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Abstract External or internal shocks may lead to the collapse of a system consisting of
many agents. If the shock hits only one agent initially and causes it to fail, this can induce
a cascade of failures among neighboring agents. Several critical constellations determine
whether this cascade affects the system in part or as a whole which, in the second case, leads
to systemic risk. We investigate the critical parameters for such cascades in a simple model,
where agents are characterized by an individual threshold θi determining their capacity to
handle a load αθi with 1 − α being their safety margin. If agents fail, they redistribute their
load equally to K neighboring agents in a regular network. For three different threshold
distributions P (θ), we derive analytical results for the size of the cascade, X(t), which is
regarded as a measure of systemic risk, and the time when it stops. We focus on two different
regimes, (i) EEE, an external extreme event where the size of the shock is of the order of
the total capacity of the network, and (ii) RIE, a random internal event where the size of
the shock is of the order of the capacity of an agent. We find that even for large extreme
events that exceed the capacity of the network finite cascades are still possible, if a power-
law threshold distribution is assumed. On the other hand, even small random fluctuations
may lead to full cascades if critical conditions are met. Most importantly, we demonstrate
that the size of the “big” shock is not the problem, as the systemic risk only varies slightly
for changes in the number of initially failing agents, the safety margin and the threshold
distribution, which further gives hints on how to reduce systemic risk.

Keywords Systemic risk · Cascading dynamics

1 Introduction

Current research on systemic risk can be roughly divided into two different strands each one
having its own focus: (i) the probability of extreme events which can cause a breakdown of
the system, (ii) the mechanisms which can amplify the failure of a few system elements, to
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766 C.J. Tessone et al.

cause a failure cascade of the size of the system. The former line of research assumes that
systemic risk is caused by external events, e.g. big earthquakes, tsunamis, or meteor impacts.
Thus, in addition to the likelihood of extreme events, another interesting question regards the
response of the system to such perturbations, i.e. its capability to absorb shocks of a given
size. The latter research area, on the other hand, sees systemic failure as an endogenous
feature that basically emerges from the non-linear interaction of the constituents, i.e. how
they redistribute, and possibly amplify, load internally.

In both approaches, the likelihood of a systemic breakdown can only be determined by
considering the internal dynamics of system elements, denoted as agents in this paper, such
as their capacity to resist shocks, their time-bound interaction with neighbors, their depen-
dence on macroscopic feedback mechanisms, such as coupling to the macroscopic state of
the system. Only in rare cases the dynamics of systemic risk can be reduced to mere topo-
logical aspects, such as the diversity in the number of neighbors, the role of hubs, etc. In this
paper, we combine the two research questions mentioned above: on the one hand, we are
interested in the critical size of an external shock that may lead to collapse of the system.
At the same time, we address that such critical values depend on the safety margins of the
system elements, and the details of their interaction when redistributing load internally. We
also investigate how these cascading dynamics are affected by the structural features of the
network (level of connectivity, topological heterogeneities) and by individual properties of
the agents, such as the probability distributions of the failure thresholds. Such insights can
directly benefit a robust system design by means of individualization of agents (i.e. design-
ing agents with optimal heterogeneity).

Given the importance of such problems for social, economical and technological sys-
tems, the topic is already discussed in a wide range of scientific literature. Some modeling
framework were recently proposed [1–3]. The complex network approach was also used to
describe cascading processes in power grids [4, 5] and in Internet services [6, 7], and was
also applied to data storage services [8]. Importantly, similar agent-based approaches were
developed to model avalanche defaults among financial institutions [9, 10]. Even if the re-
search on “complex networks” [11] has grown into a domain by itself, we do not address
complex network properties here. Instead, we focus on the impact of some network prop-
erties on cascade processes. In particular, we are interested in the scaling of the number of
agents that can be reached by the cascade in a certain distance from a focal point. This sim-
ple analysis allows to cover a variegated set of regular network topologies as long as cycles
can be neglected.

Our paper is organized as follows: in the next section we introduce the agent-based model
studied, determining e.g. agent’s fragility and agents’ interaction by means of a load redistri-
bution mechanism. This allows us to define a measure for systemic risk on the macroscopic
level. In Sect. 3 we develop an analytical framework that allows us to unveil the dynamics of
systemic risk based on cascading processes. In Sect. 3.2, we discuss the critical conditions
for systemic risk to emerge. Later, in Sect. 3.3, we study when agents can be considered as
systemic by their importance. The paper finishes with some conclusions in Sect. 4, which
also allow for a generalized picture of how to prevent systemic risk.

2 Analytical Approach to Systemic Risk

2.1 Description of the Model

Net Fragility In a recent paper [3], a general framework to model systemic risk by means
of an agent-based approach was developed. In this framework, each agent r is characterized
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by three individual variables: a discrete variable sr (t) ∈ {0,1}, which describes its state at
a discrete time t , i.e. sr (t) = 0 for an operating state and sr (t) = 1 for a failed state, and
two continuous variables, the threshold θr and load φr . The threshold is assumed to describe
the individual ‘capacity’ of an agent: it defines how much load an agent can carry before
it fails. On the other hand, the variable φr describes the load which is exerted on an agent.
In this work, we study one particular case of this general framework, namely the ‘load
redistribution’ model where the initial load of agents is given as a fixed fraction of their
capacity. If an agent fails, its complete load is redistributed in a conservative way among its
neighbors.

We note that while the load can change in time e.g. through systemic feedback, it further
depends on the state of other agents s and on the network of interactions, described by the
adjacency matrix A. Written this way, the load also depends on how it is exchanged between
agents. A special case will be discussed below. We define that agent r fails if its net fragility
zr(t),

zr(t) = φr(t,A, s) − θr , (1)

is equal or larger than zero. I.e. in a deterministic model, the dynamics of an agent is given
by

sr (t + 1) = Θ
(
zr(t)

)
, (2)

where Θ(·) is the Heaviside function. Certainly, the dynamics only depends on the net
fragility, i.e. on the relative distance between load and threshold. Nevertheless, a distinc-
tion between these two individual variables is very useful, as it allows us to conceptually
distinguish between internal and external influences on the failure.

