
May 14, 2015 10:23 WSPC/S0219-5259 169-ACS 1430001

Advances in Complex Systems
Vol. 17, Nos. 7 & 8 (2014) 1430001 (9 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0219525914300011

A COMPLEX NETWORKS PERSPECTIVE ON
COLLABORATIVE SOFTWARE ENGINEERING

MARCELO CATALDO

EMC Corporation,
New York City, NY, USA
mcataldo@alumni.cmu.edu

INGO SCHOLTES

ETH Zurich, Chair of Systems Design
Weinbergstrasse 56/58, CH-8092 Zurich, Switzerland

ischoltes@ethz.ch

GIUSEPPE VALETTO

Fondazione Bruno Kessler,
Via Sommarive, 18, Trento, Italy

valetto@fbk.eu

Received 8 April 2015
Accepted 9 April 2015
Published 7 May 2015

Large collaborative software engineering projects are interesting examples for evolving
complex systems. The complexity of these systems unfolds both in evolving software
structures, as well as in the social dynamics and organization of development teams.
Due to the adoption of Open Source practices and the increasing use of online support
infrastructures, large-scale data sets covering both the social and technical dimension
of collaborative software engineering processes are increasingly becoming available. In
the analysis of these data, a growing number of studies employ a network perspective,
using methods and abstractions from network science to generate insights about software
engineering processes. Featuring a collection of inspiring works in this area, with this
topical issue, we intend to give an overview of state-of-the-art research. We hope that
this collection of articles will stimulate downstream applications of network-based data
mining techniques in empirical software engineering.

1. Introduction

Large collaborative software engineering projects are interesting examples for evolv-
ing complex systems. The complexity of these systems unfolds in the complex code
structures being developed, but also in the complex social structures emerging in
teams of collaborating developers. Through the adoption of Open Source Software
(OSS) practices and the widespread use of online support infrastructures and social
coding platforms, the complex nature of software development can increasingly be

1430001-1

A
dv

s.
 C

om
pl

ex
 S

ys
t. 

20
14

.1
7.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 S
W

IS
S 

FE
D

E
R

A
L

 I
N

ST
IT

U
T

E
 O

F 
T

E
C

H
N

O
L

O
G

Y
 Z

U
R

IC
H

 (
E

T
H

) 
on

 0
8/

09
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.

http://dx.doi.org/10.1142/S0219525914300011


May 14, 2015 10:23 WSPC/S0219-5259 169-ACS 1430001

M. Cataldo, I. Scholtes and G. Valetto

studied based on massive data sets. This has not only resulted in a surge of data-
driven, quantitative studies in the field of empirical software engineering; it has
also generated a huge interest in mining the wealth of relational data that can be
extracted from those data sets on collaborative software engineering, and study it
from a complex networks or network science perspective.

The topical issue at hand is devoted to such works, which address the complex
technical, social and socio-technical aspects of team-based software development. It
provides a thought-provoking overview of state-of-the-art research taking a network
perspective to address problems in empirical software engineering.

In this editorial, we take the opportunity to briefly summarize some of the most
significant challenges and opportunities of applying network science methods to
data from software engineering processes, which are well-represented in the selection
of works collected in this topical issue. Nevertheless, we can at most cover selected
topics and examples that set the stage for the works contained in this topical issue.
Therefore, our selection should not be mistaken for an exhaustive review of the
much larger body of existing works in this area.

2. The Technical Dimension of Software Engineering

In the context of software engineering, methods from network science can first be
applied to technical aspects of software projects. A particularly common approach is
based on the extraction of data on the structure and evolution of software artifacts
which are created by developers. This can be achieved by mining the development
repositories in particular code and configuration management repositories such as
SVN, Git etc.

Here, a network perspective can be applied to study evolving dependency struc-
tures that interconnect modular units of source code, such as methods, classes,
packages or libraries. Such a perspective facilitates both the development of theoret-
ical models of software evolution, as well as empirical analyses of software projects:
Theoretical models for the growth dynamics of such dependency networks can for
instance inform us about underlying growth mechanisms, the formation of network
motifs, or sustainable regimes in the evolution of software [23, 24, 21]. A network
perspective on dependency networks can further be used to evaluate software mod-
ularity, for instance to formulate models for the propagation of code changes. Such
models can then help us to better understand which dependencies play a crucial
role in the evolution of software [12].

