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Abstract
Counterparty risk denotes the risk that a party defaults in a bilateral contract. This risk not

only depends on the two parties involved, but also on the risk from various other contracts

each of these parties holds. In rather informal markets, such as the OTC (over-the-counter)

derivative market, institutions only report their aggregated quarterly risk exposure, but no

details about their counterparties. Hence, little is known about the diversification of counter-

party risk. In this paper, we reconstruct the weighted and time-dependent network of coun-

terparty risk in the OTC derivatives market of the United States between 1998 and 2012. To

proxy unknown bilateral exposures, we first study the co-occurrence patterns of institutions

based on their quarterly activity and ranking in the official report. The network obtained this

way is further analysed by a weighted k-core decomposition, to reveal a core-periphery

structure. This allows us to compare the activity-based ranking with a topology-based rank-

ing, to identify the most important institutions and their mutual dependencies. We also ana-

lyse correlations in these activities, to show strong similarities in the behavior of the core

institutions. Our analysis clearly demonstrates the clustering of counterparty risk in a small

set of about a dozen US banks. This not only increases the default risk of the central institu-

tions, but also the default risk of peripheral institutions which have contracts with the central

ones. Hence, all institutions indirectly have to bear (part of) the counterparty risk of all oth-

ers, which needs to be better reflected in the price of OTC derivatives.

Introduction
After the financial crisis of 2008 the systemic risk resulting from OTC (over-the-counter)
derivatives has become an important topic of public debate and scientific research. Different
from exchange-traded derivatives, OTC derivatives are traded on non-regulated markets
which have grown both in size and importance during the last decade. In December 2008 the
Bank for International Settlements (BIS) reported (see Semiannual OTC derivatives statistics at
http://www.bis.org) that total notional amount on outstanding OTC derivatives grew up from
370,178 bn USD in June 2006 to 683,725 bn USD in June 2008, i.e., it almost doubled in size in
only two years.
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A particular worrying feature of this development results from the increasing concentration
of the counterparty risk of OTC derivatives in the hands of only a few institutions. This trend
has not changed after the financial crisis of 2008, on the contrary the concentration increased.

Taking the example of the US alone, in the 4th quarter of 1998 contracts totaling 331 bn
USD were signed by 422 commercial banks and trust companies which where not listed in the
top 25 institutions dealing with OTC derivatives. This numbers have to be compared against
the contracts totaling 32,668 bn USD (i.e., a hundred times more) signed by only the top 25
institutions in the OTC derivatives market. Comparing this to the time after the financial crisis,
the difference became much bigger. In the 1st quarter of 2012 the 25 top ranked US institutions
held contracts totaling 227,486 bn USD (i.e., almost ten times more than in 1998), whereas all
other institutions held contracts totaling only 496 bn USD (which is almost comparable to
what was held in 1998). Hence, we observe an extreme concentration of derivatives market
where the share of derivative contracts held by the top 25 institutions was almost 99% in 1998
and increased to more than 99.5% in 2012.

This increasing concentration may also increase the vulnerability of the institutions
involved and can lead to cascades in case of default. Until now, no concentration of exposure
against a particular counterparty is reported by banks. The Basel Committee on Banking
Supervision referred to this issue for the first time only in its report of March 2013 [1].

In our paper, we address the problem in a twofold way. Based on a dataset of the 25 most
active players in the U.S. derivative market, over a period of 14 years, we reconstruct the net-
work of counterparty risk. We show that this risk generates an almost fully connected network
of interdependence among these players, however it is skewly distributed, i.e., most of the
counterparty risk is concentrated in only 10 mayor institutions. This implies two problems: in
a fully connected network, it becomes much more difficult to hedge the risk of default, because
every player is a counterparty of any other. This may increase the risk of default cascades,
which can be amplified by the particularly active counterparties. Additionally, the concentra-
tion of counterparty risk in a few institutions may exacerbate the problem of contagion and
financial distress in the whole network if those institutions become distressed.

OTC Derivatives

The role of derivatives
Derivatives are financial instruments, i.e., they are tradable assets. Importantly, they have no
intrinsic value. Instead, their value depends on, or is derived at least partly from, the value of
other entities, denoted as the “underlying”. These can be other assets such as commodities,
stocks, bonds, interest rates and currencies, but, dependent on the complexity of the financial
product, the underlying can be almost anything that deemed to have an intrinsic value. This
implies that socio-psychological issues such as “confidence”, “faith” or “trust” play an impor-
tant role in defining those values.

Formally, derivatives are specified as contracts between two parties. Such contracts define
how the value of the underlying is estimated at particular future dates and what conditions
have to be fulfilled for payments between these parties. Because parties do not need to own the
underlying, derivatives make for an ideal instrument to speculate about the future rising or fall-
ing value of underlyings or to hedge against the risk associated with it, provided that a counter-
party is willing to bet on this.

Trading derivatives basically means to find a counterparty for the contract. Importantly, par-
ties can trade derivatives in two different ways, in regulated markets specialized in trading deriv-
atives (ETD, exchange-traded derivatives) or privately, without involving an exchange or other
institutions (OTC, over-the-counter derivatives). Although OTCmarkets are usually well
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organized, they are less formal. In particular, there is no central authority which would regulate
the conditions of the derivative contracts or would control the fulfillment of these conditions.

OTC derivatives are usually preferred over the exchange traded ones because taxes and other
expenses are lower and they are much more flexible, meaning that the counterparties can agree
on very specific or unusual conditions as opposed to the limited set of derivative types designed
and operated by an exchange. As a trade-off for flexibility and the possibility of higher earnings
OTC derivatives bear significant additional risks as compared to the exchange traded ones.

