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Abstract
Modular design is a desirable characteristic of complex software
systems that can significantly improve their comprehensibility,
maintainability and thus quality. While many software systems are
initially created in a modular way, over time modularity typically
degrades as components are reused outside the context where they
were created. In this paper, we propose an automated strategy to re-
modularize software based on move refactoring, i.e. moving classes
between packages without changing any other aspect of the source
code. Taking a complex systems perspective, our approach is based
on complex networks theory applied to the dynamics of software
modular structures and its relation to an n-state spin model known
as the Potts Model. In our approach, nodes are probabilistically
moved between modules with a probability that nonlinearly de-
pends on the number and module membership of their adjacent
neighbors, which are defined by the underlying network of software
dependencies. To validate our method, we apply it to a dataset of
39 JAVA open source projects in order to optimize their modularity.
Comparing the source code generated by the developers with the
optimized code resulting from our approach, we find that modular-
ity (i.e. quantified in terms of a standard measure from the study of
complex networks) improves on average by 166 ± 77 percent. In
order to facilitate the application of our method in practical studies,
we provide a freely available ECLIPSE plug-in.

Categories and Subject Descriptors D.2.2 [Design Tools and
Techniques]: Modules and interfaces, Object-oriented design meth-
ods; D2.8 [Metrics]: Complexity measures; D.3.3 [Language
Constructs and Features]: Modules, Packages

Keywords remodularization, refactoring, complex networks

1. Introduction
The modular design of complex software systems is an impor-
tant factor that contributes to the success of software engineering
projects. It is enabled by a set of design principles, among which
information hiding and separation of concerns are the most influen-
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tial ones [13, 30, 31, 34]. These two principles translate into com-
missioning different modules to different purposes, such that their
internal implementation is transparent to developers making use of
their functionalities. This approach has been shown to limit nec-
essary coordination efforts and fosters the simple replacement of
obsolete software modules by new ones [9, 39], thus bearing great
relevance to the maintenance of sustainable software engineering
regimes [37, 42].

In the modular design of software the question about the right
level of granularity for a module is quite important. Ideally, to
represent a reasonable module, a software component should be
composed of a highly cohesive set of interdependent subcompo-
nents which cannot be easily separated into smaller modules. At the
same time, to represent a separate module, such a software compo-
nent should exhibit a reasonably low degree of coupling to other
modules. The goal of designing a modular software architecture
in which modules exhibit at the same time high cohesion and low
coupling is often achieved in the design phase of a project. How-
ever, empirical studies have shown that modularity often deterio-
rates throughout the subsequent phase of extending and maintain-
ing a software [42–44]. Hence, in order to retain the favorable prop-
erties of a modular design, remodularization strategies are needed.
They rely on a software restructuring strategy known as refactoring
[16].

In this paper, we address the question of how automated sugges-
tions for refactoring can be used to improve the modularity of code.
In order to minimize the impact on the actual code structures, and
thus simplifying the application of our approach in practical set-
tings, we focus on the particular type of move refactoring: software
constructs are moved between modules without changing other as-
pects of the source code. If these move refactorings are applied in
such a way that the cohesion within modules increases, while the
coupling between modules decreases, the modularity of the soft-
ware improves without affecting the behavior and functionality of
the software. While move refactoring is considered as a standard
technique to remodularize software, approaches in the literature
emphasize difficulties in its practical application that are due to cas-
cades of subsequent move refactorings triggered by the moving of
a single software construct [10, 15]. To avoid this caveat, we take
a complex systems perspective and frame the remodularization of
software based on move refactoring with a scheme similar to simu-
lated annealing [22], in which the system is driven to an equilibrium
state [8] by simple local changes. Based on this view, we derive a
stochastic optimization algorithm which automates remodulariza-
tion via move refactoring and validate it in a empirical study on the
source code of 39 JAVA open source projects. We show that this ap-
proach creates software structures that have higher modularity than
the original architectures extracted from the aforementioned empir-
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ical dataset. We further show that the achievable gain in modularity
is related to the level of modularity in the initial architecture, hence
indicating the presence of a significant modularization potential in
architectures that exhibit low modularity. Although focused in soft-
ware written in JAVA, we argue that our methodology can be easily
extended to other programming languages and paradigms. To foster
the reproduction of our results and catalyze their potential impact,
we also provide a software prototype of our implementation as an
ECLIPSE plug-in.

The rest of this paper is organized as follows: we present our
methodology in section 2, discuss our results and their limitations
in section 3 and section 4, relate our approach to previous works in
section 5 and present our conclusion in section 6.

2. Methods
In this section we describe the steps required to understand and
reproduce our results. We start with our empirical datasets, then
we move to the interpretation of software constructs and their de-
pendencies in terms of the network structures manipulated during
our remodularization strategy, followed by the description of its al-
gorithm. We take inspiration from complex networks theory and
apply the Newman’s Q modularity measure introduced in [28, 29]
and reinterpreted in [43, 44] to score the congruence between cou-
pling and cohesion in a given modular decomposition and finally,
we introduce the prototype of an ECLIPSE plug-in implementing a
framework that will be expanded to include other approaches, fos-
tering future research on this topic.

