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We study the two-particle annihilation reaction A + B → ∅ on interconnected scale-free networks, using
different interconnecting strategies. We explore how the mixing of particles and the process evolution are
influenced by the number of interconnecting links, by their functional properties, and by the interconnectivity
strategies in use. We show that the reaction rates on this system are faster than what was observed in other
topologies, due to the better particle mixing that suppresses the segregation effect, in line with previous studies
performed on single scale-free networks.
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Using complex networks to describe real systems is becom-
ing standard practice [1,2], but understanding how networks
interact in an increasingly interconnected world [3] is an open
challenge for network science. Networks in general retain their
identity despite the existence of interconnections; for example,
a communication network does not change its role when it is
connected to a power network. This makes our knowledge
about isolated networks relevant for the interconnected case.
However, there exist network properties that are strongly
affected by interconnectivity [4–11].

In addition, interconnecting links may be different (with
respect to their function) from the normal links within the
networks. In the example at hand, via interconnecting links we
provide power to the communication network and we control
how the load is distributed in the power network. Thus, failure
of these links has severe consequences, which is why in this
case they are called dependency links [12]. In such cases extra
care should be taken and interconnected networks should not
be studied as isolated networks with distinct communities.
Indeed, recently it was shown that an interconnected system
of networks may be either in a regime where the various
networks are structurally independent or in a regime where
they are strongly coupled and the system behaves like one large
network [13,14]. This can influence at large the evolution of
dynamical processes on such systems.

In this work we provide a detailed numerical study of
how interconnectivity affects the evolution of a diffusion-
reaction dynamical process, when the reaction evolves on an
interconnected network substrate. More precisely, we study
the reaction rates of the annihilation reaction A + B →
∅ on coupled scale-free networks (SFNs) using different
interconnecting strategies.

In SFNs the probability to find a node with k connections
(degree) is given by P (k) ∼ k−γ . Such degree distributions
allow the existence of a small number of nodes with a very
large number of links (i.e., hubs), while the majority of the
nodes have only a few links. The number of hubs depends
on the exponent γ , which typically has values in the range
2 < γ < 4. Small values of γ lead to heterogeneous networks,
while as γ increases, especially when γ > 3, the networks
become more homogeneous.
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The annihilation reaction A + B → ∅ is an exemplary case
of diffusion-controlled reactions, which were used to model
chemical reactions, epidemics, and other dynamical processes
[15,16]. In general, the quantity of interest is the concentration
of particles ρ(t) that remain in the system at a given time t ,
which follows

1

ρ(t)
− 1

ρ0
= κtf , (1)

where ρ0 is the initial particle concentration, κ is the rate
constant, and f is the exponent that determines the reaction
rate. The maximum value of f for various topologies is
set by the mean-field asymptotic limit to f = 1, while the
nonclassical kinetics predicts that the exponent f depends on
the dimensionality d of the space where the process evolves as
f = d/dc for d � dc and f = 1 for d > dc [17–21]. Here dc

is the upper critical dimension, which for the A + B reaction
is dc = 4. Surprisingly, however, it was shown that when SFNs
are used as the substrate f can obtain values larger than
one [22] and particles do not segregate, similar to what was
observed in systems with Levy mixing [23].

This finding, based on computer simulations, showed a
rapid acceleration of the process for networks with γ � 3.5.
This acceleration was attributed to the existence of hubs,
which affect the spatial distribution of particles. The spatial
arrangement of particles at a given time t was studied by the
quotient QAB(t), which measures how well mixed the system
is by comparing the number of contacts between particles of
the same type (NAA + NBB) against the number of contacts
between particles of different types (NAB) [24]

QAB(t) = NAB(t)

NAA(t) + NBB(t)
. (2)

Later, this process was treated analytically [25,26] and subse-
quent publications tested the effect of the network generation
mechanism on the reaction speed [27,28].