Risk involved in OTC derivatives
Derivatives are generally used to hedge risks, but derivatives themselves are a source of risk.
These are credit risk and market risk, along with liquidity, operational and legal risks [2]. In
case of OTC derivatives, credit risk is the main source of risk because of the usual absence of a
clearing house that guarantees the fulfillment of obligations between parties. Thus, the two
contracting parties are exposed to counterparty default risk, i.e., the risk that a counterparty
will undergo distress, or even default prior to expiration of the contract and thus will not make
the current and future payments. In contrast to lending risk, to which only the party which
lends is exposed, both sides involved in OTC contract are exposed to counterparty risk. To
have some sort of mitigation, the parties involved in OTC derivatives are usually banks which
act on their own behalf or on behalf of their clients.

There are different ways to mitigate counterparty risk in case of default. For example, using
close-out netting agreements allows that all contracts are netted, eliminating the possibility of
selective execution of contracts [3]. For bilateral close-out netting, which mostly applies to
OTC derivatives markets, the two parties agree to net with one another, i.e., to set off gains and
losses from all of their bilateral contracts. This differs from the case of multilateral close-out
netting which mostly applies to ETD, i.e., to markets where all parties’ obligations are netted
together. In both cases, netting is only a procedure to follow after a default and thus does not
address the emergence of counterparty risk.

It is obvious that netting decreases credit exposure, as it takes into account only the net obli-
gations, thus reducing both operational and settlement risk and operational costs. In order to
know the risk, the present value of contracts, prior to their contracted termination, has to be
determined. Outstanding contracts are marked to market, taking into account the replacement
costs, i.e., the loss suffered by the non-defaulting party in replacing the relevant contract. This
assessment of credit exposure at a single point in time is denoted as current credit exposure
(CCE). However, derivative contracts usually have considerable lifetimes and are very often
characterized by fast and large changes in credit exposure. Therefore, the potential future expo-
sure (PFE) is used to estimate the possible CCE increase over a fixed time frame. These esti-
mates are, of course, predictions that depend on the choice of financial models and
corresponding confidence level. The total credit exposure (TCE) is then measured as the sum of
CCE and PFE, following the Basel I framework. In Section Correlations in risk we will use the
TCE values reported by financial institutions to estimate correlations in their risk.

Whereas netting agreements work in the absence of clearing houses, recent developments
try to mitigate counterparty risk by means of central counterparty clearing houses (CCPs) [4].
In the presence of a CCP a bilateral contract between two counterparties is substituted by two
contracts, so that the CCP stands between the two contracting parties. This allows for more
transparency and for multilateral netting, which can facilitate the reduction of both counter-
party and systemic risk. Although involvement of a CCP was previously required in contracts
for credit default swaps (CDS) [5], a special class of derivatives, its broader utilization can be
seen as a reaction to the financial crisis of 2008.
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However, regulations requiring CCPs in all standardized types of OTC derivatives are either
new, e.g. the US Dodd-Frank Act from 2010, or are still being developed. Therefore, their
impact on OTC derivatives markets is not well known yet, both empirically and theoretically.
[6] recently attempted to shed some light on the possible systemic effects from CCPs. They per-
formed a theoretical investigation of cascading effects and systemic risk in different financial
networks with one or two CCPs.

One may argue that not considering the role of CCPs in OTC derivatives networks is a limita-
tion of this paper. But one should bear in mind that we analyse data ranging from 1998 to 2012,
i.e., most of the time CCP were not required, and not reflected, in the OTC data. To keep our
methods consistent for the whole time period, we neglect the possible (but not documented)
presence of CCPs. Moreover, even today it is not known whether the wide adoption of CCPs will
succeed in making the OTC derivatives network entirely transparent. So our methods to infer
undiscovered and potentially dangerous links of the network may still be needed in the future.

Clustering of counterparty risk
In this paper, we discuss a particular risk involved in OTC derivatives, namely the clustering of
counterparty risk. While counterparty risk itself is already difficult to estimate, it becomes even
more tedious for a party to find out about the additional risk that a counterparty bears because
of it’s involvement in other OTC derivatives. The problem is illustrated in Fig 1. It shows nine
institutions that have in total ten different OTC contracts. The width of the links shall indicate
the volume of these contracts, i.e., the three institutions 1, 2, 3 in the center (indicated by the
dashed line) form a fully connected cluster of strongly engaged institutions. What is their
implicit impact on those institutions outside the center? Each of these has only one contract
with one of the major institutions in the center and is likely not aware of the whole structure of
the network of OTC derivatives.

There is a two-step scenario to increase the risk of the different institutions: (i) Transfer of
risk from the outer institutions to the central counterparty: Institution 4 is probably not aware
that its counterparty 1 also has contracts with institutions 5 and 6. If one of these outer institu-
tions defaults, this puts an additional risk for institution 1 to default, which is likely not
accounted for in the OTC contract between 4 and 1. Additionally, institutions 4 and 5 also

Fig 1. Schematic illustration of the exposure clustering.

doi:10.1371/journal.pone.0136638.g001
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have a contract which is likely not known to institution 1. Thus, the default of either 4 or 5
increases the risk for the remaining one, which indirectly increases the risk for institution 1 [7].
(ii) Increase of risk between central institutions: Because the center institutions form a fully con-
nected cluster, if one of these undergoes distress or even defaults this immediately affects the
other two core institutions. This in turn affects the outer institutions.

