consequence of its R&D alliances. Finally, we propose an 
indicator of collaboration performance for the whole network. We find that the real R&D 
network does not maximize such an indicator. 
 
Practical implications – Our study shows that there exist configurations that can be both 
realistic and optimized with respect to the collaboration performance. Effective policies to 
obtain an optimized collaboration network – as suggested by our model – would 
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incentivize shorter R&D alliances and higher knowledge exchange rates, for instance 
including rewards for quick co-patenting by allied firms. 
 
Keywords – Agent-Based Modeling; Complex Adaptive Systems; Network Theory; 
Knowledge Exchange; Technological Trajectory. 
 
Paper type – Academic Research Paper 
 
 
1 Introduction 

The 1990s have witnessed an unprecedented growth in the number of inter-
organizational Research and Development (R&D) alliances. This phenomenon has 
especially affected industrial sectors such as IT, Pharmaceuticals and other high-
technology ones (Ahuja, 2000; Hagedoorn, 2002). Consequently, research has 
investigated the mechanisms behind the formation of such R&D alliances (Powell et al., 
2005), as well as the complex networks they origin (Rosenkopf and Schilling, 2007; 
Tomasello et al., 2014), or the methodologies to describe, model and forecast their 
evolution (König et al., 2012; Garas et al., 2014). 

A number of theoretical works have shown that firms engage in alliances because they 
can gain access to different assets more quickly than they could do in-house (Liebeskind, 
1996; Das and Teng, 2000), or because they can actually enlarge their knowledge basis 
more than they could do individually, by joining their technological resources (Baum et 
al., 2000; Mowery et al., 1998; Rosenkopf and Almeida, 2003) or, finally, because they 
can share the costs and risks of a project, especially when this is expensive or with 
uncertain outcome (Hagedoorn et al., 2000). All of these aspects result in a learning 
process by the involved firms, making R&D alliances an important source of knowledge 
exploration and production. 

In this work we investigate such a learning process through an agent-based model, 
that reproduces the knowledge exchange occurring after the establishment of consecutive 
alliances between firms in a dynamically evolving R&D network. 

The model we propose follows an existing stream of literature in the direction of 
bounded confidence and continuous opinion dynamic models (Deffuant et al., 2000; 
DeGroot, 1974; Hegselmann and Krause, 2002), especially applied to innovation 
networks (Baum et al., 2010). However, differently from the studies that have been 
carried out so far, our model does not focus on the formation of consensus clusters (see 
Axelrod, 1997; Groeber et al., 2009, in the case of social systems) or technology islands 
(see Fagiolo and Dosi, 2003). Instead, we focus on the dynamics that leads the system to 
the observed final state, with an emphasis on the exploration of the knowledge space by 
the collaborating agents.  

We validate the model against real data using a two-step approach, as well as two 
independent datasets. By means of a dataset reporting inter-organizational R&D alliances 
(Thomson Reuters SDC), we estimate the model parameters related to the network 
formation and evolution. Next, using a dataset on firm patents (NBER), we estimate the 
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parameters related to the knowledge exchange process. The underlying knowledge space 
we consider in our real example is defined by IPC patent classes, allowing for a precise 
quantification of every firm's technological position. 

2 Data and methods 

In the present study, an R&D network consists of a set of nodes, or agents (the firms) 
and links (the alliances), connecting them in pairs. By R&D alliance (or collaboration), 
we refer to an event of partnership between two firms, that can span from formal joint 
ventures to more informal research agreements, specifically aimed at research and 
development purposes. To detect such events, we use the SDC Platinum database, 
provided by Thomson Reuters, that reports all publicly announced alliances, from 1984 to 
2009, between several kinds of economic actors (including manufacturing firms, 
investors, banks and universities). In our network representation, we draw an undirected 
link connecting two nodes every time an alliance between the two corresponding firms is 
announced in the dataset. When an alliance involves more than two firms, all the involved 
firms are connected in pairs, resulting into a fully connected clique. 

