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Established open source software (OSS) projects can grow in size if new developers
join, but also the number of OSS projects can grow if developers choose to found new
projects. We discuss to what extent an established model for firm growth can be applied
to the dynamics of OSS projects. Our analysis is based on a large-scale data set from
SourceForge (SF) consisting of monthly data for 10 years, for up to 360,000 OSS projects
and up to 340,000 developers. Over this time period, we find an exponential growth both
in the number of projects and developers, with a remarkable increase of single-developer
projects after 2009. We analyze the monthly entry and exit rates for both projects
and developers, the growth rate of established projects and the monthly project size
distribution. To derive a prediction for the latter, we use modeling assumptions of how
newly entering developers choose to either found a new project or to join existing ones.
Our model applies only to collaborative projects that are deemed to grow in size by
attracting new developers. We verify, by a thorough statistical analysis, that the Yule—
Simon distribution is a valid candidate for the size distribution of collaborative projects
except for certain time periods where the modeling assumptions no longer hold. We
detect and empirically test the reason for this limitation, i.e., the fact that an increasing
number of established developers found additional new projects after 2009.

Keywords: Yule-Simon distribution; entry—exit dynamics; open source software; Source-
Forge.

1. Introduction

Open source software (OSS) communities share with other organizations, such as
social online platforms [16] or research and development networks [18], the feature
that they are inherently dynamic because of the continuous entry of new members
(developers, users, firms) and exit of established members. While this entry and exit
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dynamics usually resemble small perturbations that do not challenge the existence
of the organization, it can also lead to large cascades of members leaving [3], in
particular if these depend on the contribution of those who left. Hence, these pro-
cesses have the potential to destabilize an organization. On the other hand, the
entry—exit dynamics plays an important role in knowledge exchange between orga-
nizations. New members can bring new knowledge, information, skills or methods
that help organizations to innovate. Members leaving, on the other hand, make
space for newcomers and at the same time transfer knowledge they gained to other
organizations.

The economist Schumpeter saw the creative destruction process induced by new-
comers as an important element to renew, and to develop, the economic system [11].
Consequently, economists have for a long time focused on the role of entry and exit
of firms in industrial organization [9]. For example, they found positive correlations
between the entry rate of firms and innovation rates [6]. A particular strand of
research was devoted to the impact of newcomers on the size distribution of firms.
This is a long-standing topic in industrial organization since Gibrat (see [15]) intro-
duced the law of proportionate growth, i.e., & = Bz, where x represents the firm size
as measured by the number of employees, to explain the empirical size distribution
of firms. His assumptions lead to a log—normal distribution which is valid only if the
number of firms is kept constant. An important extension was made by Simon [12],
who combined the model of proportionate growth with assumptions about firm’s
entry. This yields another type of skew size distribution, which he called the Yule
distribution [19], but is now commonly called the Yule-Simon distribution. It is
characterized by a power-law tail, f(z) oc 77, for large values of x.

The debate about whether the firm size distribution is best described by a log—
normal, Yule-Simon, or a power-law distribution is still ongoing and the answer
largely depends on the dataset analyzed. Therefore, we focus more on the theoretical
insights obtained from these investigations. In particular, we ask to what extent an
economic model, i.e., the Simon model for the entry and subsequent growth of firms,
can be utilized to describe the dynamics in other types of social organizations, for
example OSS communities.

It would indeed add to the importance of the Simon model if we find that it also
describes the empirical findings in the dynamics of OSS communities. On the other
hand, a formal model of the entry dynamics and growth of OSS communities which
focuses on the choice of developers is a rather new and important contribution to
better understand the complex processes in sociotechnical systems [17, 5]. Precisely,
the novel contribution of our paper is not in the development of the model, but in
the discussion to what extent an existing economic model describes the dynamics
in OSS communities and how it could be extended for this purpose.

The methodological approach to test a model of firm growth for OSS commu-
nities is based on some implicit analogies. With OSS community, we refer to a
specific platform that hosts possibly hundreds of thousands of OSS projects, such
as Sourceforge.net (SF) or Github.com. That is, the community is comprised
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of projects each of which has a number of developers contributing. We note that
such as system is best described as a bipartite network as discussed in Sec. 2.4.
Continuing with the analogy to industrial organization, this system is equivalent
to a particular industrial sector (also called market). This market is comprised of
thousands of firms each of which has a number of employees. The size of the firm is
given by the number of employees, as the size of the project is given by the number
of developers.

With respect to the dynamics, we observe a continuous entry of new
firms/projects that have into the market/platform, but likewise also a continuous
exit, e.g., if firms go bankrupt or projects collapse. But it is not the firms/projects
that drive the dynamics. The real drivers are the underlying constituting elements,
i.e., the employees/developers, that create new firms/projects or join existing
ones, or decide to quit. This leaves a considerable degree of freedom. Employ-
ees/developers usually decide individually which firm/project to join or whether to
establish a new firm/project. Only the latter choice leads to an increase in the total
number of firms/projects, while the former still results in an increase in the size of
a given firm/project. Interestingly, on the system’s level this individual choice can
be described by a certain probability to found a new firm/project, which is con-
stant and the same across the population. While this does not reflect the individual
motivation, it is sufficient to describe the dynamics at the system’s level.

Hence, with a focus on the OSS community we are not so much interested in
the individual dynamics of specific projects which would be better captured in
case studies [20]. Instead, we want to investigate systemic properties that result
from a large number of projects. Such an approach does not necessarily address a
number of issues that may be also of interest in the study of OSS communities, such
as the motivation of developers [14], their individual activity [10] or their specific
role/skills in the project.

Our paper is organized as follows: Before we propose in, Sec. 4, a model to
capture the dynamics of projects (and indirectly also of developers), in Sec. 2 we
look at the macroscopic properties of the community, obtained by aggregating over
all projects. In Sec. 3, we also analyze in detail the entry and exit rates of projects
and developers and particularly focus on the size dependence of growth rates. The
model we develop leads to a prediction for the size distribution of projects, which is
compared with empirical data in Sec. 5. There, we also discuss reasons for deviations
from the prediction and possible extensions of our work.

