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We study correlations in temporal networks and introduce the notion of betweenness preference. It

allows us to quantify to what extent paths, existing in time-aggregated representations of temporal

networks, are actually realizable based on the sequence of interactions. We show that betweenness

preference is present in empirical temporal network data and that it influences the length of the shortest

time-respecting paths. Using four different data sets, we further argue that neglecting betweenness

preference leads to wrong conclusions about dynamical processes on temporal networks.
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Recent works have argued that properties of dynamical
processes evolving on complex networks change pro-
foundly when the dynamics of the network topology is
taken into account. For a number of empirical temporal
networks obtained from time-stamped contact data, simu-
lations have shown that their topological dynamics can
both slow down [1–3] or speed up spreading processes
[4]. At the same time, it has been observed that, compared
to time-aggregated topologies, the exploration dynamics of
random walks in temporal networks is significantly slower
[5]. Furthermore, it has been shown that network dynamics
alone can give rise to collective phenomena like synchro-
nization [6]. These observations have generated significant
interest in the mechanism underlying these phenomena.
A series of recent works focused on the influence of
interevent time distributions and temporal correlations in
the time series of interactions [3,5,7–9]. Bursty activity
patterns of nodes have been identified as one possible
source that slows down spreading [3] and random walk
processes [10]. Similarly, bursty node activities have been
suggested to slow down information diffusion, particularly
when the diffusion process is initiated in phases of low
activity [11]. Furthermore, for a number of social contact
networks, it has been shown that heterogeneous interevent
times increase the length of time-respecting paths [12].
Apart from interevent time distributions, it has been argued
that link appearance frequencies and their correlation with
community structures are another characteristic of tempo-
ral networks that can slow down spreading dynamics [3].
Another line of research is concerned with the study of
temporal motifs [13,14], i.e., whether there are classes of
frequently occurring temporal contact patterns. It was
shown that the presence of certain temporal motifs (like,
e.g., ‘‘chains’’ of consecutive edges continuing time-
respecting paths) can decrease the length of time-respecting
paths, thus speeding up spreading processes [12].

Going beyond previous works, in this Letter, we study
betweenness preference, which captures the over- or
underrepresentation of particular time-respecting paths

passing through nodes. This temporal-topological feature
is neither visible in the weighted time-aggregated network
nor can it be attributed to interevent time distributions,
bursty node dynamics, or the statistics of temporal motifs.
Our study is motivated by the idea that in many real-world
networks nodes contact other nodes based on previous
contacts [9]. As a simple example, consider the influence
of context in information dissemination: Emails received
by work-related contacts are more likely to be forwarded to
a work-related subset of social contacts. Here we study the
influence of such special classes of dynamical contact
patterns. We argue that betweenness preference, i.e., the
tendency of nodes to preferentially connect—in a temporal
sense—particular pairs of neighbors, (i) is not captured in
the time-aggregated network, (ii) is present in empirical
temporal network data, (iii) changes the topology of time-
respecting paths, and (iv) critically influences dynamical
processes evolving on temporal networks.
A temporal network is defined as a tuple consisting of

a set of nodes v 2 V as well as a set of events:
eðv;w; t; l�tÞ 2 E. An event is an interaction between
two nodes v and w, starting at time t and with a duration
l�t relative to some smallest unit of discrete time �t (for
simplicity, we assume �t ¼ 1). Based on time-stamped
edges and a discrete notion of time, we construct a flow-
preserving static representation of temporal networks by
unfolding time into an additional topological dimension.
This construction serves as the basis for our models, and
we call it a time-unfolded network. Time-unfolded net-
works of two different temporal networks are illustrated in
Fig. 1. In the resulting temporal unfolding, we indicate the
presence of a possible flow event by an edge (vt, wtþ1)
while replacing the original node set V by a set V 0 of
temporal copies of nodes vt, where v 2 V and t 2
f0; 1; . . . ; Lg for an observation period of duration L, simi-
lar to [15–17]. As shown in Fig. 1 (left), the two different
temporal networks are the same in the time-aggregated
representation GAgg (right). In GAgg, edge weights indicate

the number l of time steps in which an edge was active

PRL 110, 198701 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
10 MAY 2013

0031-9007=13=110(19)=198701(5) 198701-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.110.198701


throughout the observation period. In analogy to statistical
mechanics, one might think of such a time-aggregated
network as a macrostate which is compatible with different
temporal networks, i.e., microstates.