 In order to evaluate the position of real firms in a metric knowledge space, we use the 
Patent Citations Data by the U.S.A. National Bureau of Economic Research (NBER), 
containing detailed information on patents granted in the U.S.A. and other contracting 
countries, from 1971 to present. Obviously, we select only the entries that have a match 
with the SDC alliance dataset, both with respect to assignees and time period, thus 
obtaining a total of around 1,400,000 listed patents. Every patent is associated with one or 
more assignees and with an International Patent Classification (IPC) class. Companies are 
associated with a unique identifier, and a relatively big part of them (5,168 firms, 
precisely) are matched to the SDC alliance dataset. These firms take part in 7,417 distinct 
R&D alliances. 

The approach we use to determine the knowledge position of a firm is to compute the 
shares of its patents in a set of different IPC classes. The IPC is a hierarchical system of 
patent classification. A generic category consists of a letter, the so-called “section 
symbol”, followed by two digits, the so-called “class symbol”, and a final letter, the 
“subclass”, plus other additional digits. We intend to test our model on a broad set of 
firms, exhibiting patent activities distributed across all sections, classes and subclasses. 
Hence, our choice is to consider only the section symbol (i.e. the first letter) in our 
empirical patent classification.1

                                                 
1  Choosing a subclass-level division would result in a high dimensionality for the corresponding 
knowledge space. However, we have also tested a more refined division, obtaining a total of 74 classes, and we 
have found that the computational burden of operating in a 74-dimensional space does not lead to any 
significant change in our results. 

  The titles of the 8 sections, as well as a patent count for 
each section in our dataset, is reported in Table 1. To ensure a match with our model 
representation, we define the knowledge position of a firm xi ≡ (xiA, xiB , . . . , xiH) as the 
set of normalized patent counts xis in each section, which in its turn equals: 
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 (1) 

where Nis is the number of patents that the firm i has in a given IPC section s. In order to 
compute knowledge distances between pairs of firms, we use the Euclidean metric. This 
means that the knowledge distance between two firms i and j reads as: 

     
 (2) 

Using the definitions provided in Eqs. 1 and 2, we now compute (i) the knowledge 
positions of the firms listed in our dataset at the beginning of the observation period and 
(ii) the distribution of the knowledge distances between every pair of allied firms. It 
should be noted that, for normalization reasons, such a knowledge distance ranges from 0 

to  . When computing the empirical knowledge position of a firm xi at a given date t, 
we consider all the patents for which the firm has applied, in a time window ∆ t = 5 years 
preceding such date t.1

 

2 The knowledge positions of the firms at the beginning of the 
observation period is used as an input for our computer simulations, as we explain below. 

Table 1: International Patent Classification (IPC) sections and their description. The last 
column reports the number of patents registered in our dataset for the corresponding IPC 
section 

 
. 

In Fig. 1 we report the distributions of the knowledge distances between partner firms 
at the moment of alliance formation – the “pre-alliance knowledge distances” – and at the 
moment of the alliance termination – the “post-alliance knowledge distances”. Given that 
the SDC alliance dataset does not report the alliance ending dates, we compute such 
measure for different values of elapsed time after the alliance establishment (1, 3, 5 and 
10 years). In addition, Fig. 1 reports the variation of the knowledge distance separating 

                                                 
1  We have tested different time windows, ranging from 1 to 10 years, and have found that this causes 
only more missing observations or noise in the distributions, with no effect on our results. 
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every pair of allied firms between the moments of alliance formation and alliance 
termination –  the “knowledge distance shift”. 

 

 
Figure 1: Histograms of (a) the empirical knowledge distance between every pair of partnered 

firms, as of the day preceding the alliance formation; (b) 1, 3, 5 and 10 years after the date of the 
alliance formation; (c) shift of knowledge distance computed 1, 3, 5 and 10 years after the date of 

the alliance formation.. 
 

