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In this paper we focus on diversity-induced resonance, which was recently found in bistable, excitable, and
other physical systems. We study the appearance of this phenomenon in a purely economic model of cooperating
and defecting agents. An agent’s contribution to a public good is seen as a social norm, so defecting agents
face a social pressure, which decreases if free riding becomes widespread. In this model, diversity among
agents naturally appears because of the different sensitivities towards the social norm. We study the evolution
of cooperation as a response to the social norm (i) for the replicator dynamics and (ii) for the logit dynamics
by means of numerical simulations. Diversity-induced resonance is observed as a maximum in the response of
agents to changes in the social norm as a function of the degree of heterogeneity in the population. We provide an
analytical, mean-field approach for the logit dynamics and find very good agreement with the simulations. From
a socioeconomic perspective, our results show that, counterintuitively, diversity in the individual sensitivity to
social norms may result in a society that better follows such norms as a whole, even if part of the population is
less prone to follow them.
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I. INTRODUCTION

The ever-increasing interest by physicists to contribute to
understanding collective phenomena in social systems [1]
has mostly concentrated around highly stylized models, often
directly borrowed from physics, using vague plausibility
arguments to justify their social context [2]. In this paper,
we follow a less common route, namely, to work with a
model which is established in, and directly taken from, the
social sciences. It studies the effect of social norms on
the emergence of cooperation. We study its dynamics from
the physical perspective of diversity-induced resonance to shed
new light on sustainable cooperation in a society where some
fractions do not adhere to support it.

In a system consisting of distinct and nonidentical elements,
diversity-induced resonance can be defined as the appearance
of a maximum response to an external signal, dependent on
the degree of diversity. This phenomenon was first reported
in Ref. [3], in the context of coupled bistable or excitable
systems that are subject to a subthreshold signal. It was shown
that there is an optimum level of the diversity (quenched noise)
of the coupled units that maximizes the response to the signal.
Subsequent works [4–13] showed that similar behavior can
be observed in other physical systems, thus reinforcing the
notion that this type of resonance can be a quite general
phenomenon. In fact, diversity-induced resonance was also
shown to appear in models related to sociophysics: It was
found in discrete models of opinion formation [14], such as the
Galam model [15] (related to the random-field Ising model at
zero temperature [16]), and in continuous ones [17], of which
the Deffuant model [18] is a paradigmatic example. In all
cases, the average opinion synchronizes to external signals or
influences when the diversity in the preferred opinions attains
an optimum value. In a broader context, diversity-induced
resonance can be generalized to other sources of disorder in
the internal dynamics of the system constituents. Interestingly,

even repulsive and evolving patterns of interactions can trigger
a common collective behavior, be it synchronization [19,20],
an amplification of an external signal [17,21], or a nonlinear
increase in the volatility of the global dynamics [22]. In a
social context, these repulsive interactions would represent
contrarians, i.e., individuals that oppose any type of consensus
[23,24] or that intend to destabilize the system itself, such
as the joker-like players studied in the context of social
dilemmas [25].

The research reported here generalizes diversity-induced
resonance by demonstrating its appearance in a purely eco-
nomic model of social norms and their effect on cooperation
[26]. Instead of relying on a model rooted in physics, we
study an established model from the economics literature in
which diversity and external driving are introduced based
on economic considerations. In this model, diversity appears
naturally as an idiosyncratic propensity to follow a social norm.
We demonstrate for this model that there is an optimal range
of diversity, which leads the society to follow such norms as a
whole. Different from the setup of diversity-induced resonance
models usually studied in the physics literature, in this case
diversity appears in a multiplicative manner, and its dynamics
are given by approaches typical of evolutionary game theory.

This paper is organized as follows: Sec. II presents our
model and its economic context. Section III summarizes
our simulation results, obtained for two different types of
evolutionary dynamics, to demonstrate the robustness of
the observations. To better understand the origin of the
collective dynamics, we present our findings for three levels
of increasing modeling complexity, without and with diversity
and with external forcing. Subsequently, Sec. IV A improves
our understanding by means of an analytical approach for the
stationary level of cooperation, and Sec. IV B investigates the
response to the external signal. Finally, Sec. V summarizes our
conclusions and discusses the implications of this work.
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II. MODEL

A. Economic context

In this paper, we model conditional cooperation, a phe-
nomenon observed in many human interactions. This term was
introduced by Keser and van Winden [27] and Fischbacher and
E. Fehr [28] to refer to the fact that people often condition
their cooperation on the cooperativeness of others or on
their beliefs about others’ behavior. In the specific context
of prisoner’s dilemma [29,30] or public good games [31],
this means that people are ready to contribute more to the
common welfare if others contribute as well. Furthermore,
this willingness increases with the number of contributors in
the game. There is a large body of experimental evidence
supporting the existence of this type of behavior [32], even
in structured populations [33–35]. It is only consistent to ask
(i) for a deeper theoretical understanding of these observations
and (ii) what their consequences are for economic reasoning.
The first question is partly answered by the theory of social
preferences [36], which posits that nonmonetary contributions
to the utility function arise from social considerations, such
as, e.g., inequity aversion or reciprocity. It has been argued
that social preferences arise through social norms, i.e., rules of
conduct that are enforced by internal or external sanctions [37].
Explanations for the emergence and robustness of such norms
in evolutionary terms have been advanced [26,38,39], thus
closing the rationale to explain conditional cooperation in
terms of social preferences.