2.1 Datasets
We consider two distinct datasets. The first is composed of a cu-
rated collection of official releases of 14 JAVA open source soft-
ware (OSS) projects, with a minimum of at least 10 releases each.
These releases include the source code as well as the compiled bi-
naries. This dataset is known as QUALITAS CORPUS [35]. The sec-
ond dataset is composed of 28 JAVA OSS projects, for which fine
grained CVS repository logs are available. The logs are aggregated
over periods of 30 days such that each aggregation constitutes a
full release of the given project. This dataset was previously used in
[17, 18, 44], and it was not updated due to the fact that for most of
these projects, the development on CVS repositories became ob-
solete. In Table 1, we present the list of projects, the respective
number of snapshots and the date corresponding to the last one.

2.2 Software Dependency Networks
In the following description, we focus on software written in JAVA.
However, our approach can be applied right away to software
projects developed in other programming languages and paradigms
that have suitable abstractions for modules and dependencies. In
particular, we assume that dependencies between JAVA packages
represent the coupling between modules. Although JAVA was not
designed with a specific abstraction for modules [20], it allows
classes to be grouped into namespaces that are called packages.
It is considered good practice to organize these packages follow-
ing modularity principles: high intra-package cohesion and low
inter-package coupling [2, 7, 21]. We adopt the same approach
and consider a JAVA package as a reasonable approximation for a
module. Furthermore, we assume that a package A depends on a
package B when a JAVA class (i.e. network node) a in A depends
on a class b in B. Here, dependency stands for any kind of rela-
tionship between classes such as inheritance, as well as references
to attributes or methods. A single link between a and b is created if
there is at least one such dependency1. By this definition a package

1 in this simplification links have no weights, but we argue that it can be
generalized to weighted links

Table 1. Our datasets of JAVA OSS projects. For the QUALI-
TAS CORPUS dataset, the column “Snapshots” indicate the num-
ber of releases of a given project, while in the case of CVS logs
it indicates the number of monthly snapshots aggregated over the
recorded project history.

QUALITAS CORPUS

Project Snapshots Last Snapshot Date
ANT 21 2010-12-27

ANTLR 20 2011-07-18
ARGOUML 16 2011-12-15
AZUREUS 57 2011-12-02

ECLIPSE SDK 40 2011-09-10
FREECOL 28 2011-09-27

FREEMIND 16 2011-02-19
HIBERNATE 100 2012-02-08

JGRAPH 39 2009-09-28
JMETER 20 2011-09-29

JUNG 23 2010-01-25
JUNIT 23 2011-09-29

LUCENE 28 2011-11-20
WEKA 55 2011-10-28

CVS logs
Project Snapshots Last Snapshot Date

ARCHITECTURWARE 46 2008-02-04
ASPECTJ 62 2008-02-01
AZUREUS 54 2008-01-01

CJOS 87 2008-02-04
COMPOSESTAR 26 2008-07-04

ECLIPSE 83 2008-03-01
ENTERPRISE 64 2008-02-04

FINDBUGS 58 2008-02-04
FUDAA 60 2008-07-01

GPE4GTK 18 2008-07-04
HIBERNATE 50 2008-02-04

JAFFA 59 2008-01-28
JENA 86 2008-02-01

JMLSPECS 71 2008-01-28
JNODE 32 2008-02-03
JPOX 41 2008-01-28

OPENQRM 13 2008-03-01
OPENUSS 44 2008-07-01

OPENXAVA 38 2008-02-04
PERSONALACCESS 39 2008-07-04

PHPECLIPSE 66 2008-07-04
RODINBSHARP 27 2008-07-04

SAPIA 62 2008-07-01
SBLIM 79 2008-07-01

SPRINGFRAMEWORK 59 2008-02-03
SQUIRRELSQL 74 2008-07-04

XMSF 48 2008-07-04
YALE 71 2008-02-01

is highly cohesive when its classes are tightly connected. Similar
approaches were applied in [7, 44]. Figure 1 provides an illustration
of our method.

In order to extract such dependency networks (also known as
call graphs) from the OSS projects found in the QUALITAS COR-
PUS dataset, we use a customized version of an OSS parser called
DEPENDENCYFINDER [36]. An alternative approach is used to
parse the dataset composed of CVS logs. For regular intervals of 30
days, we check out all the corresponding logs and aggregate them,
resulting in monthly releases. The dependency network is then ex-
tracted by employing the abstract syntax tree parser JDT. For both
datasets, the output of this process is a list of links of the form
a, b, A,B, meaning class a, which belongs to package A, depends
on a class b found in package B.

2.3 A Complex Systems Approach to ReModularization
Our approach to remodularization is based on move refactoring, a
technique to reorganize source code which does not modify nei-
ther the software dependency network, nor the behavior or func-
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package A;
import B.*;
import C.*;

public class a extends b{
public static void main (String[] args) {

c object_c = new c();
object_c.runMethod();
...