Systemic Risk We now define the important measure of systemic risk. We define it as the
fraction of failed agents at any point in time. For a system composed of N agents, it reads

X(t) = 1

N

∑

r

sr (t) =
∫ ∞

0
pz(t)(z)dz; (3)

pz(t)(z) represents the density of agents with a net fragility z at time t ; the integral runs
over the agents whose net fragility is positive. Failures in a subset of agents will result in
cascading processes over the network of interaction, which results in changes of the fragility
of other agents in the course of time. This can be expressed by the recursive dynamics
pz(t+1) = F (pz(t)), where F is some function that describes how the load of failing agents is
redistributed depending on the interaction mechanisms. With this, by specifying the initial
condition pz(0), it is possible to compute X(t) for a deterministic dynamics.

In Ref. [3], X(t) was calculated by making suitable assumptions about the distribution
of the net fragility, pz(t), the initial conditions pz(0), and for the particular case of a fully
connected network—i.e. each agent interacts with everyone else. Specifically, an initial con-
dition pz(0) ∼ N (θ̄ , σ ), was used; i.e. the initial fragility of agents is normally distributed
with a mean θ̄ and standard deviation σ . This implies that the initial fraction of failed agents
at time t = 0 is given by X(0) = Φθ̄,σ (0), where Φθ̄,σ (0) denotes the cumulative function
of the normal distribution. I.e. it gives the (normalized) number of agents with an initial net
fragility (defined in Eq. (1)), equal or larger than zero. The authors calculated the size of cas-
cades measured by the final fraction of failed agents for different interaction mechanisms.
Remarkably, it was found that systemic risk depends on the variance σ of the distribution
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pz(0) in a non-monotonous manner. This means, systemic risk can decrease if the agents
become more heterogeneous, i.e. if their individual threshold becomes more different. On
the other hand, for homogeneous agents characterized by the same threshold, a first-order
phase transition was found between no systemic risk and complete failure.

Initial Fragility We use these previous findings as a reference point, but we will extend
our model in different ways. First of all, instead of a normal distribution for the initial net
fragility zr(0) = φr(0) − θr , we assume a fixed relation between initial fragility φr(0) and
threshold θr :

φr(0) = αθr (r = 1, . . . ,N; r �= i). (4)

The parameter α is a constant, equal for all agents. Only for one agent i, instead of the fixed
relation (4), we define φi(0) = φ� ≥ θi . Thus, we consider that initially only one agent i, is
at a critical condition, whereas with α < 1 all other agents are initially capable of handling
the load assigned to them. I.e. different from the distribution of initial loads in [3], we do not
have an initial failure cascade. Instead, the initial condition for the systemic risk is simply
X(0) = 1/N .

The value 1 − α can then be regarded as the agent available capacity (or safety margin)
before they fail if their load is increased. A fixed relation between fragility and threshold
was first used in [6] to describe cascading processes in power grids and Internet (see also
[7, 12, 13]). It basically reflects the situation of many socio-technical systems in which the
capacity of agents is usually ad hoc designed to handle the load, under normal conditions.
For example, large computing facilities relocate the load that is distributed equally among
the servers. We will later vary the safety margin 1 − α to determine how the severity of
cascading failures will depend on it.

Threshold Distribution With these considerations, only the threshold distribution P (θ)

remains to be specified to complete the initial conditions. It is worth remarking that the
capacities of the agents—in contrast with other studies found in the Literature so far—are
decoupled from the topological artifacts of the network connecting them. Here we will use
three different assumptions for both analytical calculations and computer simulations:

(a) a delta distribution P (θ) = δ(θ − θ̄ ), where δ(·) is the Dirac delta function, i.e. all agents
have the same threshold θ̄ ,

(b) a uniform distribution P (θ) = U(θ̄ −σ, θ̄ +σ) with the mean θ̄ and the range σ , i.e. all
agents have different, but comparable thresholds in the interval [θ̄ − σ, θ̄ + σ ]. For all
further calculations we define θmin = θ̄ − σ ,

(c) a power-law distribution

P (θ) = γ − 1

θ
1−γ

min

θ−γ (5)

i.e. agents have thresholds that can differ by orders of magnitudes. As the normalization
depends on the value θmin, we assign its numerical value for our further calculations to
be comparable with the minimum value of the uniform distribution, θmin = θ̄ − σ .

Agent Interaction In order to describe the agent interaction, we use the network approach
in which agents are represented by nodes and interactions by links between agents. I.e., the
network topology specifies which other agents a particular one interacts with. This can be
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Fig. 1 Regular lattice with
K = 4, where agent i is hit
initially (t = 0) by an external
shock of size φ� . If i fails, it
distributes this load to its K

nearest neighbors in the next time
step (t = 1). If they fail, they
distribute their load to their K

nearest neighbors in the next time
step (t = 2), which are the 2K

second nearest neighbors of i,
etc.

statistically described by the degree distribution P (k) for which we will use in this paper
only P (k) = δkr ,K , i.e. a regular network, in which each agent interacts with K other agents.
The fully connected network is a special case with K = N − 1.

Secondly, we have to specify how agents interact through these links. Here, we assume a
load redistribution mechanism in which the initially failing agent i shares its load φi(0) ≡ φ�

equally among its K neighboring agents (labeled j ), see Fig. 1. That means for each of these
agents, their own load φj (t) increases in the next time step (t + 1) by an amount of φ�/K .
If this addition leads to a positive net fragility zj (t) = φj (t) − θj , agents j fail as well and
redistribute their load φj (t + 1) equally to their K neighboring agents, and so on.