In this paper, we focus on the issue of norms and on the
consequences of having a diverse population of conditional
cooperators interacting in a public good setup. Thus, we
investigate how diversity influences the response to exoge-
nous efforts to promote cooperation through social norms.
Following Spichtig and Traxler [26], we consider that a norm
against free riding is enforced (internally or externally). This
is achieved by adding a contribution to the utility function
such that free riding (i.e., not contributing to the public
good while benefiting from it) is heavily punished when rare,
but the punishment weakens as free riding becomes more
abundant in the population. This norm leads to conditional
cooperation because of more willingness to cooperate when
the population is mostly cooperative, and the propensity to
cooperate decreases if less participants cooperate.

In the above context, we address the following question:
How does the behavior of the population change if the social
norm responsible for establishing a conditionally cooperative
strategy varies in time? This question is important for two
reasons. First, social norms are known to change in time,
endogenously or exogenously, in periodic or random manners
[40,41]. Therefore, it is most important to understand how
those changes affect the observed behavior in order to assess
the stability of cooperative environments. Second, understand-
ing the response of the population to changes in the current
social norm can help policy makers to design incentives or
new norms that lead to more cooperative outcomes. However,
it should also be realized that the effort of steering the norms
towards a preferred direction is costly, and at some point,
the benefit of improving the behavior of the populations
may be lower than that of continuing changing the norm.
Therefore, assessing the optimum amount of effort invested

in modifying a given norm is a very relevant issue. Finally,
we will come to the issue of diversity-induced resonance by
considering that the sensitivity to the social norm depends on
the individual through a specific coefficient to be introduced in
the utility function. In the following, we will show that these
issues can be addressed and are related to the phenomenon of
diversity-induced resonance in this system.

B. Model definition

Let us now implement the ideas above in a well-defined
model built on the original proposal by Spichtig and Traxler
[26]. We consider a population of N agents which can take one
of two possible (opposite) actions σi ∈ {0,1} for i = 1 · · · N .
We assume that “cooperative” agents take action σ = 1, in
this way contributing to a public good, while “free riders”
take action σ = 0 and do not contribute to the public good.
Defining the density of cooperators as nc ≡ Nc/N and the
density of free riders as nf ≡ 1 − nc = Nf /N , the utility (or
payoff) function per agent is defined as

ui(σi,θi ; nc) ≡ − c σi + r

N

N∑
j=1

σj + (σi − 1) θis(nc). (1)

The first term in Eq. (1) represents the cost c per agent for
providing the public good, which applies only if agent i is
cooperative, σi = 1. The second term represents the benefit
r/N per agent resulting from the public good. It applies
regardless of the agent’s action σi . Both terms describe the
utility function of a classical public good game. The third
term, new to the model, describes an additional effect resulting
from the existence of a social norm, or social pressure, to
cooperate. Free riders with σi = 0 face an internal or external
sanction [37], which does not apply for cooperators with
σi = 1. We assume that the strength of the social pressure s(nc)
depends on the density of cooperators. If nc is small, i.e., if free
riding is widespread, then agents deviating from cooperation
may face weaker sanctions. Hence, s(nc) is assumed to increase
monotonously with nc, with s(1) > 0 and limnc→0 s(nc) = 0.
In the following, we simply choose a linear function s(nc) =
α nc, with α > 0.

Eventually, we consider that not all agents may be prone to
social pressure in the same manner. To cope with this individual
sensitivity to the social norm, we introduce a new variable
θ with realizations θi drawn from a probability distribution
function g(θ ) with mean � and standard deviation �θ . Note
that negative values of θi imply a positive contribution to
the perceived agent’s utility by violating the social norm.
This reflects the presence of contrarians or jokers [25] in the
population that are willing to go against the system in order to
benefit. Such agents would more likely not contribute to the
public good in the presence of social pressure, but as we will
see below, their presence turns out not to be an obstacle for the
general population to conform to the social norm.

With this utility function, the (bounded) rational choice
of an agent on what action to take depends on the density of
cooperators nc and on her individual sensitivity θi . Introducing
c̃ ≡ c − r/N , it is easy to see that agents’ decisions can be
classified as three types: (i) agents will always cooperate, σi =
1, if θi > c̃/s(N−1), (ii) agents will always free ride, σi = 0,
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if θi < c̃/s(1), and (iii) agents are conditional cooperators
dependent on the density of free riders in the population,
i.e., they cooperate if c̃/s(N−1) > θi > c̃/s(1). Note that
because limnc→0 s(nc) = 0, the criterion for the existence of
cooperators is quite tight, and often they will be absent from the
population. Hence, the diversity in the individual sensitivity θ ,
precisely, the standard deviation �θ , will play an important
role in deciding the size of the three groups defined above. The
final level of cooperation (as well as the influence of the social
norm) will, to a large extent, be governed by the conditional
cooperators.