In conclusion, because of the strong coupling of the center institutions, which we call clus-
tering of counterparty risk here, all institutions indirectly have to bear (part of) the counterparty
risk of all other institutions in the network. This should be priced in their OTC derivatives, but
effectively it is not because that would imply to know (a) all the links and (b) all their weights
or, in plain words, all the OTC contracts made. But, as explained above, the existence of OTC
derivatives is precisely because such information should not be made publicly available. As we
will see from the data, all public information only refers to the total amount of OTC derivatives
for each institution, but not to their counterparty network.

This sets the stage for our paper. Even in the absence of official information about the network
of counterparty risk, we want to derive some insights into its structure, from a dataset described
in the following. Specifically, we want to derive a proxy for the structure of this weighted, and
time dependent, network. Further, we want to estimate correlations between OTC derivatives,
i.e., infer on possible counterparties from the co-movement of the engagement of institutions.

The Network of OTC Derivatives

Activities and Ranks
In order to reconstruct the network of counterparty risk from the available dataset, we need to
introduce a few variables that are later to be mapped to specific data.

First of all, we identify each institution in the dataset by an index i = 1, . . ., N, where N = 61,
i.e., the total number of distinct institutions. Note that the dataset for each quarter only lists the
25 best ranked institutions, which are not necessarily the same for each quarter (see also Fig 2).
Thus, during the whole period of 14 years, 61 different institutions appeared in the dataset.

At each time step t, where t is discrete and measured in quarters, up to T = 57, institutions i
and j can act as counterparties, i.e., they have contracts of total volume xij(t). Importantly, the
dataset neither lists the counterparties j nor the volume of their contracts, xij(t). It lists, how-

ever, the quarterly activity of each institution, aiðtÞ ¼
PN

j¼1 xijðtÞ, i.e., the aggregated volume,

given in column 5 of Table A in S1 Appendix Thus, the aim of our paper is to reconstruct the
network of dependencies from this aggregated data. Note that, if an institution was not active
in a particular quarter, i.e., not listed in the dataset for that period, its activity is set to zero.

To give an example, Fig 3 shows the activity of two banks that are consistently engaged in
OTC derivatives in every quarter. Impressively enough, their activities differ in about two
orders of magnitude and further show a different business strategy over time. While the quar-
terly activity of Keybank remains almost constant over 12 years, the activity of Bank of America
grew exponentially during the same period of time, clearly shown in the linear slope in the loga-
rithmic plot. Only in 2012, after the financial crisis, this involvement was slightly reduced.

Based on the quarterly activities, ai(t), we can assign each institution i a rank ri(t) r[ai(t)]
with r discrete and r 2 {1, 2, . . .N} such that r[ai(t)]< r[aj(t)] if ai(t)> aj(t) for any pair i, j 2 N.
I.e., rank 1 corresponds to the institution with the highest activity value at time t, rank 2 to the
one with the second highest activity, and so forth. If an institution was not active in a given
period, its rank is set to zero. Because the rank ri considers the position relative to other institu-
tions, it can change even if the activity of an institution remained constant over a certain period.

Fig 2 gives an overview of how often the institutions were present in the ranking up to 25 in
any of the quarters, with their ranks color coded. This matrix already indicates that there are
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remarkable fluctuations in the ranks of most of the institutions, except for a group of about 10
institutions. Fig 4 gives a more detailed picture by plotting the ranks of this group over time. We
observe that there exists a smaller core group (of about 7 members) with consistently low ranks,
which can be well separated from a second group with higher, and more fluctuating, ranks.

This can be also observed by looking at the ranks Ri r[Ai] resulting from the aggregated

activities Ai ¼
PT

t¼1 aiðtÞ. Plotting the inverse function A(R) shown in Fig 5, we observe a
rather skew distribution of the aggregated activities with respect to the rank, with a skewness

Fig 2. Time series of the financial institutions appearing among the 25 top ranked between 1998 and 2012.Color codes the rank: the darker the color
the better the rank (rank 1 considered the highest), white indicates the absence in the ranking.

doi:10.1371/journal.pone.0136638.g002
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value γ = 4.637150 and a Gini coefficient [8]g = 0.9558996. Moreover, the plot suggests that the
aggregated activity A follows a log-normal distribution with respect to the rank R:

AðRÞ ¼ 1

Rs
ffiffiffiffiffiffi
2p
p � exp �ð lnR� mÞ2

2s2

� �
; R � 1 ð1Þ

where μ = 14.54116 is the mean value and σ = 2.865165 the standard deviation of the distribu-
tion. To further compare the empirical with the log-normal distribution, Fig A in S1 Appendix
shows the Q − Q plot and gives the results of the two-sample Kolmogorov-Smirnov test.

The inset of Fig 5 presents the cumulative distribution PðR < YÞ ¼PY
R¼1 AðRÞ. It indicates

that about 95% of the total activity results from the seven first ranked institutions, while the 15
first ranked institutions cover more than 99% of the total activity. It may be tempting to restrict
the analysis to only these 15 institutions. However, the aggregated activities do not allow to
draw conclusions about the concentration of activities in certain time periods or a change of

Fig 3. The total derivatives notional amount of two banks which constantly appear during the whole period from 1998 to 2012. The difference of
order of magnitude motivates to take into account the ranks of institutions when building their network. The linear regression slope for log(aBoA) for the period
1999/Q3—2011/Q3 (bolder line) is 0.206638, which corresponds to yearly growth ratio (at(t+1)/ai(t)) equal to 1.229537.

doi:10.1371/journal.pone.0136638.g003
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strategy in choosing counterparties, before and after the financial crisis. Therefore, we will pres-
ent more details on the temporal activities in Section Temporal and aggregated networks.