Here we show how the mixing of particles, which
determines the reaction rates, depends on the number of
interconnecting links and their function and we discuss the role
of different interconnectivity strategies. Following Ref. [22],
the SFNs used in our study are generated by the standard
configuration model [29–32] with 105 nodes, γ = 2.5,3.0,3.5
and kmin = 1. From the resulting network we extract and use
only the largest connected component (LCC). This ensures
that the diffusion process is not biased by isolated network
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FIG. 1. (Color online) (a) Illustration of the three different interconnectivity strategies between two scale-free networks. The CC strategy
connects hub nodes from one network to hub nodes from the other, the CP strategy connects hub nodes from one network to peripheral nodes
in the other, and the PP strategy connects peripheral nodes from one network to peripheral nodes in the other. (b)–(d) Reaction progress
1/ρ − 1/ρ0 as a function of time for the three different interconnecting strategies of n interconnections, applied on interconnected SFNs with
γ = 2.5,3.0,3.5 and q = 0.2. Open symbols show results for the well-mixed case, while dashed lines show results for the polarized case. The
results are averaged over 100 realizations and the standard errors are smaller than the size of the symbols. The solid lines show the best fit at
the asymptotic limit.

components, but the remaining nodes in our system are less
than 105. More precisely, the average size of the LCC for our
networks was ∼90 000 nodes for γ = 2.5, ∼68 000 nodes for
γ = 3.0, and ∼35 000 nodes for γ = 3.5.

In order to create an interconnected system we use two
networks generated with the above procedure and add links
between their nodes. The number L of these interconnecting
links is a fraction q of the number of nodes N that are
available in each network, i.e., L = qN , and we allow only
one interconnecting link per node. Besides the mere number
of interconnecting links, local properties of the interconnected
nodes, like their degree ki , can affect the global properties
of the system of networks [11]. In order to test if (and how)
degree-degree correlations between interconnected nodes af-
fect the annihilation reaction’s evolution we use three distinct
interconnectivity strategies [33]: (i) a central-to-central (CC)
strategy that links the L highest degree nodes of the two
networks, (ii) a peripheral-to-peripheral (PP) strategy that links
the L lowest degree nodes of the two networks, and (iii) a
central-to-peripheral (CP) strategy that links the L highest
degree nodes of one network to the L lowest degree nodes of
the second network. An illustration is shown in Fig. 1(a).

Furthermore, interconnecting links can have functions
different from the links within each network, so in this
work we test two distinct cases. The first case assumes that
the interconnecting links have exactly the same properties
and functions as the links within the networks and we call
them n interconnections. The second case assumes that the
interconnecting links have an immediate transport property
and we call them t interconnections.

In our setting, immediate transport means that if a particle
during its diffusive motion in one network lands at a node
that is linked to another network with a t interconnection, the
particle is transferred to the interconnected node of the second
network simultaneously. For example, a t interconnection
could represent a person that is active in two social networks
and a particle could be a piece of information available to
one network. When this information reaches the intercon-
nected person, it becomes immediately available to the other
network [34].

We perform Monte Carlo simulations using networks with
different exponents γ , different q values, and different original
configurations. Our results are averages of 100 realizations per
configuration. For every realization a total number of M0 =
ρ0N particles are placed on randomly selected nodes. For
simplicity we use an equal population of particles A and B

and we set ρ0 = 0.5 so that in total half of the network’s nodes
are populated initially. Furthermore, in order to understand
the influence of this initial placement, we test two different
configurations: the well-mixed configuration, which allocates
(randomly) half of the A and B particles to one network and
half of them to the other, and the polarized configuration,
which places (randomly) all A particles to one network and all
B particles to the other network.

This polarized configuration is particularly interesting
because it tests the mixing efficiency of the scale-free topology
in combination with the different interconnectivity strategies.
In diffusion-limited reactions, like the one studied here,
improving the mixing efficiency is important as aggregation of
particles can significantly slow down the reaction rates [18].