Finally, we will consider that the cooperation-fostering
norm changes in time, which is modeled by assuming a time
dependence of α → α(t). This corresponds to a change of the
slope of the social pressure function, representing periods in
history where free riding is less tolerated than in others but it is
always tolerated if widespread. If we further assume that agents
can change their action depending on their expected utility, i.e.,
the density of cooperators nc has a dynamics defined like in
the following section, the third term in Eq. (1) representing
the social pressure becomes (σi − 1)θiα(t)nc(t). Hence, we
have a signal α(t) that changes over time because of external
influences. In the present paper, for the sake of simplicity
and without altering the main results [22], we will consider a
periodic change in the amplitude of the social norms. In the
absence of cooperators, the effect of this signal vanishes as
well. The diversity in responding to the signal is given by the
individual variables (σi − 1)θi ; i.e., only free riders will face
the social pressure, but they are prone to it in a heterogeneous
manner.

Studying the model in the setting of diversity-induced
resonance allows us to use standard techniques for quantifying
the response of the population to, for example, a change in the
social pressure induced by a policy change. If the period of
the signal α(t) is long enough, the results of a periodic forcing
become equivalent to a one-time modification. Moreover, in
contrast to previous studies of this phenomenon, the signal
enters multiplicatively on the heterogeneous term.

C. Evolutionary dynamics

As mentioned above, we implement a dynamics that
allow agents to change their actions dependent on the utility
expected. For this dynamics, we use a standard evolutionary
game-theoretical setup with one-shot games; i.e., agents have
no memory of their previous action. We consider a well-mixed
population; i.e., all agents interact together. This is dynam-
ically equivalent to considering a mean-field version of the
public good game, already reflected in the sum term in Eq. (1).
After each round of the game, agents collect their payoff and
subsequently update their strategies according to two different
dynamical rules, which we explain in detail below. From the
various propositions for update rules in the literature [42,43],
we have chosen (i) the replicator dynamics [44,45], which
is widely used and has a well defined limit for N → ∞,
namely, the celebrated replicator equation [46,47], and (ii)
the logit dynamics [48], which allows for the possibility of
errors or mistakes in choosing actions and whose deterministic
limit coincides with the best-response rule, widely used in
economics [49].

From a socioeconomic context, both dynamic rules have
a different interpretation. On the one hand, the replicator
dynamics involves some degree of social interaction (the
process is driven by imitation of successful strategies). On
the other hand, the logit dynamics is simply based on strategic
behavior. By choosing these quite different kinds of dynamics,
we demonstrate the generality and the robustness of the results
presented in this paper.

Regarding the formal description, it is important to notice
that the diversity for θ introduced in our model no longer
allows us to write down the macroscopic dynamics in terms
of a single master equation. Instead, the system dynamics has
to be split into the dynamics of groups of agents with the
same value of θ . Let n(θ,σ )δθ be the number of agents with
an individual sensitivity in the interval [θ − δθ/2,θ + δθ/2]
choosing action σ at time t (for simplicity, we also say agents
are in state σ at time t , i.e., “state” refers to “action”). Then, the
rate equation for the density of cooperators with a sensitivity
θ is given by

ṅ(θ,1) = n(θ,0) ω+(θ ) − n(θ,1) ω−(θ ). (2)

The transition rate ω+(θ ) [ω−(θ )] specifies the overall transi-
tion into the state σ = 1 (σ = 0) for the two subpopulations
with a given sensitivity θ but different states. These transition
rates depend on the dynamic rules chosen and are specified
below.

1. Replicator dynamics

With this update rule, after every time step all agents
revise their action simultaneously by selecting one neighbor
at random, e.g., agent j , and comparing their own payoff ui

with their neighbor’s payoff uj . If ui > uj , agent i keeps her
action, whereas in the opposite case she adopts the action of
the more successful agent j with a probability proportional to
(uj − ui). Replicator dynamics is purely imitative, meaning
that actions not present currently in the system cannot appear
spontaneously. This in turn implies that states in which all
agents defect or all contribute are absorbing states. In order
to let the system leave those absorbing states, we have
introduced noise to the dynamics: with a small probability
ε an agent can switch her action spontaneously at every time
step. Subsequently, all payoffs are reset to zero, and a new
round of the game proceeds.

For agents with an individual sensitivity θ , the overall
transition rate towards the opposite state depends on the
possible pairings with agents in the opposite state and equipped
with individual sensitivity θ ′. This yields

ω−(θ ) = ε +
∫

ω−(θ |θ ′) n(θ ′,0) g(θ ′) dθ ′, (3)

ω+(θ ) = ε +
∫

ω+(θ |θ ′) n(θ ′, + 1) g(θ ′) dθ ′, (4)

where g(θ ) is the distribution function of θ . The conditional
transition rates ω+(θ |θ ′) and ω−(θ |θ ′) are equal to the
differences in payoff if the payoff of the agent with θ ′ is
larger, i.e.,

ω−(θ |θ ′) =
{
u(θ ′,0) − u(θ, + 1) if u(θ ′,0) > u(θ, + 1),

0, otherwise
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and

ω+(θ |θ ′) =
{
u(θ ′, + 1) − u(θ,0) if u(θ ′, + 1) > u(θ,0),

0, otherwise.

