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Models of opinion formation are used to investigate many collective phenomena. While social

influence often constitutes a basic mechanism, its implementation differs between the models.

In this article, we provide a general framework of social influence based on dissonance mini-

mization. We only premise that individuals strive to minimize dissonance resulting from dif-

ferent opinions compared to individuals in a given social network. Within a game theoretic

context, we show that our concept of dissonance minimization resembles a coordination pro-

cess when interactions are homogeneous. We further show that different models of opinion

formation can be represented as best response dynamics within our framework. Thus, we offer

a unifying perspective on these heterogeneous models and link them to rational choice theory.

Keywords: conventions, coordination, opinion dynamics, social influence

1. INTRODUCTION

Models of opinion formation reflect the evolution of opinions, behaviors,
beliefs or attitudes (in the following only referred to as ‘‘opinions’’). These models
are used to study collective phenomena, such as the formation of consensus
and bipolarization (Hegselmann & Krause, 2002; Deffuant, Neau, Amblard, &
Weisbuch, 2000), minority opinion spreading (Galam, 2002; Tessone, Toral,
Amengual, Wio, & San Miguel, 2004) and the emergence of political parties
(Ben-Naim, 2005) or extremism (Deffuant, Neau, Amblard, & Weisbuch, 2002) Real
world processes of collective opinion formation include ‘‘wisdom of crowds’’
(Surowiecki, 2004) due to ‘‘swarm intelligence’’ (Bonabeau, Dorigo, & Theraulaz,
1999) or imperfect prediction markets (K.-Y. Chen, Fine, & Huberman, 2004),
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decision making in committees of experts (Visser & Swank, 2007) or participation
processes in democratic societies (de Sousa Santos, 1998).1

In multi-agent models of opinion formation, opinions evolve according to
prescribed rules of social interaction. Often the value of holding an opinion only
depends on the opinions of others. The rules of social interaction and individual
change differ between models as well as the set of possible opinions or the underlying
interaction networks. However, there are also common characteristics. Following
Flache andMacy (2008) and Flache andMäs (2008), one can identify two basic social
psychological mechanisms in many models of opinion formation: social influence
and homophily. According to social influence, interaction between individuals leads
to the adaptation of their respective opinions (Abelson, 1964; Brass, Galaskiewicz,
Greve, & Tsai, 1998; Kerr & Tindale, 2004; Strang & Soule, 1998); that is, interaction
increases the similarity of opinions. Here, interaction takes place in a social network
of individuals where agents interact locally with adjacent individuals (their neighbors).

The implementation of social influence in an opinion formation model usually
depends on the set of possible opinions. In the model of Axelrod (1997), an opinion is a
discrete vector representing an agent’s attitudes to different aspects, and an agent ran-
domly adopts a component of her counterpart’s opinion during interaction. In the voter
model introducedbyHolleyandLiggett (1975), opinionsarebinary, andagents choosean
opinionwith a probability that corresponds to its frequency in the agent’s neighborhood.

If opinions are continuous (e.g., Abelson, 1964; DeGroot, 1974; Friedkin &
Johnson, 1990; Davis, 1996; Krause, 2000; Deffuant et al., 2000), that is, real numbers
or real vectors, adaptation is usually attained by a weighted average of the opinions of
interacting agents. Lehrer and Wagner (1981) provide an axiomatic characterization,
which concludes that weighted arithmetic averaging is often the only appropriate
method of aggregation. Also, based on experiments, the theory of information inte-
gration (Anderson, 1971) poses weighted arithmetic averaging as a general mech-
anism of attitude change. For a fixed network, social influence induced by
weighted averaging in a connected network always leads to consensus (i.e., all agents
finally exhibit identical opinions) in the models of French (1956), Harary (1959),
Abelson (1964), and DeGroot (1974). This lead to the following complaint by
Abelson (1964): ‘‘Since universal ultimate agreement is an ubiquitous outcome of a
very broad class of models, we are naturally led to inquire what on earth one must
assume in order to generate the bimodal outcome of community cleavage studies’’
(p. 153). The model of Friedkin and Johnsen (1990) was partly developed as a
response to that complaint. It will turn out that our framework of dissonance mini-
mization usually does not imply ultimate agreement as the only stable outcome,
although we pose dissonance to rise monotonically with distance and also model
an agent’s aggregation of dissonance with respect to neighbors as a weighted sum.

The fact that consensus among the actors is a fixed point of the respective
dynamics in many models resembles a basic property of a coordination process
towards a particular type of social norm, namely a convention (Lewis, 1969) or coor-
dination norm (Ullmann-Margalit, 1977), respectively. According to the game theoretic
characterization of Ullmann-Margalit (1977), the main feature of a convention is that
there is no incentive for deviation once it has been established. Hence, models of

1For a more detailed overview of applications of opinion formation, see Lorenz (2007b, Section 2.1).
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opinion formation can be seen as an instance of a coordination process, in particular if
they lead to consensus as is the case in many models with global interaction.

Social networks as the conduits for social influence are however typically not
fixed but emerge out of the interaction of individuals (Granovetter, 1985). This is
where homophily comes into play. According to this concept, more similar agents
tend to interact more frequently (McPherson, Smith-Lovin, & Cook, 2001; Byrne,
1971; Kandel, 1978; Rogers & Bhowmik, 1970; Lazarsfeld & Merton, 1954). Axelrod
(1997) incorporated homophily in his model and showed by means of computer
simulations that this may result in a combination of local convergence and global
diversity of opinions: By allowing interaction between adjacent agents only if their
opinions are similar enough, the interaction network constantly changes. On the
one hand, homophily reinforces the effect of social influence as similarity of opinions
leads to more interaction and interaction increases similarity. But, on the other hand,
it inhibits the interaction between agents with sufficiently different opinions. This
results in clusters of agents with identical opinions while maintaining diversity as
the opinions in distinct clusters may differ. In models of continuous opinion dynam-
ics, a similar mechanism is known as bounded confidence (Hegselmann & Krause,
2002; Lorenz, 2007a). Here, the interaction network is determined by the agents’ opi-
nions: Two agents are adjacent if their opinions are sufficiently similar.

Recent research in opinion formation has investigated the effect of different
network structures (Weisbuch, 2004; Stauffer & Meyer-Ortmanns, 2005; Fortunato,
2004, 2005; Suchecki, Eguiluz, & San Miguel, 2005), agent heterogeneity with respect
to their level of homophily (Weisbuch, Deffuant, Amblard, & Nadal, 2002; Deffuant
et al., 2002; Weisbuch, Deffuant, & Amblard, 2005; Lorenz, 2010) and a coevolution
of opinions and network (Centola, Gonzalez-Avella, Eguiluz, & San Miguel, 2007;
Vazquez, Eguiluz, & San Miguel, 2008; Groeber et al., 2009). However, there is no
canonical implementation of social influence. Often opinions evolve by repeated arith-
metic averaging of a subset of opinions in a population. Hegselmann and Krause
(2005) show that different ways of averaging (e.g., a geometric or a power mean)
may significantly influence the dynamics within bounded confidence models. Another
mechanism is the adoption of another individual’s opinion with a certain probability,
in particular if the set of possible opinions does not allow for averaging (e.g., if opinions
are dichotomous). Depending on the implementation, social influence leads to different
effects at the macro level, for example consensus or a variety of opinions.

Due to the multitude of possible mechanisms to formalize social influence, a
deeper analysis of its possible first principles is required. Deriving social influence
implementations from a guiding first principle would make the conditions in models
more explicit and would allow for their mathematical analysis. In this article, we
provide a possible microfoundation of social influence based on the concept of dis-
sonance minimization. After introducing this framework in Section 2, our formal
analysis shows that it can be interpreted as a coordination process under very strict
conditions (Section 3) and, in accordance with social influence, leads to increasing
similarity of opinions under general assumptions (Section 4). As we only premise that
individuals strive to minimize dissonance, our framework can be interpreted as a
microfoundation of social influence based on a rational choice approach (Coleman,
1990). Note that the interaction network including the weights that determine inten-
sity of interactions are given a priori and are not subject to a rational choice. In
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Section 5, we further exemplify how different established models of opinion forma-
tion can be represented as special cases of our framework and thereby offer a
unifying perspective. We conclude the article with a discussion of our results and
possible extensions to our framework concerning other types of interaction.