}
...

}

package C;
import D.*;

public class c{
public static void main (String[] args) {

d object_d = new d();
object_d.runMethod();
...

}
...

}

(a) JAVA source code excerpt

A

B

C

D

b

a

c

d

(b) corresponding dependency network

Figure 1. Example of a modular software. (a) Source code excerpt.
(b) Corresponding undirected network structure. The shaded areas
represent modules (e.g. JAVA packages), which are internally com-
posed of software constructs (e.g. JAVA classes). Links between
such elements indicate structural dependencies (e.g. class inheri-
tance, reference to attribute or method, etc).

tionality of the software itself. As an example, consider the mod-
ular software system (e.g. written in an object oriented program-
ming language) which is illustrated in Figure 2(a). This system is
composed of three coupled modules A, B and C. As described
in section 2.2, these dependencies are the result of the interaction
between the classes within each module, which can be located in-
ternally (intra-module dependencies) or across different modules
(inter-module coupling). Too much inter-module coupling hinders
modular architectures. For example, in terms of developer cogni-
tion, highly coupled modules cannot be easily isolated, forcing the
developer to go over all the inter-module dependencies in order to
understand the functionalities of a single module. In summary, the
more coupling exists between modules, the harder it becomes to
maintain and expand the software [12, 24, 38].

Move refactoring offers a simple solution to this problem. It
consists of moving software constructs within a module to adjacent
modules without changing the dependency structure of the soft-
ware. In terms of the example discussed above, by carefully moving
classes from their original modules into other modules, it is possi-
ble to reduce the coupling between modules. Thus, move refactor-
ing applied to a software dependency network translates into rela-
beling the network nodes (e.g JAVA classes) according to module
membership (e.g. JAVA package membership). In Figure 2, we il-
lustrate the result of five move refactorings involving a single class
each (the classes are a1, a2, b1, c1, c2). The modules in the refac-
tored system, represented by Figure 2(b), are indeed less coupled.
It is important to note that when moving content around, while ig-
noring the semantics of each module, it is likely that the principle
of separation of concerns will be violated [13, 30, 34]. We further
discuss this issue in section 4.

For small systems, such as the one illustrated in Figure 2, move
refactoring is a trivial task and can be performed manually. Due
to the structural complexity of software, the larger the system, the
harder it is for a developer to grasp which could be suitable move
refactoring steps. As described in section 5, most of the literature
addresses this issue by means of optimization techniques. In most
of these techniques, every possible move needs to be scored by the
evaluation of a global optimization criterion (e.g. an objective func-
tion quantifying coupling and cohesion). In this paper, we propose
a stochastic move refactoring strategy that does not require to keep
track of such optimization criteria2. Besides providing an interest-
ing, new, and simpler, perspective on remodularization based on
complex system theory, our approach also addresses concerns in
the literature regarding the explicit use of coupling-cohesion met-
rics when guiding the optimization search.

Our algorithm works as follows: For a modular system com-
posed of n packages and k classes, at each time step, we pick a
class c at random and count the number of links N (c)

j connecting it
to other classes in each package j, such that j ∈ {module(c′)|c′ ∈
N (c)}. Here,N (c) represents the set of classes adjacent to c (or in
other words, the neighborhood of c). The probability P (c)

j that this
class will be moved to package j is

P
(c)
j =

exp
(
N

(c)
j /T

)
∑n

i=1 exp
(
N

(c)
i /T

) . (1)

Thus, this randomly picked class has higher probability to be
moved into a package where it maintains most of its connec-
tions. Indeed, this could be its current package. In such a case
this class has higher probability to not undergo move refactoring.
The temperature parameter T (constant) controls the likelihood of
moves that would deteriorate the modularity of this architecture.

2 see Algorithm 1
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This deterioration is characterized by the increase of the number of
inter-module links if “bad” moves actually occur. The smaller T ,
the smaller the chance to select such move refactorings. Although
small, this probability is not zero. This nonvanishing probability
fosters the exploration of rugged problem landscapes, allowing the
search to escape local optima.

From a computational point of view, it is worth remarking
that (for projects with large number of classes) the exponential
term exp

(
N

(c)
j /T

)
may yield an out-of-bounds error because of

numerical precision. In order to avoid this, we can find N (c)
max =

arg maxl∈[1,n]N
(c)
l , i.e. the maximum number of nodes connected

to c by inter-module links. Then, we compute

P
(c)
j =

exp

(
−

N
(c)
max−N

(c)
j

T

)
∑n

i=1 exp

(
−N

(c)
max−N

(c)
i

T

) , (2)

which is equivalent to Eq. 1, and each exponential term is smaller
than one.