The available data also allows us to analyse the composition of the activities ai(t) with
respect to exchange traded derivatives (ETD) and OTC derivatives. I.e., the value of the total
derivatives is split into aiðtÞ ¼ aETDi ðtÞ þ aOTC

i ðtÞ and Ai ¼ AETD
i þ AOTC

i , respectively. Already
the sheer numbers of the ai(t) and aOTC

i ðtÞ tell that OTC derivatives make up for the vast
amount of contracts. I.e., we should not assume that the ranks ri(t) or Ri obtained from both
ETD and OTC derivatives are different from those ranks that would result from only consider-
ing the values of aOTC

i ðtÞ or AOTC
i . To test this hypothesis, Fig B in the S1 Appendix provides a

Q − Q plot to compare both values. We see that up to rank 15 there is no difference in the
ranks obtained by these two measures, whereas between ranks 15 and 50 the difference in
ranks would be 1 or 2. Only for ranks above 50, the differences become remarkable. So it is rea-
sonable to use the ranks ri(t) and Ri in the further evaluation.

However, when analysing the counterparty risk in derivative contracts, we will make a dis-
tinction between the (less risky) ETD and the more risky OTC derivatives. In fact, as Fig 6 indi-
cates, the importance of OTC derivatives as compared to the ETD vastly differs across
institutions. The ratio AOTC

i =AETD
i is below 10 for about 1/3 of all institutions, which implies

that 10% or more of the activities is in ETD. However, looking at the 15 best ranked institu-
tions, we see for most of them the ETD business accounts for only 2%-5% of their activity. So

Fig 4. Changes of the ranks ri(t) of a set of banks, with the number showing their distance to the core of the weighted network based on the co-
occurrence and activity of financial institutions introduced in Temporal and aggregated networks.

doi:10.1371/journal.pone.0136638.g004
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Fig 5. Distribution of the aggregated activity Ai over the rankRi obtained from the whole reporting period. (inset) Cumulative sum
PðR < YÞ ¼PY

R¼1 AðRÞ. The ceiling of the distribution, which is the capacity of the market over the whole period of time is shown by the grey line, while the
orange line shows the corresponding 95% percentile.

doi:10.1371/journal.pone.0136638.g005

Fig 6. Ratio AOTC
i =AETD

i versus ranksRi based on the total activity Ai.

doi:10.1371/journal.pone.0136638.g006
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again, it is reasonable to proxy activities related to OTC derivatives by the total activities—but
whenever possible, we will take into account the real values for OTC derivatives.

Temporal and aggregated networks
In order to estimate the link structure of the network of counterparty risk, we first look into the
co-occurrence of any two institutions among the 25 best ranked institutions in each given
quarter. I.e., we define a link as lij(t) = 1 if for both institutions 1� {ri(t), rj(t)}� 25 and lij(t) =
0, otherwise. Their co-occurrence does not necessarily imply that the two institutions are coun-
terparties of an OTC derivative. A ranked institution i could do all its OTC contracts with the
many institutions that have ranks too high (i.e., activities too low), to be listed in this dataset.
Practically, however, this cannot be the case because, as the OCC reports verify, already 99% of
all OTC derivatives are held by the 25 best ranked institutions. So, the not listed ones would
make only for 1%, which cannot explain the large activities of any of the 25 best ranked institu-
tions. Consequently, it is reasonable to assume that i has at least one contract with any of the
other 24 institutions, and the best ranked institutions have likely more than one.

The co-occurrence network certainly overestimates the business relations based on OTC
contracts because it is basically a fully connected network between the 25 best ranked institu-
tions. Further, the co-occurrence may change in each quarter. Therefore, as the next step, it is
reasonable to assign weights for the links between any two institutions based on the number of
quarters, they co-appear in the dataset. I.e., we define weights as

wij ¼
1

T

XT
t¼1

lijðtÞ ð2Þ

to normalize them to the available time period. A node that has links with high weights to its
neighbors certainly represents an important institution in the OTC derivatives market. We use

the weights to define the importance of an institution asWi ¼
PN

j¼1 wij. In the following net-

work figures, the size of the nodes is scaled to the normalized importance,Wi/∑i Wi.
This allows us now, based on the aggregated values, to draw in Fig 7 a first approximation of

the network of counterparty risk. While this figure clearly shows the important institutions
with respect to their co-occurrence, it neglects another important information, namely their
ranking which is a proxy of their relative activity. Imagine institution i with a steady but rela-
tively low activity over time, just enough for frequently appearing in the network, while institu-
tion jmay have a much higher activity, but during a shorter period of time, resulting in a
better, but less frequent ranking. As a result, institution i will be over-presented in the network
drawn in Fig 7, while institution j will be under-represented. Such activity differences are prev-
alent in the dataset as the investigations in Section Activities and Ranks show. In the example
shown in Fig 3, the activity of Keybank was two to three orders of magnitude lower than the
activity of Bank of America. But because KeyBank was present in the top 25 list during the
whole time period, it gained a similar position in the network in Fig 7 as giants such as Bank of
America or Citibank.