2. FROM DISSONANCE MINIMIZATION TO SOCIAL INFLUENCE

According to the concept of social influence, an agent adjusts her opinion to
the opinions of her interaction partners (the in-group). In a specific model of a pro-
cess of opinion formation the rules for changes of agents’ opinions are set ad hoc as a
function of the agents’ and their neighbors’ opinions (e.g., building an arithmetic
mean). Often the ad hoc rules are based on some implicit assumptions on what
agents want to achieve by applying them (e.g., move to the ‘‘center’’ of relevant opi-
nions). In the following we propose dissonance minimization as a general individual
incentive which can be the basis of many models of opinion formation processes. The
proposition of an interaction rule is thus replaced by stating an agent’s distance dis-
sonance function, which is influenced by her in-group.

The idea of dissonanceminimization is inspired by the social psychological concept
of cognitive dissonance (Festinger, 1957), but we do not aim to place ourmodel within the
framework of the theory of cognitive dissonance. According to this concept, an agent
strives toward consistency (consonance) in her cognition which can be opinions, beliefs
or knowledge. Festinger’s (1957) basic hypotheses are that ‘‘[t]he existence of dissonance,
being psychologically uncomfortable, willmotivate the person to try to reduce the disson-
ance and achieve consonance’’ and that ‘‘[w]hen dissonance is present, in addition to try-
ing to reduce it, the person will actively avoid situations and information which would
likely increase the dissonance’’ (p. 3). Inconsistency in the theory of cognitive dissonance
is usually between individual actions and some self-concept, as, for example, smoking
while being aware of the health risk incurred. Instead, in our framework, an agent’s dis-
sonance results from the inconsistency between different opinions in her in-group.

Further on, Festinger (1957) states that ‘‘the strength of the pressures to reduce
the dissonance is a function of the magnitude of the dissonance’’ (p. 18). Taking this
analogy over to our framework of dissonance minimization, we assume that the
magnitude of dissonance an agent experiences from an in-group member with
another opinion increases with the distance between both opinions and with the
intensity of her relations in that group. In that sense, our framework formalizes dis-
sonance as an aversive stimulus whose minimization is a motivation for Festinger’s
older social comparison theory on changes of opinions.2

One can imagine different possible mechanisms how dissonance can be
reduced. In our framework, we assume that agents can only change their opinions.
Other possibilities like structural changes in their respective in-groups (by including
or excluding other agents or reconsidering the importance of their relationships) are
not considered. The reason is that we want to isolate the process of social influence
and therefore restrict the focus to interactions within a given social context, that is,
fixed exogenous in-groups. However, additional options to reduce dissonance would

2Dissonance reduction is a motivation which one could assume also in the balance theory (Heider,

1946) in triadic relations.
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be relevant for a microfoundation of homophily or another concept that refers to the
influence of opinions on the social network of the agents in a joint framework of
opinion formation.

In the following, we provide a formal framework using the above assumptions.
Let us consider n agents whereas agent i’s opinion is denoted by xi2X with
i2 {1, . . . , n}. X is the opinion space which may be finite or infinite. A vector
(x1, . . . , xn) of all opinions in the population is referred to as opinion profile. We
require that the opinion space X is metric; that is, there exists a distance function
d: X�X!Rþ with the following standard properties:

ðiÞ dðx; yÞ ¼ 0 , x ¼ y;

ðiiÞ dðx; yÞ ¼ dðy; xÞ;
ðiiiÞ dðx; yÞ � dðx; zÞ þ dðz; yÞ: ð1Þ

The first property reflects that a distance of zero between two opinions is only
possible if the opinions are equal. Further, the order of the opinions does not influence
the distance. The third property reflects the so-called triangle inequality: The distance
between two opinions is at least as high as the sum of the distances of each opinion to a
third opinion. Note that one can define the discrete metric d0 with d0(x, y)¼ 0 if x¼ y
and d0(x, y)¼ 1 otherwise on an arbitrary opinion space. We refer to d(x, y) as the
opinion distance between opinions x, y2X. In particular, we allow for multidimen-
sional opinions, i.e., vectors from X¼X1� . . .�Xm, where the components corre-
spond to the opinions on m different issues. If the opinions are real vectors
(X�R

m), we assume that d is the Euclidean distance if not stated otherwise, that is,

dðx; yÞ ¼ k x� y k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
1�j�m

jxðjÞ � xðjÞj2
s

; x ¼ ðxð1Þ; . . . ; xðmÞÞ;

y ¼ ðyð1Þ; . . . ; yðmÞÞ:

Further, we denote agent i’s in-group by Ii� I¼ {1, . . . , n}, and the agents in Ii are
i’s neighbors. The in-groups induce a graphW on the set of agents: For agents i and j, (i,
j) is in the set of edges E(W) of W if j is in i’s in-group, i.e., if j2 Ii. Note that the
microfoundation of rules with respect to how Ii is constituted is not subject of this article.
It may be defined by a fixed external interaction network as in the voter model (Holley &
Liggett, 1975), by the opinion profile as in bounded confidence models (e.g.,
Hegselmann & Krause, 2002) or may evolve over time according to a certain network
formation process (e.g., Centola et al., 2007; Vazquez et al., 2008; Groeber et al., 2009).

We assume that the value of holding a certain opinion is a sole function of the
opinion of others. Thus, there is no such thing as an unknown ‘‘true’’ opinion or a
certain external value an agent draws from holding a certain opinion. Thus, the dis-
sonance of an agent i with her opinion xi2X only depends on the dissonance caused
by the opinion difference of xi to opinions of the agents in i’s in-group. Considering
agent i and her neighbor j with opinions xi and xj, we assume that the magnitude of
dissonance is a function of the opinion distance; that is, it is captured by f �(d(xi, xj))
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whereas we refer to f�: Rþ!Rþ as the distance dissonance function. The minus
indicates that this function is intended to be minimized.

As we assume that the magnitude of total dissonance strictly increases with the
opinion distance, we require that f� is strictly increasing. Further, the magnitude
may depend on the intensity (or the weight) of the in-group relation between i and
j which we represent by aij2Rþ. We assume that the higher the intensity aij, the
higher the magnitude of dissonance caused by the opinion difference of i and j. More
precisely, it is aijf

�(d(xi, xj)). As an agent’s in-group may consist of more than one
agent, the overall extent of dissonance u�i of i is the sum of the dissonances with each
of her neighbors. We assume the dissonance function of agent i to be

u�i ðx1; . . . ; xnÞ ¼
X
j2Ii

aijf
�ðdðxi; xjÞÞ; ð2Þ

Thus, we assume that dissonances caused by difference to opinions of others
are additively separable. Note that additive separation and dissonance monotoni-
cally increasing with opinion distance are not the only possible properties of the dis-
sonance function and they are not in every case empirically supported (see Davis,
1996). For the purpose of this article—presenting a common framework for different
opinion dynamics models—these simple properties are however sufficient.

Dissonance as a weighted sum has similarities to the overt response in inte-
gration theory (Anderson, 1971) being a weighted sum of all relevant informational
stimuli. This is similar to weighted sums as mechanism to form new opinions in the
model of Abelson (1964), DeGroot (1974), Lehrer and Wagner (1981), and Friedkin
and Johnsen (1990). In all these models opinions are weighted and summed up lead-
ing directly to a change in an agent’s opinion. In contrast, in our framework distance
dissonances are weighted and summed up. In the following, we analyze which
actions may result from this. We will see that weighted arithmetic averaging is only
one possible outcome and occurs only under very specific conditions.

3. SOCIAL INFLUENCE AS A COORDINATION GAME

As mentioned before, models of opinion formation exhibit basic properties of
coordination processes in the sense of Lewis (1969) and Ullmann-Margalit (1977). In
the context of our framework we can confirm this by a game theoretical analysis of
the n-player game G� with strategy space X and utility function ui ¼ �u�i for each
agent (player).3 As the maximization of utility ui is equivalent to the minimization
of the dissonance u�i for all players, we can investigate the process of social influence
by analyzing G�. First we consider a scenario with perfectly rational agents where
the respective utility functions (including the distance dissonance function and the
intensity weights) are common knowledge.