2. Aggregated Data Analysis
2.1. Dataset description

The dataset used in our study was acquired from SF, which was one of the world’s
largest OSS development website until Github.com became predominant. Our ana-
lyzed dataset contains 89 monthly snapshots from January 2003 to June 2012,
in which information about all the developers and projects hosted on SF is recorded.
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In their early years, SF frequently changed the format in which information about
the project was stored. This leads to disruptions in our dataset because of corrupt
data, in particular snapshots between February 2003 and October 2004 and for
January 2005 are missing. Also, snapshots for July—September 2007 were removed
by the SF archive provider because of data corruption [8]. Eventually, in February
2006, SF' launched an autopurge service to remove inactive projects, which resulted
in abnormal dropdowns in the number of projects. Starting from June 2010, SF
automatically created a project for each developer. These “projects” do not repre-
sent real activities of the developers, so we removed them from the analysis. Also, in
total 3 developers/projects were manually removed from the dataset. These three
points had an extremely high number of links, were created by machines, and were
used for the purpose of advertising or testing.

Nevertheless, the remaining dataset is large and reliable enough for our analysis.
Table 1 gives an overview of the total number of projects, Np(t), and developers,
Ny(t), in the first and the last month recorded in our dataset. We also have infor-
mation about the relationship between projects and developers, in particular about
the entry date (month) in which a developer joined a project. We then assume that
a link between the developer and the project was created. The total number of links
between developers and projects, K(t), is also reported in Table 1. We note that,
due to the lack of data, the programming language used is available only for about
40% of all projects.

2.2. Aggregated growth rates

The most simple aggregated statistics is given by the total number of projects,
N, (t), developers, Nq(t) and links, K (t), and how these numbers change over time
measured in months. Figure 1(left) shows their evolution. As we clearly observe in
the log-linear plot, all of these quantities follow an exponential growth dynamics:

AA—)t( =wX, X(t) xexp{wt}. (1)

This is also known as the law of proportionate growth and indicates that the SF
community became more attractive the larger it was, which reamplified the growth
for many years. The respective growth rates w with At=1 month are given in
Table 2.

Table 1. Summary of available data for the first and
the last monthly snapshot of the dataset. Ny(t): total
number of developers at time ¢, Np(t): total number of
projects at time t, K (t): total number of links between
developers and projects at time t.

Time 01/2003 07/2012
Ny(t) 77.050 339.140
Np(t) 54.234 357.555
K(t) 106.840 576.238
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Fig. 1. (Color online) (Left) Total number of projects, Np(t) (yellow), total number of developers,
Ng4(t) (blue), and total number of links, K (¢) (green), over time measured in months. The solid
lines indicate fits of the growth rates given in Table 2. (Right) Number of new single-developer
projects (yellow) and multideveloper projects (blue) per month, over time. Solid lines represent the
median obtained over a rolling window of one year. The expectation—maximization (EM) estimate
(green) is discussed in Sec. 5.2. The missing points in 2006 correspond to the time periods when
autopurge was used excessively (see Sec. 2.1).

Table 2. Regression results for left panel of Fig. 1.

Variable Growth rate w (%) R? p-value

K(t) 1.30 >0.99  2.80e—99
Na(t) 1.27 >0.99  8.18e—99
Np(t) 1.54 >0.99  8.06e—82
Np(t < 2010) 1.33 >0.99  6.19¢—55
Np(t > 2010) 1.81 >0.99 2.30e—33

We note that the exponential growth remains despite of the data disruptions
explained in Sec. 2.1. A closer look at Fig. 1 and Table 2 reveals that, in the log—
linear plot, both Ny(t) and K (t) grow at about the same growth rate, constant over
time. For N, (), however, we observe a significant change in the growth rate at about
2010. Before 2010, N,(t) grew at a rate comparable to the other aggregated quan-
tities, but the growth significantly increased afterwards. Remarkably, this increase
does not become visible in the growth of the total number of links. Hence, the net-
work between developers and projects (to which the links refer) becomes sparser
after 2010.

We argue that the increasing growth rate for projects results from the fact
that developers started their own single-developer projects. These could be either
new developers entering SF or developers who already registered at SF for another
project and now create another one. This conjecture is explored in Fig. 1(right)
which plots the number of new projects per month that have only one developer
together with the respective number of new projects per month that have more
than one developer. We observe a significant increase of single-developer projects
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at about 2010, while the number of new multideveloper projects per month remain
about the same over time.

2.3. Change in programming languages

One of the reasons for the observed change towards more single-developer projects
could be in the rise of scripting languages for programming, such as PHP and, more
recently, Python. Such programming languages have been widely adopted in par-
ticular for single-developer projects, as we verify in our dataset. We already men-
tioned that only about 40% of all projects list their programming language and
some projects, especially large ones, also use more than one programming lan-
guages. Precisely, in January 2003 information about the programming languages
was available for 35.089 projects, which increased to 187.168 projects in July 2012.
There are in total 106 programming languages listed in the dataset, but more than
80% of all projects use one of the major 7 languages C, C#, C++, Python, PHP, Java
and JavaScript. Each of the remaining 99 languages has a share of less than 1%
and is ignored in the following.

The importance of the major 7 languages changed considerably over time, as
shown in Fig. 2(left). Despite the fact that this refers only to a subset of projects,
we can observe that C lost nearly 10% market share in 7 years (from 25% down to
15%), which is a loss of 40% of its original total market share against the other 6
languages even if the absolute number of projects using C has increased. Java, on
the other hand, increased its market share by about 10%. But the largest shares
are taken by JavaScript and C#.