Apart from such modeling approaches, numerous examples of network-based
empirical analyses of software structures exist. A number of statistical analyses
of dependency networks defined both at the class- and package-level of object-
oriented source code have highlighted similarities as well as differences to complex
networks emerging in other domains [14, 15, 13, 17]. Community structures in class
dependency networks were studied for instance [22], highlighting their importance
for the design of modular software structures. A similar approach was used [29]

1430001-2

A
dv

s.
 C

om
pl

ex
 S

ys
t. 

20
14

.1
7.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 S
W

IS
S 

FE
D

E
R

A
L

 I
N

ST
IT

U
T

E
 O

F 
T

E
C

H
N

O
L

O
G

Y
 Z

U
R

IC
H

 (
E

T
H

) 
on

 0
8/

09
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



May 14, 2015 10:23 WSPC/S0219-5259 169-ACS 1430001

Complex Networks Perspective on Collaborative Software Engineering

to quantitatively assess the congruence between package structures designed by
software engineers for the organization of code and the natural cluster structures
emerging in dependency networks. The resulting network-analytic measure not only
provides insights into the evolution of software projects, it also can be used to assist
project managers and developers in refactoring efforts [32].

Besides such statistical analyses at the macroscopic level, a microscopic analysis
of individual nodes can provide us with further insights about software. Applying
centrality measures to package dependency networks can for instance help us to
decide which OSS packages to use in a software project [13]. It has also been shown
that node-level measures applied to class dependency networks can be used for
the automated prediction of software defects [20, 1]. Similarly, a network perspec-
tive on dependencies between requirements has recently been proposed to predict
integration errors in software projects [28].

Reflecting the broad set of activities in the field, this topical issue features several
works which study the technical dimension of software engineering projects from a
network perspective. In their article Recode: Software Package Refactoring via Com-
munity Detection in Bipartite Software Networks, Weifeng Pan and coauthors study
dependency networks of software artifacts. They show how a community detection
algorithm can be used to identify refactoring candidates that optimize the package
structure of software projects. A statistical analysis of software dependency net-
works is also presented in the article Node Mixing and Group Structure of Complex
Software Networks contributed by Lovro Šubelj and coauthors. The authors study
clustering structures as well as correlations between the degrees of neighbouring
nodes, showing that dependency networks differ significantly from complex net-
works found in other contexts. The important question how a network perspective
can help us to identify the most important pieces of source code is addressed by Phil
Meyer and coauthors in their article Identifying Important Classes of an Evolving
Software System Through K-core Decomposition: their results from an analysis of
three Java projects indicate that indeed network-analytic methods can be used to
identify core classes.

3. The Social Dimension of Software Engineering

The works outlined above demonstrate that a network perspective on software
artifacts can provide interesting insights into the output of collaborative software
engineering processes and its characteristics. However, social aspects emerging in
the communication, collaboration or coordination between developers and/or users
are an important additional source of complexity in software projects. How do
communication and coordination structures in development teams influence devel-
opment productivity or code quality? And how do collaboration structures in OSS
communities affect their resilience?

Again, such questions can be studied based on network representations of dyadic
relations inferred from recorded interactions between developers or users. Data

1430001-3

A
dv

s.
 C

om
pl

ex
 S

ys
t. 

20
14

.1
7.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 S
W

IS
S 

FE
D

E
R

A
L

 I
N

ST
IT

U
T

E
 O

F 
T

E
C

H
N

O
L

O
G

Y
 Z

U
R

IC
H

 (
E

T
H

) 
on

 0
8/

09
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



May 14, 2015 10:23 WSPC/S0219-5259 169-ACS 1430001

M. Cataldo, I. Scholtes and G. Valetto

on evolving collaboration structures of large Open Source Software communities
have been studied in a number of works. Networks of OSS developers, which were
assumed to be connected whenever they have been active in the same project, were
studied [19]. The authors [19] again find that the resulting networks share statis-
tical similarities with a number of social networks found in other contexts. Other
researchers [9] studied 120 OSS projects on SourceForge, highlighting a significant
variation of centralization across communities which indicates differences in their
social organization.

Combining data from developer weblogs, mailing list archives and an online
social network platform targeted at developers, the social network structure of OSS
developers was studied [27]. The analysis of the resulting networks was used to
calibrate an agent-based model for OSS projects, aiming at replicating how devel-
opers chose projects. E-mail communication [2] was used as the basis to construct
the communication networks of OSS community members, again highlighting sta-
tistical similarities with the interaction networks found in other types of online
communities. Again using data on E-mail communication [26, 25], models for the
growth of social structures in OSS communities were studied. The models combine
local and non-local network formation rules, thus highlighting a balance between
hierarchical and distributed collective social mechanisms in OSS communities.