3Of course, in these models, dissonance minimization is a rational choice of the agent, which is not

the idea of the psychological concept of cognitive dissonance. The mental process of reducing dissonance is

not necessarily a conscious one. Nevertheless it is interesting to study group constellations where disson-

ance becomes minimal, regardless of whether the adjustment mechanisms are consciously applied by the

agents or not.
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In this context, we first neglect local effects by assuming that an agent’s utility
of a certain opinion depends on all other agents’ opinions, i.e., Ii¼ In{i}. As f� is
strictly increasing, a state where all agents have identical opinions is a strict Nash
equilibrium of G�. We denote such a state as consensus and define the consensus
set as

C ¼ fðx; . . . ; xÞ 2 Xnjx 2 Xg: ð3Þ

The elements of C are referred to as consensus states or consensus profiles.
Further, we denote the set of Nash equilibria of G� by H(G�). As stated above, it
holds C�H(G�), but not every Nash equilibrium needs to be a consensus as the
following example shows:

Example 1. Consider four agents with opinion space X¼R and opinions
x1¼ x2¼ 0, x3¼ x4¼ 1 whereas the dissonance caused by deviation in opinion is pro-
portional to the opinion distance, that is, f�(z)¼ cz for all z> 0 with a constant
c> 0. If agent 1 perceives a higher dissonance for deviating from the opinion of agent
2 compared to the deviance to the opinions of agent 3 and agent 4 due to a more
intense in-group relation with agent 2 (e.g., by a12¼ 1, a13¼ a14¼ 0.1), the optimal
decision for agent 1 given the other agents’ opinions is x1. For analogous assump-
tions with respect to the other agents, xi is optimal for agent i given the other agents’
opinion for i¼ 1, . . . , 4; that is, the nonconsensus state (x1, . . . , x4) is a strict Nash
equilibrium of G�.

This example demonstrates that our framework is not subject to Abelson’s
observation that in most weighting models a connected network enforces ultimate
convergence to consensus.

We can provide a sufficient condition with respect to the distance dissonance
function f� and the intensities aij of in-group relations so that consensus states are
the only Nash equilibria of G� in case of global interaction.

Proposition 2. If Ii¼ In{i} and aij¼ a, then the set of Nash equilibria is equal to the
set of consensus states:

HðG�Þ ¼ C:

The proof can be found in the Appendix. The proposition states that all Nash
equilibria are consensus states in case of homogeneous intensities of in-group
relation. This condition cannot be omitted as demonstrated by Example 1. With
inhomogeneous intensities, non-consensual Nash equilbria become possible. These
Nash equilibria are inefficient in the sense that the total dissonance for all agents
is larger than in a consensual state. Thus, with inhomogeneous intensities, group
lock-in situations are possible. That means that agents can get stuck in a situation
where total dissonance is not zero, while every single agent would only increase
her dissonance by deviating.

In the case of homogeneous intensities of in-group relations, we can interpret
G� as a pure coordination game in the sense that the Nash equilibria (which coincide
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with the consensus states) exhibit the same payoffs whereas the payoffs for all agents
are also identical and maximal (no nonequilibrium state leads to a higher payoff for
any agent).

However, there may be focal points (Schelling, 1960), that is, opinions that are
in a sense more reasonable than others although the payoff in the corresponding
consensus state is identical. If agent i assumes that all other agents choose their
respective opinion nj randomly according to a uniform distribution on the opinion
space, she prefers an opinion x�i that minimizes the expected dissonance; that is,

x�i 2 argmin xj
X
j2Ii

aijEðf �ðdðx; njÞÞÞ
( )

: ð4Þ

For 2� 2 coordination games, this corresponds to the concept of risk domi-
nance of Harsanyi and Selten (1988). If we choose X¼ [0, 1] according to many mod-
els of continuous opinion dynamics (cf. Hegselmann & Krause, 2002) and assume
again global interaction and a uniform distribution of opinions, we obtain that for
x< 0.5,

Eðf �ðdðx; njÞÞÞ ¼
Z 1

0

f �ðdðx; yÞÞ dy

¼
Z xþ0:5

0

f �ðdðx; yÞÞ dyþ
Z 1

xþ0:5

f �ðdðx; yÞÞ dy

¼
Z 1

0:5�x

f �ðdð0:5; yÞÞ dyþ
Z 1

xþ0:5

f �ðdðx; yÞÞ dy

>

Z 1

0:5�x

f �ðdð0:5; yÞÞ dyþ
Z 0:5�x

0

f �ðdð0:5; yÞÞ dy

¼ Eðf �ðdð0:5; njÞÞÞ:

Analogously, one can show that the same holds for x> 0.5. Hence, x�i is the
unique focal point in the sense of Eq. (4). As this holds for all agents, the profile
where all agents exhibit the average opinion of the opinion space is the most reason-
able equilibrium in case of global interaction given the aforementioned constellation.
This holds independently of the distance dissonance function f� because of the sim-
ple structure of the opinion space. However, if we consider multidimensional (but
convex)4 opinion spaces, the average over all possible opinions is not necessarily a
focal point with respect to Eq. (4).

For less structured opinion spaces focal points may not exist. In particular,
there are no focal points if any two different opinions lead to identical dissonance,
that is, when d is the discrete metric. Then, all opinions are equivalent with respect
to expected dissonance if agents assume a uniform random distribution of opinions.
Hence, no focal point exists in this case.

4A set X�R
m is convex if for any x, y2X and a2 [0, 1] it holds that axþ (1� a)y2X; that is, for

any two points form the set, the line between them is also part of the set.
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As a conclusion, the set of Nash equilibria only coincides with the set of
consensus states under very strict conditions: It requires equal intensities of relations
in a fully connected social network. Further on, some opinion spaces exhibit focal
points and thus make some of the equilibrium profiles more reasonable to others
according to that concept.

4. MYOPIC BEST RESPONSE DYNAMICS

The game theoretic analysis of the former section is based on the assumption of
perfect rationality of all agents. This assumption is not realistic with respect to many
processes of opinion formation and in particular not in the context of the theory of
cognitive dissonance. Therefore, we now shift the focus to agents with bounded
rationality in the sense that they reduce their dissonance only with respect to the cur-
rent opinion profile in their neighborhood assuming all other agents will stick to
their opinion. This assumption is closer to the idea of cognitive dissonance in the
sense that the opinion of an agent adjusts with respect to the stimuli represented
by the current opinions of others. In game theory, this adjustment behavior is called
myopic best response strategy (see Ellison, 1998). When agents apply a myopic best
response strategy, an overall equilibrium usually requires more than one round of
adjustments. Thus, with agents applying myopic best response, their opinion forma-
tion process becomes a multiperiod dynamical model. Then, an agent’s own opinion
may also be included in the set of opinions that are relevant for her decision-making
process. This means that deviating from her own opinion may also cause dissonance
for an agent.

In Section 5 we reproduce or sketch four well known classes of models of opi-
nion formation as myopic best response dynamics within our framework. But before
that, we investigate how certain assumptions for the opinion space and the distance
dissonance function determine basic properties of the best response dynamics. In
particular, we show that dissonance minimization implies that adjusted opinions
remain in the convex hull5 of all opinions if the opinion space is convex (Proposition
3). We show that a distance dissonance function which is strictly convex6 ensures a
unique best response for each agent (Proposition 5). Finally, we demonstrate that a
quadratic distance dissonance function implies arithmetic averaging as adjustment
behavior (Proposition 7).

Myopic best response leads to the following dynamic model: At time t, agent i
chooses an opinion xi(tþ 1) that minimizes dissonance with respect to the opinion
profile x(t)¼ (x1(t), . . . , xn(t)) at time t. Here, ‘‘myopic’’ means that agents do not
take into account that other agents will do the same.7 We assume that x(t) is com-
mon knowledge at every time step. The dissonance depends on the opinion distance
according to the distance dissonance function f�. It further increases with the agent’s
confidence in her own opinion which is captured by aii. Thus, in contrast to the static

5The convex hull of a set of points is the smallest possible convex set which contains all points.
6A function f: R!R is strictly convex when it holds for any x, y2R and a2 ]0, 1[that f(axþ (1�

a)y)< af(x)þ (1� a)f(y); that is, the graph of f is below the line between any two points on the graph.
7In the context of games with a finite number of strategies, alternative dynamics that also include

the probability of randommistakes by the agents are provided by Young (1993). Ellison (1993), and Blume

(1995) investigate the effect of local interactions in this context.
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setting with perfectly rational agents (Section 3), agent i is part of her in-group Ii(t).
Agent i’s perceived dissonance caused by opinion y at time tþ 1 with opinion profile
x(t) at time t is therefore

u�i ðy; xðtÞÞ ¼
X
j2IiðtÞ

aijðtÞf �ðdðy; xjÞÞ: ð5Þ

Note that although the agent’s in-group Ii(t) including the weights aij(t) may
vary over time, we assume that this evolution of her personal network follows given
external rules and is independent of her decision making: At each timestep, an agent
only adjusts her own opinion and does not deliberately change her in-group.