Cascade Sizes This way, failure cascades can occur in the course of time, and we are
interested in their relative size and the probability distribution of their occurrence, P (X(t)).
For this calculation, which will be done in Sect. 3.2, we define the fraction f (t) of failing
agents at each time step t and the number F(t) of failing agents during the same time interval
as:

f (t) = 1

K(t)

N∑

r=1

sr (t) − sr (t − 1); F(t) = K(t)f (t); f (0) = 1. (6)

K(t) gives the number of agents that are hit by the cascade at time t , i.e. they are located in
the t -th neighborhood of agent i which failed initially. Hence, with the model of Fig. 1 in
mind, K(t) is the number of agents that can potentially fail during time step t . Dependent on
the topology of the regular network, there are two limiting cases to express how K grows in
time. K(t) ∝ K t holds in regular networks, where the interface grows linearly with distance.
On the other hand, for Bethe lattices, tree-like structures and random topologies in which
loops are neglected [1], the number of nodes at distance t is K(t) = Kt .
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Using the definition (6), we can calculate the size of the cascade at time t , which is equal
to the systemic risk X(t) as:

X(t) = 1

N

t∑

τ=0

F(τ) = 1

N

t∑

τ=1

K(τ)f (τ). (7)

In general, Eq. (7) cannot be solved analytically. However, in the following sections we will
derive analytical expressions for f (t), assuming different distributions of agents’ thresholds.

Partial Versus Full Cascades According to the definitions above, a total failure occurs if
X(t) = 1. In a finite system, this will happen at a finite time t ′, while in an infinite system
this final state is reached only asymptotically, t ′ → ∞. However, in a finite system a cascade
can stop even for X(t) < 1 if the potential number of failing agents reaches the system size
at a given time t◦,

t◦∑

t=0

K(t) ≥ N. (8)

Yet, there is a third case to be considered, namely that the cascade stops at a finite time
t�, even if X(t) < 1 and t < t◦, simply because the redistribution of loads to the nearest
neighbors does not cause further failure. This is expressed by the condition f (t�) = 0.

We will refer to a “full” cascade if X(t ′) = 1, which means every agent in the system has
failed. On the other hand, a “partial” cascade occurs either if it stops at time t� < t◦, or if
the redistribution of load has reached the system size, Eq. (8), without causing all agents to
fail. Consequently, partial cascades stop at time t ′ = min(t◦, t�). We note that, according to
our definition, Eq. (7), systemic risk refers to partial cascades as well, not just to X → 1.
Precisely, we are interested in the distribution P (X(t ′)), i.e. the density of failed agents at
the time by which cascades end regardless of the cause for that.

Network Capacity In order to put the size of the initial shock φ� into perspective, we refer
to the total capacity of the network to absorb shocks, which depends on the safety margin
(1 − α), the total number of nodes, and the threshold distribution P (θ). Thus, the capacity
Q that the system could a priori absorb during the cascade is simply given by

Q = N(1 − α)

∫
dθθP (θ). (9)

If the threshold distribution has a defined mean value, θ̄ , this expression reduces to Q =
N(1 − α)θ̄ . On the other hand, for a normalized power-law distribution with a minimum
threshold value θmin, the mean value is only defined for γ > 2. For γ ≤ 2, a simple argument
[14] shows that for a finite system the expected value can still be computed. The result is

Q

N(1 − α)
=

{
θmin[ γ−1

γ−2 + N2−γ

2−γ
] if γ ≤ 2

θmin[ γ−1
γ−2 ] if γ > 2.

(10)

It is worth noticing that for the delta threshold distribution, the uniform (with θ̄ ∼ σ ) and
the power-law distribution with γ > 2, the network capacity Q is of the same order of
magnitude. In Fig. 2 we show the network capacity Q for the power-law distribution as a
function of γ and α. Precisely, it gets the same numerical value in all three cases, Q = Qu,
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Fig. 2 Contour plot showing the
network capacity Q as a function
of α and γ , for a network with
N = 1000 nodes having
power-law threshold distribution
with a minimum threshold value
θmin = 0.5

if γ = 1.5 and θ̄ = 2θmin, as used for the numerical calculations. However, for the power
law distribution with γ ≤ 2, the network capacity becomes much larger than in the three
other cases because of the additional dependence of the number of agents, N2−γ . Choosing
γ = 1.5 for the numerical calculations later implies that, compared to the uniform case, we
have Q ∝ √

NQu.
In this paper, depending on the magnitude of the initial shock, we distinguish between

two different regimes:

(i) EEE—the extreme exogenous event resulting in a very large φ� which is of the order
of Q, i.e. much larger than the capacity of the initially failing agent (or the average
capacity θ̄ of agents): φ� ∼ Q � θ̄ . In this case, there is no surprise that agents involved
in the redistribution of load will fail, at least in an early phase. Hence, we are mostly
interested in the conditions under which cascades may stop before they have reached
the size of the system.

(ii) RIE—the random internal event, which assumes that initially one randomly chosen
agent i faces a load φ� that is slightly larger than its own capacity θi , drawn from the
distribution P (θ), i.e. φ� ∼ θ̄ � Q. This is likely to happen by a random fluctuation of
the load φi that exceeds the threshold, rather than a big impact on the system. In this
case, we are interested in the conditions under which cascades occur at all.

2.2 Conditions for Failing Nearest Neighbors

We assume that, at t = 0, a single randomly chosen agent i ∈ 1 . . .N fails because of an ini-
tial shock, i.e. φi(0) ≡ φ� ≥ θi . According to the redistribution mechanism described above,
this failure will increase the fragility of the nearest neighbors of i, labeled j ∈ nn(i) (see
Fig. 1). Agent j can fail if its net fragility becomes positive, i.e.:

φj (1) = φj (0) + φ�

K
≥ θj , (11)
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which together with Eq. (4) leads to the critical condition for the failure of agent j ,

θj ≤ θc
(1)(φ�) = φ�

K(1 − α)
. (12)

Here θc
(1)(φ�) defines the critical threshold for the first-order neighborhood of agent i, or the

critical threshold at time t = 1, respectively. Agents with a threshold between θmin and θc
(1)

will fail, hence the fraction of failing agents at time t = 1 reads:

f (1) =
∫ θc

(1)
(φ�)

θmin

dθP (θ). (13)

This fraction depends on the threshold distribution P (θ), so explicit calculations will be
given in the next Section. At the moment we just assume that at least one agent j has failed,
i.e. there will be a cascade to the next neighborhood (cf. Fig. 1).