Therefore, to further improve our estimation of the network of counterparty risk, we take
into account the overall activity of an institution by using their ranks to assign weights to the
links of co-occurrence. I.e., instead of lij(t) = 1, we use

lijðtÞ ¼ min
1

riðtÞ
;

1

rjðtÞ

( )
ð3Þ

The rationale behind is to bind the weight of a link to the activity of the less active institution.
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To elucidate this, let us assume that institution i is a big player with rank ri(t) = 2 at time t,
while j is a less important institution with rank rj(t) = 21. Because both institutions co-appear
in the same quarter, each of them has links to all other institutions listed in the same time
period, i.e., 24 links. For the less important institution j, 20 of these links get assigned a weight

Fig 7. Weighted network based on the co-occurrence of financial institutions in the top 25 ranking, aggregated over all quarter years. The size of a
node increases with its importanceWi, the width of the links increases with their weightswij, where lij 2 {0,1} (i.e., do not depend on the ranks). The links are
colored according to the non-normalized correlation coefficient (defined in Section Correlations in activities) between activities in OTC derivatives of the two
banks.

doi:10.1371/journal.pone.0136638.g007
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of 1/20, namely those links to institutions with better ranks. But there are 4 links to institutions
with an activity less than j and therefore with higher ranks. Those links get assigned the weights
1/22, 1/23, 1/24, 1/25. I.e., for each institution, links to less active counterparties have less
weight, while links to more active counterparties have the maximum weight that could occur
given the rank of that institution. Likewise, for institution i only one link, namely the link to
the highest ranked institution, gets a weight 1/2, whereas the 23 links to all other institutions
become less and less important as 1/3, 1/4, . . ., 1/25.

The resulting network is shown as an animation (at the time of writing only supported in
Adobe products) in Fig D in S1 Appendix. At each time step this is a fully connected network, but
the weights of the links, as well as the importance of the institutions, change during every time-
step. The animation nicely elucidates the emergence of new key players in the OTC derivatives
markets before and after the crisis, as well as the changed preferences in choosing counterparties.

To allow a comparison with Fig 7, we aggregate the weights of the links over time accord-
ing to Eq (2), to take into account both co-occurrence and activity, and calculate the impor-

tance of an institution as before,Wi ¼
PN

j¼1 wij. The resulting weighted network is then

shown in Fig 8, which should be compared to Fig 7. The most obvious difference is a less
dense core, built up by a smaller number of important institutions, in Fig 8. Tracing particu-
lar institutions, e.g. Union Bank, we see that their position becomes less influential. But the
core of the network, i.e., the set of the ten most important institutions, remains the same and
shall be investigated in the following.

Core-periphery structure
So far, we have used the following information to describe counterparty relations: (i) Aggre-
gated measures derived from the aggregated co-occurrence lij in the ranking of the 25 top play-
ers in the OTC market, in particular the weights wij and the importance Wi. The results are
concluded in the network of Fig 7. (ii) Temporal measures derived from the ranking ri(t), in
particular the temporal co-occurrence lij(t). The results are concluded in the animated network
of Fig D in S1 Appendix, with the time-aggregated network shown in Fig 8. While the latter
can be seen as the most refined network of counterparty risk, the characterization of both
nodes and links is still based on the activity ai(t) of the respective institution, i.e., it is derived
from a single scalar measure. So, the question is whether the reconstruction of the aggregated
temporal network would allow us to add another dimension to characterize institutions, based
on topological information.

Already a visual inspection of Figs 7 and 8 verifies that the network is rather heterogeneous
with respect to its density. We can easily detect a core of larger (i.e., more active) and more densely
connected nodes which can be distinguished from a periphery of nodes that are smaller (i.e., less
active) and less densely connected. In fact, peripheral nodes are mostly connected towards the
core and much less to other peripheral nodes. The core of the network is depicted in Fig 9 and
gives a good impression of the fully connected network, albeit with links of different weights.

Whether institutions can be found in the core or in the periphery of the network certainly
relates to their importance in the OTC market. In order to quantify the topological information
encoded in the network structure, we use the weighted K core analysis, which is an established
method to assign an importance value to nodes. In the first step, for the time aggregated net-

work shown in Fig 8, each node gets assigned a weighted degree k̂i[9]:

k̂i ¼ kai
Xki

j

wij

 !b" # 1
aþb

;
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where ki is the degree of node i, i.e., its number of links to neighboring nodes, and
Pki

j wij is the

sum over all its link weights as defined in Eq (2) with the weighted lij given by Eq (3). The expo-
nents α and β are used to weight the two different contributions, i.e., number of links versus
weight of links. In our analysis we used α = 0 and β = 1, i.e., we focused only on the weights
since the network is almost fully connected and the node degree does not give us any
information.

In the second step, we follow a pruning procedure to recursively remove all nodes with

degree k̂ � K from the network, where K = 1, 2, . . . I.e., first all nodes with k̂ � 1 are removed,

Fig 8. Weighted network based on the co-occurrence and activity of financial institutions in the top 25 ranking, aggregated over all quarter years.
The coding of size and color of nodes and links are the same as in Fig 7, but thewij andWi are calculated from the lij as given by Eq (3) i.e., dependent on the
ranks. The time resolved network is shown in Fig D in S1 Appendix. The aggregated network should be compared with Fig 7 where activities are not taken
into account.

doi:10.1371/journal.pone.0136638.g008
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which may leave the network with other nodes that now have k̂ � 1 simply because some of
their neighbors were removed. So the procedure continues with removing these nodes, too,

unless no nodes with k̂ � 1 are left. Then all nodes removed during this step get assigned to a

core K = 1, and the procedure continues to successively remove all nodes with degree k̂ � 2

and assign them to a core K = 2, etc. The procedure stops at a certain high core value, K, when
all nodes are removed. The higher the K-core a node is assigned to, the more it belongs to the

Fig 9. The core of the aggregated weighted temporal network presented in Fig 8. For the coding see the legend in Fig 8.

doi:10.1371/journal.pone.0136638.g009
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“core” of the network and the more important it is, from a topological perspective. Evidently,
nodes assigned to a core with low K value are much less integrated in the network. This does
not refer simply to the number of neighbors, but also to non-local properties such as the num-
ber of neighbors of their neighbors, because the K-core decomposition also takes these into
account. That means, the K-core a node is assigned to reflects is position in the network much
better than simple measures such as the degree (i.e., the number of neighbors), alone.