We find that the distributions show a peak for intermediate knowledge distance 
values,  meaning that firms with too similar or too different patenting activity tend not to 
form R&D alliances. We also find that the distribution of post-alliance knowledge 
distances resembles the one of pre-alliance distances, irrespectively of the selected time 
window for the alliance termination: this means that most of the R&D alliances cause a 
null change in the knowledge distance between the two partners, as shown also by the 
distance shift distribution. At the same time, this last distribution clearly exhibits tails on 
both sides, meaning that some alliances cause the partners to significantly move closer in 
the knowledge space, whilst some other alliances cause the partners to significantly move 
farther away. This is the result of the complex interactions between the collaborating 
agents, and – as we show later – can be reproduced by our agent-based model. 

3 The model 

The microscopic interaction rules of the present agent-based model are divided into 
two phases. First, the agents form links based on their network features and their social 
capital; second, they exchange knowledge through these links, thus approaching each 
other in a metric knowledge space. In addition, each link can be terminated with a given 
probability. 

3.1 Exploration and link formation 
Node activation. We consider a network composed of N nodes; each of them is 

endowed with a key attribute, its activity. The activity is defined as the propensity of a 
node to be involved in a collaboration event. We assign to each of the i = 1, . . . , N nodes 
an activity ai, that is mapped to the empirical activities extracted from the SDC alliance 
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dataset.1

       
 (3) 

 In particular, at every time step, a node i initiates an alliance with probability pi 
= ηai dt, and the number of active nodes NA is: 

where  is the average node activity and η is a rescaling factor that allows to adjust the 
number of active nodes per time step. We find that the model is robust to the choice of η, 
showing no measurable changes for η ranging from 10−5 to 1; however, we fix η = 0.0115 
to obtain NA roughly equal to 2, the number of active firms per day actually reported in 
the alliance dataset. More details will follow on the interpretation of the time step 
duration dt. 

 
Selection of the alliance size. Upon activation, a node selects the number of partners 

m with whom the alliance is formed. We assume that the value of m is totally independent 
of any characteristic of the active node: we sample it, without replacement, from the 
empirical distribution of the number of partners per alliance, directly measured from the 
SDC dataset. The value m can be thought of as the number of partners reported for each 
alliance event, diminished by 1, because the active node is not counted twice. 

 
Label propagation. The second key node attribute is called label. This attribute is 

unique – i.e. every node can have only one label at any time – and fixed – once a node 
assumes a label, this does not change. The labels model the belonging of the agents to 
different groups that they implicitly define with their shared practices and/or behaviors. In 
our network representation, a label symbolizes the membership of the firm in a well 
defined and recognized “club” or “circle of influence”. In addition, we assume that such 
membership can be transferred to other agents as a consequence of a collaboration, 
provided that they are not part of any circle of influence yet. In our network 
representation, every alliance initiator does indeed propagate its label to all of its m 
partners, if they are non-labeled. At the beginning of every simulation, all nodes are non-
labeled, meaning that their membership attribute is blank. There are two ways a non-
labeled node can assume its label: (i) the node either receives the label from another node, 
if the latter initiates an alliance, or (ii) it takes an arbitrary and unique label when it 
becomes active for the first time.2 

 
Selection of the partner categories.  The presence of labels induces different types 

of alliances, that we explicitly distinguish. In particular, if the initiator is a labeled node, 
i.e. an incumbent firm in the R&D network, this can form a link to a labeled node having 
the same label (with probability pL

s), or to a node having a different label (pL
d), or to a 

node without label (pL
n); these three probabilities sum up to 1. If the initiator is a non-

labeled node, i.e. a newcomer, this can form a link to a labeled node (with probability 
pNL

l), or to another non-labeled node (pNL
nl); these two probabilities sum up to 1. The 

                                                 
1 . For more details on the definition of the agents' activity, labels, their theoretical foundation and 
empirical computation, please refer to Tomasello et al. (2014). 
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presence of the two conditions reduces the number of independent parameters; as shown 
in Table 2, we consider pL

s, pL
d and pNL

nl as the three independent network formation 
parameters of our model. 