Let us denote failing agents in the first step by j� ∈ nn(i). Their load φ∗
j (t = 1) > θj will

be redistributed to their nearest neighbors labeled k ∈ nn(j�). Following the reasoning used
for Eq. (11), we obtain for the load of agents k at time t = 2:

φk(2) = φk(1) +
∑

j�∈nn(k)

φj� (1)

K
= αθk + 1

K

∑

j�∈nn(k)

(
φj�(0) + φ�

K

)
. (14)

The summation is performed over the whole set of failed agents j ∗ that belong to the neigh-
borhood of k, their load being φj�(0) = αθj∗ .

The exact amount of agents j� ∈ nn(k) depends on the properties of the network con-
sidered. For example, in square and hexagonal lattices, some second nearest neighbors of
i, i.e. agents k, have more than one link to agents j in the nearest neighborhood. E.g. for
the hexagonal lattice, half of the agents at level k have two links to agents j , whereas the
other half has only one. In general, for regular lattices, this number will be between one or
two. In this paper, we will restrict our analysis to the case of a single failing node j� in the
neighborhood of k which is the case for Bethe lattices or sparse random regular networks
[15]. The theory can be extended for other regular geometries in a straight-forward manner.
With this considerations in mind, Eq. (14) becomes

φk(2) = αθk + 1

K

(
αθj� + φ�

K

)
. (15)

From Eq. (15) we obtain the critical condition for the failure of agent k if its net fragility
becomes positive:

θk ≤ θc
(2) = θj� + φ�/K

K(1 − α)
. (16)

This expression for the critical threshold at t = 2, i.e. in the second-order neighborhood of
i, is comprised of two redistribution processes. On the one hand those from agents j� failing
at t = 1 and, on the other, the redistribution of the initial load φ� from agent i failing at time
t = 0. The fraction of failed agents at time t = 2 (k ∈ nn(j�)) is then given by

f (2) =
∫ θc

(1)
(φ�)

θmin

dθ(1)P (θ(1))

∫ θc
(2)

(φ(1))

θmin

P (θ(2))dθ(2), (17)

Author's personal copy



How Big Is Too Big? Critical Shocks for Systemic Failure Cascades 773

where θc
(2)(φ(1)) indicates that the critical threshold at t = 2 depends on the load of failing

agents j ∗ at time t = 1, which does not need to be equal for every j�, but depends on the
network.

Using the same reasoning for the different time steps of the cascade, we obtain a general
expression for the fraction of agents failing during time step t (which are the neighbors of
agents failing at t − 1):

f (t) =
∫ θc

(1)
(φ�)

θmin

dθ(1)P
(
θ(1)

) · · ·
∫ θ

(c)
(t−1)

(φ(t−2))

θmin

dθ(t−1)P
(
θ(t−1)

)∫ θc
(t)

(φ(t−1))

θmin

dθ(t)P
(
θ(t)

)
.

(18)

The critical threshold θc(φ(t)) at time t depends on the load φ(t−1) as follows:

θ(t) ≤ θc
(t) = φ(t−1)

K(1 − α)
. (19)

This is a recursive equation, i.e. f (t) depends on the load redistributed by all the agents that
failed along the path connecting the initially failing agent i with agents failing at time t .
However, Eq. (18) cannot be computed in general, thus, in the following sections, we will
study some cases in which this equation can be reduced and solved.

2.3 Threshold Approximation in the RIE and EEE Regimes

Inequality (19) is an important result to understand the propagation of cascades, which holds
for both regimes introduced above, the EEE regime, where the external shock dominates
the dynamics, and the RIE regime, where small random events inside the first failing agents
may trigger the cascade. For both, we are able to derive some general results even before
specifying the threshold distribution P (θ).

In the RIE case, φ� ∼ θ̄ � Q the redistribution of loads, that means the network effect,
plays the most important role. Note that pairs of agents connected through an edge have in
general different capacities. If one of them fails, its neighbor is exposed to failure during
the following time step. However, whether it fails or not will depend on: (a) the load re-
distributed from the failing agent; (b) its own capacity. Let us assume that if an agent with
capacity θ(t−1) fails, the total load induced on its neighbors is φ(t) = αθ(t) + θ(t−1)/K . This
assumption neglects the contribution of agents that failed before the time step t − 1, which
are terms of order K−τ , with τ ≥ 2. This implies that θ(t−1) is the load distributed by the
agent, i.e. it is exactly its capacity and not more. Thus, the largest capacity of the failing
agent at time t , θc

(t), depends on the capacity of the agent that failed on the previous time
step t − 1, i.e.

θc
(t)(θ(t−1)) = θ(t−1)

K(1 − α)
, (20)

which is a lower bound for the failure condition, Eq. (19). This means that among all neigh-
bors of the agents at layer (t − 1), those with a capacity lower than θc

(t)(θ(t−1)) will fail.
With the assumption (20), the fraction of failing agents at time t can be decomposed in

terms of failure of two consecutive agents in a pair-wise approximation as follows:

f (t) =
∫ θc

(t−1)

θ̄−σ

dθ(t−1)P (θ(t−1))

∫ θc
(t)

(θ(t−1))

θ̄−σ

dθ(t)P (θ(t)). (21)
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This approach differs from the previous mean-field approximation in the following. Now,
the net effect of the load redistributed by a failing agent is taken into account to determine
the fraction of its neighbors that will fail in the next time step. Thus, this approximation
entails information about the heterogeneity at the edge level. On the other hand, even in
the EEE regime, φ� ∼ Q � θ̄ , the role of the network still cannot be neglected. We are
interested in the limit satisfying: (i) the load redistributed by the previously failed nodes
cannot be totally neglected—i.e. α ∼ 1—; (ii) the main contribution to the load θ(t) comes
from φ� (i.e. from the initial load). We assume that at any point in time, there exists a
critical threshold θc