Betweenness preference.—An important aspect when
studying dynamical processes like diffusion or synchroni-
zation on static, time-aggregated networks is that one
assumes transitive paths. However, this transitivity does
not necessarily hold in a temporal network that gives rise to
the respective time-aggregated network [18]. To illustrate
this fact, consider the time-aggregated network GAgg

depicted in Fig. 1. In a static system, information could
spread in a transitive way from b via e to g. In a temporal
network, the order in which edges appear imposes an
additional constraint: Information can flow only along
time-respecting paths [18]. Hence, in a temporal network
underlying GAgg, information can flow from b to g only if

the connection (b, e) is followed by a connection (e, g).
Thus, even though the links (b, e) and (e, g) are present in
both temporal networks (Fig. 1, left), a time-respecting
path between b and g exists only in the left example. To
quantify this transitivity-limiting property of temporal net-
works, we study whether certain time-respecting paths are
preferentially realized as compared to the time-aggregated
perspective. Focusing on elementary building blocks of
time-respecting paths, we particularly study two-paths,
i.e., a path of length two, representing two consecutive
edge activations interconnecting three nodes. The statistics
of the ensemble of realized two-paths will reveal to what
extent path transitivity holds in the temporal network.
Based on the time-unfolded representation of temporal
networks, we define the elements of a per-node between-
ness preference matrix BvðtÞ as follows:

Bv
sdðtÞ :¼

(
1; if ðst�1;vtÞ2 E and ðvt;dtþ1Þ2 E;

0; otherwise:
(1)

Each matrix element Bv
sdðtÞ captures whether node vt in a

time-unfolded network was in between a source st�1 and a
destination dtþ1 on a two-path ðst�1; vtÞ ! ðvt; dtþ1Þ. This
definition builds on a notion of time-respecting paths com-
prised of edge activations following each other immedi-
ately, which can be relaxed though by including some
notion of memory. Based on definition (1), we define the

elements of a time-aggregated betweenness preference
matrix Bv:

Bv
sd

:¼ X
t

Bv
sdðtÞ

"X
s0d0

Bv
s0d0 ðtÞ

#�1

; (2)

and a normalized betweenness preference matrix Pv:

Pv
sd

:¼ Bv
sd

�X
s0d0

Bv
s0d0

��1
: (3)

Essentially, Pv
sd is the probability distribution of the two-

paths ðst�1; vtÞ ! ðvt; dtþ1Þ over all t. We use this to
quantify to what extent v exhibits a preference to inter-
connect particular pairs of source and target nodes. Based
on the concept of mutual information, we define a betwe-
enness preference measure as

IvðS;DÞ :¼ X
d2D
s2S

Pv
sdlog2

Pv
sd

PvðsÞPvðdÞ
� �

; (4)

where PvðsÞ ¼ P
dP

v
sd and PvðdÞ ¼ P

sP
v
sd. In general,

IvðS;DÞ captures to what extent the knowledge of the
source s of a time-respecting path through v determines
the next step d. Or, within a context of information flow, it
measures how selective v is in mediating information
preferentially between certain pairs of nodes s and d. We
note that this measure is minimal if the random variables S
and D are independent. This allows us to calculate the
matrix elements Pv

sd resulting in I
vðS;DÞ ¼ 0 solely based

on the underlying static, time-aggregated network with
edge weights wij:

P̂v
sd :¼ pvðsÞ � pvðdÞ; (5)

wherepvðsÞ¼wsv½
P

s0ws0v��1 andpvðdÞ¼wvd½
P

d0wvd0 ��1.
We now introduce a configuration model to generate

temporal networks that are members of an ensemble
defined by a given set of betweenness preference matrices.
We limit ourselves to a subset of all possible realizations,
in which exactly one edge is active per time step and which
consist of only two-paths. The model creates a temporal
network with given betweenness preference matrices as
follows: First, we define the number of two-paths N2 to be
realized. Second, we draw a random two-path ðs; vÞ !
ðv; dÞ according to pðs; v; dÞ :¼ Bv

sd=
P

v;s;dB
v
sd. Third, we

create temporal network edges (st, vtþ1) and (vtþ1, dtþ2).
We increment t ¼ tþ 3 and n2 ¼ n2 þ 1 (number of real-
ized two-paths) and repeat this procedure until n2 ¼ N2.
Having empirical temporal network data available, we use
this model to create microstates that (i) preserve the betwe-
enness preference distribution (in an infinitely long
sequence), (ii) have the same macrostate, and (iii) destroy
all other correlations (such as bursty activity patterns).
We call the so-constructed temporal network the between-
ness preference preserving case. Using this configuration
model, we also construct microstates with low between-
ness preference based on a given macrostate, by using the
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FIG. 1. Time-aggregated weighted network GAgg (right) and
time-unfolded network of two different temporal networks GDyn1