For our simulations we select an occupied node at random,
together with one of its neighboring nodes. If the neighboring
node is empty, the particle moves and occupies a new position
(diffusion phase). If the neighboring node is already occupied
(reaction phase), then the particles annihilate if they are of
different types, while if they are of the same type nothing
happens and the chosen particle remains at its original position.
This procedure is repeated by continuously selecting, moving,
and (possibly) annihilating particles, until there are no particles
left in the system. Due to the annihilation process, the total
number of particles M(t) is reduced with time. Thus, the time
[in Monte Carlo steps (MCS)] required to update the system’s
state is advanced inversely proportional to the current number
of particles, by 1/M(t).

Here we would like to stress that additional care is taken
for the treatment of interconnecting links. For the case of
n interconnections, the interconnecting link behaves like all
other links and the particle has the same probability to jump
to the other network through the interconnecting link as it
has to follow any other link to neighboring nodes in the same
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FIG. 2. (Color online) Reaction progress 1/ρ − 1/ρ0 as a function of time for the well-mixed case with(a) and (i) n interconnections and
(b) and (j) t interconnections and for the polarized case with (e) and (m) n interconnections and (f) and (n) t interconnections. Also shown is
the ratio QAB over time for the well-mixed case with (c) and (k) n interconnections and (d) and (l) t interconnections and for the polarized
case with (g) and (o) n interconnections and (h) and (p) t interconnections. All cases are for two coupled SFNs with γ = 3.0. The results are
averaged over 100 realizations and the standard errors are smaller than the size of the symbols. Solid lines in (a), (b), (e), (f), (i), (j), (m), and
(n) show the 1/ρ ∼ t behavior and the dashed line at QAB = 1 in (c), (d), (g), (h), (k), (l), (o), and (p) corresponds to perfect mixing. The left
column shows that the fraction of interconnecting links is q = 0.2 arranged according to the CC (circles), CP (triangles), and PP (squares)
strategies. The right column shows that the fraction of interconnecting links is q = 0.1 (circles), q = 0.2 (triangles), and q = 0.5 (squares),
arranged using a CC strategy.

network. In contrast, a t interconnection is not considered
during the diffusing motion of the particle, but only at the
end when the particle has moved already. In this case, if
the particle moves to a node that is t interconnected then
it is immediately transported to the other network. Also,
after generating the initial configuration (and only for the
case of t interconnections) if there are interconnected nodes
occupied by particles of different types, then these particles
are annihilated immediately.

As shown in Figs. 1(b) and 1(c), for the case of n

interconnections and a well-mixed system, our results are
comparable to Ref. [22] for all different strategies. More
precisely, the absence of kinetic effects seems to depend more
on the exponent γ than on the strategy we use to interconnect
the nodes. For example, for the CC strategy we find f =
1.7 ± 0.02 for γ = 2.5, f = 1.25 ± 0.01 for γ = 3.0, and
f = 1.14 ± 0.01 for γ = 3.5. However, if we focus on a
specific exponent, e.g., γ = 3.0, then we find f = 1.24 ± 0.01
for the CC strategy, f = 1.26 ± 0.01 for the CP strategy,
and f = 1.28 ± 0.01 for the PP strategy. This shows that an
interconnected system of two SFNs with n interconnections
behaves like one large SFN for a reaction-diffusion process.
Also, the same asymptotic behavior holds even when the
system starts from a completely polarized configuration. Of
course in this case initially the reaction rates are low, as
expected, but as time advances the system becomes better
mixed and the reaction becomes faster. This essentially means

that a scale-free topology alone contributes to the mixing of
particles and enhances desegregation.

This is better visible in Fig. 2(a), where the mean-field
predicted limiting case 1/ρ ∼ t is included. When viewed
together with Fig. 2(c), it becomes clear that the different
strategies do not really affect the mixing of particles and as
a consequence the reaction rates. However, while even with
the use of t interconnections we obtain similar findings with
respect to the reaction rates, as shown in Fig. 2(b), the CC
strategy is now more effective in particle mixing, at least in
intermediate-time scales, as shown in Fig. 2(d).