In these expressions we used, without loss of generality, a
dimensionality constant of 1 to match the transition rates with
the payoff functions. Using the utility function of our model,
Eq. (1), these expressions become

ω−(θ |θ ′) =
{−θ ′ s(nc) + c̃ if θ ′ < c/s(nc),

0, otherwise
(5)

and

ω+(θ |θ ′) =
{−c̃ + θ s(nc) if θ > c/s(nc),

0, otherwise.
(6)

Now, inserting Eqs. (5) and (6) into Eqs. (3) and (4) and
choosing g(θ ) to be a uniform distribution, we get

ω−(θ ) = ε +
∫ c̃/s(nc)

θ−�θ

[−θ ′ s(nc) + c̃]
n(θ ′,0)

2�θ
dθ ′, (7)

ω+(θ ) = ε +
{

[−c̃ + θ s(nc)] nc

2�θ
if θ > c̃/s(nc),

0, otherwise.
(8)

We emphasize that, in the presence of other distributions
for the idiosyncratic term, the transition rates become more
sophisticated and closed form equations cannot be written in
general.

2. Logit dynamics

When considering bounded rational agents, economics
literature often assumes that they do not imitate their neighbors
but follow a strategy or action that would yield the best payoff
for them. In line with this assumption, one possible rule would
be to change the action into a cooperative (ω+) or defective
(ω−) state with a transition rate

ω±(θ ) = 1

1 + exp{ ∓β[u(θ,1) − u(θ,0)]} . (9)

It is important to note that in this case the agent does not
compare her payoff with that of another agent but with the
payoff she would obtain by using the opposite action. As there
is no other agent involved, there is also no interaction term
in the above equation, which makes the transition rates much
simpler than in the previous case. This will be advantageous
for an analytical approach, as we will see below.

The parameter β in Eq. (9) quantifies the randomness in
the process: When β is small, the agent is more likely to
select another action at random, even if that action is not more
successful. On the other hand, when β → ∞, the rule becomes
deterministic, and the action that yields the maximum payoff
is always chosen, as posited by Ellison [49] when introducing
his (myopic) best-response rule.

III. RESULTS

A. Setup for computer simulations

In order to present our results in a clear manner, we
will deal first with the original model as introduced in [26],
without considering diversity or external forcing. This will

be the baseline scenario against which we will subsequently
illustrate the effects of diversity to proceed to our main result,
namely, the influence of an external driver and the concomitant
appearance of diversity-induced resonance.

As described in the preceding section, the model has several
parameters to specify. We start by measuring utilities as a
function of the cost of contributing to the public good, i.e.,
by taking c = 1. For the multiplication factor we fixed r = 5,
which, in a population of many agents, is too small to induce
agents to contribute to the public good. Therefore, without the
third term in Eq. (1) referring to the social norm, the only
evolutionarily stable strategy is defection. For the population
size, we have chosen N = 103 agents (some runs were repeated
with N = 104 for the sake of comparison, yielding the same
results).

Subsequently, we have chosen the following parameter
values related to the social norm. The strength of the norm
is given by the slope α, which, in the absence of an external
influence, is set as a constant α = 1, although changes in
this parameter do not qualitatively modify our conclusions.
Finally, for the sensitivity to the norm, we need to specify
the parameters of the distribution g(θ ). In the following, we
consider two cases: (a) There is a sensitivity to the social
norm equal for all agents, which is given by the mean value
� of the distribution (homogeneous model). We will choose
different values of �. (b) The sensitivity to the social norm
is different for all agents and is randomly chosen from a
uniform distribution in [� − √

3�θ,� + √
3�θ ], where �θ

is the standard deviation (heterogeneous model). Note that
our choice allows for negative sensitivities with effects as
described in Sec. II.

To monitor the evolution of the system, we have mea-
sured the time-dependent density of cooperators nc(t) =
(1/N )

∑
i σi(t). To determine the stationary level of cooper-

ation, we compute the time-average number of cooperation,
nc = 〈nc(t)〉t . Subsequently, we also compute the second
moment of nc(t), i.e., ξ 2 = 〈(nc(t) − nc)2〉t , which is the
susceptibility of the system.

B. Dynamics in the unforced model

1. Model without diversity

In the homogeneous model, the sensitivity to the social
norm is equal for all agents, θ ≡ �. Starting from an initial
condition where half of the population acts as cooperators
and half as free riders, Fig. 1 shows the asymptotic results of
computer simulations for the two update dynamics introduced
in Sec. II C. As can be clearly seen in the top panels, an
increase in the parameter �, which controls the influence
of the social norm, results in an increase in the density of
cooperators. For the replicator dynamics and for large values
of randomness ε, this effect becomes less visible as the width
of the transition increases. The results for the logit dynamics
point in the same direction, with β−1 being the parameter that
controls the randomness or the frequency of mistakes. Note
that Fig. 1 is obtained for equal initial densities of contributors
and free riders, but extensive simulations show that the value
of � at which the transition occurs does not depend on the
initial condition.
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FIG. 1. (Color online) (top) Asymptotic fraction of cooperators nc

dependent on the sensitivity to the social norm, θ ≡ �, which is equal
for all agents in the model without diversity. (bottom) Fluctuations
ξ around the expected action, which is free riding (σ = 0) for � <

2 and cooperation for � > 2. (left) Replicator dynamics. Different
curves correspond to different values of ε: circles, 0.01; squares, 0.02;
diamonds, 0.05; triangles, 0.10. (right) Logit dynamics. Different
curves correspond to different values of β: circles, 0.1; squares, 1.0;
diamonds, 2.5; triangles, 10. The other parameters are described in the
main text. In the top right panel, the lines correspond to the analytical
treatment, developed in Sec. IV.