Figure 2(right) plots, for each of the 7 main programming languages, how the
share of single-developer projects changes over time. We first note the trend towards
more single-developer projects for all of these 7 languages, but with noticeable
language preferences. In July 2012, 76% of all projects using C# are single-user
projects, followed by PHP with a share of 74% single-developer projects and Python
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Fig. 2. (Color online) (Left) Share of the 7 most popular programming languages (normalized
to 100%) over time measured in months, for all projects with available information about pro-
gramming languages. (Right) Share of single-developer projects (normalized for each of the 7 most
popular programming languages separately) over time measured in months.
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and JavaScript with 72%. That is, developers who prefer to work on their own,
have a clear preference for these languages.

2.4. The bipartite network of developers and projects

We now take a closer look at the developers and their projects. Both form a bipar-
tite network, i.e., a network where links exist between different types of nodes.
As explained above, we consider a link between a developer and a project if this
developer has registered for the project regardless of her subsequent activity. Thus,
instead of a weighted network where the weight of the links reflects the contribution,
in this paper we only consider an unweighted network. A sketch of this bipartite net-
work is shown in Fig. 3, where 10 developers contribute to eight different projects.
That is, links between developers only exist through projects, and links between
projects only through developers.

Nevertheless, we can draw two projections of this bipartite network, also shown
in Fig. 3, one with respect to the developers and one with respect to the projects.
In these projection, a link between developers appears if both of them contribute
to the same project, and a link between projects appears if both of them have
the same developer contributing. We emphasize that the bipartite network and its
projections are aggregated over a given time interval, i.e., a link essentially reflects
that two developers contributed to the same project in the same time interval (and
not necessarily at the same time).

Based on the aggregated description, we can define the degree k; of a developer
i as the number of links she has, i.e., the total number of projects she was involved
over that time period. Likewise, we can also define the degree x,. of a project r as the
total number of developers that contributed to this project over that time period. x
is also called the size of the project, as measured by the number of developers. The
network of developers can then be described by a degree distribution f(k) which
gives the fraction of developers with degree k in the population of all developers,
during the observation period. Likewise the degree distribution, later also called
size distribution, f(x) gives the fraction of projects with = developers, during the

0000000

Fig. 3. (Left) Example of a bipartite network where 10 developers labeled D1, ..., D10 contribute
to eight projects labeled P1,...P8. (Middle) Projection of the network of developers (linked by
common projects) and (right) projection of the network of projects (linked by common developers).
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Fig. 4. (Left) Degree (size) distribution of projects (i.e., number of developers per project), f(z)
and (right) degree distribution of developers (i.e., number of projects a developer contributes to),
f(k), for the monthly snapshot of June 2012.

observation period. Both distributions are plotted in Fig. 4 for the snapshot of June
2012, which is the last snapshot of our dataset.

We observe that both are very skew distributions, reflecting the fact that there
is a considerable probability to find projects of large sizes, or developers involved in
very many projects. The distributions resemble the known scale-free distributions
(such as power-law distributions), which indicates that there is no characteristic
scale (size, number of projects) for projects or developers. In fact, these are not
pure power-law distributions (note the bend in the shape and a rather limited
range), but the specific type will be discussed in Sec. 5.

3. The Growth of OSS Projects: A Microscopic Perspective
3.1. Entry and exit dynamics

In this section, we analyze the dynamics of projects and of the developer community
in more detail, by looking at the available data about birth and death of projects
and entry and exit of developers, instead of the aggregated growth. Figure 5(left)
shows the number of new projects per months, as well as the number of removed
projects per month, while Fig. 5(right) shows the corresponding numbers for devel-
opers. We call the underlying processes “entry” and “exit” of projects or developers,
respectively.

We can immediately observe that the number of entry events largely exceeds
the number of exit events, for each month, both for projects and developers, with
the exception of the large exit spikes observed in 20062007 because of the project
cleanup initiated by SF (see Sec. 2.1). The reason for the dominance of the entry
dynamics in normal time periods is that most projects or developers are not really
removed if they become inactive. In fact, it is not trivial to determine whether a
project or a developer is really inactive. Often, the activity just decreases consider-
ably, but does not cease to exist. Also, the fact that there is no activity in a given
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Fig. 5. (Color online) (Left) Number of new projects (yellow) and removed projects (gray) per
month. (Right) Number of new developers (blue) and removed developers (grey) per month.

time period does not imply that there will be also no activity in the future. We
have discussed this question in detail in [10]. In this paper, we do not speculate
about inactivity and just take the computed exit rates as a matter of fact. For the
modeling in Sec. 4, we take advantage of their very low numbers and will simply
neglect the exit dynamics.

Eventually, we also note the occasional large fluctuations in the exit rates, both
for projects and developers. These are the results of extraordinary efforts by SF
to clean up the project and developer base, e.g., by testing and implementing the
new autopurge system after turning off the old one (see Sec. 2.1). During and
shortly after this switch, either extremely higher or lower numbers of projects and
developers were detected as inactive and removed.

The second important observation is the growth of the monthly entry rates over
time, both for projects and developers (indeed, for projects, we could also note an
increase of the exit rates over time). High occasional fluctuations might result from
seasonal factors (holidays) or high media attention. This growth on an average is in
line with the exponential growth observed both for projects and developers on the
aggregated level as discussed in Sec. 2.2. The law of proportionate growth tells us
that SF, for the observed time interval, became more attractive the bigger it was.
Hence, the monthly entry rates shall depend on the current numbers of projects or
developers, respectively. Figure 6 plots these relative monthly entry rates:
N,(t) N]\%t()t At), galt) = Ny(t) NN(dt()t At)7 @)

P d
both for projects and developers. We note that, despite some considerable fluctua-
tions, they tend to vary around long-term stationary values g,, gq in a first-order

gp(t) =

approximation (i.e., we do not discuss a nonlinear dependency on N).