 
Link formation. After deciding the category of each of its m partners, we assume that 

the initiator selects its specific partners within those categories according to their degree 
(which we define as the number of distinct partners of a firm, and not the number of 
previous R&D alliances). We use a linear preferential attachment rule, where the 
probability to attach to a node j linearly scales with its degree kj, meaning that Π(kj) ∼ kj. 
The preferential attachment rule is applied within the pool of all candidate partners, once 
the selection of the partner category has been made by the alliance initiator. This rule 
obviously does not apply when the initiator – be it labeled or not – decides to connect to a 
non-labeled node, which has by definition no previous partners (kj = 0). In this case, the 
partner is selected among all non-labeled nodes with equal probability. When the 
selection process is complete, the initiator connects to its m partners. In agreement with 
our representation of the R&D network, we assume that all the m partners will also link to 
each other, forming a fully connected clique of size m+1. 

3.2 Exploitation: knowledge exchange 
Location in a metric knowledge space. Every agent i is situated in a point with 

coordinates xi , identified by a vector of D real numbers ranging from 0 to 1. The 
coordinates of every node can be thought of as the ratios of the corresponding firm’s 
expertise along each of the D dimensions of the knowledge space. We assign all agents’ 
initial positions by using real patent data, as explained in Section 2. 

    
 (4) 

 
Approaching in the metric knowledge space. We assume that the existence of a link 

causes the agents at both ends of the link to approach each other in the knowledge space. 
We assume that every agent is endowed with a learning rate μ. This parameter is constant 
over time and for all nodes in the collaboration network, and can be thought of as the 
propensity of agents to exchange knowledge with their partners, thus making their 
knowledge bases more similar over time. It should be noted that the parameter μ is a rate, 
not a speed; the actual speed at which the corresponding nodes move in the knowledge 
space is given by the product of the rate μ and their distance: therefore, the farther they 
are in the knowledge space, the faster they approach. When their distance decreases, so 
does the potential for new learning from the collaboration, and the approaching speed 
drops consequently. The model dynamics equation can be written as follows: 

     
 (5) 
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where  is the set of partners of the agent i at time t. We then implement the model 
through computer simulations, using discrete time steps of length dt. The evolution of 
every agent’s position xi can be expressed as: 

   
 (6) 

 
Alliance termination. We then introduce a key parameter to our model: a link 

characteristic life time τ . We assume that the collaboration durations are distributed 
according to a Poisson process with rate 1/τ ; the mean duration is clearly equal to τ . In 
our computer simulations, which use discrete time steps of length dt, this translates into 
the use of a fixed termination probability pT for any link at any time step, equal to pT = 
dt/τ . In order to keep a simplistic set of rules, we assume that the parameter τ is 
independent of any other feature of the network or the knowledge exchange dynamics. 

We summarize the model microscopic rules by means of a visual example in Fig. 2 
and report the nomenclature of all parameters in Table 2. 

 

 
Figure 2: A representative example of network evolution in a bi-dimensional (D = 2) knowledge 

space. The position of the nodes in the plot corresponds to their coordinates in the knowledge 
space. At time t + dt, all existing links cause the respective agents to approach in the knowledge 
space. Furthermore, we illustrate two collaboration events occurring at time t. The first one is 
initiated by a labeled node (in green), that has linked to m = 3 new partners, forming a fully 

connected clique. The second one is initiated by a non-labeled node, that has linked to m = 2 new 
partners and has taken a new arbitrary label (red). At time t + dt, the alliance initiators propagate 
their labels (respectively, the green one and the red one) to the partners that were not labeled at 

time t yet. Finally, we illustrate the termination of 3 links (depicted with red dashed lines) at time t. 
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Table 2: Model parameters and their description. The “network formation” parameters 
are associated with the creation of new links in the collaboration network. The 
“knowledge exchange” parameters are associated with the approach of the agents in a 
metric knowledge space, occurring as a consequence of a collaboration 

 
. 