(t) above which agents do not fail. In this case Eq. (19), becomes simply
θc
(t) = θc

(t−1)/[K(1−α)]. Then, the load of agents at a distance t from agent i is simply given
by

θ(t) = φ(t−1)

K(1 − α)
= φ�

[K(1 − α)]t , (22)

which results in the critical threshold for the EEE regime:

θ(t) ≤ θc
(t)(φ�) = φ�

[K(1 − α)]t . (23)

This gives the critical condition for the failing threshold of an agent that is hit by the
cascade at time t (i.e. it belongs to the t -th nearest neighborhood of the initially failing
agent i). It nicely separates two effects that determine the severity of a cascade: (a) the size
of the initial shock φ�, (b) the number of neighbors to share the load and their respective
safety margin, i.e. K(1 − α). In the limit of large external shocks, and independent of fur-
ther assumptions about the threshold distribution, the sequence of the critical thresholds θc

(t)

crucially depends on the sign of the factor K(1 −α). If K(1 −α) > 1, the sequence θc
(t) will

approach zero exponentially, i.e. with increasing distance from the initially failing agent,
this condition will be more easily met. Hence, there should be a finite t ′ at which all reason-
ably chosen threshold values θr are larger than the critical threshold, which implies that the
cascade stops. This is shown in Fig. 3 for the case of the uniform threshold distribution for
different values of the safety margin (1 − α). We can verify for the given set of parameters
that for α = 0.2, and α = 0.5 the cascade stops right after t = 1, while for α = 0.7 it stops
after t = 3. On the other hand, for α = 0.8 we see that the critical threshold is already at
t = 3 larger than any existing threshold, so the full cascade cannot be prevented.

While this is an intuitive and illustrative example, we will calculate analytically the exact
time t ′ at which the cascade may stop in the following section. We note again that due to the
finite system size cascades may stop already at time t◦, which gives an additional limit.

3 Critical Conditions for Systemic Risk

3.1 Analytical Estimations of Cascade Sizes

Up to this point, we have derived a measure for systemic risk X(t), Eq. (7) that is based
on the fraction f (t) of agents failing at a given time t . Failure cascades can propagate in
the system if the net fragility of agents φr(t) − θr is positive, i.e. if the load exceeds the
capacity. While φr(t) becomes a function of the redistribution of loads in previous time
steps, the capacity is determined by a threshold distribution function P (θ), for which we
use three different specifications. Already the general framework outlined above allows us
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Fig. 3 Evolution of the critical
threshold θc

(t)
(note the log scale)

versus the time step t for the case
of a uniform distribution with
parameters θ̄ = 1 (dotted line),
and σ = 0.5 (dashed lines). The
value of K is set to four, while
we used different values for the
parameter α

to expect “full” (X → 1) and “partial” (X < 1) cascades, where the latter can encompass
the whole system or stop before. In the following, we will specify the conditions for these
findings for the different threshold distributions.

Cascade Size for Homogeneous Threshold Let us start with the simplest case that all agents
have the same threshold and the same number of neighbors. As stated above, there is a
failing agent i at t = 0, for which φi(0) = φ�. Because of the homogeneous distribution, it
can be noted that if an agent r fails due to the failure of one of its neighbors, r�, then all the
neighbors of r� will fail as well. I.e. f (t) = 1 if f (t − 1) = 1. Let φ(t) be the load of agents
at a distance t of the initially failing agent at t = 0 and let us assume that agents at a distance
lower than t already failed. Then, the load of agents in shell t is

φ(t) = αθ̄ + φ(t−1)

K
. (24)

With the initial condition φ(0) = φ�, this recursive equation can be easily solved, yielding

φ(t) = αθ̄
1 − K−t

1 − K−1
+ φ�

Kt
. (25)

I.e., agents exposed to the redistribution of load at time t will fail if φ(t) > θ̄ . This equation
allows to gain insight into the cascade mechanism. On the one hand, according to the above
discussion of the EEE regime, full cascades can only be triggered if K(1 − α) < 1, irre-
spective of the threshold distribution. This means that a topological effect (the number and
safety margin of neighbors among which the load is redistributed) decides about partial and
full cascades.

On the other hand, when K(1 − α) ≥ 1, the initial load φ� cannot (by itself) trigger a
full cascade in the case of homogeneous threshold. I.e. even in the EEE regime, a cascade
will only last t� time steps, where t� results from the failing condition θ(t�) ≤ φ(t�). From the
condition f (t�) = 0, we can compute

t� = log{(1 − K−1)φ� − αθ̄} − log{(1 − K−1)θ̄ − αθ̄}
logK

. (26)

As discussed before, the actual time t ′ at which the cascade stops is t ′ = min(t◦, t�), where
t◦ denotes the time where the cascade reaches the system size, Eq. (8).
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Knowing t ′, we can further calculate the systemic risk according to Eq. (7), with f (t) = 1,
i.e. F(t) = K(t) for t ≤ t ′ and F(t) = 0, otherwise. We find

X
(
t ′
) = Kt ′−1 − 1

N(K − 1)
(27)

for a Bethe lattice or a tree with coordination number K and

X
(
t ′
) ∝ K(t ′ + 1)t ′

N
(28)

for a regular lattice. The exact factor depends on the coordination number.

Cascade Size for Uniform Threshold Distribution We now turn to the simplest case that
allows some heterogeneity in the agent’s threshold, which is the uniform distribution P (θ) =
U(θ̄ − σ, θ̄ + σ). The failing condition in Eq. (12) for the nearest neighbors still holds, but
the question is how often we find thresholds below the critical limit:

f (1) =
∫ θc

(1)

θ̄−σ

P (θ)dθ = θc
(1) − (θ̄ − σ)

2σ
. (29)

With θc
(1) given by Eq. (12) it turns out that the fraction of failing agents at the first time step

is

f (1) = φ�/[K(1 − α)] − (θ̄ − σ)

2σ
if φ�/(θ̄ − σ) ≥ K(1 − α) (30)

and f (1) = 0 otherwise. Regarding f (t), we know from Eq. (18) that the fraction of fail-
ing agents at any time step crucially depends on the history of failed agents, i.e. the path
connecting the initially failed agent with the currently failing one. Therefore, in general, the
process is not solvable. There is the need of a simplifying assumption to break the integral
expression in Eq. (18) into solvable parts.