The results of the weighted K-core analysis are shown in the left side of Fig C in S1 Appen-
dix, where the K value is normalized to 1. Based on their K value, institutions can be ranked
such that the higher the K value (i.e., the better the integration in the network), the better the
rank. This topological ranking does not necessarily coincides with the ranking Ri obtained from
the aggregated activity Ai which is shown on the right side of Fig C in S1 Appendix, for com-
parison. This indicates that structuralmeasures based on the network topology indeed provide
information different from the temporalmeasures based on the market activities of the institu-
tions. But, comparing the left and the right sides with respect to the color coding, we observe
that only in a few cases institutions have considerably different levels of importance dependent
on the measurement. It would be worth looking at these in a case-by-case study, to find out
which importance measure better reflects their overall performance in the financial market.

We would like to note that, for consistency, we have used the ranking obtained from the
weighted K-core analysis to sort the different institutions in all the figures.

Correlations

Correlation measures
So far, we have analysed the co-occurrence of financial institutions in the set of the 25 best
ranked institutions, weighted by their ranks. These ranks were based on their activities, i.e.,
total derivatives. As a result, we could reconstruct the weighted network of counterparty risk
which also reflects the importance of the nodes. This network was reconstructed (a) on a time
resolution of one quarter year, to show the dynamics of the network (Fig D in S1 Appendix),
and (b) on the time aggregated level (Fig 8).

To further analyse the mutual dependence between the best ranked institutions, we now cal-
culate different correlations. The network of counterparty risk has revealed how the co-occur-
rence changes over time. But will the OTC derivatives of institution i increase, or decrease, if
the same measure of institution j increases? Answering this question allows some more refined
conclusions about the dependence between these institutions.

The simplest measure is the Pearson correlation coefficient ρ, which points to a linear depen-
dence between two variables. As explained above, for each institution i we have a dataset ai =
{ai(1), ai(2), . . ., ai(T)} available which contains up to T entries about its quarterly activity ai(t)
measured by means of its total derivatives. We recall that some of these entries are zero when-
ever institution i was not listed among the best 25 ranked. Let us define the mean value and the
standard deviation of each of these samples as:

�ai ¼
1

T

XT
t¼1

aiðtÞ ; sai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T � 1

XT
t¼1
½aiðtÞ � �ai�2

s
: ð4Þ

The Pearson correlation coefficient with respect to the variable a is then defined as

ra
ij ¼

1

T � 1

XT
t¼1

aiðtÞ � �ai

sai

� �
ajðtÞ � �aj

saj

" #
: ð5Þ

Values of ρ can be between -1 and +1. The latter indicates that the relation between activities ai
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and aj can be perfectly described by a linear relationship, where ai increases as aj increases. -1,
on the other hand, indicates a perfect linear relationship where ai decreases as aj increases, and
vice versa. Zero would indicate that there are no linear dependencies detected in the data. Eq
(5) also shows that, in case of a positive correlation, if aiðkÞ > âi then also ajðkÞ > âj for most

of the time, and if aiðkÞ < âi then also ajðkÞ < âj for most of the time, i.e., the activities of both

institutions are mostly above (or below) their respective average, at the same time.

Correlations in activities
We first discuss the results for the most active institutions, i.e., those appearing among the 25
best ranked institutions with respect to their total derivatives in every quarter. Interestingly,
this applies only to 8 out of the 61 listed institutions. Fig 10 shows the correlation matrix for
these institutions, their activities proxied by the total notional amount of derivative contracts
as listed in column 5 of Table A in S1 Appendix.

Fig 10. Correlationmatrix of the reported total derivatives of the institutions appearing in top 25 commercial banks, savings associations or trust
companies in derivatives during the whole period from 1998 to 2012.

doi:10.1371/journal.pone.0136638.g010
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There are two observations to be made: (i) the correlations between any two of these institu-
tions are always positive and often even close to 1, (ii) Keybank is a noticeable exception. This
can be explained by the combination of two effects: The first one is the vastly growing market
in OTC derivative during the observation period which resulted in the growth of OTC deriva-
tives for these core institutions. Thus, the observed correlations could, in principle, be caused
by the underlying market dynamics rather than by the mutual interaction. However, taking
into account that the 10 best ranked institutions already account for 95% of the OTC deriva-
tives market, there is little room for the assumption that their growth is based on OTC deriva-
tive contracts with institutions that do not belong to the core of 10, or to the 25 best ranked
institutions. In conclusion, these eight institutions increased their OTC derivatives activities by
repeatedly choosing the same core institutions as counterparties. The low correlations for Key-
bank could result both from the absence of growth (see Fig 3), while all others were growing,
and from choosing counterparties from outside the set of core banks.