It is interesting to note the peak of the susceptibility (bottom
panels) close to the transition towards cooperation, both for
replicator and logit dynamics. This is reminiscent of bistable
systems, which change their stability at the transition. It is
the archetypal situation where diversity-induced resonance has
already been demonstrated, and as we will see below, it will
give rise to the same behavior in this socioeconomic context.
It is worth noting that the results for the susceptibility become
very similar for both dynamics only when the noise intensity
is very small.

2. Model with diversity

Using the results from the model without diversity as a
reference case, we now focus on the role of diversity in the
sensitivity to the social norm. That means that instead of a
fixed value θ we consider an individual value for each agent
which is drawn from the uniform distribution g(θ ) specified
in Sec. III A. The standard deviation �θ varies the degree of
diversity. The results of computer simulations are shown in
Fig. 2. From the previous discussion (cf. Fig. 1) we know
that, for the chosen set of parameters, the transition from free
riding to cooperation occurs at a value � = 2. Therefore, in
all the curves of Fig. 2, we have fixed the average sensitivity
to this value in order to investigate the role of diversity.
When plotting the stationary number of cooperators, the two
curves for the same parameter set correspond to different initial
conditions with a majority of cooperators or defectors. From
the simulation results, we can clearly conclude that diversity
alone does not favor the transition towards cooperation. Also,
increasing noise does not enhance this situation. From Fig. 2
we see that, for the replicator dynamics, the lower the noise is,
the lower the cooperation is in the asymptotic state, reaching
the random level of nc = 0.5 for very high values (agents
make mistakes every other time step on average). For logit
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Δθ

0

0.3

0.6

ξ

0

1

nc

Replicator

0

1

nc

Logit

0.0 0.5 1.0 1.5 2.0
Δθ

0

0.1

0.2
ξ

FIG. 2. (Color online) (top) Asymptotic fraction of cooperators
nc and (bottom) susceptibility ξ 2 dependent on the sensitivity to the
social norm θ , which is different for all agents in the model with
diversity. �θ is the variance of the distribution g(θ ) with mean value
� = 2. (left) Replicator dynamics. Different curves correspond to
different values of ε: circles, 0.02; squares, 0.05; diamonds, 0.07;
triangles, 0.10. (right) Logit dynamics. Different curves correspond
to different values of β: circles, 2.0; squares, 2.25; diamonds, 2.50;
triangles, 2.75. In the top panels, we have selected two different
initial conditions [nc(0) = 0.1 and 0.9] for both kinds of dynamics.
The other parameters are described in the main text. In the top right
panel, the lines correspond to the analytical treatment, developed in
Sec. IV.

dynamics the results are similar, but for low noise we observe
an asymmetric bifurcation in which the stationary state of
low cooperation merges onto the nc = 0.5 state only for very
large values of the diversity; higher noise values change the
bifurcation towards a more symmetric form.

C. Dynamics under driving

So far we have only discussed the role of the idiosyncratic
sensitivity θ to the social norm and have found that it does
not induce a transition to cooperation. Now, as an important
new ingredient, we consider that the influence of the norm
changes in time, expressed by the time-dependent parameter
α(t). Basically, any time dependence can be considered. For
simplicity we have chosen a periodic function in the form of a
square wave defined as

α(t) =
{
α + �α if 2nT < t < (2n + 1)T ,

α − �α if (2n + 1)T < t < 2(n + 1)T ,
(10)

with n = 0,1,2, . . . In an adiabatic limit, where the period T

is large such that the system reaches the stationary equilibrium
in a period, this situation is equivalent to the application of a
single change in the social pressure as perceived by agents (by
external means, like a change in policy, for example). We have
verified that using a sinusoidal function basically leads to the
same results, qualitatively, as those shown in this paper. So we
will focus on the expression given in Eq. (10).

We already defined the global density of cooperators nc(t)
to be used as the order parameter. In particular, in the following,
we will instead plot both the minimum and maximum values
reached by the density of cooperators over time. To further
quantify the collective response of the system to the externally
changing influence of the social norm, we introduce the
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FIG. 3. (Color online) Response of the system in the presence of a periodic square-wave forcing with logit dynamics. In all the plots,
β = 2.5. The left column shows (top) spectral amplification factor R, Eq. (11), (middle) maximum and minimum levels of cooperation
attained during the evolution of nc for the system, and (bottom) the susceptibility. Each symbol corresponds to a different signal amplitude:
�α = 0.05,0.1,0.2,0.5 are shown as circles, squares, diamonds, and triangle, respectively. Analytical results (see main text) are represented
with solid lines. In the right column, we depict the time dependency of the macroscopic state nc (solid black lines) for three different values
of the parameter �θ . The values are �θ = 0.7,1.2,1.7 in the top, middle, and bottom plots, respectively. The dotted line represents the social
pressure (�α = 0.1), while the thin green dashed line (only in the middle plot) shows the signal applied (not on the same scale, for clarity).
Other parameters are T = 103, N = 104, r = 5, � = 2, α = 1.

spectral amplification factor (SAF), R, defined as [50]

R = 4
|〈nc(t)ei2πt/T 〉t |2

�α2
. (11)

Now, in addition to the variance �θ of the sensitivity to the
social norm, which describes an individual feature, we further
have the change �α in the social pressure caused by external
influences.