For the EEE regime we use Eq. (23) and the underlying assumptions to obtain the closed
equation,

f (t) =
∫ θc(φ(t−1))

θ̄−σ

dθP (θ) = 1

[K(1 − α)]t
φ�

2σ
− θ̄ − σ

2σ
. (31)

With this expression, we find from f (t�) = 0 the time at which the cascade stops for the
uniform threshold distribution:

t� = log(φ�) − log(θ̄ − σ)

log[K(1 − α)] . (32)

Again, the time at which the cascade ends is given by t ′ = min(t◦, t�), with t◦ given by
Eq. (8).

Considering instead the RIE regime, φ� ∼ θ̄ , where redistribution effects play a mayor
role, we use Eq. (21) and the underlying assumptions. Neglecting capacity-capacity corre-
lations among agents, we find for the case of the uniform threshold distribution:

f (t) = (θc
(t−1) − θ̄ + σ)[θc

(t−1) + [1 − 2K(1 − α)](θ̄ − σ)]
8σ 2 K(1 − α)

. (33)
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The time at which the cascade stops is, as in the previous cases, given by the condition
t ′ = min(t◦, t�), where t� is the first time step that verifies f (t�) = 0, and t◦ is the one
defined in Eq. (8).

Cascade Size for Power-Law Threshold Distribution Now, we discuss the case where
agent’s threshold follows a power-law distribution, Eq. (5), and can vary by orders of mag-
nitude. With the same procedure as used before, we determine the fraction of failed agents
during the initial cascade as

f (1) =
∫ θc

(1)

θmin

P (θ)dθ = 1 −
(

φ�/θmin

K(1 − α)

)1−γ

. (34)

So, cascades are obtained if φ�/θmin ≥ K(1 − α).
Considering first the EEE regime, we use the approximation given by Eq. (22) and find

for the fraction of failing agents during time step t :

f (t) = 1 −
(

φ�

θmin

)1−γ [
K(1 − α)

](γ−1)t
. (35)

From f (t�) = 0, we calculate the time when the cascade stops as

t� = log(φ�) − log(θmin)

log[K(1 − α)] . (36)

Again, following our previous discussion, the cascade stops at t ′ = min(t�, t◦).
In the RIE regime, on the other hand, Eq. (21) has to be applied to the power law distri-

bution, to yield

f (t) = 1 −
(

θmin

θc
(t−1)

)γ−1

− [K(1 − α)γ−1]
2

[
1 −

(
θmin

θc
(t−1)

)2γ−2]
, (37)

which, together with the failure condition of Eq. (20) provides a set of recursive equations,
to be solved numerically.

3.2 Numerical Results for the EEE Regime

Size of Partial Cascades The analytical results for f (t�) and t ′ = min(t�, t◦) allow us
now to calculate the systemic risk X(t ′) for the different threshold distributions, by varying
system parameters such as the safety margin (1 −α) or the properties of the network. In this
section, we first concentrate on the EEE regime, where the external shock is comparable to
the network capacity and much larger than the average threshold of an agent, φ� ∼ Q ≥ θ̄ .

The propagation of failures depends on the underlying network. In this paper we focus
on regular and Bethe lattices. We remind that the difference between these is in the number
of agents potentially affected by the cascade at a given time t . For Bethe lattices and regular
trees, we have K(t) = Kt , whereas for regular networks K(t) ∝ Kt , i.e. for a given t in
Bethe lattices much more agents are affected. Conversely, for a given N , regular lattices have
a larger diameter. For example for the 2D regular lattice the diameter grows with system size
as

√
N . On the other hand, the diameter in a Bethe lattice grows as logN .

In both cases, trivially, if the safety margin (1 − α) vanishes, any external shock results
in an immediate collapse. This also happens for finite safety margins as long as the global
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Fig. 4 Systemic risk in a system with uniform threshold distribution with θ̄ = 1, and σ = 0.5. The contour
plots show X dependent on the initial shock φ� normalized to the network capacity Q for different values
of α. The results were obtained for a regular network, with K = 4, so the dashed line K(1 −α) < 1 separates
the region of “full” cascades, X(t ′) = 1, from the region of possibly partial cascades, X(t ′) < 1. The right
panel shows the systemic risk in a system with power-law threshold distribution with exponent γ = 3, where
the underlying network is a Bethe lattice with K = 4, N = 1000

stability condition K(1−α) ≥ 1 is not met. In the left panel of Fig. 4 we plot, for the uniform
threshold distribution, the systemic risk X in a Bethe lattice. For large safety margins, α →
0, we do expect “partial” cascades. The parameter region for these is much larger for regular
networks where at each time step a smaller number of agents is affected, than for Bethe
lattices. For a 2D regular lattice, an initial shock of almost 30 full cascade, whereas in the
second case it requires an initial shock of almost 60.

The results are to be compared with Fig. 4 (right panel), where we plot the systemic risk
X, for Bethe lattices only, for a power-law threshold distributions with an exponent γ = 3.
We remind that (for this value of γ ) the network capacity Q is comparable to the case of the
uniform threshold distribution. We, thus observe a similar dependence of X on the safety
margin (1 − α) and on the relative initial load φ�/Q. To be precise, in this case the safety
margin plays a less important role, but we find partial cascades also for φ�/Q > 0.5, which
was not the case for the uniform threshold distribution.

The situation differs for exponents γ < 2. In this case, the system seems to be much more
vulnerable, indicated by large values of X in all parameter regions. To put this finding into
perspective, we remind that for γ < 2 the network capacity is much larger than for γ > 2,
i.e. the initial shock also has much higher values as compared to Fig. 4 (right). This explains
the severity of the cascades in this case.