The opinion xi(tþ 1) minimizes dissonance with respect to the opinion profile
x(t), that is,

xiðtþ 1Þ 2 argmax
y2X

u�i ðy; xðtÞÞ: ð6Þ

We also refer to xi(tþ 1) as a best response to the opinion profile x(t) and the
in-group Ii(t). Note that the above best response dynamics exhibit a synchronous
update of the agents’ opinions. Alternatively, one could choose one agent (randomly
or in sequence) per time step whose opinion is updated while the remaining agents’
opinions do not change. We refer to the latter case as asynchronous update of the
agents’ opinions. Both update mechanisms appear in models in the literature, and
can be implemented in our framework.

The following proposition shows that minimizing dissonance does not broaden
the opinion spectrum if the opinion space is convex.8

Proposition 3. Assume a convex opinion spaceX�R
m. Then for any agent i, a best

response x�i to an opinion profile x¼ (x1, . . . , xn) is in the convex hull of x; that is,

x�i 2 y 2 X jy ¼
X
j2Ii

kjxj; kj � 0;
X
j2Ii

kj ¼ 1

( )
:

This proposition supports the social influence hypothesis that interaction
increases similarity of the agents’ opinions, in the sense that opinions do not tend
to get more dissimilar. It holds under very general conditions, for example, indepen-
dently of the distance dissonance functions. In particular, it implies that the
maximum distance over all opinions does not increase during the best response
dynamics. If opinions are one dimensional (X�R), the proposition implies that
the best response x�i to an opinion profile (x1, . . . , xn) is a partial abstract mean
according to the definition of Hegselmann and Krause (2005). The proposition does
not hold if the opinion space is not convex, as the following example shows.

Example 4. Consider the discrete opinion space X¼ {(0, 3), (6, 0), (6, 6), (7, 3)}, a
population of n¼ 3 agents and assume that f�(z)¼ z2. Further, assume that the

8A set is convex if the line between any two points of the set is contained in the set.
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opinion profile at a time is x¼ (x1, x2, x3) with x1¼ (0, 3), x2¼ (6, 0), x3¼ (6, 6) (see
Figure 1). If the agents interact globally (i.e., Ii¼ I) and the intensity of the in-group
relations is homogeneous (i.e., aij¼ a and without a loss of generality9 a¼ 1), we
obtain that

u�1 ðð0; 3Þ; xÞ ¼ ð36þ 9Þ þ ð36þ 9Þ ¼ 90;

u�1 ðð6; 0Þ; xÞ ¼ ð36þ 9Þ þ 36 ¼ 81;

u�1 ðð6; 6Þ; xÞ ¼ ð36þ 9Þ þ 36 ¼ 81;

u�1 ðð7; 3Þ; xÞ ¼ 49þ ð1þ 9Þ þ ð1þ 9Þ ¼ 69;

that is, agent 1 perceives minimum dissonance if she chooses opinion x01 ¼ ð7; 3Þ
which is not in the convex hull of the opinion profile x.

A real world example of a convex, multidimensional opinion space is the spec-
trum of political positions with dimensions like left–right and liberal–conservative,
see Hermann and Leuthold (2003). The positions of a finite number of political par-
ties, however, constitute a nonconvex opinion space (as in Example 4): With respect
to an election, each voter can only choose those opinions that are reflected by a polit-
ical party.

Example 4 shows that a nonconvex opinion space allows for optimal opinions
that are not contained in the convex hull of the current opinion profile. Moreover,
the optimal opinion may also be more extreme than all current opinions in one

FIGURE 1 Visualization of Example 4: The dissonance minimizing opinion for agent 1 is x01 although it is

not contained in the convex hull of the opinions x1, x2 and x3.

9See the proof of Proposition 2.
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dimension: Agent 1 chooses a new opinion more to the right than all other agents’
opinions.

Further, Proposition 3 guarantees the existence of a best response for each
agent to any opinion profile if the distance dissonance function f� is continuous.
However, this best response is not necessarily unique. Uniqueness can be attained
if we require strict convexity for f�, as the following proposition shows.

Proposition 5. Assume a convex opinion space X�R
m. If the distance dissonance

function f� is continuous and strictly convex, there is always a unique best response
for each agent to a given opinion profile x¼ (x1, . . . , xn).

Strict convexity of f� implies that the dissonance caused by opinion distance
grows disproportionately. An increase of distance implies a proportionally larger
increase in dissonance. This property is necessary: A linear function is convex but
not strictly convex. Consequently, a linear function does not ensure a unique best
response as the following example shows. Certainly, it can be argued that this
assumption of strict convexity of f� does not always hold. In fact, there might be real
world situations where a diminishing marginal dissonance seems to be a more appro-
priate assumption. However, as we will point out in Section 5, we can reformulate
many models of opinion formation as best response dynamics within our framework
using a distance dissonance function that is strictly convex. Hence, one could argue
that this assumption is also inherently in these models.

Example 6. Consider the discrete opinion space X¼ [0, 1], a population of n¼ 2
agents and assume that f�(z)¼ z. Further, assume that the opinion profile at a time
is x¼ (x1, x2) with x1¼ 0, x2¼ 1. If the agents interact globally (i.e., Ii¼ I) and the
intensity of the in-group relations is homogeneous (i.e., aij¼ a), we obtain that
u�1 ðx01; xÞ ¼ j0� x01j þ j1� x01j. As x01 2 ½0; 1� it holds u�1 ðx01; xÞ ¼ x01 þ 1� x01 ¼ 1.
Thus, the dissonance is independent of the choice x01 and any value between 0 and
1 is a best response.

So far, we did not specify a particular functional form of the distance disson-
ance function f�. In the following, we determine the location of the best response
opinion for a given opinion profile if f� is quadratic.

Proposition 7. Let X�R
m be a convex opinion space. Further, let the distance

dissonance function be quadratic; that is, f�(z)¼ z2. Then the best response to an
opinion profile x¼ (x1, . . . , xn) for agent i with in-group Ii is

x� ¼
P

j aijxjP
j aij

:

Hence, the best response is the weighted average of current opinions with the
weights corresponding to the relative intensities of the in-group relations. This
coincides with the implementation of social influence (as a behavioral rule) in many
continuous models of opinion dynamics (e.g., Friedkin & Johnsen, 1990; Hegselmann
& Krause, 2002; Deffuant et al., 2000). We therefore use this proposition in the
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following section to show that the respective models can be reproduced by myopic
best response dynamics within our framework for a particular parameter
configuration.

Quadratically increasing distance dissonance functions are not the only reason-
able assumption. As we have seen, they imply arithmetic averaging as a best
response. For other distance dissonance functions, like linear ones, we know from
Proposition 5 that a best response does not have to be unique. Thereby, the possi-
bility of random choice enters models with linear dissonance functions even with
rational (but myopic) choice. In models with arithmetic averaging as agent’s adjust-
ment rule, researchers make an implicit assumption that an opinion which is further
away causes a disproportionally large dissonance. Our framework enables us to
study this implicit assumption from the perspective of dissonance minimization.

5. APPLICATION TO MODELS OF OPINION FORMATION

We will show that the dynamics of different models of opinion formation can
be obtained as special cases from our framework of myopic best response dynamics
with a particular definition of the distance dissonance function f� and in-groups Ii.
Thus, our concept of dissonance minimization provides a common microfoundation
for all these models, although they differ significantly in their opinion spaces and
interaction rules. With the social influence network model of Friedkin and Johnsen
(1990), we obtain a classical linear averaging model (with external influence) as spe-
cial case. In this model the opinion space is continuous. This also holds for bounded
confidence models as proposed by Krause (2000) and Deffuant et al. (2000). In these
models, the definition of in-groups that depend on the current opinion profile needs
to be reflected to be obtained by our framework. Further on, we sketch how the
model of cultural dissemination of Axelrod (1997) can be obtained, where the
opinion space contains vectors of discrete sets. Finally, we show how a class of linear
and non-linear voter models can also be obtained from the framework. In these
models the opinion space only contains two opposing opinions. Thus, all these
models can be mathematically microfounded in the framework of dissonance
minimization. However, this microfoundation is not exclusive: An alternative math-
ematical microfoundation of a model would offer another consistent explanation.