The authors [16] used commit logs to construct collaboration networks based
on the co-editing of files in a number of OSS projects. Established measures from
social network analyses were then applied to categorize OSS projects, and study the
evolution of their collaboration structures. Similar macroscopic, network-analytic
measures were used to investigate the evolving social organization of OSS commu-
nities [29]. The results highlight different organizational regimes which affect the
performance and resilience of communities [31]. A microscopic analysis of the posi-
tion of community members in collaboration networks was used to predict which
bug reports will eventually be fixed, thus pointing at applications of social network
analysis in the design of online support infrastructures [30].

Traditionally, works studying the social dimension of software engineering pro-
cesses have focused on the important role played by the network structure of collabo-
rations, communication or task allocation. Extending this notion, more recent works
have started to additionally study the content of exchanges made within a particu-
lar network structure [11]. The results indicate that a combination of network-based
methods with a study of content of communication exchanges allows us to better
understand the performance of software development teams.

Two of the articles in this topical issue specifically address the social dimension
of software engineering processes. In their article Communication in Innovation
Communities: An Analysis of 100 Open Source Projects, Markus Geipel and col-
laborators take a network perspective on communication flows between users and
developers in Open Source Software communities. Using a large-scale data set on
100 OSS projects, they find that users dominate the communication in the associ-
ated communities. Considering this important role of users, an interesting further

1430001-4

A
dv

s.
 C

om
pl

ex
 S

ys
t. 

20
14

.1
7.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 S
W

IS
S 

FE
D

E
R

A
L

 I
N

ST
IT

U
T

E
 O

F 
T

E
C

H
N

O
L

O
G

Y
 Z

U
R

IC
H

 (
E

T
H

) 
on

 0
8/

09
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



May 14, 2015 10:23 WSPC/S0219-5259 169-ACS 1430001

Complex Networks Perspective on Collaborative Software Engineering

question is which of these users are likely to become involved in development tasks.
This question is addressed by Qi Xuan and collaborators. In their article Rank-
ing Developer Candidates by Social Links they study communication networks of
OSS projects, applying different methods to predict which of the users eventually
become members of the development team. The results suggest that well-known
network-based ranking schemes can be used to identify developer candidates, thus
highlighting that communication networks carry significant amounts of information
about the motivation and skills of community members in OSS projects.

4. Socio-Technical Studies of Software Engineering

So far we have covered works that address either the technical or the social dimen-
sion in isolation. However, software projects are socio-technical systems. The com-
bination of the two dimensions is thus a further source of complexity, and carries
significant information. After all, it is a team of developers which shapes the archi-
tecture of a software. And similarly, this architecture affects which developers have
to coordinate their work, thus shaping the organizational structures of the develop-
ment team. The resulting intuition that social structures and software architectures
co-evolve can be traced back more than 50 years to Melvin Edward Conway, thus
often being paraphrased as “Conway’s law”. In more general terms, the related
“mirroring hypothesis” states that the governance structures of an organization
directly affect the modular structures of the products that they develop.

The availability of fine-grained data on both social interactions and software
structures has recently allowed researchers to study this phenomenon from a quan-
titative perspective. Again the network perspective has proven to be valuable in
this context. The authors [18] use a network-based approach to test the mirroring
hypothesis both in commercial and Open Source software development. They find
strong evidence for the fact that the modular organization of software structures is
coupled with the structure of the social organizations by which they were developed.
A number of works have thus utilized two-mode networks capturing both software
dependencies and collaboration structures at the same time. Such an approach was
used [8] to study socio-technical congruence, referring to the level of congruence
between software dependencies and coordination patterns. The authors find that
the degree of socio-technical congruence affects both software development per-
formance and software quality [8, 7]. In particular, high levels of socio-technical
congruence were found to significantly reduce the resolution time of modification
requests as well as the rate of software failures.

Both the dependency network as well as a network capturing the assignment of
tasks to developers have been studied [3], showing that a socio-technical perspective
can help to predict software defects with higher accuracy. A similar socio-technical
network perspective was used [10] to analyze and visualize the different organiza-
tional patterns in projects. Apart from serving as interesting empirical studies, a

1430001-5

A
dv

s.
 C

om
pl

ex
 S

ys
t. 