The results obtained for these two particular values of γ can be generalized to γ ≤ 2 and
γ > 2. As a consequence, we may conclude that with a much broader threshold distribu-
tion, the system can absorb higher initial shocks (in absolute values), but shocks of a size
comparable to the network capacity most likely result in full cascades, i.e. total failure.

To better understand the role of the skewness of the threshold distribution and the un-
derlying network, we fix the relative initial shock φ�/Q = 0.2 and vary γ for two different
network structures. Figure 5 confirms (a) that a Bethe lattice or regular tree structure leads
to more severe cascades as compared to a regular network, which is due to the smaller diam-
eter of the network, and (b) that an increasing skewness, i.e. smaller values of γ lead to an
increasing systemic risk. Remarkably, there is a non-monotonic dependence of X on α and
γ , and the cascade size becomes larger around γ ≈ 1.5. The reason for this is, on the one
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Fig. 5 Systemic risk in a system with power law threshold distribution. The relative initial shock was fixed:
φ�/Q = 0.2. N = 1000, K = 4. (Left) Bethe lattice, (right) 2D regular lattice. Cf. also Fig. 4

hand, the system size dependence of the network capacity for γ ≤ 2 and, on the other hand,
the larger fragility resulting from a more skewed distribution (i.e. thresholds are closer to
θmin). The first effect is a global one, i.e. larger load is added to the system, the second is a
local one, i.e. there are fewer agents that can handle large loads.

3.3 Results for the RIE Regime

The previous results have focused on the EEE regime of large external shocks, φ� ∼ Q � θ̄ .
This means that the initial load is largely responsible for triggering the cascades. Here we
focus on the opposite case, the RIE regime, Q � φ� ∼ θ̄ , where small fluctuations of an
agent’s load lead to the agent’s failure provided that the safety margin of that agent was
rather small. The question is then under which conditions this failure leads to a cascade of
macroscopic size. Applications of this case include power-grid cascade failures [6, 7, 13],
or failures of server infrastructure [8].

We now consider φ� = θi for the failing agent, and we assume that the system is in
a critical condition. This means that a single failure among the neighbors of the initially
failing agent (i.e. f (1) ≥ 1/K) is enough to trigger a system-wide cascade. We now define
φc

� as the load such that f (1) is exactly equal to 1/K . With these assumptions, we compute
the ensemble average 〈X〉 of the systemic risk

〈X〉 =
∫

φc
�

dθiP (θi). (38)

The integral runs over the threshold θi ≥ φc
� of all possible agents i which trigger a full cas-

cade. These agents can be regarded as systemically important because their failure induces
a systemic collapse.

The quantity 〈X〉 then represents the frequency at which a randomly chosen agent can
trigger the complete failure of the system. In the following we compute 〈X〉 for the uniform
and power-law thresholds distribution.

Uniform Threshold Distribution The initial critical load φc
� in the RIE regime can be

easily computed from Eq. (30), using the condition f (1) = 1/K :

φc
� = K(1 − α)

[
2σ/K + (θ̄ − σ)

]
. (39)
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Fig. 6 Frequency of “full” cascades 〈X〉 for the uniform (left) and the power law (right) threshold distribution
in the RIE regime. We consider regular random networks of size N = 1000 with varying K ; the safety margin
of agents is set to (1 − α) = 0.002. Open symbols show simulation results, dashed lines analytic results.
Parameters for the uniform distribution: θ̄ = 1, σ = 0 (triangles), σ = 0.3 (diamonds), σ = 0.6 (squares),
and σ = 0.9 (circles). Parameters for the power law distribution: γ = 1.1 (circles), γ = 2 (squares), γ = 3
(diamonds), and γ = 4 (triangles)

Then, the average systemic risk for the uniform distribution 〈Xu〉 is given by

〈Xu〉 =

⎧
⎪⎨

⎪⎩

0 if θ̄ − σ > φc
�

[(2α − 1) − K(1 − α)]/2 − θ̄ [K(1 − α) − 1]/2σ if θ̄ − σ ≤ φc
� ≤ θ̄ + σ

1 if φc
� > θ̄ + σ.

(40)

Power-Law Threshold Distribution In an analogous way we obtain from Eq. (34) with
f (1) = 1/K the expression for the initial critical load φc

� in the case of a power-law thresh-
old distribution:

φc
� = θminK(1 − α)

(
1 − K−1

)−1/γ−1
. (41)

This allows us to calculate the average systemic risk as:

〈Xp〉 =
{

1−K−1

[K(1−α)]γ−1 if φc
� ≥ θmin

1 otherwise.
(42)

In order to study the role of connectivity in the cascade process, we created random
regular networks [15] with arbitrary values of the average connectivity K/N . Figure 6 shows
the average cascade size 〈X〉 for a rather small safety margin, which is in line with the
RIE regime. This means that small fluctuations of the load of a single agent may lead to
its failure. Figure 6 allows to compare the analytical expressions in Eqs. (40), (42) with
numerical simulations of the cascade process. The graphs show a sharp transitions from
〈X〉 = 1 to 〈X〉 < 1 at K/N = 1/2. This results directly from the change in global instability
K(1 − α) ≤ 1, at that particular point. On the other hand, when the system is not globally
unstable, the results show that only a subset of agents are able to trigger a cascade in the
system, their fraction indicated by 〈X〉.

The left panel of Fig. 6 shows the results for the uniform threshold distribution. For
identical agents (left panel, σ = 0), a sharp transition between complete failure (〈X〉 = 1)
and no failure (〈X〉 = 0) can be observed. This result immediately follows from Eq. (25), in
the limiting case t → ∞. For a fixed value K/N > 1/2, the graphs show that larger values
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of σ exhibit larger frequencies of full cascades, 〈X〉. This results from Eq. (39) which shows
that the critical initial load φc

� decreases for increasing heterogeneity; thus, for larger values
of σ a larger fraction of agents is likely above such a threshold.

The right panel of Fig. 6 shows the results for the power-law threshold distribution.
Again, broader distributions, i.e. lower values of γ , result in a higher probability of complete
failures. This is in line with Eq. (41) where, for a fixed K , the critical load increases with
γ . At the same time, the threshold distributions become more narrow with larger γ . Thus,
the amount of systemically important agents that are able to trigger a full cascade, is much
lower in distributions with large γ , and thus the average systemic risk decreases.