3.2. Size dependent growth rates of projects

So far, we have discussed the law of proportionate growth on the aggregated level,
both with respect to the absolute numbers Ny, N, and K, Eq. (1), and the relative
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Fig. 6. Relative monthly entry rate of projects, gp(t) (left), and of developers, g4(t) (right). The
horizontal lines represent the median of all the values in the time series (solid line) and the dashed
lines, 10% and 90% quantiles. The values read for gp: 10%: 0.0131, median: 0.0196 and 90%: 0.0284
and for g4: 10%: 0.0118, median: 0.0164 and 90%: 0.0232.

growth rates, gq and gp, Eq. (2). But we can also refer to the individual project
level, to verify this dynamics.

Recall that the size xz, of a project r is defined by the number of developers
contributing to it (z, was also called the degree of the project because, in the
bipartite network, links exist between developers and the project). Then, the growth
dynamics on the individual project level reads as

T (t+ At) — 2, (t)
At

o ) (). (3)

If v = 1, we have a growth strictly proportional to size, which is also known as
preferential attachment in network theory, i.e., nodes (projects) receive new links
(developers) proportional to the number of existing links. v > 1 would indicate a
super-linear growth.

As we have seen on the aggregated level, growth rates heavily fluctuate for each
month. Therefore, for the individual project level, we choose the time window At =
12 months, i.e., large enough to cancel out these fluctuations. We then compute the
average growth rate g(z) of projects with similar size = for each year, which is
shown in Fig. 7(left). We verify that the annual growth rate indeed increases with
the size of the project, as described in Eq. (3), and we barely notice differences in
this dependence for different years.

For a closer inspection of the law of proportionate growth, we estimate the
exponent 7, Eq. (3), from the data separately for each year. We find that ~ varies
indeed between 1.23 and 1.35 during the seven years period, hence the growth is
slightly super-linear for all times. However, because ~y is very close to 1, we can
still argue that the law of proportionate growth approximately holds, but there
is a higher-order dependence on the project size (~ z/ 4) which may enter the
proportionality factor f, i.e., & = f(z)z.
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Fig. 7. (Color online) (Left) Averaged annual growth rate g(z) over project size = (measured by
the number of developers) for each year separately. (Right) Exponent v, Eq. (3) for each year,
where error bars indicate the standard error.

4. A Dynamic Model of Project Growth
4.1. Dynamic assumptions

In the following, we focus on the dynamics at the project level, only. The number
of projects of a given size x (measured by the number of developers contributing
to the project) at a given time ¢ is given by n(z,t). Each project of size z at time ¢
belongs to the same size class Y; = x. Time ¢ is assumed to be discrete (measured in
months). The total number of projects, Np(t), and the total number of developers,
Ny(t), contributing to projects are defined as
Taw Tmax
Np(t) =Y n(x,t), Na(t)=>_ an(zt). (4)
rx=1 r=1

For our dynamic assumptions, we follow the model of Simon [12] for the entry of
new firms and the growth of existing firms. That means in our model, the entry of
new developers is assumed to be the only source for (i) establishing new projects and
(ii) enlarging existing ones. Precisely, we neglect the possibility that also established
developers already involved in other projects found a new project. This is supported
by the empirical finding that most developers are only involved in one project, as
showing by the degree distribution of developers in Fig. 4(right). But we will come
back on the validity of this assumption in Sec. 5.

We further neglect fragmentation, or fork processes, i.e., an existing larger
project splits up into two (or more) smaller projects, which could be also seen
as the foundation of a new project of size x > 1. We argue that such events exist
but are comparably rare so that we cannot sufficiently calibrate our model against
such data, and simply neglect these events.

The empirical finding of Fig. 1 tells us that the number of developers has
increased exponentially. We can include this in three different ways: (i) Choos-
ing a linearly increasing number of new entrants per time interval, (ii) rescaling
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the time interval linearly such that the number of new entrants per time interval
is constant and (iii) replacing time ¢ simply by the total number of developers N,.
We have chosen the latter as the most elegant way. Hence from Ny(t) o exp (wt),
we find the transformation ¢ — In Nj/w. From now on Ny = N measures time in
discrete steps, NN +1....

For the change of n(x,t), we discuss the following processes:

(i) A new project is founded: Here the assumption is that the project starts in the
smallest size class x = 1. There is a certain (conditional) probability,

PP (Vs =1|Yy =0) =po, (z=1), (5)

that we find in the next time step N + 1 a new project of size 1 (where its former
size 0 indicates that the project did not exist yet at time N). This probability is
denoted as po € (0,1) and assumed to be constant in time, except for the very first
time step N = 0 at which no projects exist yet. So one has to be founded with
certainty:

Poy=M=1|¥%=0)=1, (6)

i.e., we start the dynamic process with one project that is of the smallest possible
size 1. Because at each time step only one new developer enters, the largest possible
size of any project cannot be larger than N, i.e., we set Tyax = N.

(ii) An established project grows: Here the assumption is that the project only
grows by attracting one new developer at a time. This event is described by the
probability,

P (Vv =a|Yy =2 —1) = K(N)(z — 1)*n(z — 1, N),
(x=2,...,N), (7)

i.e., the (conditional) probability of a project in size class (x —1) to grow at time N
is proportional to the number of projects in that size class, n(z — 1, N). However,
the new developer may have a preference for larger or smaller projects, i.e., the
probability to choose from size class (z — 1) is also proportional to (z — 1)®*. The
value a = 0 would recover the case of no size preference, which was discussed, e.g.,
in [15]. The value @ = 1 would be a preference directly proportional to the existing
size, which was discussed in [12] to cope with Gibrat’s law of proportionate growth.
In the following, because of analytical tractability we will only consider the case
a = 1. Its empirical evidence is discussed in the following section, while in Sec. 5
consequences for different values of o are discussed.