20
14

.1
7.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 S
W

IS
S 

FE
D

E
R

A
L

 I
N

ST
IT

U
T

E
 O

F 
T

E
C

H
N

O
L

O
G

Y
 Z

U
R

IC
H

 (
E

T
H

) 
on

 0
8/

09
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



May 14, 2015 10:23 WSPC/S0219-5259 169-ACS 1430001

M. Cataldo, I. Scholtes and G. Valetto

socio-technical perspective on software engineering can be fruitfully applied to facil-
itate coordination in development teams. Building on the idea of socio-technical
congruence, recent works have thus studied how fine-grained data on dependency
structures and the association between developers and software constructs can be
used to identify coordination needs in real-time [5, 4, 6].

Representing a particularly challenging problem, we are happy that two works
in this topical issue have addressed socio-technical aspects in collaborative software
engineering. In their article Modeling Distributed Collaboration on GitHub, Nora
McDonald and coauthors study data on five OSS projects from GitHub. They
particularly address the question how the use of collaboration mechanisms offered
by this popular online collaboration platform affects both the social organization
and the success of software projects. As such, their work addresses a socio-technical
dimension, highlighting how design decisions in the development of collaboration
platforms influence the emerging social structures in software projects. A large-scale
data set featuring 360,000 OSS projects hosted on SourceForge is analyzed by Frank
Schweitzer and coauthors in their work How do OSS projects change in number and
size? A large-scale analysis to test a model of project growth. The authors show that
the growth rate of collaborative projects can be modeled by an established statistical
model of firm growth, which balances two antagonistic forces of developers joining
existing projects versus founding new projects. As such, this work highlights the
potential of interdisciplinary research in the modeling of socio-technical aspects of
software engineering.

5. Conclusion

The works in this topical issue impressively demonstrate the various ways in which
network-based methods can be utilized to study research questions relevant to
empirical software engineering. However, with more and more massive data sets
from social coding platforms like SourceForge or GitHub becoming available, they
can necessarily only mark the beginning of a fruitful field of research. Much remains
to be discovered and we hope that this topical issue stimulates further studies which
provide all of us with interesting insights into the technical and social dimension of
complex software engineering processes.

Acknowledgements

The guest editors would like to express their gratitude to all authors as well as
to the anonymous reviewers. Without your much appreciated contributions, this
topical issue would not have been possible.

References

[1] Bhattacharya, P., Iliofotou, M., Neamtiu, I., and Faloutsos, M., Graph-based anal-
ysis and prediction for software evolution, in Proceedings of the 34th Interna-
tional Conference on Software Engineering, ICSE ’12 (IEEE Press, Piscataway,

1430001-6

A
dv

s.
 C

om
pl

ex
 S

ys
t. 

20
14

.1
7.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 S
W

IS
S 

FE
D

E
R

A
L

 I
N

ST
IT

U
T

E
 O

F 
T

E
C

H
N

O
L

O
G

Y
 Z

U
R

IC
H

 (
E

T
H

) 
on

 0
8/

09
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



May 14, 2015 10:23 WSPC/S0219-5259 169-ACS 1430001

Complex Networks Perspective on Collaborative Software Engineering

NJ, USA, 2012), ISBN 978-1-4673-1067-3, pp. 419–429, http://dl.acm.org/citation.
cfm?id=2337223.2337273.

[2] Bird, C., Gourley, A., Devanbu, P., Gertz, M., and Swaminathan, A., Min-
ing email social networks, in Proceedings of the 2006 International Work-
shop on Mining Software Repositories, MSR ’06 (ACM, New York, NY, USA,
2006), ISBN 1-59593-397-2, pp. 137–143, doi:10.1145/1137983.1138016, http://doi.
acm.org/10.1145/1137983.1138016.

[3] Bird, C., Nagappan, N., Gall, H., Murphy, B., and Devanbu, P., Putting it all
together: using socio-technical networks to predict failures, in Software Reliability
Engineering, 2009. ISSRE ’09. 20th International Symposium on (2009), ISSN 1071-
9458, pp. 109–119, doi:10.1109/ISSRE.2009.17.