To summarize, at each step we perform a move refactoring
iteration according to the probability distribution P . This procedure
is repeated for a finite number of steps. Algorithm 1 presents the
pseudocode of our stochastic move refactoring strategy, while in
Figure 3 we illustrate one step of this algorithm.

initializeParameters(T , n iterations);
network := loadNetworkFromSourceCode();
for i← 1 to n iterations do

node := pickRandomNode(network);
normTerm := 0;
Nmax := node.mostLinkedModule.numberOfLinks;
P := emptyArray();
for each j in modulesInNeighborhoodOf(node) do

/*Count the number of links between node and
module j*/
Nj := countLinksToModuleJ(node.neighbors, j);
/*The probability to move node to module j.*/
/*The temperature parameter T controls the
likelihood of bad moves.*/
p := exp−Nmax−Nj

T
;

normTerm := normTerm+ p;
P.append((p, j));

end
/*Normalize the probability distribution P*/
for j ← 1 to P.length() do

P [j].p := P [j].p/normTerm;
end
/*Decide which module receives node according to
probability distribution P*/
node.module := moveRefactoring(node, P );
network := updateNetwork(node, network);

end
Algorithm 1: Stochastic move refactoring algorithm. The tem-
perature parameter T is a constant, therefore a cooling schedule
is not required. We emphasize that a node can only be move refac-
tored to adjacent modules in which it maintains software depen-
dencies.

In statistical physics, the model described by Eq. 1 is similar to
the n-state Potts Model [40]. In a fully connected graph, this system
is a paradigmatic model to study the equilibrium phase transition
(as a function of temperature) from an ordered state, where all the
nodes reside in the same module–to a disordered one–where all
the nodes are randomly located in different modules. In the case

A

B

C

c1

c2

b1

a1
a2

(a) original

A

B

C

a1
a2

c2

c1

b1

(b) refactored

Figure 2. Illustration of move refactoring. Shaded areas represent
modules, which are composed of classes (i.e. circles) bound by
undirected software dependencies. Moving classes across modules
can decrease the coupling between modules. (a) original modular
decomposition. (b) modular decomposition after move refactoring.
The resulting modules are less coupled. We emphasize that move
refactoring only modifies the module membership of a class. The
dependencies (i.e. links) on other classes remain untouched.

of complex topologies–like those found in class dependencies–the
equilibrium configuration will depend on the modular coherence
inside of the software: the more interdependent particular groups of
classes are, the more likely they will be assigned–in equilibrium–to
the same module.

There are several properties of this system which made it the
objective of a large body of literature in the realm of physics.
Here, we will simply mention a few properties that are sufficient
to understand the relevance of using this model within the context
of this paper.

For the n-state Potts Model, it is possible to write for each node
an individual objective function, which dictates the score of the
current configuration of package assignment. Let πc denote the
package a class c is assigned to. Then, the objective function for
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A

B

C

D
a1

a2

c1

b1d1

Figure 3. Class a1 will be refactored. It can remain in package A,
or be moved to package B, C or D. Due to the topology of this
simple example (i.e. a single link to each package), each possibility
has equal probability to take place. We emphasize that–using Al-
gorithm 1–class a1 can only be moved to modules where it main-
tains software dependencies. Further generalizations are possible
and will be investigated in future research.

class c reads

uc = −
∑

c′∈N (c)

δ(πc, πc′).

The Kronecker delta function δ is equal to one if both arguments
are equal (i.e. if classes c and c′ belong to the same package), zero,
otherwise. The sum runs over all classes c′ which have dependency
relations with class c, i.e. the neighborhood of c, represented by
N (c). Summing up over all the nodes, we obtain

U =

k∑
c=1

uc = −
k∑

c=1

∑
c′∈N (c)

δ(πc, πc′), (3)

which measures the total score of the current configuration. In-
terestingly, when class c is moved from package πc to another
π′c, it is very simple to show that the total change is ∆U(πc →
π′c) = 2∆uc. This implies that the local maximization procedure,
is equivalent to the global maximization. For this particular prob-
lem, this is a very important property, as it implies that this simple
local rule is equivalent to a global one. This also implies that U in
Eq. 3 is the total energy of the system.

During the simulations, at every time step there are many pos-
sible configurations of module assignment for every node in the
source code of the project. Over time, the algorithm samples the
space of all possible assignments, such that the sampling probabil-
ity of a given configuration is a function of Equation 3. The process
of sampling is thus equivalent to the Metropolis algorithm [26],
which also allows the convergence time to be determined in a stan-
dard way [11, 19, 27]. Because of the results shown in section 3,
it is apparent that the energy landscape is not rugged, but smooth.
Thereby, the modularization process proposed in this paper always
converges to a stationary state, and a simulated annealing approach
(meaning the cooling schedule for the temperature) is not needed.