A summary of our numerical results is presented in Fig. 3.
The left column shows the spectral amplification factor R,
the maximum and minimum values of cooperation nc, and ξ

as a function of the standard deviation of the diversity �θ

for different values of the amplitude of the external driving
�α. These results correspond solely to the logit dynamics; the
results for the replicator dynamics are qualitatively similar to
those presented in the plot and are not shown. We further
noticed that, for all choices of parameters, the results are
independent of the initial conditions. As can be seen from the
plots, for low �θ , the response R is largely independent of �θ .
In this limit, it is possible to see the existence of superthreshold
signal intensities �α, which are those values exhibiting large
oscillations in the limit �θ → 0. For the parameters in the
plot, this corresponds to �α � 0.2. On the other hand, for
smaller values of signal amplitude, we find that (in the limit
of small heterogeneity) the system responds simply linearly to
changes in the social norm. From a dynamical point of view,
responses of the system to the external influence for low �θ

are depicted in the right column in the top panel.
However, intermediate values of �θ do provide evidence

for resonant behavior if the driving intensity is small: R shows a
peak for values of �θ � 1, which becomes more noticeable for
smaller signals. The oscillations of nc(t) are centered around
1/2, a value much larger than the one obtained for lower
values of diversity. Moreover, the application of a one-time

increase in the strength of the external signal may yield a
nonlinear response in terms of the growth of cooperating
agents. From a policy making point of view, this translates
to low incentive costs being able to enforce the cooperative
state throughout the population. When the driving amplitude
�α is much larger, the system may be able to follow the signal
simply because the signal is superthreshold, and the same thing
happens even in the absence of diversity. Therefore, there is a
true resonance phenomenon, which can be observed for low
external signals, that elicits a strong response. In the middle
panel of the right column, we show the dynamic response
for a small applied signal, showing the large excursions in
the number of cooperators when successively activating and
deactivating the external signal.

Finally, for very large values of diversity, no response to the
external influence is observed. The number of agents with very
heterogeneous responses to the external signal does not allow
a significant portion of the population to react to the external
signal, and the system’s response becomes linear again. The
latter result can be observed in a vanishing response R and
small oscillation amplitudes in nc (the latter is shown in the
bottom panel of the right column). In all the previous analyses,
it is worth noticing that a peak in the susceptibility signals also
the diversity-induced resonance in this system.

Analyzing the role of noise for a fixed driving strength �α,
we observe another interesting feature of the dynamics under
driving. Figures 4 and 5 show for both the replicator and the
logit dynamics the appearance of stochastic resonance [50].
That means for an intermediate noise intensity (temperature or
randomness in the proposed dynamics) the diversity-induced
resonance peak is more clearly observed, whereas smaller or
larger values of the randomness mostly suppress it. As with
most stochastic phenomena, the resonant behavior is clearly
marked also in the fluctuations of the system. The observation
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FIG. 4. (Color online) Response of the system in the presence of
a periodic forcing with logit dynamics. In all the plots, �α = 0.05.
(top) Spectral amplification factor R, Eq. (11). (middle) Maximum
and minimum levels of cooperation attained during the evolution of nc

for the system. (bottom) The system susceptibility. Each symbol (and
color) corresponds to a different value of the inverse randomness:
β = 2,2.32,2.5,2.75 are shown by circles, squares, diamonds, and
triangles, respectively. With symbols we represent the results obtained
by means of computer simulations, while the analytical results are
presented as solid lines. Other parameters are T = 103, N = 104,
r = 5, � = 2, α = 1.

of stochastic resonance is remarkable because it shows up
not in a physical but in a socioeconomic context. It indicates
that some level of imperfections in the adoption of the better
performing strategies may lead to larger responses to external
stimuli.

It is also worth mentioning that the presence of contrarians,
i.e., agents which defect even in the presence of social
pressure, can be beneficial for finding the diversity-induced
resonance phenomenon. In some extreme cases, as shown in
Fig. 4, the resonance peak may appear only in the presence
of contrarians for β = 2.75 [51]. This finding is against
our intuition that contrarians would hamper the adoption
of a cooperative state in the system. It reminds us of the
positive influence of destructive agents on the emergence
of cooperation in social dilemma situations as discussed in
[25], where this phenomenon was termed “the joker effect.”
Turning to replicator dynamics, further increasing the noise
intensity would lead to a (small) maximum of response.
This corresponds to values of diversity where contrarians are
pervasive inside the population. However, in such a situation
agents’ actions are very often randomly taken. Therefore, in

100
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0.2
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ξ

FIG. 5. (Color online) Effect of a periodic signal applied to
the social norm as a function of the population diversity �θ for
the replicator dynamics. In all plots, �α = 0.05. (top) Spectral
amplification factor R, Eq. (11). (middle) Maximum and minimum
levels of cooperation attained during the evolution of nc for the
system. (bottom) The system’s susceptibility. Each curve corresponds
to a different value randomness: ε = 0.04,0.045,0.05,0.055 are
shown as circles, squares, diamonds, and triangles, respectively. Other
parameters are T = 103, N = 104, r = 5, θ = 2, α = 1.

this regime it is of little importance whether they behave as
contrarians or not. We want to emphasize that there is another
side to heterogeneity: for large values of ��, some agents
become very sensitive to the social norm α(t). Thus, even
if the signal is small, these agents start to cooperate, this
way increasing the effective value of the social norm. This
in turn feeds back by recruiting larger numbers of agents for
cooperation.