If we wish to extend this correlation analysis to the whole set of 61 institutions, it would gen-
erate a number of artifacts which should be avoided. We discuss them here, first, to motivate
our own approach presented afterward. As already shown in Fig 2, most of these institutions
were not present in the ranking of the best 25, for some longer or shorter period. So, one could
limit the correlation analysis to those quarters where the two institutions were indeed present
in the ranking. I.e., if institution i appeared at times t1, t2, t3, t4 and while institution j appeared
at times t2, t4, t5, t6, the correlation coefficient for them is computed using only the observations
at times t2 and t4 where both were present. The Pearson correlation coefficient based on pair-
wise available observations with respect to the variable a is then defined as

ra
ij ¼

1

# ½T i \ T j� � 1

X
t2T i\T j

aiðtÞ � �ai

sai

� �
ajðtÞ � �aj

saj

" #
ð6Þ

Ti and Tj are subsets of {1, 2, . . ., T}, comprising the time steps when the institutions i and j
appeared in the ranking among the top 25, and #[Ti] and #[Ti] are the numbers of these time
steps. Ti\Tj then defines the subset of timesteps where both institutions i and j appeared
together, and #[Ti\Tj] gives the respective number of those time steps. Consequently, the aver-
age activity �ai and the standard deviation sai are also calculated only for the subset Ti:

�ai ¼
1

# ½T i�
X
t2T i

aiðtÞ ; sai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

# ½T i� � 1

X
t2T i

½aiðtÞ � �ai�2
s

ð7Þ

The results of this analysis are shown in Fig E in S1 Appendix. We observe that, in addition to
the strong correlations in the core of those institutions always present, there are a lot of
strongly anti-correlated activities (indicated by rich red) among the low ranked institutions
which need to be interpreted, both with respect to the correlation and to the magnitude. We
start with the latter.

Defining the Pearson correlation coefficient according to Eq (6) has the drawback that the
correlation coefficients for different institutions are no longer normalized to the same number
of observations, T, as in Eq (5) and thus cannot be compared. Precisely, the correlations
between Bank of America and Citibank, which were both present in the ranking for T = 57
quarters will get the same weight as the correlations between Citibank Nevada and Chase Man-
hattan Bank USA which were present together only two times.

The second drawback results from the time lapse between the co-appearance. While the
times t4 and t6 in the above example may still be relatively close, the interval between t4 and t56
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would be much longer and, because of the unknown intermediate values, interpretations about
the correlated move of both institutions become highly speculative.

In contrast to the above example, in which the two intermediaries appear only in a few quar-
ters, but yet co-appear twice, some pairs of intermediaries which are important both by means
of long term presence and good rankings, never appeared together, for example Goldman Sachs
and Bank of New York, and, as a consequence, the Pearson correlation coefficient is not even
defined for them, which is yet another drawback.

One could argue that these drawbacks disappear if we simply keep the normalization T, as
in Eqs (4) and (5), and instead assign an activity ai(t) = 0 whenever an institution i is not pres-
ent in the ranking. While there is no evidence that the activity was indeed zero, the error pro-
duced this way is certainly small because of the very skew distribution of activities shown in Fig
5, and both the mean and the standard deviation of the activity are not substantially affected.
But it becomes a problem when there is indeed no data because the institution does not exist in
certain quarters, e.g. because of mergers and acquisitions, as in the case of Chase Manhattan
Bank and JPMorgan Chase Bank.

Additionally, by proceeding like this we would generate another artifact, namely generating
artificial correlations between those institutions that are often not in the rankings and, in the
worst case, never co-appear. It is in fact the absence of data that generates their correlations,
artificially. Taking again the example of Goldman Sachs and Bank of New York, these two insti-
tutions would then appear anti-correlated while, in fact, no correlation was defined for them.
Thus, solving the above mentioned drawbacks this way would generate yet a different one.

Consequently, we will go with the correlations defined on the pairwise co-appearance, Eq
(6), but we compensate for the different normalization by multiplying the correlation coeffi-
cients ra

ij with the weights wij defined in Eq (2) with lij = 1, which is the relative number of co-

appearances. This implies that the correlations between two institutions that rarely co-
appeared in the ranking are scaled down. Precisely, after this correction, the weights wij define
the bounds of the values of the correlation coefficients, which are different for each pair of
institution, namely [−wij, + wij] instead of [−1, +1]. These weighted correlation coefficients
shall be interpreted differently from the conventional correlation coefficients in that a close-to-
zero coefficient no longer means that the variables are uncorrelated, but that there is no signifi-
cant correlation because of the low weight.

The resulting correlation matrix is shown in Fig 11. Compared to the non-scaled Fig E in S1
Appendix, both the correlated and the anti-correlated activities loose importance for institu-
tions with higher ranks, because the co-appearance in the ranking is rather sparse. But still, it is
obvious that the correlated activities are concentrated in the core, while the anti-correlated
activities can be mostly found in the periphery. Keeping in mind the exponential growth of the
derivative volume of some of the key players, as shown in Fig 3, it means that the OTC market
acted rather heterogeneous. Most banks with high ranks, i.e., key players, increased their activi-
ties in a growing market. Banks with lower ranks, such as First National Bank of Chicago or
RBS Citizens, have either reduced their overall OTC exposure or have concentrated their activi-
ties towards only mayor institutions, avoiding other low ranked institutions.