4 Model validation with a two-step procedure 
We perform our validation procedure in two steps and by using two datasets, as 

already mentioned. 
In the first step, we validate the network topology. We fix a set of parameters that we 

can directly measure from the data (the number of agents and R&D alliances, the agents’ 
activity distribution and the size of collaboration events). We then estimate the remaining 
parameters by running a set of computer simulations and identifying the simulated 
collaboration network that best matches with the alliance dataset. 

In the second step, we fix the network formation parameters – using the values 
obtained in the first step – and run a second set of computer simulations. This time we 
estimate the knowledge exchange parameters by identifying the simulated collaboration 
network that best matches with the patent dataset 

4.1 Alliance dataset and network formation 
The model parameters that we can directly measure from the data are the number of 

agents (N = 5,168), the distribution of the node activities ai, and the distribution of 
number of partners m per alliance event. We stop every computer simulation when the 
total number of formed alliances equals the number of alliance events reported in the 
SDC dataset, E = 7,417 (considering only the alliances whose partners are also listed in 
the NBER patent dataset). We vary the values of pL

s, pL
d and pNL

nl in discrete steps spaced 
by 0.05, in the interval (0, 1). We consider the final aggregated network resulting from 
each of our computer simulations and we test it against the real data with respect to three 
properties: average degree <k>, average path length <l> and global clustering coefficient 
C.14 In order to identify which parameter combination is able to give the best match with 
the real R&D network, we use a Maximum Likelihood approach. For the sake of brevity, 
we do not report here all the details of our computations;2

                                                 
1  See Newman (2002) for a rigorous definition of such network measures. 

5  we summarize our results in 
Fig. 3, by means of color maps. 

2  For more explanations and details, please refer to Tomasello et al. (2014), where the same 
approach is used for the empirical validation of an agent-based model. 
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Figure 3: Likelihood scores for all points in the parameter space, represented with a 3-dimensional 
color map (a). After fixing the value of pL

s to 0.45 (b), we report the Likelihood score as a function 
of pL

d and pNL
nl using the same color scale. 

 

We find that the point with the highest likelihood score has the following coordinates 
in the parameter space: p∗L

s = 0.45, p∗L
d = 0.2 and p∗N L

nl = 0.1. This means that labeled 
nodes exhibit a fairly balanced alliance strategy, with p∗L

s = 0.45, p∗L
d = 0.2, and 

consequently p∗L
nl = 0.35, while the non-labeled nodes exhibit a very strong tendency to 

connect to labeled nodes (p∗N L
l = 0.9), as opposed to a low linking probability with other 

non-labeled nodes (p∗N L
nl = 0.1). In other words, we find that he agents have a tendency 

to collaborate with agents that are already part of the network (i.e. incumbents). We report 
in Table 3 the set of parameter values maximizing the likelihood score, together with the 
values of average degree, average path length and global clustering coefficient for the 
simulated and the real R&D networks. 
 

Table 3: Model parameter set p∗  defining the optimal simulated R&D network. The 
average degree, average path length and global clustering coefficient of the 100 
realizations of the optimal R&D network are compared to their analogous empirical 
values. 

 
 

10th International Forum on Knowledge Asset Dynamics 
Bari, Italy 10-12 June 2015 

Published in Proceedings IFKAD2015 
ISBN: 978-88-96687-07-9 

ISSN: 2280-787X



   

 

   

   
 

   

   

 

   

       
 

    
 
 

   

   270    
   

 

   

       
 

4.2 Patent dataset and knowledge exchange 
Prior to our second validation step, we fix all the network formation parameters to the 

values resulting from the first validation step. We then fix the dimensionality D of our 
knowledge space: as we use the eight main sections of the IPC scheme, and considering 
that we measure the fractions of patents in each section, thus giving rise to one bounding 
condition, we assume D = 7. Each of the seven knowledge components is bound to be 
smaller than or equal to 1. The initial knowledge positions of the agents are assigned from 
the empirical data (see Section 2).  