IV. ANALYTICAL APPROACH

A. Dynamics without driving

To further understand the phenomenon of diversity-induced
resonance in our model, we now develop an analytical
approach that should be compared to the numerical simulations
presented in the previous section. While the transition rates for
the replicator dynamics, Eqs. (7) and (8), are too complicated
for a tractable analytical approach, the situation is different
for the logit dynamics. In this case, the density of agents with
a given sensitivity θ depends only on the total number of
cooperators in the population, which is a macroscopic variable.
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Consequently, with the transition rates of Eq. (9) and the
equilibrium condition for the payoff function, Eq. (1), we find
for the transition rate towards the cooperative (and defective)
states the following expression:

ω±(θ ) = 1

1 + exp {∓β [c̃ − θ s(nc)]} . (12)

From the above equation, we can trivially compute the density
of cooperators by integrating over the complete population of
agents,

nc =
∫

dθ ′ g(θ ′)
1

1 + exp {∓β [c̃ − θ ′ s(nc)]} , (13)

which, by using the uniform distribution of the sensitivity θ ,
reduces to

nc = 1

2�θ

∫ �+�θ

�−�θ

dθ ′ 1

1 + exp {∓β [c̃ − θ s(nc)]} . (14)

Expanding this equation, one readily obtains for the density of
cooperators

nc = s(nc) + ln(1 + exp {−β[c̃ − s(nc)(θ − �θ )]})
2s(nc) β �θ

− ln(1 + exp {−β[c̃ + s(nc)(θ − �θ )]})
2s(nc) β �θ

. (15)

This equation can be solved self-consistently to obtain the
stationary value of nc. The corresponding results are shown
as solid lines in Figs. 1 and 2 (right columns). We find a very
good agreement between the numerical simulations and the
prediction of our analytical approach, thus further supporting
the validity of our results.

In agreement with our discussion in Sec. III B, the system
exhibits a pitchfork bifurcation. When increasing the control
parameter �θ , the solution nc = 1/2 changes its stability from
unstable to stable, when the two branches (one with a majority
of cooperators and the other with a majority of free riders)
collapse in the center point. As observed in the simulations,
and now confirmed by the analytical treatment, the solutions
are asymmetrical with respect to the stable point, with the
lowest branch being less dependent on the value of the control
parameter.

This is key to understanding the mechanism behind the
diversity-induced resonance phenomenon in this socioeco-
nomic system: For intermediate values of the diversity �θ ,
small perturbations are sufficient to overcome the separatrix,
i.e., the unstable solution nc = 1/2 that divides the attractor
basins of the two stable solutions. Thus, a signal which
is usually too small to cause transitions between those
states can be sufficient to trigger such a transition near the
bifurcation point. Farther from this critical point, a small
signal only causes a linear response of the system, around
a stable fixed point. This fully confirms the discussion of the
numerical results for the system with driving in the previous
section.

B. Relaxational dynamics with driving

After considering the dynamics without driving in the
previous section, we now turn to the dynamics with driving

to better understand the response of the system to the external
change of the norm. We note that the change in the density
of cooperators after one state has been selected for update is
given by

nc(t + δt) = nc(t) + 1

N
〈σi(t + δt) − σi(t)| {σ (t)}〉 , (16)

where 〈·〉 represents the ensemble average, which is condi-
tional on {σ (t)}, i.e., all those states that did not change. Going
over to small δt ≡ 1/N , we arrive at the continuous dynamics:

dnc(t)

dt
∼= 〈σi(t + δt)| {σ (t)}〉 − nc(t).

The expected value for the selected state σi after update can
be expressed as

〈σi(t + δt)| {σ (t)}〉 = Prob[σi(t + δt) = 1]. (17)

Without loss of generality, the probability that σi(t + δt) is +1
is given by (1 − Prob[+1 → 0]) + Prob[0 → +1], which for
this system is given by

〈σi(t + δt)|{σ (t)}〉 =
∫

dθ ′ g(θ ′)[1 − ω−(θ ) + ω+(θ )]. (18)

Restricting ourselves again to the particular case of the uniform
distribution for θ and logit dynamics, we have

dnc(t)

dt
= f (nc) = 1

2
− nc(t)

− ln{ cosh[βc̃ + βs(nc)(�θ − θ )]}
4β s(nc)�θ

+ ln{ cosh[βc̃ − βs(nc)(�θ + θ )]}
4β s(nc)�θ

. (19)

If the external signal given by α(t) is slow enough, we can
determine R by assuming that nc(t) reaches its stationary state
quickly compared to changes in α. Then, nc(t) = n∗

c (α(t)). For
a squared signal, the spectral amplification factor is simply
given by

R(n∗
c ) = π [n∗

c (α + �α) − n∗
c (α − �α)]2

�α2
. (20)