K(N) is a proportionality constant that has to satisfy the condition that all
probabilities sum up to 1. Using a = 1 from now on, we find

N
> K(N)zn(z,N) +po =1 (8)
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Because of Eq. (4), Zi\;l an(z, N) = N, and we get from Eq. (8)

K(N)N+py=1= K(N) = ! ;Vpo. (9)

Note that this would not hold if & # 1. Equation (9) allows us to rewrite Eq. (7) as
(x = Dn(x—1,N)
N ;
z=2.... N. (10)

PNAL (Vi =2 | Yy =2 —1) = (1 —po)

z—1,x

Our kinetic assumptions as seen from the perspective of the developer, are summa-
rized as follows: At each time step N +1, one new developer arrives. This developer
has two options: (i) With probability pg, she chooses to found a new project and (ii)
with probability (1 — pg), she chooses to join one of the projects that exist at time
N, ie., N,(N). Without any preference for larger projects, she will choose a project
from size class x with a probability (1 — po)n(x, N)/N. But with the assumed size
preference, o = 1, the proportional weight = comes into account.

We emphasize that some of the dynamic processes one could think of are delib-
eratively neglected, e.g., we neglect that several developers join one or different
projects during the same time interval (which can be solved by changing the
time resolution). More importantly, we also neglect that developers switch between
projects, i.e., some projects lose and some projects gain in developers, but the total
number of developers does not change. Such dynamics can be seen as reallocation
processes among projects, and are neglected here.

Further we do not consider that existing projects shrink, i.e., loose in size if
developers leave. Since we have opted out reallocation processes, it would mean
that developers become inactive. Again, there is empirical evidence for this process
(see Fig. 5). But the number of developers exiting is (i) rather constant in time,
and (ii) much smaller than the number of new developers arriving. Therefore, we
will consider this in our model as a rescaling of the arrival rate of new developers
and will not explicitly model the shrinking process.

Eventually, we also do not consider that an established project ceases to exist,
either. Such processes can happen in two ways: (1) The project goes extinct and
(ii) two existing projects merge into a new one, with a larger project size. Again, in
our model we neglect both processes. Projects often become inactive, but are rarely
deleted, and for mergers and acquisitions the same argument as for the project forks

apply.
With these considerations, the total number of projects at time N is given by:
N
> n(z,N) = 1+po(N —1) = Npo. (11)
r=1

The first term, 1, results from the fact that there exists a new project in the first
time step. Then, during every time step from N = 2 up to IV a new project appears
with probability pg. Hence, if pg < 1 and N is large, this gives approximately
1+ po(IN — 1), which is Npg.
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4.2. The rate equation

We now start formalizing the above assumptions by developing a rate equation for
the relevant quantity n(z, N'). This can change by two processes: (i) Gain: A project
of size x — 1 is chosen by the developer and thus advances to the next size class,
leading to an increase in n(x, N) and (ii) loss: A project of size = is chosen by the
developer and thus advances to the next size class, leading to a decrease in n(z, N).

(x—1n(z—1,N) an(z,N)
N N ’
(x=2,...,N+1). (12)

n(x, N+1)—n(z,N) = (1—po)

The left-hand side (LHS) of Eq. (12) describes the net inflow of projects into size
class . Similarly we get for the number of new projects at time N + 1:

n(l, N
PN +1) (1, N) = po — (1~ po) ) (13)
The gain comes from funding new projects with a probability pg, whereas the loss
results from the fact that a project of size 1 grows into size 2.
In the following we will only consider “steady-state” distributions, i.e., we
assume that each size class grows proportionally with N:
n(z, N+1) N+1
n(z,N) N’
With An(z, N) =n(z, N +1) — n(z, N), we rewrite Eqgs. (12) and (13) as

(x=Dn(z—1,N) an(z,N)

Va,N, (if z < N). (14)

An(aN) = (1= ) | (o2 N1,

N N ’
(15)
n(l, N
An(1,N) =po — (1 —po) (N )
From Eq. (14) it follows that
n(z, N +1) = (1 + i) @, N), An(z,N) = &N (16)
N N
Plugging Eq. (16) into Egs. (12) and (13), we have
n(x, N)
A N)y=—>"-~2
i, N) = "0
B (z—=Dn(z—1,N) zn(z,N) B
_(1—p0)[ N N ;o x=2,...,N, (17)
n(l, N n(l, N
an( ) =" gy M)
which simplifies to the following set of equations:
0=(1—=po)(x—1)n(z—1,N)— (1 —po)zn(z, N) —n(z,N), (18)

0= Npo— (1 —po)n(l,N) _n(17N)'
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4.3. The size distribution of projects

In order to solve Eq. (18), we define the new parameter p as
1

~1—po’

where 1 < p < oo, because of pg € (0,1). To interpret p (see [12]), we keep in mind
that po actually decides how much of the growth (one developer per time unit) is
spent on new projects as compared to established projects. In Sec. 5.1, we will test

p (19)

this relation against our empirical data.
From Eq. (18), we find for the stationary solution for n(1, N) (denoted by *):

Npo p
“(1,N) = = 2 Np,, 20
WL N) = 5 = LN (20)
whereas we find for the stationary solution of n(x, N):
1-— -1 -1
Wi Ny = SZ)@ = gy 2 BT ), (21)
1+ (1—po)x p+z
We can solve this equation in an iterative manner, to find
-1 -2 1
B N ) S C ) B n*(1,N), (z=2,...N). (22)

(p+z)(p+(x—1)) (p+2)
To further compact this expression, we make use of the so-called gamma function
T'(z) with the property T'(z 4+ 1) = 2I'(z) that, for integer z, results in
I(z)=(z—1)\ (23)
The denominator of Eq. (22) can then be expressed as
F@+p+l)=@+plla+tp)=@+p)(e+p—1)---2C+p)I(p+2). (24)
With this and the expression for n*(1, N), Eq. (20), we can rewrite Eq. (22) as

I(z)L(p+2) ,,

L@l +2) g

Fx+p+1)
I'z)L'(p+1

_ps R D
Fx+p+1)

where I'(@)I'(p + 1)/T(x + p+ 1) = B(x, p+ 1) is the beta function.