and GDyn2
(left), both of which are consistent with GAgg.
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probability P̂v
sd defined in Eq. (5). We call a temporal

network created in such a way the uncorrelated case, since
it preserves only the macrostate (the weighted aggregate
network) but destroys betweenness preference. Precisely,
the uncorrelated case has betweenness preference that is
expected from a random microstate of finite duration [in a
temporal network of infinite duration, the model reprodu-
ces the limiting case of IvðS;DÞ ¼ 0].

Empirical results.—To demonstrate that betweenness
preference is an important property in real-world data
sets, we use a one-week subset of the empirical contact
sequence (September 8–15, 2004) from the RealityMining
Project (RM) [19], featuring 64 individuals with 20 000
recorded interactions and a granularity of 5 min. Figure 2
shows the distribution of betweenness preference in (a) the
uncorrelated case, (b) the original data sample, and (c) the
betweenness preference preserving case. The uncorrelated
(a) and betweenness preference preserving (c) cases were
created by using the betweenness preference matrices of
the RM data, utilizing the configuration model described
above. As expected, the uncorrelated case (a) shows a spike
around IðS;TÞ ¼ 0, indicating small betweenness prefer-
ence for most nodes. The theoretical expectation of
IðS;TÞ ¼ 0 for all nodes in the uncorrelated case is not
realized due to finite duration of the temporal sequence.
Analyzing the betweenness preference distribution of the
empirical temporal network (b), one realizes that it is very
different from the one in (a). The distribution in (b) is
rather broad, with an average hIðS;TÞi ¼ 1:9 and a median
Q0:5½IðS;TÞ� ¼ 1:99, as compared to hIðS;TÞi ¼ 0:58 and
Q0:5½IðS;TÞ� ¼ 0:21 in (a). Performing a two-sided
Kolmogorov-Smirnov test, we can reject the hypothesis
that distribution (b) is identical to distribution (a) (p <
10�9). This shows that there is a pronounced amount of
betweenness preference in the empirical contact sequence,
whereas it is mostly absent in the uncorrelated case. Panel
(c) shows the betweenness preference distribution of the
betweenness preference preserving case. With hIðS;TÞi ¼
1:91 and medianQ0:5½IðS;TÞ� ¼ 2:02, distributions (b) and
(c) are very similar. Since we create the model in a

statistical fashion based on the normalized betweenness
preference matrix Pv, the two distributions are not com-
pletely identical due to finite N2. Performing the two-sided
Kolmogorov-Smirnov test, we cannot reject the hypothesis
that the two distributions are identical (p ¼ 0:68). Hence,
in this case the model preserves the betweenness prefer-
ence of the real network, whereas all other correlations
(e.g., bursty node activities) are destroyed by construction.
An important aspect of betweenness preference is that it

influences transitivity and, thus, changes the topology of
time-respecting paths in temporal networks. Of particular
interest in the study of temporal networks is the notion of
fastest time-respecting paths. A fastest time-respecting
path between nodes s and v is defined as the path by which
information from node s first reaches node v [18]. To
quantify the transitivity-limiting effect of betweenness
preference, i.e., the under- or overrepresentation of particu-
lar two-paths, we study fastest time-respecting paths in
temporal networks, where two-paths are the only means
of information flow, as follows. We measured the length of
the fastest time-respecting path between all pairs of nodes
for uncorrelated [Luðs; vÞ] and betweenness preference
preserving realizations [Lpðs; vÞ], generated by our con-

figuration model. For s ¼ v, we set zero path length. We
compute the relative length difference �ðs;vÞ¼½Lpðs;vÞ�
Luðs;vÞ�=Luðs;vÞ and average over several realizations.
Results for the RM data set are shown in Fig. 3. The left
panel shows the distribution of �ðs; vÞ which exhibits a
clear shift to positive values. Moreover, the null hypothesis
that the distribution of length of fastest time-respecting
paths in the betweenness preference preserving and uncor-
related cases are the same can be rejected (two-sided
Kolmogorov-Smirnov test yieldsp < 10�15). Thus we con-
clude that betweenness preference has a profound effect on

(a) (b) (c)