5.1. General Social Influence Network Model by Friedkin and
Johnsen

First, we consider the model of Friedkin and Johnsen (1990) (of which DeGroot
[1974] is a special case) in its most general form. The opinion space is a multidimen-
sional Euclidean space, but for simplicity one might think of X¼R or X¼ [0, 1]. In
the model, an agent adopts the (weighted) arithmetic mean of her opinion and the opi-
nions of her interaction partners at each time step. The interaction network is repre-
sented by its weighted adjacency matrix W(t)¼ (wij(t)) at time t. In its most general
form, the interaction network may change over time according to a particular pro-
cess. The coefficient wij(t) captures the intensity of the relation between agents i
and j. The in-group of Ii(t) manifests by all j for which wij(t)> 0 holds. Further on,
the agent is influenced by an exogenous variable zi(t) from the opinion space such
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as mass media or her initial opinion. The relative strength of the endogenous influence
compared to the exogenous influence for agent i is given by ai(t)2 [0, 1]. The relative
strengths of all agents’ endogenous influence are collected in the diagonal matrixA(t).
Note that in the most general form of the model the external influence as well as the
individual relative strength of the endogenous influence may change over time.

In matrix notation the dynamics of the opinion profile reads,

xðtþ 1Þ ¼ AðtÞWðtÞ xðtÞ þ ðI � AðtÞÞ zðtÞ;

where I is the identity matrix. In many versions of the model, z(t) is the constant profile
of initial opinions (Friedkin & Johnsen, 1990, 1999; Friedkin, 1998). This model is
obtained as myopic best response dynamics with respect to the dissonance function

uiðy; xðtÞÞ ¼ ai
X
j

wijðtÞ dðy; xjðtÞÞ2 þ ð1� aiÞ dðy; ziðtÞÞ2; y 2 X ;

with x(t) denoting the opinion profile at time t. Proposition 7 guarantees that the best
response profile to x(t) is the weighted arithmetic mean corresponding to the weights
of the quadratic distance dissonance functions: The weight of opinion xj(t) for agent i
is ai wij whereas the external influence is weighted by (1� ai). This is a weighting of the
two components with respect to the perception of dissonance. This is mathematically
analog to the weighting of behavioral response of opinion change with respect to the
two components in the original model formulation.

Friedkin and Johnsen (1990) claimed that the convergence of agents’ opinions
to the mean of initial opinions in their model is what Festinger (1954) predicted in his
social comparison theory. The above dissonance function provides a motivational
microfoundation in dissonance reduction.

5.2. Bounded Confidence Models

Models of continuous opinion dynamics under bounded confidence are similar
to the model of Friedkin and Johnsen (1990)10 because agents average the opinions
with respect to the agents in their current interaction network. The interaction net-
work in bounded confidence models is determined endogenously by the opinion pro-
file: Agents only interact if their opinions are sufficiently similar. At each time step,
an agent adopts the (weighted) arithmetic mean of her opinion and the opinions of
her interaction partners. The two prominent models of bounded confidence are the
Hegselmann-Krause model (Krause 2000; Hegselmann and Krause, 2002) and the
Deffuant-Weisbuch model (Deffuant et al., 2000; Weisbuch et al., 2002), which we
refer to as the HK model and the DW model, respectively. The difference between
the models is the update procedure of the agents’ opinions: In the HK model, agents
update their opinions simultaneously at each time step by adopting the arithmetic
mean (by component) of their in-group members. Here, the in-group IHK

i ðtÞ of agent
i at time t depends on the current opinion profile x(t): It contains those agents whose

10External influence as in Friedkin and Johnsen (1990) is not a component of bounded confidence

models.
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opinion distance to i’s opinion at time t does not exceed a threshold e; that is,

IHK
i ðtÞ ¼ fjjdðxiðtÞ; xjðtÞÞ < eig:

Often, one assumes homogeneous bounds of confidence, meaning that all
agents have identical thresholds (ei¼ e). With WHK(t) denoting the graph induced
by the in-groups at time t, the new opinion profile at time step tþ 1 can be formu-
lated as

xHKðtþ 1Þ ¼ AðWHKðtÞÞ xðtÞ;

whereas the components Aij(W) of the confidence matrix A(W) for in-groups I1, . . . ,
In and the corresponding graph W are defined by

AijðWÞ ¼
1
jIi j if j 2 Ii
0 otherwise

�
:

The update mechanism of the DW model is similar in the sense that an
agent’s new opinion is a weighted arithmetic mean of her in-group members’ opi-
nions. However, only two randomly chosen distinct agents can interact (if their
opinion distance does not exceed the threshold) at each time step while all other
agents keep their respective opinion. Formally, agent i’s in-group at time t is
defined as

IDW
i ðtÞ ¼ fZ1ðtÞ;Z2ðtÞg ifði ¼ Z1ðtÞ or i ¼ Z2ðtÞÞ and dðxZ1ðtÞ; xZ2ðtÞÞ < ei

fig otherwise.

�

whereas Z¼ (Z1, Z2) denotes a discrete time stochastic process with Z(t) uniformly
distributed on I2.11 With respect to the average of the two opinions, the weight of
an agent’s own opinion is usually specified by 1� l with l2 [0, 0.5] while the
weight of the other agent’s opinion is l. Hence, the new opinion profile at time
step tþ 1 is

xDWðtþ 1Þ ¼ AðlÞðWDWðtÞÞ xðtÞ;

with WDW(t) denoting the graph induced by the in-groups IDW
i ðtÞ and

A
ðlÞ
ij ðWÞ ¼

1� l if j ¼ i
l

jIi j�1 if j 2 Iinfig
0 otherwise

(
;

denoting the bounded confidence matrix for in-groups I1, . . . , In and the corre-
sponding graph W. Note that only two of these n in-groups contain two agents,
all other in-groups only trivially contain the agent itself.

11Sometimes, the stochastic process is defined on I2n{(i, i)ji2 I}; that is, only distinct agent are

chosen.
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According to this representation, we can reformulate both models as a myopic
best response dynamics with respect to the dissonance function

u�HK
i ðy; xðtÞÞ ¼

X
j2IHK

i ðtÞ
dðy; xjÞ2; y 2 Xm

for the HK model and

u�DW
i ðy; xðtÞÞ ¼

X
j2IDW

i ðtÞ
A

ðlÞ
ij ðWDWðtÞÞ dðy; xjÞ2; y 2 Xm

for the DW model with x(t) denoting the opinion profile at time t.12 Proposition 7
guarantees that the best response profile to x(t) is the weighted average correspond-
ing to the weights of the quadratic distance dissonance functions.

5.3. Cultural Dissemination

As Flache and Macy (2006a) pointed out, the famous model of Axelrod (1997)
on the dissemination of culture also implements a bounded confidence mechanism
although its opinion space and the distance function are discrete. In this model, each
opinion is a list of F features.13 For each feature, there are Q traits which represent
alternative values of the feature. Further, Axelrod assumes a fixed network of agents
where the probability of interaction for two adjacent agents is proportional to their
similarity measured by the proportion of identical features. If two agents interact,
one of them adopts the trait of a randomly selected feature of her interaction
partner.

To analyze this implementation of social influence from the perspective of our
framework, we abstain from a formal derivation of the model dynamics as it is not
unique for Axelrod’s model. Instead, we sketch how the main properties of its
implementation of social influence can be derived from our framework.

We can define the distance between two opinions as the number of different
traits of the opinions. However, we can only determine whether two traits are equal
or not: no further distinction of different traits is possible. Hence, there is in general
no unique best response to an opinion profile as the reduction of dissonance caused
by the adoption of a (distinct) trait of the interaction partner does not depend on the
feature to which the trait refers. Nevertheless, one can define a random choice of any
of the possible best responses within our framework. This would resemble the ran-
dom choice of the copied trait in the original model formulation. Further on, the fact
that only one feature is adopted instead of all can be modelled within our framework
by an appropriately large weight on the dissonance caused by deviating from the
own current opinion compared to other in-group members; that is, aii> aij with

12Note that Aij(W
HK(t)) is constant for all agents j in agent i’s in-group within the HK model.