2.4 An Alternative Metric for Coupling and Cohesion
We follow the progress of our automated move refactoring strat-
egy by applying the Newman’s Q measure, a quantitative approach
widely used in complex networks theory [28, 29]. This was rein-
terpreted in [42–44] as an alternative method to monitor the evo-
lution of software modularity. In those empirical studies, we focus
on JAVA open source projects and show that Q successfully ex-
presses the congruence of the clusters of software dependencies
between classes and the decomposition of source code in terms of
JAVA packages. It is defined as

Q =

∑n
i eii −

∑n
i aibi

1−
∑n

i aibi
(4)

where eij is the fraction of links that connect nodes in module i to
nodes in module j, ai =

∑n
j eij and bi =

∑n
j eji are the column

and row sum respectively, while n corresponds to the number of
modules. If the network is undirected, the matrix defined by e is
symmetric and ai = bi [28]. We use Q to measure the fraction of
links that connect nodes within the same module (

∑n
i eii) minus

the value of the same quantity expected from a randomized network
(
∑n

i aibi). If the former is not better than random Q = 0 [29].
However, Q would not be defined if all links are concentrated
within a single module. For such trivial case, the scaling factor
equals zero (1−

∑n
i aibi = 1− 1 = 0). To avoid such a division

by zero, we defineQ = 0. In general,Q ∈ [−1, 1]. That is, the less
coupled the modules and the higher their cohesion, the closer Q is
to 1. As an illustration of its application, Q = 0.37 for the network
in Figure 2(a), while Q = 0.84 for the one in Figure 2(b).

2.5 SOMOMOTO: An Eclipse Plugin for ReModularization
SOMOMOTO is an ECLIPSE plug-in and its name stands for
“software modularization and monitoring tool”. Its initial goal is
providing a framework for remodularization of software written in
JAVA. It is a tool that developers can use to monitor the evolution
of a modular software architecture, both quantitatively and visu-
ally. For the quantitative part, we implement Q as described in sec-
tion 2.4, and we are planning to include other approaches available
in the literature. For the visualization of modular software archi-
tectures, we make use of GEPHI’s library for graph and network
layout [5]. Besides monitoring software modularity, we are also
able to act against its deterioration. This is achieved by implement-
ing our automated strategy discussed in section 2.3. Furthermore,
we plan to include competing approaches to foster direct compar-
ison with our methodology. We also plan to allow developers to
interfere with the algorithm’s behavior, for example, by enabling
manual move refactoring aided by an interactive network visualiza-
tion interface. Moreover, we plan to allow the developers to define
binding constraints to forbid or prioritize specific move refactor-
ing options, to which any automated approach must comply. The
source code, freely distribute with a GPL V3 license, is available
at http://sourceforge.net/projects/somomoto/.

3. Results
In the following, we apply our strategy to the JAVA OSS datasets
described in section 2.1. For each project listed in Table 1, we
follow the procedure outlined in section 2.2 to extract the software
dependency network of its last snapshot. This network is used
as the input of our strategy (see Algorithm 1) and we run it for
20 different values for the temperature parameter T . We choose
T ∈ [0.01, 1000] such that these values are uniformly distributed
on a logarithmic scale. We repeat this process 20 times in order to
average the dynamics with respect to T .
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3.1 The Temperature and the Equilibrium Configuration
In Figure 4 and 5, we depict theQ value and the number of modules
with respect to the iterations executed by our strategy. We show
three projects belonging to the QUALITAS CORPUS dataset: the
IDE ECLIPSE SDK, the graphical library JUNG and the database
interface HIBERNATE, because the results obtained for these three
projects are representative for the projects listed in Table 1. In ac-
cordance with the theoretical discussion presented in section 2.3,
low temperature values (i.e. T < 0.1) lead to equilibrium configu-
rations with low inter-module coupling and high intra-module co-
hesion. This range of temperature makes deteriorating move refac-
toring steps very unlikely. Thus software modularity improves sub-
stantially, as expressed in terms of the highQ values seen in figures
4(a), 4(b) and 4(c).

Interestingly, the highest Q values and the lowest number of
modules are obtained within an intermediate temperature range
(i.e. 0.1 < T < 10). For this range, we show in Table 2 that a
small improvement in Q (i.e. ≈ 4.0%)–with respect to the range
T < 0.1–is associated with a comparably larger drop in the num-
ber of modules (i.e. ≈ 17%). Furthermore, as depicted in Figures
5(a), 5(b) and 5(c), the execution of our strategy always leads to
a significant drop in the number of modules. For the lowest tem-
perature (i.e. T = 0.01) this drop is lowest and corresponds to
losing 68.4 ± 13.2% of the original modules. For higher tempera-
tures, the drop is even larger. Thus, as a side effect of our strategy,
a substantial fraction of the original structure of the source code
is lost. Although associated with an improvement in modularity, it
is not understood how this drop in the number of modules can af-
fect development performance. More research is needed to study
if for example, this extra improvement of ≈ 4% in Q values (e.g.
from 166% to 170%) justify a further drop of 17% in the number
of modules (e.g. from 68% to 85%). As a rule of thumb–if remod-
ularization is expected to preserve the most possible of the original
modular structure–only values of T � 0.1 should be considered.

Table 2. Average values for the change in Q and in the number of
modules for different temperature ranges. For the lowest tempera-
ture (i.e. T = 0.01) our strategy improves Q in 166.6 ± 77.3%,
while decreasing the number of modules in 68.4± 13.2%.