[4] Blincoe, K., Valetto, G., and Damian, D., Do all task dependencies require
coordination? the role of task properties in identifying critical coordination
needs in software projects, in Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2013 (ACM, New York, NY,
USA, 2013), ISBN 978-1-4503-2237-9, pp. 213–223, doi:10.1145/2491411.2491440,
http://doi.acm.org/10.1145/2491411.2491440.

[5] Blincoe, K., Valetto, G., and Goggins, S., Proximity: a measure to quantify the
need for developers’ coordination, in Proceedings of the ACM 2012 Conference
on Computer Supported Cooperative Work, CSCW ’12 (ACM, New York, NY,
USA, 2012), ISBN 978-1-4503-1086-4, pp. 1351–1360, doi:10.1145/ 2145204.2145406,
http://doi.acm.org/10.1145/2145204.2145406.

[6] Blincoe, K. C., Timely and Efficient Facilitation of Coordination of Software Devel-
opers’ Activities, Ph.D. thesis, Drexel University, Philadelphia, PA, USA (2014),
aAI3613734.

[7] Cataldo, M. and Herbsleb, J., Coordination breakdowns and their impact on devel-
opment productivity and software failures, Software Engineering, IEEE Transactions
on 39 (2013) 343–360.

[8] Cataldo, M., Herbsleb, J. D., and Carley, K. M., Socio-technical congruence: a frame-
work for assessing the impact of technical and work dependencies on software develop-
ment productivity, in Proceedings of the Second ACM-IEEE International Symposium
on Empirical Software Engineering and Measurement, ESEM ’08 (ACM, New York,
NY, USA, 2008), ISBN 978-1-59593-971-5, pp. 2–11, doi:10.1145/1414004.1414008,
http://doi.acm.org/10.1145/1414004.1414008.

[9] Crowston, K. and Howison, J., The social structure of free and open source software
development, First Monday 10 (2005).

[10] De Souza, C., Froehlich, J., and Dourish, P., Seeking the source: software source
code as a social and technical artifact, in Proceedings of the 2005 international ACM
SIGGROUP conference on Supporting group work (ACM, 2005), pp. 197–206.

[11] Ehrlich, K. and Cataldo, M., The communication patterns of technical leaders: impact
on product development team performance, in Proceedings of the 17th ACM confer-
ence on Computer supported cooperative work & social computing (ACM, 2014), pp.
733–744.

[12] Geipel, M. M. and Schweitzer, F., Software change dynamics: evidence from 35 Java
projects, in Proceedings of the the 7th joint meeting of the European software engineer-
ing conference and the ACM SIGSOFT symposium on The foundations of software
engineering (ACM, 2009), pp. 269–272.

[13] Kohring, G., Complex dependencies in large software systems, Advances in Complex
Systems 12 (2009) 565–581.

1430001-7

A
dv

s.
 C

om
pl

ex
 S

ys
t. 

20
14

.1
7.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 S
W

IS
S 

FE
D

E
R

A
L

 I
N

ST
IT

U
T

E
 O

F 
T

E
C

H
N

O
L

O
G

Y
 Z

U
R

IC
H

 (
E

T
H

) 
on

 0
8/

09
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



May 14, 2015 10:23 WSPC/S0219-5259 169-ACS 1430001

M. Cataldo, I. Scholtes and G. Valetto

[14] LaBelle, N. and Wallingford, E., Inter-Package Dependency Networks in Open-Source
Software, eprint arXiv:cs/0411096 (2004).

[15] Li, D., Han, Y., and Hu, J., Complex network thinking in software engineering, in
2008 International Conference on Computer Science and Software Engineering, Vol. 1
(2008), pp. 264–268, doi:10.1109/CSSE.2008.689.

[16] Lopez-Fernandez, L., Robles, G., Gonzalez-Barahona, J. M., et al., Applying social
network analysis to the information in CVS repositories, in International Workshop
on Mining Software Repositories (IET, 2004), pp. 101–105.

[17] Louridas, P., Spinellis, D., and Vlachos, V., Power laws in software, ACM Trans.
Softw. Eng. Methodol. 18 (2008) 2:1–2:26.

[18] MacCormack, A., Baldwin, C., and Rusnak, J., Exploring the duality between prod-
uct and organizational architectures: A test of the mirroring hypothesis, Research
Policy 41 (2012) 1309–1324.

[19] Madey, G., Freeh, V., and Tynan, R., The open source software development phe-
nomenon: An analysis based on social network theory, AMCIS 2002 Proceedings
(2002) 247.