The corrected, normalized Yule—Simon distribution, which holds also for z =1,
is then

n*(z,N) =

f*(1,N) = pB(z, p+ 1)Npo, (25)

_n'(&,N) _ plp+1) _
f(z,N) = Npo =pB(z,p+1) = Rt (x=1,2,...).  (26)
For large x we get for f(z, N),
fla,N) = pB(z,p+1) =~ pz~ P 2z — o0, (27)

which has the form of a power law if z is large enough. Therefore, the power law
approximates the Yule-Simon distribution only in its upper tail. To get Zipf’s law,
one has to assume pg — 0, as p = 1/(1 — pg) =~ 1. However, as noticed, e.g., by
Krugman [7], for pg — 0 the convergence to the steady state is infinitely slow.
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5. Discussion
5.1. Comparison with the Yule—Simon distribution

We have now a theoretical prediction for the size distribution of projects, Eq. (26),
and we have the respective empirical data for different years. Therefore, as a first
step, we evaluate the kind of distribution that was already plotted in Fig. 4.
Before doing so, we have to argue whether the theoretical prediction and the
empirical data really describe the same kind of projects. Our theoretical model
is based on the assumption that all projects entering the system are potentially
available to grow in the number of developers, i.e., developers can simply join
them. This, however, cannot be confirmed for all single-developer projects listed in
the database. Here, we have to consider that developers host their projects on SF
not just to invite collaboration, but for various reasons, e.g., for archival purposes
or just for distribution. While we cannot access the intrinsic reasons for a project
to be hosted on SF, we argue that all new projects appearing on SF every month
can be divided into two classes: (i) Collaborative projects, i.e., projects that are
meant to grow also by the contribution of other developers joining the project and
(ii) moncollaborative projects, that are not aimed at attracting other developers
and thus do not grow in size as measured by the number of developers, but maybe
grow in their lines of code submitted by the project holder. That is, we conjecture
that there is a sizable number of single-developer projects that, from their very
beginning, are not captured by our model that applies only to collaborative projects,
i.e., projects with the potential to grow in the number of developers.
Consequently, when comparing the predicted size distribution with empirical
data, we have to take into account that f(1,N), i.e., the normalized density of
projects of size 1, will need to be corrected to subtract the noncollaborative projects,
f 7’5(17 N) (where ¢ stands for noncollaborative), and to consider only the collaborative
ones, f¢(1, N). The procedure for this necessary correction will be described further
below. The resulting corrected size distribution will then be indicated by f¢(z, N).
As the null hypothesis for the size distribution f(x, N), we test for the Yule—
Simon distribution for which the maximum likelihood of the parameter p can be
computed numerically [4]. We perform a Kolmogorov—Smirnov (KS) test to deter-
mine the significance level (p-value) for which the empirical distribution matches
the Yule-Simon distribution. If p = 0 it means that the two distributions do not
match under any circumstances. The higher the p-value, the more likely it is that
the null hypothesis cannot be rejected. That means we cannot exclude that the
Yule-Simon distribution is the right distribution, but there might be also other
candidate distributions that could be considered (which we abstain from).
Applying the KS test in its simplest form to skew distributions usually results
in very high p-values, simply because the mass of the distribution is mostly con-
centrated in the head while the tail is weighted less. The problems resulting from
this naive approach have been discussed in detail in [1]. These authors also propose
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a more reliable, but computationally more demanding, goodness-of-fit test suitable
for heavy-tailed distributions which we adopt here.

We first turn to the degree distribution of developers, an example of which
is shown in Fig. 4(right). Our goodness-of-fit test reveals that the, rather steep,
“broad” developer degree distribution, f(k), does not follow a Yule-Simon distri-
bution (p = 0). But since we never made a hypothesis about this and did not
develop a model for it, we just take this as a fact.

With respect to the project size distribution, f(x), we have to test the null
hypothesis of the Yule-Simon distribution for each monthly snapshot, an example
of which is shown in Fig. 4(left). Simply fitting the Yule-Simon distribution to
the empirical one and calculating the parameter p,; = 3.88 according to [4] would
lead to the result shown in Fig. 8(lower right). The (dashed-line) fit is visually
worse, it does not capture the tail well because the (uncorrected) value of f(1,N)
is over-represented.

10° 100
Snapshot: 2004-12 Snapshot: 2007-12
107! Pai = 2.94 107! Pai = 3.04
Peot =2.88 Peot =2.89
1072 1072
=107 =103
1074 10~
1073 1073
—6 —6
10760 107 107 10 107 5o 107 107 10
Size x Size x
100 100
Snapshot: 2009-12 Snapshot: 2012-06
107! Pt = 3.27 107! Pai = 3.88
1072 Peot =2.94 1072 Peot = 3.03
=107 =107
< ~
1074 104
1073 1073
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Fig. 8. (Color online) Project size distribution f(z) for different monthly snapshots. For each
snapshot, a fit (dashed gray line) of the Yule-Simon distribution is plotted, for which the parameter
panl was numerically obtained. The goodness-of-fit test however rejects the hypothesis that the
Yule-Simon distribution fits the empirical one for most of the snapshots. A second fit (solid gray
line) of Yule-Simon distribution is plotted, for which the value for single-developer projects is
taken as unknown, and latent variable is also plotted, for which the same hypothesis cannot be
rejected for most of the snapshots.
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Therefore, in the next step we correct f(1, N) as follows: Given the value p.y
obtained from all projects, we first predict the value f¢ (1, N) for the collaborative
single-developer projects. Then, we do a new fit of the Yule-Simon distribution
which leads to a corrected value pl . With this new value, we do a better predic-
tion of £¢" (1, N) and so forth. This method is known as the EM algorithm [2], where
the number of single-developer projects f¢(1, N) is used as an unknown, latent vari-
able. EM is an iterative algorithm that consists of alternating expectation steps (E)
and maximization (M) steps. Expectation refers to predicting f¢(1, V), while max-
imization refers to calculating the appropriate pco;. We halt the algorithm when
the change of peo is smaller then a given threshold ¢ = 10~%. This leads to the
much better (solid gray line) fit shown in Fig. 8(lower right). Taking all corrected
distributions of Fig. 8 into account, we observe that the parameter p¢o stays almost
constant over time with values around pco; &~ 3 (which contrasts with the uncor-
rected distributions where p increases).