Hence, this factor can be omitted in the utility function as strictly increasing transformations do not affect

the induced preferences.
13Axelrod (1997), however, uses the term ‘‘culture’’ instead of ‘‘opinion.’’
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j 6¼ i. Finally, the distance dissonance function f� has to increase slowly as only one
feature is adjusted in case of interaction regardless of the number of different
features between the agents.

In that way Axelrod’s model of cultural dissemination is also a model which
can be microfounded by dissonance minimization. From this perspective, agents in
Axelrod’s model put a large weight on the dissonance caused by deviating from their
own culture but also have distance dissonance functions which do not increase fast
with the number of different traits they observe in their interaction partner. With a
faster increasing distance dissonance function, copying more than one trait at a time
would be the agent’s best response.

5.4. Voter Models

Another approach to opinion formation can be found in voter models.14 In
these models the opinion space consists of only two opinions. At each time step, a
randomly selected agent i chooses a particular opinion j with a probability p ¼
gðrðjÞi ðxÞÞ which depends on the local frequency r

ðjÞ
i 2 ½0; 1� of that opinion in i’s

neighborhood Ii for a given opinion profile x. Here, g is called the response function.
If g is linear, we have a linear voter model. The linear voter model with gðriðxÞÞ ¼
r
ðjÞ
i ðxÞ was introduced independently by Clifford and Sudbury (1973) and Holley
and Liggett (1975). Examples of nonlinear voter models can be found in Molofsky,
Durrett, Dushoff, Griffeath, and Levin (1999), Schweitzer and Behera (2009), and
Stark, Tessone, and Schweitzer (2008). In these models, the in-group structure
usually does not change over time; that is, there is no influence of the opinions on
the network. Such an influence could be caused by homophily.15

Let us assume that agent i’s dissonance u�i caused by deviance from a given
opinion profile is defined according to Eq. (5). Further, we assume homogeneous
intensity of in-group relations (aij¼ a). If the agents are restricted to a deterministic
choice of opinions, i’s best response to a given opinion profile x¼ (x1 . . ., xi) is to
choose x�i as

x�i ¼
0 if r

ð0Þ
i > r

ð1Þ
i

1 if r
ð1Þ
i > r

ð0Þ
i

(
;

that is, the opinion with maximum frequency in her in-group. If the local frequency
of both opinions is identical, the best response is not unique and we have to specify a
tie breaker rule or let the agent choose randomly.

In the following, we allow for mixed strategies instead of restricting the agents
to a deterministic choice. Each agent i chooses a probability distribution on the opi-
nion space. As there are only two opinions, a distribution can be represented by the
vector ðpð0Þi ; p

ð1Þ
i Þ with p

ðxÞ
i denoting the probability of choosing opinion x2X. As

14Related two-state model are the social impact model (Latanè, 1981) which are analyzed within the

framework of cellular automata (Lewenstein, Nowak, & Latané, 1992) and models of social pressure and

polarization (Macy, Kitts, Flache, & Steve, 2003) which is analyzed within the framework of Hopfield

networks. In both models social impact (respectively social pressure) adds up as the opinions of neighbors.
15An exception is the model of Vazquez et al. (2008).
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p
ð0Þ
i þ p

ð1Þ
i ¼ 1, we can define pi ¼ p

ð1Þ
i whereas p

ð0Þ
i ¼ 1� pi. However, only the final

opinion is observed by the agents at the next time step. If the agents minimize their
expected dissonance according to their respective probability distribution, the best
response is still to choose the opinion with maximum frequency in an agent’s
in-group with probability one as

Epðu�i ðY ; xÞÞ ¼ ð1� pÞ
X
xj¼0
j2Ii

f �ð1Þ þ p
X
xj¼1
j2Ii

f �ð1Þ;

with Y denoting the random choice which is distributed according to p. In particular,
the best response does not depend on the distance dissonance function f�.

Instead of referring to expected dissonance, we assume that the agents mini-
mize the cumulative dissonance caused by the expected deviance to their in-group
members’ opinions according to the probability distribution p¼ p(1):

~uu�i ðp; xÞ ¼
X
j2Ii

f �ðpdð1; xjÞ þ ð1� pÞdð0; xjÞÞ

¼
X
xj¼0
j2Ii

f �ðpÞ þ
X
xj¼1
j2Ii

f �ð1� pÞ:

Without affecting the induced preferences, we can normalize the dissonance per-
ceived by an agent by the population size n and redefine

~uu�i ðp; xÞ ¼ ð1� riðxÞÞf �ðpÞ þ riðxÞf �ð1� pÞ; ð7Þ

with ri(x) denoting the proportion of agent i’s in-group members with opinion one in
the opinion profile x. In particular, the best response to a given opinion profile now
crucially depends on the distance dissonance function f�. If f�(z)¼ z2, the optimal
distribution p�i for agent i with respect to an opinion profile x has to satisfy the first
order condition

ð1� riðxÞÞp�i ¼ riðxÞð1� p�i Þ:

Therefore, we obtain

p�i ¼ riðxÞ;

that is, the best response is to choose the probability distribution that corresponds
to the local frequency of the opinions in an agent’s in-group. Thus, for a quadratic
distance dissonance function f�, the myopic best response dynamics with respect to
the utility function in Eq. (7) is identical to the linear voter model if at each time step
one agent is randomly selected to update.

In general, the shape of f� analogously induces a voter model where the prob-
ability for an agent to select a particular opinion depends non-linearly on the local
frequency of that opinion in the agent’s in-group. By Proposition 5 it follows that the
optimal distribution with respect to any opinion profile is always unique if f� is
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strictly convex.16 Further, we derive several properties of the best response to a given
local frequency of the opinions in the following proposition:

Proposition 8. Let f� be convex and let p�i ¼ gðriðxÞÞ denote an agent’s best
response to given local opinion frequencies in the opinion profile x. Then the
following statements hold:

ðiÞ gð1� riðxÞÞ ¼ 1� gðriðxÞÞ;
ðiiÞ gð0Þ ¼ 0; gð0:5Þ ¼ 0:5; gð1Þ ¼ 1;

ðiiiÞ g is increasing;

ðivÞ gðpÞ 2 ð0; 1Þ for p 2 ð0; 1Þ:

In Figure 2 we depict the decision function g induced by distance dissonance
functions f�(z)¼ za for various parameters a> 1 which implies strict convexity of
f�. We observe that as a increases, a small difference in the local frequencies of
the two opinions is less reflected in the respective opinions’ selection probabilities.
The reason is that an increase in a leads to a decreased dissonance caused by small

16Although the basic opinion space X¼ {0, 1} is not convex, we can fulfill the requirements of

Proposition 5 by extending it to the interval [0, 1]. Here, we consider only best responses to ‘‘pure’’ opinion

profiles (x1, . . . , xn) with xi2 {0, 1}.

FIGURE 2 Agent i’s optimal probability ga(ri) of choosing an opinion with respect to a local frequency ri
of that opinion for f�(z)¼ za and various values of a. The myopic best response dynamics according to Eq.

(7) correspond to (nonlinear) voter models with response function ga.
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opinion differences. Hence, for a!1, the agents choose both opinions with equal
probability unless there is consensus in their respective in-group. For small values of
a, we observe the opposite effect as then the dissonance caused by a small opinion
difference is high. Thus, in the limit for a! 1, the agents choose the majority opinion
with probability one. Note that the linear voter model is obtained for a¼ 2.

If we only account for dissonance resulting from opinion difference to in-group
members, the response function is always increasing according to Proposition 8.
However, also voter models with decreasing or nonmonotone response function
are investigated (e.g., Schweitzer & Behera, 2009; Molofsky et al., 1999). Note that
these types of non-linear voter models can be obtained within our framework if we
incorporate consonant perception (see Section 6).