We then vary the values of the remaining knowledge exchange parameters. Precisely, 
we consider the values 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1 and 0.2 for the 
approaching rate μ and the values 5, 10, 20, 50, 100, 200, 300, 500, 700, 1000, 2000, 
3000 and 5000 for the characteristic alliance life time τ. The interpretation of the 
parameter τ is straightforward: as explained in Section 3.1, we adjust the activation rate of 
the agents in such a way that the length of a time step dt can be directly interpreted as 1 
day. Therefore, the value of τ can be thought of as the characteristic duration of a real 
alliance expressed in days. 

For each parameter combination, we run 100 computer simulations and then compare 
each of the simulated networks to the empirical R&D network, with respect to the pre-
alliance and the post-alliance distance distributions. We do not use the distribution of 
knowledge distance shifts, because it strongly depends on the first two and does not carry 
any additional information. Given that the alliance ending dates are not reported in the 
SDC dataset, we compute the empirical knowledge distance between every pair of linked 
firms after a time period equal to the value of the parameter τ – in days – used in the 
corresponding simulation. 

For every simulation, we perform a two-sided Kolmogorov-Smirnov (KS) test on the 
resulting pre-alliance knowledge distance distribution and the corresponding empirical 
distribution. We use the resulting D statistics, to quantify how close the two distributions 
are (the lower its value, the more similar they are). We discard the p−value of the KS 
tests, because we are not interested in statistically inferring the provenience of the two 
distributions from a hypothetical common distribution. We repeat the procedure for the 
post-alliance knowledge distance distribution, and sum the values of the two resulting 
D−statistics, thus obtaining a goodness score for every simulation. The lower such a score 
is, the closer the examined simulated R&D network is to the empirical one. We finally 
average the score values for all the simulations in all points of the parameter space. Such 
goodness scores are presented in Fig. 4, where we make use of a heatmap to summarize 
our results. 
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Figure 4: Goodness score for every point in the parameter space, depicted by means of a heatmap. 
The color scale corresponds to the score value; the lower the score, the closer the simulated R&D 

network is to the empirical one. 
 

We find that there exists an entire region of the explored bi-dimensional parameter 
space maximizing the aforementioned goodness score, corresponding to the red points in 
Fig. 4. Indeed, the presence of such a region indicates that the two parameters are not 
independent, and that their product appears to be constant. Indeed, only the points with 
fast approaching rates μ but short alliance life times τ or – on the contrary – with long 
alliance life times τ but slow approaching rates μ, can generate knowledge distance 
distributions that correspond to reality. Based on this finding, which is consistent with our 
previous empirical analysis (see Section 2), we argue that real companies do not 
significantly change their knowledge positions as a consequence of R&D collaborations. 
They rather use the available information about their mutual knowledge positions in order 
to establish new alliances. 

The parameter point yielding the absolute best goodness score is identified by the 
following coordinates: μ = 0.0005 and τ = 700. This means that the optimal simulated 
collaboration network exhibits a low approaching rate, and a characteristic alliance life 
time slightly shorter than 2 years. This is consistent with previous theoretical and 
empirical observations (Phelps, 2003; Inkpen and Ross, 2001), and it is remarkable to 
consider that we have obtained this result by using two different datasets and employing a 
complex procedure, such as an agent-based model reproducing the effect of 
collaborations on knowledge positions. 

As additional test, we show in Fig. 5 the distributions of pre-alliance distances, post-
alliance distances and knowledge distance shifts, generated by the model fed with the 
optimal parameter set (i.e. μ = 0.0005 and τ = 700). As we have imposed an equivalence 
criterion through the KS test, we expect that the empirical and the simulated distributions 
are fairly similar, which is what we find from our analysis. However, the post-alliance 
distance distribution generated by our model performs slightly better than the pre-alliance 
distance distribution. Given that our model includes only an approach mechanism, and 
not a self-motion nor a drift, the post-alliance distance distribution is peaked around a 
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slightly lower value than the pre-alliance distribution, having a slightly better overlap 
with the empirical distribution. 