This attribute of the CC strategy is more pronounced when
we start with an extremely polarized case. More precisely,
while the overall mixing and reaction rates are similar in the
case of n interconnections [see Figs. 2(e) and 2(g)], the better
mixing achieved by the CC strategy is clear in the presence
of t interconnections. In this case, as shown in Figs. 2(f) and
2(h), the QAB values for the CC strategy are higher at all
times and the concentration of particles decreases much faster.
However, at longer times the mixing achieved by the other
strategies improves, while at the same time the number of
particles decreases. This leads to a crossover point around t =
11 MCS where the reaction rates increase rapidly, as shown
by the values of f (i.e., f = 1.44 ± 0.02 for the CC strategy,
f = 1.57 ± 0.02 for the CP strategy, and f = 1.69 ± 0.05 for
the PP strategy [35]) that converge to a similar asymptotic
behavior for all three strategies [Fig. 2(f)].
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FIG. 3. (Color online) Reaction progress 1/ρ − 1/ρ0 as a func-
tion of time for the well-mixed case with (a) n interconnections
and (b) t interconnections and for the polarized case with (e) n

interconnections and (f) t interconnections. Ratio QAB over time
for the well-mixed case with (c) n interconnections and (d) t

interconnections and for the polarized case with (g) n interconnections
and (h) t interconnections. All cases are for two coupled SFNs
with γ = 3.0, with a fixed number L = 100 (symbols) or L = 1000
(lines) of interconnecting links. The results are averaged over 100
realizations and the standard errors are smaller than the size of the
symbols.

Similar observations are made for different q values as
shown in the right panels of Fig. 2. In this case it is easier to
see that higher q values result in a better mixing of particles,
as expected since the system becomes better connected. In

addition, the mixing is enhanced even more by the presence of
t interconnections, as shown by comparing Fig. 2(k) to Fig. 2(l)
and Fig. 2(o) to Fig. 2(p). However, the same conclusions are
true with respect to increasing reaction rates at longer times,
which allows the convergence to the same asymptotic behavior.

On the other hand, even q = 0.1 for large SFN leads
to a large number of interconnections, while at the same
time very few nodes are hubs. Thus, the CC strategy may
not always connect central to central nodes and its potential
influence may be masked. For this reason we repeated our
analysis using smaller numbers of interconnecting links,
namely, L = 1000 and 100, and in Fig. 3 we show our results.
Even though for L = 1000 the overall reaction rate is similar
for all strategies, especially for the well-mixed system, some
deviations are visible for L = 100 where the CC (PP) strategy
leads to better (worse) mixing. Therefore, the influence of
the different strategies becomes visible in the presence of few
interconnections, where the CC strategy clearly leads to better
mixing. However, when the number of interconnecting links is
large enough, then the number and function of interconnections
resume the most important role in driving the diffusion process.

Summarizing, we studied the annihilation reaction A +
B → ∅ in interconnected SFNs when different interconnec-
tivity strategies are used and when the interconnecting links
have functionality different from the normal links. We find that
the system of networks exhibits rapid reaction rates, in line
with a previous observation about single SFNs [22], which is
different from what was observed in other topologies, such
as lattices and fractals. In addition, we showed that the CC
strategy is better for the mixing of particles when there are few
interconnections, but for a larger number of interconnections
the function and the number of interconnecting links play the
most important roles. We thus identified ways that can be
used to suppress the segregation phenomenon and enhance
the diffusion of particles. Besides their relevance to reaction
kinetics, our findings could be applied to model propagation of
conflicting information in social networks and identify ways
to reduce polarization.
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[25] M. Catanzaro, M. Boguñá, and R. Pastor-Satorras, Phys. Rev. E
71, 027103 (2005).

[26] S. Weber and M. Porto, Phys. Rev. E 74, 046108 (2006).
[27] L. K. Gallos and P. Argyrakis, Phys. Rev. E 72, 017101

(2005).
[28] L. K. Gallos and P. Argyrakis, Phys. Rev. E 74, 056107 (2006).
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