An alternative way to deduce the dynamics of the linear voter model from the
utility functions in Eq. (5) is to extend a result from Kosfeld (2002) in the context of
a 2� 2 coordination game without risk-dominant equilibrium. Here, following the
framework of Rosenthal (1989) and the proportional imitation rule introduced by
Schlag (1998), it was shown that the linear voter model corresponds to a stochastic
process where the probabilities of switching between the two strategies are pro-
portional to the payoff difference.17 Similarly, we can show that an analogous mech-
anism with respect to the n-player coordination game with strategy spaces Si¼ {0, 1}
and payoffs according to Eq. (5) leads to the dynamics of the linear voter model.
Here, let p

ðjÞ
i ðxÞj ¼ 0; 1, denote the probability that agent i chooses opinion j for a

given opinion profile x. Following Rosenthal (1989), we define uiðy; xÞ ¼ �u�i ðy; xÞ
for y2 {0, 1} and require that

p
ð1Þ
i ðxÞ � p

ð0Þ
i ðxÞ ¼ kðuið1; xÞ � uið0; xÞÞ; ð8Þ

with k> 0; that is, the difference of the probabilities for the two opinions is pro-
portional to the respective payoff difference. With respect to the latter term we
obtain

ðuið1; xÞ � uið0;xÞÞ ¼
X
xj¼1
j2Ii

f �ð1Þ �
X
xj¼0
j2Ii

f �ð1Þ ¼ ðrð1Þi ðxÞ � r
ð0Þ
i Þf �ð1Þ:

Using Eq. (8) for k¼ f�(1)�1 and p
ð1Þ
i ðxÞ þ p

ð0Þ
i ðxÞ ¼ 1 ¼ r

ð1Þ
i ðxÞ þ r

ð0Þ
i , this

leads to

p
ð1Þ
i ðxÞ ¼ r

ð1Þ
i ðxÞ;

that is, each agent’s best response to a given opinion profile x is to adopt an opinion
with the probability that corresponds to that opinion’s relative frequency in her
in-group according to x. Thus, if at each time step an agent is selected to choose
the optimal opinion distribution, this process coincides with the linear voter model.

17If there is a risk dominant equilibrium, the process corresponds to a biased voter model (Schwartz,

1977).
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6. CONCLUSION

In this article, we provide a microfoundation of social influence with a general
framework inspired by the social psychological concept of cognitive dissonance. Our
main assumption is that deviation from the opinions of in-group members leads to
dissonance which the agents want to minimize by adjusting their opinions. We
showed that in this framework, social influence can be interpreted as a coordination
process in a game theoretical context. While social influence is a premise in many
models of opinion formation, we can derive the fact that interaction does not
decrease the similarity of opinions from the assumption that the agents strive to
minimize dissonance. Further, we formulated different models of opinion formation
as myopic best response dynamics according to our framework of dissonance mini-
mization and thereby provided a common basis for them. Hence, we contributed to
their theoretical foundation and developed a link to rational choice theory.

With respect to opinion formation, our framework is restricted to the effect of the
agent network on the opinions while the network is not deliberately changed by the
agents but evolves according to given external rules. Many models additionally assume
that a change in opinions feeds back on the agent network which then evolves endogen-
ously. Our framework could be extended by allowing for a change of an agent’s
in-group structure in order to reduce dissonance (akin to Centola et al., 2007; Vazquez
et al., 2008; or Groeber, Schweitzer, & Press, 2009). This change could either consist in
a reduction of relation intensity or the elimination of an agent from the in-group.

Further, following Flache and Mäs (2008), the concepts of social influence and
homophily are not sufficient to explain why opinions sometimes drift away from
moderate to extreme positions as only attractive forces between opinions are con-
sidered. Therefore, some models (Jager & Amblard, 2005; Fent, Groeber, &
Schweitzer, 2007; Flache & Macy, 2006b; Kitts, 2006; Salzarulo, 2006; Baldassarri
& Bearman, 2007) incorporate the complementary concepts of rejection and hetero-
phobia. According to rejection, agents change their opinions to become more dissimi-
lar to interaction partners they do not like (Abelson, 1964; Kitts, 2006; Tsuji, 2002).
Heterophobia states that agents dislike agents with sufficiently different opinions
(Byrne, Clore, & Smeaton, 1986; F. Chen & Kenrick, 2002; Pilkington & Lydon,
1997; Rosenbaum, 1986). The concept of rejection can be integrated in our general
framework by allowing that agents perceive consonance in case of deviation from the
opinions of interaction partners they dislike (cf. Festinger, 1957). In this case,
interaction leads to an interplay of attractive and repulsive forces. Such a mechanism
has been implemented in the model of Fent et al. (2007) which leads to consensus,
polarization or a broad, multimodal distribution of opinions depending on the
structure of the interaction network.
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Lewenstein, M., Nowak, A., & Latané, B. (1992). Statistical mechanics of social impact.

Physical Review A, 45, 763–776.
Lewis, D. (1969). Convention. Cambridge, MA: Harvard University Press.

Lorenz, J. (2007a). Continuous opinion dynamics under bounded confidence: A survey. Inter-
national Journal of Modern Physics C, 18, 1819–1838.

Lorenz, J. (2007b). Repeated averaging and bounded confidence-modeling, analysis and simula-
tion of continuous opinion dynamics (Doctoral dissertation). Universität Bremen,
Germany. Retrieved from http://nbn-esolving.de/urn:nbn:de:gbv:46-diss000106688.

Lorenz, J. (2010). Heterogeneous bounds of confidence: Meet, discuss and find consensus!
Complexity, 15, 43–52.

Macy, M. W., Kitts, J. A., Flache, A., & Steve, B. (2003). Polarization in dynamic networks: A
Hopfield model of emergent structure. In R. Breiger, K. Carley, & P. Pattison (Eds.),
Dynamic social network modeling and analysis (pp. 162–173). Washington, DC: National
Academies Press.

McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in
social networks. Annual Review of Sociology, 27, 415–444.

Molofsky, J., Durrett, R., Dushoff, J., Griffeath, D., & Levin, S. (1999). Local frequency
dependence and global coexistence. Theoretical Population Biology, 55, 270–282.

Pilkington, N., & Lydon, J. (1997). The relative effect of attitude similarity and attitude dis-
similarity on interpersonal attraction: Investigating the moderating roles of prejudice and
group membership. Personality and Social Psychology Bulletin, 23(2), 107–116.

Rogers, E., & Bhowmik, D. (1970). Homophily-heterophily: Relational concepts for com-
munication research. Public Opinion Quarterly, 34, 523–538.

Rosenbaum, M. (1986). The repulsion hypothesis: On the nondevelopment of relationships.
Journal of Personality and Social Psychology, 51, 1156–1166.

Rosenthal, R. W. (1989). A bounded-rationality approach to the study of noncooperative
games. International Journal of Game Theory, 18, 273–291.

Salzarulo, L. (2006). A continuous opinion dynamics model based on the principle of
meta-contrast. Journal of Artificial Societies and Social Simulation, 9, Article 13.

Schelling, T. (1960). The strategy of conflict. Cambridge, MA: Harvard University Press.
Schlag, K. H. (1998). Why imitate, and if so, how?: A boundedly rational approach to

multi-armed bandits. Journal of Economic Theory, 78, 130–156.
Schwartz, D. L. (1977). Applications of duality to a class of markov processes. Annals of Prob-

ability, 5, 522–532.
Schweitzer, F., & Behera, L. (2009). Nonlinear voter models: the transition from invasion to

coexistence. The European Physical Journal B, 67, 301–318.
Stark, H.-U., Tessone, C. J., & Schweitzer, F. (2008). Decelerating microdynamics can accel-

erate macrodynamics in the voter model. Physical Review Letters, 101(1), Article
018701(4).

Stauffer, D., & Meyer-Ortmanns, H. (2005). Simulation of consensus model of Deffuant et al
on a Barabasi-Albert network. International Journal of Modern Physics C, 15, 241–246.

Strang, D., & Soule, S. A. (1998). Diffusion in organizations and social movements: From
hybrid corn to poison pills. Annual Review of Sociology, 24, 265–290.

Suchecki, K., Eguiluz, V., & San Miguel, M. (2005). Conservation laws for the voter model in
complex networks. Europhysics Letters, 69, 228–234.

Surowiecki, J. (2004). The wisdom of crowds: Why the many are smarter than the few. New
York, NY: Doubleday.

Tessone, C., Toral, R., Amengual, P., Wio, H., & San Miguel, M. (2004). Neighborhood mod-
els of minority opinion spreading. The European Physical Journal B, 39, 535–544.

170 P. GROEBER ET AL.



Tsuji, R. (2002). Interpersonal influence and attitude change toward conformity in small
groups: a social psychological model. Journal of Mathematical Sociology, 26, 17–34.