 

 
Figure 5: Distributions of empirical and simulated (a) pre-alliance knowledge distances, (b)  post-

alliance knowledge distances and (c) knowledge distance shifts. 

 

Obviously, in every collaboration network, the agents produce knowledge on their 
own and explore new trajectories in the knowledge space even without being involved in 
collaborations or alliances. However, we intentionally do not include this behavior in our 
agent based model, in order not to over-complicate the microscopic rules and isolate the 
effects of collaboration formation on the positions of the agents. 

Our model is nevertheless able to reproduce also the distribution of knowledge 
distance shifts, as we report in Fig. 5. Similarly to the real system, the simulated distance 
shift distribution is peaked around zero. For the reasons explained above, the 
collaborations in our model have an overall null (or very weak) effect on the knowledge 
distances between agents. However, given the complex network structure, we also find a 
number of cases in which the two partners find themselves farther away in the knowledge 
space than they were at the moment of the collaboration establishment. Remarkably, our 
model can retrieve this positive right-tail of the knowledge distance shift distribution, 
even if the microscopic rules do not include any drift, nor self-motion, nor distancing 
mechanisms for the agents. 

 
5 Introducing a performance indicator 

We now want to study the performance of the whole collaboration network. To this 
purpose, we propose an indicator taking into account the global knowledge exploration of 
the systems, i.e. it quantifies the distance traveled by all agents during the evolution of 
our simulated R&D network. The underlying assumption is that the exploration of as 
many locations as possible is beneficial for the collaboration network, in that it allows the 
agents to come in contact with many technological opportunities, potentially leading to 
more frequent innovations (Fagiolo and Dosi, 2003). We call our indicator the 
collaboration performance  of the network and define it as: 
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 (6) 

 

The quantity at the numerator  represents the total distance traveled by all 
agents in the network at time t. The measure  is defined as the number of active 
links incident on an agent I, or – in other words – the number of active collaboration in 
which an agent i is involved at time t. In this regard, we remember that not all 
collaborations are active at a given time t; some are terminated and become inactive. 
Therefore, the ratio inside the integral in Eq. 6 expresses the total distance traveled by the 
agents in the network per active link at time t (a sort of instantaneous collaboration 
performance). This measure is then integrated over the duration Tmax of the simulation, to 
obtain the collaboration performance . The quantity at the denominator of Eq. 6 can be 
thought of as the number of active links in the network at time t, which we indicate with 

,1

 
 multiplied by a factor 2. By plugging this into Eq. 6, we obtain: 

      
 (7) 

 

We use Eq. 7 to compute the collaboration performance  in every network we generate 
through the exploration of our parameter space. We report our results in Fig. 10, by 
making use of a heatmap to nicely visualize the average performance for every parameter 
combination. 

We find that the configurations having the highest collaboration performance are 
located in one region of the parameter space, exhibiting high approach rates and short 
characteristic alliance life times. This means that a network with the highest collaboration 
performance exhibits links with (i) a short characteristic life time and (ii) allowing for a 
fast knowledge transfer between the involved partners. While the dependence of the 
performance on the approach rate μ is easily predictable, the effect of the collaboration 
life time τ is not trivial, given all the complex interdependencies between the network 
dynamics and the motion of the agents in the knowledge space. 

 

                                                 
1  From network theory, we know that at any given time t, the sum of all node degrees ki equals the 
number of network links M multiplied by two. 
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Figure 6: Collaboration performance of the simulated networks, as a function of the characteristic 
alliance duration and the approach rate. The green square in the parameter space represents the 

position occupied by the closest simulated networks to the real data. 
 

We argue that a short collaboration life time is beneficial for the performance of the 
collaboration network, because a reduced number of collaborations allows an agent to 
move efficiently along one or a few directions in the knowledge space. When the 
characteristic life time τ increases, more links are active at the same time, thus forcing the 
agents to cope with the effect of multiple partnerships; this results in a reduced 
exploration of the knowledge space. In other words, the density of the collaboration 
network increases with τ and, after a certain threshold, the addition of a new link has a 
negative marginal effect on the overall exploration of the knowledge space.  