It is worth mentioning that the simulation results in Fig. 6 were obtained with a relatively
small system size i.e. N = 1000. Importantly, despite the small system size the analytical
results do not deviate from the numerical simulations. I.e., the behavior of the system for
such N cannot be discerned from the one appearing in the thermodynamic limit.

4 Conclusions

The model studied in this paper follows the general framework outlined in [3]. It is based
on very simple ingredients, to allow for analytical treatment: (i) a regular network, i.e. all
agents have the same number of neighbors, K , (ii) a constant safety margin (1 − α), the
same for all agents, which defines a fixed relation between the load φr an agent can possibly
carry and the threshold θr at which it fails, (iii) an initial condition that only one randomly
chosen agent i fails when facing a load φ�, (iv) a redistribution of the load of the failing
agent to its K neighbors.

The variability of the model comes from two assumptions: (v) the threshold distribution
P (θ) which was chosen as a delta distribution, a uniform distribution, or a power law dis-
tribution, (vi) the severity of the initial shock, which was either of the order of the network
capacity Q, i.e. much larger than the average threshold, or much smaller than the network
capacity, i.e. of the order of the average threshold. The latter allowed us to distinguish be-
tween two important regimes: (a) EEE regime, where an extreme external event was large
enough to cause the failure of many agents, (b) RIE regime, where small random internal
events may result in the failure of a single agent. In both cases, this initial failure may have
triggered a cascade of failures in the neighboring agents.

For both regimes, we are interested in the following question: what is the possible size
of a failure cascade, X(t), measured as the total number of failed agents compared to the
system size N , at a given time t . Will this be a “full” (X → 1) or a “partial” (X < 1) cascade
and, in the latter case, at what time will it stop: at a time t◦ where the cascade has already
reached all agents but did not cause all of them to fail, or at a time t� before it has passed
the entire system. We regard X as a measure of systemic risk. We further derive analytical
results to answer these questions.

These results allow us to draw conclusions about the conditions that lead a smaller sys-
temic risk. In the following we summarize our finding:

(1) We derive a global stability condition K(1 − α) ≥ 1 that has to be met in order to
allow for partial cascades, in principle. The larger the number of neighboring agents, K ,
or the larger the safety margin, (1 − α), the more likely this condition is met. This allows
for an interesting discussion because of the possible trade-off between the two ingredients.
In most cases, the safety margin is given by the technical constitution of an agent, e.g. in
power grids or routing servers. K , on the other hand, refers to a structural property of the
network, but not to internal properties of the agents. Hence, systemic risk can be reduced
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by increasing the network density—at least up to a certain point [9]. It should be noted that
we have assumed the initial failure of only one agent, here. If it is, however, more costly to
improve the network connectivity than increasing the safety margin of the agents, the latter
can serve the same purpose, namely reducing systemic risk.

(2) In a system of thousands of agents, the network capacity, Q, which is the total load
the system can carry a priori, is also quite big. One would not easily assume that an ini-
tial shock φ� is of the same magnitude as Q as in the EEE regime. Hence such big shocks
are extreme external events to the system. The interesting finding in this paper is that even
such extreme events may not lead to a “full” cascade, i.e. to a total collapse of the system.
Instead, provided that the global stability condition is met, we find a broad range of sys-
tem parameters where such cascades stop at finite time, affecting only part of the system.
We have shown that systemic risk resulting from extreme shocks can be reduced (a) by a
regular lattice structure (as opposed to e.g. a regular tree structure), (b) by a broad thresh-
old distribution. In the latter case, we found partial cascades, i.e. X < 1, even if the initial
shock was 2–4 times larger than the total network capacity, which can be regarded as a sign
of real robustness. Comparing the power-law threshold distributions of γ = 1.5 and γ = 3,
we found that, in absolute measures of the shock, the broader distribution lead to the more
robust systems. In relative measures, however, this result inverts, simply because a broader
distribution also results for a larger network capacity, and hence for larger initial shocks,
while the relative measure remains the same.

(3) Investigations of the RIE regime, where the initial shock is of the order of the thresh-
old of an average agent, i.e. much smaller than the total network capacity, show that a sys-
temic failure can occur only if (a) the initial shock is larger or equal to the threshold of the
initially failing agent, and (b) the redistribution of load is large enough. Hence, dependent
on the threshold distribution we can calculate this failure probability. Even in the global
stability regime, we find “full” cascades, but the probability of their occurrence depends on
the probability that randomly chosen agent fails initially. The broader the threshold distri-
bution, the more likely this condition is met, i.e. the frequency of observing “full” cascades
increases with the heterogeneity.

(4) The initial question: “How big is too big”, based on the results of our model, can be
answered as follows: Initial shocks, even if they exceed the capacity of the whole system
(not just the capacity of a single agent), are probably not the problem. Of course, there are
parameter regimes that lead to complete collapse (X → 1). At the same time, we see that
a change of φ� of 10 or even 50 percent does not change the systemic risk very much. Of
much larger influence are system parameters related to the network structure, the safety
margin, and the threshold distribution. As it was also found in other papers [3], an optimal
heterogeneity in the agent’s threshold can reduce systemic risk considerably. In addition
to that we find that a change of the safety margin by 10 or 50 percent generates a much
larger impact on systemic risk than a comparable change in the external shock. So, when
seeking for protection against systemic risk the focus should be (a) on those parameters that
influence the global stability, i.e. K(1−α) (see above), and (b) on the optimal heterogeneity
in the threshold distribution.

To summarize, the model studied in this paper departs from others models previously
studied in the literature in the way the initial load is assigned and shared among the neigh-
boring agents that did not fail yet. However the results highlight that systemic risk depends
much more on ingredients such as the network structure, the safety margin and threshold
distribution. With respect to these general conclusions, our work is in line with seminal
research on this topic [1, 6].
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