FIG. 2. Betweenness preference distributions for nodes of
(a) 200 temporal networks of the uncorrelated case, (b) the
empirical RealityMining data, and (c) 200 temporal networks
of the Pv preserving case. All temporal networks have the same
duration of N2 ¼ 5� 104 two-paths. (a) and (c) are based on the
same empirical data as (b).
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FIG. 3 (color online). Relative difference � between the
lengths of fastest time-respecting paths in betweenness prefer-
ence preserving and uncorrelated temporal networks constructed
from the RealityMining data set. Each cell of the matrix repre-
sents the length difference for one pair of nodes, averaged over
200 realizations of betweenness preference preserving and un-
correlated temporal networks. Rows and columns are sorted in
the same way. Notation I–IV is included to highlight the block
structure of the matrix. A histogram of relative differences is
overlayed in the color legend (left panel).
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the topology of fastest time-respecting paths in temporal
networks (h�ðs; vÞi ¼ 0:08, Q0:5½�ðs; vÞ� ¼ 0:06). In
Fig. 3, right panel, we present the matrix �ðs; vÞ, exhibiting
a pronounced block structure. In particular, high values of
�ðs; vÞ occur in the off-diagonal regions IV and II (albeit
less pronounced in the latter). This result implies the exis-
tence of a temporal community structure induced by the
existence of betweenness preference in the RM data set:
Fastest time-respecting paths are up to 60% longer between
communities (blocks II and IV), whereas the prolonging
effect almost vanishes within the communities (blocks I and
III). For some pairs of nodes even the opposite effect is
apparent in region III: Betweenness preference selectively
shortens fastest time-respecting paths.

Spreading dynamics in temporal networks.—Given this
result on the effect of betweenness preference on time-
respecting paths, we now study the paradigmatic SI
(susceptible-infected) epidemic model to exemplify the
effect of betweenness preference on dynamic processes
evolving on temporal networks. To exclusively quantify
the impact of betweenness preference correlations, we
compare spreading dynamics on temporal networks created
with the uncorrelated case (a) and the betweenness prefer-
ence preserving case (c) of our configuration model. More
specifically, we study four different data sets: (AN) social
interactions in ant colonies [20]; (CN) a large temporal
network of scientific coauthorships [21]; (RM) the
RealityMining data set introduced earlier; and (SN) a
medium-sized synthetic network [22]. To start the conta-
gion process, in all simulations the first appearing node has
been infected and the infection probability set top ¼ 1. The
insets in Fig. 4 show the evolution of the number of infected

individuals for the uncorrelated and the betweenness pref-
erence preserving cases for the RM and SN data sets. The
number of infected individuals clearly follows a typical
S-shaped curve (however, notice the semilogarithmic scal-
ing) in the uncorrelated Nu as well as the betweenness
preference preserving Np cases. The slopes in the middle

part of the infection dynamics are, however, clearly differ-
ent, indicating slower spreading in the temporal network
with nonvanishing betweenness preference Np. This slow-

down is indicated by the time to saturation, which, in the
RMdata (Fig. 4, left inset), is 1 order ofmagnitude larger for
Np. To substantiate this important effect of large between-

ness preference, the main panel shows the time evolution of
the relative difference of infected individuals in the uncor-
related and the betweenness preference preserving cases,
i.e., �¼½NuðtÞ�NpðtÞ�=NuðtÞ. Our results clearly show

that the uncorrelated model significantly overestimates
the average number of infected individuals—for RM at
times up to � 40% and for AN and CN up to � 20%.
Results for the synthetic network with artificially high
betweenness preference (Fig. 4, circles and right inset)
confirm these findings and show evidence that in large
systems high betweenness preference can have an even
more pronounced effect on spreading processes: The slow-
down of spreading processes can be as large as � 80%.
Interpreting � as the error made when not accounting for
betweenness preference correlations, it becomes obvious
that taking a time-aggregated perspective on temporal net-
works, and hence neglecting betweenness preference, can
lead to significantly misleading statements about the prop-
erties of dynamical processes evolving on networks with
dynamic topology. Betweenness preference, captured in
terms of the measure introduced in Eq. (4), quantifies this
potential pitfall and helps to decidewhether time-respecting
paths are statistically distributed as expected from a
weighted time-aggregated perspective. Additionally,
betweenness preference matrices [Eqs. (2) and (3)] allow
us (i) to study the over- or underrepresentation of particular
time-respecting paths passing through nodes and (ii) to
define proxy models that reproduce the temporal-
topological dynamics of empirical temporal networks.
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