[20] Nguyen, T., Adams, B., and Hassan, A., Studying the impact of dependency
network measures on software quality, in Software Maintenance (ICSM), 2010
IEEE International Conference on (2010), ISSN 1063-6773, pp. 1–10, doi:10.1109/
ICSM.2010.5609560.

[21] Tessone, C. J., Geipel, M. M., and Schweitzer, F., Sustainable growth in complex
networks, EPL (Europhys. Lett.) 96 (2011) 58005.

[22] ubelj, L. and Bajec, M., Community structure of complex software systems: Analysis
and applications, Physica A: Statistical Mechanics and its Applications 390 (2011)
2968–2975.

[23] Valverde, S. and Sol, R. V., Logarithmic growth dynamics in software networks, EPL
(Europhys. Lett.) 72 (2005) 858.

[24] Valverde, S. and Solé, R. V., Network motifs in computational graphs: A case study
in software architecture, Phys. Rev. E 72 (2005) 026107.

[25] Valverde, S. and Solé, R. V., Self-organization versus hierarchy in open-source social
networks, Physical Review E 76 (2007) 046118.

[26] Valverde, S., Theraulaz, G., Gautrais, J., Fourcassié, V., and Solé, R. V., Self-
organization patterns in wasp and open source communities, Intelligent Systems,
IEEE 21 (2006) 36–40.

[27] Wagstrom, P., Herbsleb, J., and Carley, K., A social network approach to free/open
source software simulation, in Proceedings First International Conference on Open
Source Systems (2005), pp. 16–23.

[28] Wang, J., Li, J., Wang, Q., Yang, D., Zhang, H., and Li, M., Can requirements
dependency network be used as early indicator of software integration bugs?, in
Requirements Engineering Conference (RE), 2013 21st IEEE International (2013),
pp. 185–194, doi:10.1109/RE.2013.6636718.

[29] Zanetti, M. S., Sarigöl, E., Scholtes, I., Tessone, C. J., and Schweitzer, F., A quantita-
tive study of social organisation in open source software communities, in 2012 Impe-
rial College Computing Student Workshop, ICCSW 2012, September 27–28, 2012,
London, United Kingdom (2012), pp. 116–122, doi:10.4230/OASIcs.ICCSW.2012.116,
http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.116.

[30] Zanetti, M. S., Scholtes, I., Tessone, C. J., and Schweitzer, F., Categorizing bugs
with social networks: a case study on four open source software communities, in
Proceedings of the 2013 International Conference on Software Engineering, ICSE ’13

1430001-8

A
dv

s.
 C

om
pl

ex
 S

ys
t. 

20
14

.1
7.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 S
W

IS
S 

FE
D

E
R

A
L

 I
N

ST
IT

U
T

E
 O

F 
T

E
C

H
N

O
L

O
G

Y
 Z

U
R

IC
H

 (
E

T
H

) 
on

 0
8/

09
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



May 14, 2015 10:23 WSPC/S0219-5259 169-ACS 1430001

Complex Networks Perspective on Collaborative Software Engineering

(IEEE Press, Piscataway, NJ, USA, 2013), ISBN 978-1-4673-3076-3, pp. 1032–1041,
http://dl.acm.org/citation.cfm?id=2486788.2486930.

[31] Zanetti, M. S., Scholtes, I., Tessone, C. J., and Schweitzer, F., The rise and fall of a
central contributor: dynamics of social organization and performance in the gentoo
community, in Cooperative and Human Aspects of Software Engineering (CHASE),
2013 6th International Workshop on (IEEE, 2013), pp. 49–56.

[32] Zanetti, M. S., Tessone, C. J., Scholtes, I., and Schweitzer, F., Automated soft-
ware remodularization based on move refactoring: a complex systems approach,
in Proceedings of the 13th International Conference on Modularity, Modularity ’14
(ACM, New York, NY, USA, 2014), ISBN 978-1-4503-2772-5, pp. 73–84, doi:10.1145/
2577080.2577097, http://doi.acm.org/10.1145/2577080.2577097.

1430001-9

A
dv

s.
 C

om
pl

ex
 S

ys
t. 

20
14

.1
7.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 S
W

IS
S 

FE
D

E
R

A
L

 I
N

ST
IT

U
T

E
 O

F 
T

E
C

H
N

O
L

O
G

Y
 Z

U
R

IC
H

 (
E

T
H

) 
on

 0
8/

09
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.