Temperature Range ∆Q (%) ∆ Modules (%)
T = 0.01 (lowest) 166.6± 77.3 −68.4± 13.2

T < 0.1 166.5± 77.6 −68.4± 13.2
0.1 < T < 10 170.5± 105.2 −85.4± 9.7

10 < T −50.1± 18.6 −82.9± 9.7
T = 1000 (highest) −52.1± 16.7 −82.4± 9.9

Figure 6(a) depicts the relation between Q and the number of
modules on the temperature parameter T . In this figure, we only
consider the equilibrium values of the former two quantities. We
bin the data points with respect to T and calculate the median value.
We also show the 90% and 10% quantiles. The first insight is that
the variability inQ is almost constant with respect to T , decreasing
slightly during the abrupt change between high and low Q values.
For small T , the variability in the number of modules is comparably
higher, but decreases significantly as T increases. Another insight
is the abrupt change in Q about T = 10. For T < 10 we observe
values of Q which are significantly higher than for T > 10. This
is further illustrated in Figure 6(b), which depicts the potential
energy difference between these two states: high potential energy
(i.e. high modularity and highQ) and low potential energy (i.e. low
modularity and low Q). As a final remark, these two contrasting
potential energy levels are the reason why we only observe few
equilibrium states in figures 4(a), 4(b) and 4(c): high Q (i.e. high
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Figure 4. Evolution of Q during move refactoring steps. The it-
eration number k displayed in the horizontal axis of each figure
corresponds to 100 × m × k move refactoring steps (i.e. m be-
ing the number of JAVA classes). Each curve represents the average
of 20 runs of our strategy with different values of the temperature
parameter T .

78



5 10 15 20

50
20

0
10

00

Iteration

M
od

ul
es

(a) ECLIPSE SDK

5 10 15 20

10
20

50
10

0

Iteration

M
od

ul
es

(b) JUNG

5 10 15 20

50
10

0
20

0
50

0

Iteration

M
od

ul
es

(c) HIBERNATE

100.01 0.1 1 100 1000

(d) T

Figure 5. Evolution of the number of required modules (i.e. non-
empty modules) during move refactoring steps. For intermediary
values (i.e. 0.1 < T < 10) we obtain the highest Q values on
the expense of losing a significant fraction of the original modules.
Thus, the use of T < 0.1 is recommended (see Figure 4).

potential energy), intermediaryQ (i.e. transitional state) and lowQ
(i.e. low potential energy).
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Figure 6. The role of the temperature T as a control parameter. (a)
Dependency of Q (i.e. dashed red circles) and the number of re-
quired modules (i.e. dashed blue triangles) with the temperature T .
Each curve is obtained by measuring the median value of the cor-
responding measures, when considering the simulation results ag-
gregated over T . The solid curves above and below the correspond-
ing measure represent the 90.0% and 10.0% quantiles respectively.
There is an abrupt change in the value ofQ as a function of the con-
trol parameter T . (b) Median value of the corresponding potential
energy U . Structured or well modularized software falls into the
T range mapping to a higher potential energy level (i.e. T < 10),
while poorly structured software falls into the deep valley with low
potential energy level (i.e. T > 10).

3.2 Remodularization Performance of our Strategy
In Figure 7(a), we show that the performance of our strategy does
not depend on the number of modules (i.e. no correlation between
Q and the number of modules). Furthermore, our strategy improved
the modularity of all projects considered in this paper, resulting in
remodularized software with an average value ofQ = 0.8±0.1 for
T = 0.01. Finally, the worse the modularity of a given architecture,
the higher the relative improvement as a result of the application of
our strategy. We depict this in Figure 7(b). Further research will
investigate if these results hold for different datasets.
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Figure 7. The performance of our strategy at equilibrium with
T = 0.01. (a) In the studied dataset, the number of modules does
not correlate with Q, thus we can discard any dependency of this
kind. (b) The worse the initial value of Q (i.e. the worse the initial
modular design), the larger the improvement achieved.

3.3 Move Refactoring in Empirical Data
In this section, we verify if the move refactoring suggestions dis-
covered by our strategy were actually executed in empirical data.
We focus on the CVS logs dataset, which reflects the iterative de-
velopment process with greater regularity, following closely the
coding decisions undertaken by the software developers.

In order to perform this comparison, we first need to be able
to detect move refactoring taking place within our datasets. We
solve this problem in the following way. We define a time stamped
CVS log snapshot st, which corresponds to the set of class depen-
dencies and respective package (module) membership observed
at time t. Each class in st is named with respect to the pat-
tern package namet.class namet. To detect move refactoring,
we take the simple approach of looking for unique class names
(class namet) in st, verifying if these names are found in st+1.
If the answer is positive, we check for modifications in the re-
spective package names (package namet). Thus, move refac-
toring is detected when class namet = class namet+1 and
package namet 6= package namet+1. We emphasize that this
approach only detects move refactoring of the kind defined in this
paper: a refactoring step that only modifies the package member-

ship of a class, without touching upon any of its contents and the
network of software dependencies.