Now, with the corrected size distribution f¢(z, N'), we can apply our rigorous
goodness-of-fit test to each monthly snapshot. The results for the p-values are shown
in Fig. 9. We see that the null hypothesis of the Yule-Simon distribution as the
empirical one cannot be rejected for all times between late 2005 and late 2009. This
gives us great confidence both in our modeling assumptions and in the proposed
correction to distinguish between collaborative and noncollaborative projects.

At the same time, it leads us to the question what has changed after the end
of 2009, to make the fits invalid. As we observe, from 2010 the significance level
goes down considerably, although it is hardly really zero. In order to better under-
stand the dynamics from 2010, we will develop another conjecture in the following
section.

0.9~ . : . .
0.8 All projects

0.7 ~—= Collaborative projects

0.6
Zos
<
704
N9
03
02
0.1

0-0,005 3006 2007 2008 2009 2010 2011 2012

Time

Fig. 9. The p-values for the goodness-of-fit test [1] of the Yule-Simon distribution and the empir-
ical size distribution for each monthly snapshot. Collaborative projects refers to the project size
distribution with corrected value for the single-developer projects. We observe that the Yule—
Simon distribution is a plausible candidate for the size distribution of all projects only for certain
periods of time, while for the corrected empirical distribution it is a plausible candidate for most
of the times, notably from the late 2005 to the late 2009.

1550008-18



Advs. Complex Syst. 2014.17. Downloaded from www.worldscientific.com
by SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH (ETH) on 08/03/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

How do OSS Communities Change in Number and Size?

5.2. Estimations for pg

In the previous section, we demonstrated that the Yule-Simon distribution (and
the underlying model) is a valid candidate for describing the empirical dynamics of
collaborative projects at least for certain time intervals. We can link our findings for
the size distribution, which refer to the systemic level, back to our assumptions for
the microscopic dynamics. Recall that in the model of Simon [12] there is only one
parameter py that decides whether new developers found new projects, as opposed
to joining existing ones. This parameter, as far as the theory goes, is directly linked
to the exponent p of the distribution, via Eq. (19). Assuming p = 3, Eq. (19) would
give pg = 2/3, which is quite high if compared, e.g., to the firm size distribution
where p is about 1.2 and po about 0.16.

In this section, we want to find an independent way of estimating py. We recall
that pg essentially describes how much of the total growth goes into newly founded
projects. So, if Gyt is the growth spent on all existing projects and G is the growth
spent on new projects during a given time interval, then py = G1/Giot [13].

In our empirical data, Gt (t) is measured by the total number of developers
per month who enter SF, ANy,(¢) which is shown in Fig. 5(right). G1(t), on the
other hand, is given by the total number of newly founded projects per month,
AN,(t), shown in Fig. 5(left). So, we just divide these monthly entry rates, to
obtain po(t) = AN,(t)/ANg4(t) from the empirical data. We do this for the two
different datasets: (i) For all projects and (ii) for collaborative projects. For the
latter, we need to correct also ANy (t) because we have to exclude those developers
that joined SF to establish a noncollaborative project. These corrections are done
based on the empirical data.

The results are plotted in Fig. 10 for the two different data sets: (i) p§(¢) for all
projects and developers and (ii) p§(t) for the collaborative projects and developers.
As expected from the above discussion, we see differences for the time periods before
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Fig. 10. (Color online) Estimation of the parameter po from the monthly entry rates of
projects and developers, both for all projects/developers (pg(t), yellow dots) and for collaborative
projects/developers only (p§(t), red dots). The full line is the median of p§(t) at 0.6128.
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and after 2010. In fact, we see that after 2010 p&(¢) has consistently values above 1,
which cannot be realized from the assumption that only newly entering developers
establish new projects. If the latter holds, p§ is necessarily bound to values below 1.
To explain this, we arrive at our second conjecture that after 2010 an increasing
number of established developers started to found new projects. This, however, is
not considered in our modeling assumptions, therefore the prediction derived from
the model necessarily fails as we also see from the low p-values in Fig. 9.

If we look at collaborative projects, we see that p§(t) follows the same trend as
pg(t), just with a shift toward lower values. To find out whether this shift results
from a higher entry rate of collaborative projects or a lower entry rate of collab-
orative developers, we have plotted in Fig. 1(right) AN,(¢) values. We verify that
AN,(t) for collaborative projects is almost constant over all years, i.e., the increase
in p§(t) is from the lower entry rate of collaborative developers. Because of the simi-
lar trend compared to p§(t) after 2010 we also keep our conjecture that an increasing
number of established developers started to found new collaborative projects. This
violation of our modeling assumption can be confirmed also in Fig. 9, where we see
that the p-values for the goodness-of-fit test break down after end of 2009 for the
collaborative projects. If we take the median for p§(t) over the whole time period,
we find pf§ ~ 0.61 which is in a remarkable agreement with the theoretical value
po = 2/3 obtained from p = 3.

Eventually, we want to discuss an additional issue in comparing the empirical
and theoretical results. By means of the EM method, we found a way to correct
f(1, N) such that only collaborative projects are taken into account. The corrected
value f¢(1, N) can also be related to the empirical number of collaborative single-
developer projects. That is, by tracing their history, we can identify in the data set
those single-developer projects that grew at a later point in time. Their monthly
growth rate AN, is already plotted in Fig. 1(right) (blue line). We observe that
there is a shift between the predicted growth rate of collaborative single-developer
projects (green line) and the empirical one, which slightly increases over time from
values of 1.5 to 2.