For this forcing, the average number of cooperators reduces to
n∗

c = [n∗
c (α + �α) + n∗

c (α − �α)]/2. Then, the susceptibility
can be computed as

ξ 2 =
∫ T/2

0
dt [n∗

c (α + �α) − nc]2

+
∫ T

T/2
dt [n∗

c (α − �α) − nc]2,

from which we get for the susceptibility

ξ 2 = [n∗
c (α + �α) − n∗

c (α − �α)]2. (21)

Figures 3 and 4 present a comparison between the analytical
and numerical results. As with the previous comparisons, the
match is very satisfactory. While our socioeconomic model is
quite different from a physics model, the dynamic observations
have similar underlying mechanisms as known in physical
systems with diversity-induced resonance, which makes it
possible to apply a standard analytical approach. For the
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replicator dynamics, we cannot apply the same techniques
to calculate the observables. But the fact that we find in
the simulations similarities between the logit dynamics, for
which we have analytical confirmation, and the replicator
dynamics allows us to conjecture similarities in the underlying
mechanisms.

V. DISCUSSION AND CONCLUSION

In this paper, we have studied a socioeconomic model
of cooperation to understand the effect of social pressure
on the contribution to a public good [26]. We tried to
point out analogies with the phenomenon of diversity-
induced resonance in bistable physical systems reported in
Ref. [3]. This was to show that methodological input from
physics can be beneficial for social sciences, in particular
with respect to the vast knowledge about complex non-
linear dynamical systems. By adopting an already existing
model, we avoided imposing a physics-inspired toy model
that may not have fit the modeling paradigms of social
sciences.

Our analytical and numerical results demonstrate that our
approach has been largely successful. Indeed, we found strong
evidence of diversity-induced resonance, i.e., of the fact that
the response of the system to a weak external signal is
stronger in a certain range of the parameters governing the
disorder in the system. Importantly, such strong signals are
subcritical, meaning that these alone would not be able to drive
a homogeneous system, whereas diversity on its own would
lead to an undesired behavior (in our case, to a decrease in
cooperation). Furthermore, we have pursued another analogy
to a physical phenomenon, namely, stochastic resonance [50].
We found evidence that there is an optimal range of noise or
randomness to obtain the response of the system to the external
signal.

It is most interesting to interpret the above results in terms
of the original socioeconomic model. In that context, diversity
means different sensitivities to the influence of the social
pressure towards behaving in a cooperative manner. If an
external signal is emitted (e.g., changing laws or incentives
by the government) that leads to changes of the social
pressure, the population will follow these directions only if
its corresponding sensitivity to such pressure is diverse, but
not too little or too much. Homogeneous populations will
simply ignore the new norms, whereas very heterogeneous
populations will end up behaving in some kind of “average”
manner that does not follow the change. This is in agreement
with the fact that strongly homogeneous groups, like gangs or
sects can be considered to be, are very insensitive to external
influences trying to bring them to contribute to the general
welfare (although the fact that such groups may have low
global sensitivity to the norm is also an issue). In an optimally
diverse population, on the contrary, we would see that the
most sensitive people would abide by the social pressure
and start contributing to the common good, thus leading to
an increment of the social pressure that pushes other agents
and so forth. These results are in line with the seminal work
on the threshold model by Granovetter [52], where agents

only act in a certain way if the proportion of the population
behaving this way exceeds a given threshold. Granovetter’s
model shows that heterogeneity at the population level is a
possible mechanism to extend a given behavior across the
population.

In this context, it is important to stress that the phenomenon
is robust against the kind of dynamics considered for the
transition towards cooperation. This is particularly meaningful
as the two cases studied in our paper, i.e., replicator and logit
dynamics, correspond to two completely different approaches
to decision making from the agent’s viewpoint. While the
former is based on a social, imitative component, the second
describes a purely strategic behavior, even a myopic one.
Finally, we have observed that in some cases the required
degree of heterogeneity for the appearance of the resonance
leads to the existence of contrary individuals in the popu-
lation, who would benefit from going against the norm. This
resembles the case of diversity-induced resonance arising from
repulsive interactions and related results in social dilemmas,
as mentioned in Sec. II.

It is also worth noticing that the phenomenon of diversity-
induced resonance only uses a weak signal to obtain the
desired results. Strong signals would drive the population
irrespective of its degree of diversity, but the external effort
of the “driver” has to be much larger. This may be important
for policy-making decisions where costly interventions in the
society are not desirable because their benefit may, in the end,
be smaller than the incurred cost. Of course, the requirement
of diversity implies that these easily implemented policies
may not be possible for all groups or societies, which in
itself is another hint to policy makers about the need to
estimate costs prior to specific interventions. It goes without
saying that applications of these ideas in real life may need
more complete models. For instance, one could think of
endogenously generated norm changes, involving a feedback
between actions and utility functions or including the affective
dimension of agents by considering their emotional response
[53]. On the other hand, applying these ideas to organizations
may require a careful consideration of hierarchical effects
[54]. Such improved models would lead to results that
would be much more amenable to comparison with actual
social group dynamics or even with specifically designed
experiments and thus would contribute to our knowledge of the
mechanics of social improvement. Work along these lines is in
progress.
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