With the move refactoring detection method outlined above, we
are able to compare our strategy output with the work of the soft-
ware developers. For each two consecutive CVS log snapshot st
and st+1, we extract the respective empirical software dependency
networks netet and netet+1 (see section 2.2). Let D be the set of
move refactoring steps performed by the developers between netet
and netet+1. Furthermore, we use netet as the input of our algo-
rithm and let it run until convergence (for T = 0.01). The network
of software dependencies resulting from this procedure is defined
as netst+1. Finally, let S be the set of move refactoring steps per-
formed by our strategy and detected between netet and netst+1. We
compare these two sets, thresholding on the ∆Q between t and
t+1, so that we focus on move refactoring taking place during sig-
nificant improvements in software modularity. For different values
of ∆Q, we calculate precision and recall and present the results
in Table 3. The results show that our strategy correctly suggest most
of the move refactoring steps performed by the software develop-
ers, as indicated by the relatively high values listed in the column
recall. In fact, our algorithm is much more aggressive than the de-
velopers when suggesting move refactoring steps. This is further
discussed this in section 4. Thus, our resulting set of suggestions is
much larger than the set chosen by developers. This is the reason
why our precision values are relatively small: the software devel-
opers do not use move refactoring consistently as mean to restore
software modularity.

Table 3. Comparison between the set of move refactoring steps
suggested by our strategy S, against the set of steps performed
by the developers D upon the empirical data. Quantitatively:
precision = |S∩D|

|S| and recall = |S∩D|
|D| . We present these

measures for different values of the threshold parameter ∆Q (i.e.
change in modularity measured in empirical data), thus allowing us
to focus on the move refactoring steps that had significant impact
on software modularity.

∆ Q (%) precision (%) recall (%)
1 4.9± 15.7 59.9± 35.4
5 7.0± 16.9 62.4± 35.3
10 8.1± 19.2 62.7± 39.0
15 5.7± 8.9 52.4± 40.8

3.4 SOMOMOTO in Action
As a simple test case, we employ SOMOMOTO in the remod-
ularization of a JAVA graphical library called JGRAPHX. Figure 8
depicts the software dependency network and the module mem-
bership of classes of JGRAPX, before and after remodularization.
The resulting network, depicted in Figure 8(b), clearly shows the
congruence between the clusters of software dependencies and the
source code decomposition into JAVA packages. Network nodes
(i.e. classes) bearing the same color are members of the same mod-
ules (i.e. packages).

4. Threats to Validity
Here, we address some of the concerns related to the results of our
approach. The first issue is our conscious decision of not consid-
ering the semantics of modules during the remodularization via
automated move refactorings. We are well aware of the fact that
there are modules whose contents should not be move refactored,
in despite of their significant impact on inter-module coupling. For
example, modules responsible for user interfaces may fall within
this category. Related to this issue, there might be modules that are
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(a) original JGRAPHX (Q = 0.04)

(b) refactored JGRAPHX (Q = 0.85)

Figure 8. Test case: the remodularization of JGRAPHX (a JAVA
graphical library). The JAVA classes are depicted as circles, while
their color reflects the corresponding package membership (same
color, same package). (a) original. (b) after remodularization by
SOMOMOTO.

believed to be already well structured. In such cases, further refac-
toring them would be detrimental. The simplest solution, which we
are planning to include in SOMOMOTO, is to allow developers
to mark modules and also classes that should not be remodularized
by an automated refactoring strategy. Further ideas related to direct
interference in the behavior of the algorithm, allowing it to cope
with developer preferences are possible. For example, the contents
of obsolete modules might need to be move refactored into other
modules. For such cases, our strategy can be applied by focusing
on a few modules, redistributing their content.

Another issue that might be circumvented by allowing the di-
rect interference of software developers is the observed significant
drop in the number of modules, even for small values of the tem-
perature parameter T . Our results show that at least ≈ 68% be-
come empty. One possible explanation is found in [7], where the
authors study a similar dataset of JAVA OSS projects, showing that
the minimization of the inter-module coupling and maximization of
intra-module cohesion is not a dominating module design principle.
Thus, a more realistic perspective on automated remodularization
should include complementary quantitative dimensions. These ad-
ditions, together with the implementation of competing approaches,

will be included in our ECLIPSE plug-in, in order to foster direct
comparison with our methodology, and also to provide a unified
framework for the remodularization of JAVA software. These steps
will foster its use in practice. We are further interested in the opin-
ion of software developers on the outcome of our automated move
refactoring strategy, also to understand if the seldom use of move
refactoring observed in our datasets is a general issue. We expect
that move refactoring, based on our automated strategy, will be
more frequently applied in practice. As shown in this paper, the
underlying problem landscape seems to be smooth, at least with
respect to the temperature parameter T . Thus, a convergence to fa-
vorable software modularities can be ensured.