Indeed, we have found that there exist configurations that can be both realistic and 
optimized with respect to the collaboration performance at the same time, as can be seen 
by comparing Fig. 5 and Fig. 6 (note the red points on the main diagonal). Therefore, 
effective policies to obtain an improved collaboration network would incentivize shorter 
R&D alliances and higher knowledge exchange rates, for instance including rewards for 
quick co-patenting by allied firms. 
 

6 Conclusions 
We have developed an agent-based model that is able to reproduce both the link 

formation and the knowledge exchange process in a collaboration network. We have used 
a novel approach, by combining previous results on knowledge exchange and 
collaboration network growth. In this new modelling framework, agents form links based 
on their network features and then exchange knowledge with their partners. Our agents 
are endowed with three key attributes: an activity (representing their propensity to engage 
in new alliances), a label (representing their membership in a given circle of influence), 
and a position in a metric knowledge space defined by a vector. 

The validation of our model against real data has been performed through a novel two-
step approach. By means of the SDC alliance dataset, we have estimated the network 
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formation parameters, thus reproducing the topology of the resulting collaboration 
network. Subsequently, through the NBER dataset (on firm patents), we have estimated 
the knowledge exchange parameters, thus evaluating the rate at which firms exchange 
knowledge and the duration of the R&D alliances themselves. 

We have found that the agents in our model exhibit a strong tendency to connect to 
network incumbents: precisely, 65% of the collaborations initiated by labeled nodes (i.e. 
incumbents), as well as a surprising 90% of the collaborations initiated by non-labeled 
nodes (i.e. newcomers), are addressed to a labeled (incumbent) partner node. In this 
regard, the validation of our model brings additional support to the theory of the 
importance of existing network structures in the formation of new R&D collaborations. 

As for the knowledge exchange parameters, we find that the real R&D network is best 
reproduced by a configuration exhibiting a relatively low approach rate and a 
characteristic duration of around two years (700 days). Both our agent-based model and 
our empirical analysis, indeed, show that collaborations exert an overall null or weak 
effect on the partners’ knowledge position. However, despite such an effect, some 
collaborations can cause extreme shifts: some bring the partners closer, while some others 
push them farther in the metric knowledge space. 

This suggests that real firms do not significantly change their knowledge positions as 
a consequence of their collaborations. They rather use the available information about 
their mutual knowledge positions in order to establish new collaborations: this means that 
a firm’s position, evaluated through its patents, is more a determinant than a consequence 
of its R&D alliances. 

Finally, we have investigated the outcome of our generated networks with respect to a 
novel performance indicator, which we define as the distance travelled by all agents per 
active link. We find that the configuration exhibiting the highest performance is 
characterized by the shortest possible alliance duration, and the largest possible approach 
rate. Indeed, we have found that it is possible to obtain a configuration that is both 
realistic and optimized with respect to the collaboration performance. In the case of R&D 
alliances, obviously, it would be impossible to directly require short alliance durations or 
enforce a fast learning rate between real companies. However, effective policies could 
include, for instance, rewards for co-patenting activities from partner companies, when 
these are carried out as early as possible after the establishment of an R&D alliance. The 
goal is to push companies to always explore new knowledge positions with new partners, 
although limiting the duration of a single alliance, and avoiding having too many active 
collaborations at the same time. 

In conclusion, we argue that our model can successfully reproduce both network-
related and knowledge-related features of a real inter-organizational R&D network, while 
providing at the same time a unique methodology to estimate the network performance. In 
addition, we argue that our model is extendable to other collaboration systems, beyond 
the domain of R&D networks, provided that the agents can be unequivocally positioned 
in a knowledge space. This way, we can offer a complete and straightforward 
interpretation of the effects of knowledge exchange in a dynamically evolving 
collaboration network. 
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