Ullmann-Margalit, E. (1977). The emergence of norms. Oxford, UK: Clarendon Press.
Vazquez, F., Eguiluz, V., & San Miguel, M. (2008). Generic absorbing transition in coevolu-

tion dynamics. Physical Review Letters, 100(10), Article 108702.

Visser, B., & Swank, O. (2007). On committees of experts. Quarterly Journal of Economics,
122, 337–372.

Weisbuch, G. (2004). Bounded confidence and social networks. The European Physical Journal
B, 38, 339–343.

Weisbuch, G., Deffuant, G., & Amblard, F. (2005). Persuasion dynamics. Physica A, 353,
555–575.

Weisbuch, G., Deffuant, G., Amblard, F., & Nadal, J. P. (2002). Meet, discuss and segregate!
Complexity, 7(3), 55–63.

Young, H. P. (1993). The evolution of conventions. Econometrica, 61, 57–84.

APPENDIX: PROOFS OF PROPOSITIONS 2, 3, 5, 7, AND 8

Proof of Proposition 2. We only have to show H(G�)�C. Without a loss of
generality, we assume that a¼ 1 as we obtain

u�i ðx1; . . . ; xnÞ ¼
X
j2Ii

f �ðdðxi; xjÞÞ

for opinions x1, . . . , xn in case the in-group influence is homogeneous. Hence, a> 0
does not affect the order of opinion profiles induced by dissonance.

Now consider a nonconsensus opinion profile x¼ (x1, . . . , xn). First suppose
that we have

u�max ¼ max
j2I

u�j ðxÞ > min
j2I

u�j ðxÞ ¼ u�min:

Now choose an agent k with xk ¼ u�min. With x0 ¼ (x1, . . . , xn) whereas x
0
i ¼ xk

and x0j ¼ xj for j 6¼ i, we obtain

u�i ðx0Þ ¼
X

j2Infig
f �ðdðx0i; x0jÞÞ

¼
X

j2Infkg
f �ðdðx0k; x0jÞÞ

�
X

j2Infkg
f �ðdðxk; xjÞÞ

¼ u�k ðxÞ
< u�i ðxÞ:

In case there is u�max ¼ u�min, we choose agents i, k with xi 6¼ xk which is possible
as x is not a consensus profile. With x0 ¼ (x1, . . . , xn) whereas x

0
i ¼ xk and x0j ¼ xj for

j 6¼ i, we obtain
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u�i ðx0Þ ¼
X

j2Infig
f �ðdðx0i; x0jÞÞ

¼
X

j2Infkg
f �ðdðx0k; x0jÞÞ

<
X

j2Infkg
f �ðdðxk; xjÞÞ

¼ u�k ðxÞ
¼ u�i ðxÞ

where the inequality is strict as xi 6¼ xk. Hence, x is not a Nash equilibrium as agent i
can reduce her perceived dissonance for the given opinions of the other agents. &

Proof of Proposition 3. Let y2X denote an opinion that is not in the convex
hull H of x. As H is compact and d(�, y) is continuous (d is the Euclidean metric),
there is an opinion z2H with (positive) minimum distance to y; that is, for all z0 2H
we have

0 < dðz; yÞ � dðz0; yÞ: ðA:1Þ

Now consider an agent j. The opinion distance d(y, xj) is greater than the
distance d(z, xj): Let yp denote the orthogonal projection of y on the line l defined
by xj and z; that is, we have

yp ¼ kxj1 þ ð1� kÞz

with k2R. If there was k> 1, it would follow that d(xj, yp)< d(z, yp) and therefore
(by the Pythagorean theorem) d(xj, y)< d(z, y) which is a contradiction to Eq. (1). If
there was 0< k� 1, the Pythagorean theorem would yield that d(yp, y)< d(z, y). As
yp2H according to the convexity of H, this is again a contradiction to Eq. (1).
Hence, we obtain k� 0. Then, the Pythagorean theorem yields

dðy; xjÞ2 ¼ dðy; ypÞ2 þ ðdðxj; zÞ þ dðz; ypÞÞ2

and therefore d(y, xj)> d(z, xj) as d(y, yp)¼ d(z, yp)¼ 0 would imply z¼ y which is
a contradiction to y 62H.

As f� is strictly increasing in the opinion distance, this implies u�i ðz; xÞ <
u�i ðy; xÞ so that y cannot be a best response to the opinion profile x. &

Proof of Proposition 5. As u�i ð�; xÞ is continuous
18 on the (compact) convex hull

H of x, there exists an optimal opinion x�i 2 H with

uiðx�i ; xÞ � uiðy; xÞ

for all y2X according to Proposition 3. To guarantee the uniqueness of the optimal
opinion, it is sufficient to show that u�i ð�; xÞ is strictly convex for any opinion profile.

18The continuity of ui(�, x) on the interior of X is already guaranteed by the convexity of the dis-

tance dissonance function.
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Therefore, let dxj ðyÞ denote the distance of opinion y2X and the fixed opinion xj. As
dxj is convex and f� is increasing and strictly convex, we obtain

f �ðdðkyþ ð1� kÞz; xjÞÞ � f �ðkdðy; xjÞ þ ð1� kÞdðz; xjÞÞ
< kf �ðdðy; xjÞÞ þ ð1� kÞf �ðdðz; xjÞÞ

for all j 6¼ i, y, z2X and k2 [0, 1]. Hence, the composition f�	d is strictly convex.
Therefore, u�i ð�; xÞ is strictly convex as it is a positive linear combination of strictly
convex functions. &

Proof of Proposition 7. Let x¼ (x1, . . . , xn) denote an opinion profile with
xi¼ (xi1, . . . , xim). For an agent i and y¼ (y1, . . . , ym)2X we define ~uu�i ðyÞ ¼
u�i ðy; xÞ. According to our assumptions on f�, we have

~uu�i ðyÞ ¼
X
j2Ii

aijf
�ðdðy; xjÞÞ

¼
X
j2Ii

aijf
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
1�k�m

ðyk � xjkÞ2
s0

@
1
A

¼
X
j2Ii

aij
X

1�k�m

ðyk � xjkÞ2:

To determine the utility maximizing opinion x�i ¼ ðx�i1; . . . ; x�imÞ, we derive the
first order conditions (@~uui@yj

ðx�Þ ¼ 0) and obtain

x�ik
X
j2Ii

aij ¼
X
j2Ii

aijxjk; 1 � k � m:

Further, the Hessian of ~uui is positive definite as

@2~uu�i
@yk@yl


 2
P

j2Ii aij if k ¼ l
0 if k 6¼ l;

�

so that x�i is a local minimum of ~uu�i . As f� is strictly convex, the same holds for ~uu�i so
that x�i is a unique global minimum of ~uu�i . &

Proof of Proposition 8. (i) is an immediate consequence of the equivalence of
both opinions and the fact that p

ð1Þ
i þ p

ð1Þ
i ¼ 1. Thus, we have in particular

g(0.5)¼ 0.5. Further, as f�(z)> 0 for z> 0 implies ~uuiðp; xÞ > 0 for p> 0, we obtain
g(0)¼ 0. Using (i), this also leads to g(1)¼ 1. With respect to (iii), we denote p� ¼
gðrÞ with r2 [0, 1); that is,

ð1� rÞf �ðpÞ þ rf �ð1� pÞ > ð1� rÞf �ðp�Þ þ rf �ð1� p�Þ

for p 6¼ p�. For r0 > r and p < p� this implies
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~uu�ðpÞ � ~uu�ðp�Þ ¼ ð1� rÞf �ðpÞ þ rf �ð1� pÞ � ð1� r0Þf �ðp�Þ � r0f �ð1� p�Þ
> ðr0 � rÞ½f �ðpÞ þ f �ð1� p�Þ � f �ð1� pÞ � f �ðp�Þ�
> 0

as f�� 0 and f� is strictly increasing. Hence, g is increasing. If there is no consensus
in the in-group; that is, if r2 (0, 1), the convexity of f� implies

f �ðpÞ ¼ f �ðp � 1þ ð1� pÞ � 0Þ � pf �ð1Þ;

and therefore

~uu�ð1; xÞ ¼ ð1� rÞf �ð1Þ > pf �ð1Þ � f �ðpÞ > ~uu�ðp; xÞ

for p2 (0, 1� r). Thus, using (i), it follows that it is optimal to choose one
opinion with probability one if and only if every in-group member exhibits that
opinion. &
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