Correlations in risk
So far, we have only analysed correlations in activities, i.e., the correlated increase or decrease
in OTC derivatives volumes between any two institutions. We found that the correlated behav-
ior was the dominating one which, together with a vastly growing OTC market, implies that
most institutions increased their involvement. The question remains what this would mean for
the risk of the counterparties,
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We already mentioned in Section Risk involved in OTC derivatives that credit risk is the
main source of risk for banking institutions. To estimate the total credit exposure (TCE), we
sum up their current credit exposure (CCE) and their potential future exposure (PFE) as
explained in Section Risk involved in OTC derivatives. This data has been made available in
“Table 4” of the OCC reports for each quarter year (see Table B in S1 Appendix) and is used
for our subsequent correlation analysis. “Table 4” lists, for each of the 25 first ranked institu-
tions, the bilaterally netted current credit exposure and the bilaterally netted potential future
exposure and the sum of both, TCE = CCE+PFE, as reported by the institutions themselves.
Looking at Q1 of 2012, we first notice that, for the high ranked institutions (according to their
activity in OTC derivatives), the potential future exposure exceeds considerably the current
exposure, which is generally not the case for the lower ranked institutions. The question
whether this observation is related to the financial crisis of 2008 is addressed further below.

We can now define a correlation coefficient rTCE
ij based on Eq (6) by just replacing the values

of the activities ai(t) by TCEi(t), and for rCCE
ij accordingly. Following the argumentation above,

we weight these correlations again by the weights wij. The results are shown in Fig 12. Both fig-
ure parts indicate that, at least for the subset of banks which are the closest to the core accord-
ing to the core-periphery decomposition, the credit exposures are highly positively correlated.
This indicates that the core of the network consists of institutions which are very strongly inter-
dependent. This can become a reason for systemic instability, as the credit exposures and the
connected risks cannot be well diversified.

Fig 11. Non-normalized Pearson correlation coefficients ρij (based on pairwise available data), scaled
bywij with lij = 1.

doi:10.1371/journal.pone.0136638.g011
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The correlation pattern for the risk resembles the one found for the activities, Fig 11. We
have to note, however, that a large correlation coefficient raij is a good indicator of a long-term
activity between institutions i and j, but a large correlation coefficient rTCE

ij does not allow us to

derive such a conclusion.
Up to this point the analysis was based on the whole available period of time (1998—2012).

It is interesting to repeat the correlation analysis of risk for the time before and after the finan-
cial crisis, separately. We avoid to discuss the precise mapping of “before” and “after” and have
chosen Q4 of 2008 to divide the time series into two periods. In Q4 of 2008 Goldman Sachs
entered the ranking of the OCC, for the first time, right after the collapse of Lehman Brothers
on 15 September, 2008.

The results of our analysis before and after Q4 of 2008 are shown in Fig 13. Comparing the
two parts of the figure, we make two observations: (i) All listed banks follow a similar behavior
before and after the crisis. But after the crisis the correlations became more homogeneous and
non-negative even between low-to-low ranked and low-to-high ranked institutions. (ii) Except
only few banks, the key players in the core did not change. Therefore, the OTC derivatives mar-
ket structurally remained the same despite its vast growth.

Conclusions
Our investigation reveals the hidden network structure behind the OTC market in the United
States, and the network evolution from 1998 to 2012. For this, we use publicly available data

Fig 12. Non-normalized Pearson correlation coefficients rCCE
ij and rTCE

ij (based on pairwise available data), scaled bywij with lij = 1 between (a)
bilaterally netted current credit exposures and (b) total credit exposures of the banks.

doi:10.1371/journal.pone.0136638.g012
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from the [10] reports, which contains aggregated numbers about the activities of financial insti-
tutions, measured by the volume of their different derivatives.

We focus on two different aspects: (i) co-occurrence patterns of institutions, which take into
account their ranks and activities to reconstruct the network of counterparty risk. This network
was further analysed using of a weighted k-core method, to reveal its core-periphery structure.
This allowed us to compare the topology-based ranking with the activity-based ranking, and to
identify the most important institutions and their mutual relations. (ii) correlation patters, to
reveal dependencies in activities, and the subsequent counterparty risks of any two institutions.
Our findings, namely an emergence of a pronounced core and the higher correlations in credit
exposure associated with it, hint at increasing counterparty and systemic risk in OTC deriva-
tives market.

One could argue that the list of the few top institutions with the highest counterparty risk is
not really surprising and financial experts would have known this anyway. But the point of our
investigation is to present a formal, yet simple approach, to decompose their known aggregated
activities into unknown bilateral exposures. Only this allows us to reveal the hidden network,
and to estimate the systemic risk. Counterparty risk is not just the sum of individual risks, but
can be amplified over the network of dependencies. Precisely, the failure of single institutions,
even in the periphery of the OTC network, can lead to the collapse of the whole system because
of distress and load distributed over the network [11].

Such considerations do not only enhance our understanding of systemic risk, they also
allow to develop more refined risk measures, and a more realistic pricing of OTC contracts.
This network perspective is missing in existing investigations [12, 13] on systemic risk in OTC

Fig 13. Correlations in total credit exposure (a) before and (b) after the financial crisis of 2008 Q4.

doi:10.1371/journal.pone.0136638.g013
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derivatives markets. It moves the focus from discussing netting procedures after a default to
the more important question of how systemic risk emerges, i.e., what happens before a default.

To conclude, our investigations contribute to the ongoing debate about the impact of the
OTC derivatives market on the stability of the financial markets. We support the position that
OTC derivatives increase financial instability, because they generate a hidden network of
dependencies that at the end increase the chance of failure cascades. This has not become obvi-
ous because of the bilateral nature of counterparty risk and the lack of transparency in OTC
markets. But our simple and practical method allows to at least estimate this hidden network of
additional dependencies and to better estimate, and price, the risk resulting from these. It par-
ticularly points to the limitations in diversifying risk in such markets and the need to imple-
ment further regulations, as already proposed by the European Market Infrastructure
Regulation (EMIR) under the Basel III umbrella BCBS (2011).

Supporting Information
S1 Appendix. Supporting figures, animation and tables.
(PDF)
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