5. Related Work
Software evolves in ways that do not necessarily reflect positively
in its modularity. In order to cope with the deterioration of the
latter, refactoring strategies can be employed. It has been argued
in [10, 15], that approaches considering developer expertise–to di-
rectly refactor the source code–seldom allow for a significant im-
provement in software modularity. The difficulties are mainly re-
lated to the problem of detecting possible candidates for refactor-
ing. This opens up many opportunities for the development of auto-
mated refactoring methodologies. Among the available approaches,
the ones that imply a reformulation of software modularity as a
combinatorial problem are quite common. Furthermore, most of
those are mainly concerned with the minimization of inter-module
coupling and maximization of intra-module cohesion [3], as dic-
tated by software engineering wisdom [13, 30, 34], both have po-
tentially high impact on maintenance costs. One of the earliest ap-
proaches in this direction offers an optimization search guided by
a genetic algorithm [14]. Their search starts with an initial modu-
lar decomposition, which at each iteration is replaced by the best
decomposition found in a population controlled by the algorithm.
A simple variation of this approach is to allow multiple searches
to take place in parallel, such that a majority rule is used to de-
termine the best modular decomposition [25]. An alternative way
to escape local optima is discussed in [1]. Similar to our own ap-
proach, they apply simulated annealing allowing the acceptance
of moves that do not always improve the functional being max-
imized. Moves that improve the respective functional are always
accepted. Our approach is different for being completely governed
by Eq. 1, such that every move bears a probability of being exe-
cuted. Their absolute contribution to the energy function influences
this probability but do not force an immediate acceptance. The au-
thors also introduce constraints to limit some aspects of the opti-
mization search that are missing here: maximal number of classes
that can change their packages, maximal number of classes that a
package can contain and the classes that should not change their
packages. These are in line with the idea of having software de-
velopers interfering with automated approaches more effectively,
as discussed in [23, 32]. We plan to include this methodology in
future releases of our plug-in. Furthermore, [1] report results on
modularity improvement only for highly limited values for these
three constraints. These result in small improvement in modularity,
which cannot be compared to the results–significantly higher–that
we present in our work. Complementary to the discussion above,
the work presented in [7] classifies modules by their role within
the architecture. They show that modules controlling io and gui
functions are the most congruent regarding cohesion and coupling
metrics. Moreover, [6, 33] advocate the use of metrics based on
the semantics of modules besides structural dependencies. Accord-
ing to [17, 18], structural dependencies are not uniformly impor-
tant with respect to the propagation of changes. Thus they empha-
size that future research should focus on their semantics rather than
the structure. Other approaches in the literature seek to group soft-
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ware constructs into modules according to measures that express
their similarity, a technique better known as clustering. Examples
of works within this context are presented in [4, 23, 32]. In [41],
a comparison between different clustering strategies concludes that
clustering algorithms do not reproduce the existing modular de-
composition of software projects, calling for further research.

6. Conclusion
In conclusion, we have introduced a simple stochastic algorithm
that allows to remodularize software architectures based on an au-
tomated suggestion of move refactorings. This algorithm is based
on the assumption that an optimum modular design of software
minimizes the coupling between modules, while the cohesion
within modules is maximized. We take a complex networks per-
spective on modularity in software dependency networks and cap-
ture both cohesion and coupling by a network-based, quantita-
tive measure. Furthermore, making use of the n-state Potts Model
known from statistical physics, our stochastic algorithm provides
a complex systems approach to the optimization of software mod-
ularity in dependency networks. We validate the remodularization
performance of our algorithm by applying it to two datasets which
allows us to study the evolution of software dependency networks
for 39 JAVA open source software projects. The results of our anal-
ysis validate that the modularity of these projects can be increased
on average by 166 ± 77%. We further show that the achievable
gain in modularity is related to the level of modularity in the initial
architecture, hence indicating the presence of a significant modular-
ization potential in architectures that exhibit low modularity. Based
on empirical data on the evolution of software modularity in JAVA
projects, we further extract move refactorings performed by devel-
opers to remodularize the software architecture. We then compare
the suggestions of our algorithm with the actual actions of develop-
ers and compare precision and recall of the refactoring suggestions.
The fact that our approach achieves a comparably high recall while
the precision is low highlights that a) our method suggests most of
the move refactorings that were identified by developers and b) that
our method was able to identify many more move refactoring than
were actually implemented by real developers. We argue that this
finding opens a number of interesting further research directions:
First, it can be seen as a challenge for the assumption that opti-
mal modular designs (from the perspective of developers) coincide
with a maximization of cohesion and a minimization of coupling.
Reasons for this most likely include the importance of context in
the choice of the package decomposition of projects, as well as the
existence of dependencies to third-party packages whose modular
structure cannot be easily changed. Secondly, it can be interpreted
in such a way that our method highlights a significant modulariza-
tion potential that currently goes unused in actual software projects.
Finally, it highlights the necessity of introducing an additional pa-
rameter to our algorithm, that influences how aggressive it is. In
summary, we argue that our work is a promising example for the
applicability of models, methods and abstractions from the study of
complex systems and complex networks in software engineering.
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