The cause for this mismatch should not be attributed to the predicted value, but
rather to the empirical one because it underestimates the number of collaborative
projects for the following reason. Our empirical classification of collaborative versus
noncollaborative projects is based on their observed growth, only. If we classify
projects as noncollaborative, we make a mistake because projects may still grow
later in time, but this is just not observed. This mistake becomes larger the closer
we come to the end of the data set. Therefore, to estimate the magnitude of the
mistake, we should look at the oldest projects in the data set, which date back
to November/December 2004 (when the data became reliable). We verify that the
interval between the time when these projects were created and the time when
a second developer joined, can be well described by an exponential distribution,
f(t) = Xexp~*'. The expected value of this distribution is E[f] = 1/, which can be
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also measured from the data for almost 3000 projects created in these two months,
to yield roughly 450 days. The cumulative distribution gives us the probability that
those projects will grow before 450 days as Pr(¢t < E[t]) = 0.6.

This can now be used to calculate the mistake made by classifying projects as
noncollaborative during the last 450 days of the data set. It is about 40%, i.e., we
miss 40% of the collaborative projects in our estimation. The correction for the
observed number thus will be a factor of 1/0.6 ~ 1.6, which is very close to the
observed mismatch of 1.5 to 2. That is, with this rough estimation we can explain
fairly well the observed difference between the empirical and EM estimates.

To conclude our discussion so far, we find that the Yule-Simon distribution is a
valid candidate to describe the empirical size distribution of collaborative projects.
However, this validity is constrained to certain time periods for which the underlying
assumptions of the model can be justified. We observe that in later time periods
established developers started to create additional projects. This was not considered
in the model assumptions to derive the Yule-Simon distribution, where only newly
entering developers are considered to create new projects.

5.3. Extensions

In this paper, we have investigated to what extent an established model for the entry
of new firms and the growth of existing ones originally developed by Simon [12] can
be directly applied to OSS communities, where new projects are founded by new
developers and existing projects grow by attracting new developers.

The advantages of using the Simon model go alongside with the disadvantages
resulting from the limitations arising from the underlying assumptions. We discuss
them here, to give hints for further improvements of the model, because we noticed
that the Yule-Simon distribution, over large time intervals, has shown to be a
promising candidate for the size distribution of collaborative projects. However,
each of the suggestions discussed below will modify the original model such that
the analytical approach developed can no longer be used and closed-form solutions
will most likely not be derived.

The first suggestion relates to a known criticism of the Yule-Simon model,
namely that not more than one project can be founded or grow at each time step.
This does not make problems as long as one is interested in the asymptotic size
distribution. But in order to come up with a more realistic dynamics before the
steady state is reached, one should consider that projects can be founded and grow
in parallel. In particular, one has to consider concurrent activities, i.e., that not
only new developers perform an action, but also established developers can decide
to have more than one project, e.g., by founding a new one. As a consequence, py,
the probability to found a new project, shall become a heterogeneous parameter,
to better reflect individual motivations of developers. By this, we could further
distinguish between different personalities, e.g., founders, who prefer to start new
projects, and contributors, who prefer to join existing projects.
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As a second suggestion, we can consider that new developers may have a pref-
erence for larger or smaller projects, i.e., the probability to choose from size class
(x—1) is also proportional to (z—1)¢. This was already implemented in the dynamic
assumptions of Eq. (7) as a new element not discussed in [12]. The value o = 0
would recover the case of no size preference (as, e.g., also used to describe the firm
growth dynamics [15]), & = 1 would be a preference directly proportional to the
existing size and a < 0 would indicate that projects become less attractive with
increasing size, probably because of coordination and integration efforts. Hence, the
additional parameter « allows us to consider various (monotonous) size-dependent
preferences. To account for optimal project sizes, this dependence should be also
nonmonotonous. In our formal approach, we have set @ = 1 to favor the mathe-
matical approach by which the project size distribution was derived. Without this
restriction to closed-form solutions, an agent-based simulation could explore the
impact of size-dependent preferences on the project size distribution.

As a third suggestion, we should allow contributors to switch between projects,
in order to better utilize their skills. This would also have consequences for the
knowledge spillovers between projects, which is an important consideration for
management science and economics. On the formal modeling level, such addi-
tional assumptions would change the rate equation approach developed in Sec. 4.2,
by adding additional terms for the shrinkage of existing projects (developers
leave) and for the growth of existing projects by other than newly registered
developers.

A different set of possible extensions points to the way the developer activity is
counted in. So far, we have assumed that a newly entered developer immediately
founds a new project or joins an existing one. But developers may have joined SF
for different other reasons, e.g., for getting better access to code to reuse outside of
SFE. This may lead to a mismatch between the number of developers entering SF
per month and the assumed activity of these developers inside SF. In the same line,
in our analysis developers are assigned to projects, which is indicated by a link,
and our modeling approach assumes that such links do not change. However, links
do not necessarily mean that developers are actively working for the project, they
are only a first (and not necessarily the best) approximation of contributions. Here,
we note that already more refined measures are available which are discussed in a
subsequent paper [10]. But these measures largely depend on information that is
not available from SF, so we will have to resort to Github.com.

We conclude that, even with these limitations on the SF data, our analysis
about the launch of new projects and their subsequent growth is one of the largest
investigations on such data to date. It resulted in new findings about the project
size distribution and the degree distribution of developers, about their entry and
exit rates and the preferred usage of programming languages. In order to better
understand the dynamics that generated these systemic properties, we utilized an
established economic model that in this paper has proven to be a valuable candidate
also for the modeling of sociotechnical systems such as OSS communities. At the
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same time, the model also revealed some shortcomings which helps us to better
understand the role of underlying assumptions and their limitations. At the end,
not only the (positive) confirmation, but also the (negative) rejection of modeling
assumptions both generate important insights into the dynamics of real sociotech-
nical systems.
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