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How do humans respond to indirect social influence when making decisions? We analysed an experiment
where subjects had to guess the answer to factual questions, having only aggregated information about the
answers of others. While the response of humans to aggregated information is a widely observed
phenomenon, it has not been investigated quantitatively, in a controlled setting. We found that the
adjustment of individual guesses depends linearly on the distance to the mean of all guesses. This is a
remarkable, and yet surprisingly simple regularity. It holds across all questions analysed, even though the
correct answers differ by several orders of magnitude. Our finding supports the assumption that individual
diversity does not affect the response to indirect social influence. We argue that the nature of the response
crucially changes with the level of information aggregation. This insight contributes to the empirical
foundation of models for collective decisions under social influence.

T
o what extent are the opinions we hold about subjective matters the result of our own considerations or a
reflection of the opinions of others? Even though we would like to believe the former, in most real-life
situations individual opinions are highly interdependent. They are, directly or indirectly, influenced by

cultural norms, mass media and interactions in social networks. The combined effects of these influences is
known as social influence – individuals acting in accordance to the beliefs and expectations of others1. Social
influence can be categorised as direct or indirect. The former is the result of one individual directly affecting the
opinion of another, typically through coercion or persuasion. The latter is a more subtle psychological process and
takes place when one’s opinion and behaviour is influenced by the availability of information about others’
actions. Our main focus in this paper is on the second form, therefore we regard social influence as implicitly
indirect.

Social influence can be readily observed in common collective decision processes, e.g. political polls2, panic
stampedes3, stock markets4, cultural markets5, or aid campaigns6. Some of these collective decisions can trap a
population in a suboptimal state, for example a financial bubble due to financial actors’ herding behaviour7.
Alternatively, they may steer a system into positive directions, such as increased tax compliance rates8. However,
understanding how such collective decisions are formed, evaluating their benefit for the population, and even
directing their outcomes, is conditional on quantifying how people perceive and respond to social influence.

Theoretical work in this field requires to specify a social structure together with mechanisms by which
influence exerted by that social structure is internalised by the individuals9. Typically, it is considered that
individuals form opinions in an interaction network (defined in terms of their social acquaintances) in which
they are subject to complex inter-personal influences.

As early as 1956, French postulated a theory of social power, in which social structure is represented as an
explicit interaction network10. An individual adopts an opinion that equals the mean of his own opinion and those
he interacts with. Assuming that knowledge about the opinion of others is available, the theory predicts that well-
connected populations invariably reach consensus.

Later, social psychologists and mathematicians have extended and built upon French’s social power theory.
Prominent works account for weighted averaging of others’ opinions11, probability distribution of opinions12,
and importance of positioning in the interaction network13. In particular, Latané made a notable quantitative
contribution with his social impact theory14, which showed via empirical evidence that the fraction of
individuals conforming to a group opinion is a power function of the group size (with exponent less than
1). Recent research has also shown how the identification of an individual with a group affects the final
distribution of opinions15. In most models based on interaction networks, it is usually found that individuals
respond in a highly non-linear manner, e.g. opinion fragmentation, due to the complexities involved in inter-
personal influences16.

In this paper, we contribute to these theoretical investigations by analysing a decision-making experiment
based on aggregate information instead of on explicit interaction networks. Our approach assumes that in some
decision-making scenarios it is not always possible to have full information about others’ opinions. Instead, only
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some sort of aggregated representation of all opinions is available,
which arguably provides less information. For example, individual
compliance to social norms has been shown to depend on knowing
the average compliance rate in the population17. Other examples
include book purchases being influenced by best-sellers lists that
are typically compiled from average book store sales18, or recommen-
der systems offering buyers products whose quality has been esti-
mated as the average of all ratings19. We are, therefore, interested in
evaluating whether individuals react differently when subjected to
limited information compared to the non-linear response with full
information.

Quantification of human responses to aggregated information is
scarce. We present empirical evidence of how individuals react to it
in a controlled environment. The empirical study we analyse was
conducted by Lorenz et al.20. In this experiment individuals were
asked to guess the correct answer to six quantitative questions with
an objective answer (such as ‘‘What is the border length between
Switzerland and Italy?’’) repeatedly over five experimental rounds
(see Table 1). Subjects were assigned to three different treatments in
which they had (i) no information about others’ guesses during all
rounds, (ii) the mean of all guesses in the previous round or (iii) full
information about others’ estimates. Here, we focus on (ii), and
report a statistically significant linear dependence between the
change in one’s estimate and the distance of the previous estimate
from the mean.

Results
We analyse the following set-up: a set of N subjects were asked six
quantitative questions with a clearly defined objective truth.
Individuals did not know a priori the true answers, and thus could
only provide a guess. Each question was repeated for five consecutive
rounds. At the end of each round, the subjects were presented with
either some or no information about others’ guesses, after which they
could revise their own estimate. Let xi(t) be the guess of individual i
[1, N] at round t [1, 5] for a particular question. The arithmetic
average of all N individuals at time t is then denoted as �x tð Þ. In the
aggregate regime subjects are presented with �x tð Þ at the end of round
t before making their next guess xi(t 1 1). We study how the change
in one’s opinion, Dxi(t) 5 xi(t) 2 xi(t 2 1), is related to its the dis-
tance from the mean in the previous time step �x t{1ð Þ{xi t{1ð Þ.
From the experimental data, we can calculate Dxi(t) and �x t{1ð Þ
{xi t{1ð Þ across all rounds, subjects, questions and sessions.

At the finest granularity of the data, there are N 5 12 subjects
answering a given question for a given information condition over
five rounds. In total, one would have 12 3 4 5 48 data points.
Considering, however, that each question was asked four times at a
given information condition (see Table 1), we pool these responses
together to produce 48 3 4 5 192 samples per information condition
and per question. In Figure 1, we have plotted typical Dxi(t) vs.
�x t{1ð Þ{xi t{1ð Þ for two questions. The left column shows that
in the no information regime there is no particular dependency

Table 1 | Experimental Setup. The experiment consisted of 12 sessions (S) each composed of 12 subjects. In each session, the 12 subjects had
to answer two questions (Q) in the no information, two in the aggregate and two in the control condition (see main text), for a total of six
questions. The order of the questions was randomised across sessions. After each of the five rounds subjects were asked the same question
again and could revise their answers depending on the information available to them. In the table, columns indicate question number and
rows – information regime. Each cell lists the sessions when a given question was asked for a particular information regime

Q1 Q2 Q3 Q4 Q5 Q6

no info S1,S4, S7,S10 S2,S5, S8,S11 S3,S6, S9,S12 S1,S4, S7,S10 S2,S5, S8,S11 S3,S6, S9,S12
agregate info S3,S6, S9,S12 S1,S4, S7,S10 S2,S5, S8,S11 S3,S6, S9,S12 S1,S4, S7,S10 S2,S5, S8,S11
full info S2,S5, S8,S11 S3,S6, S9,S12 S1,S4, S7,S10 S2,S5, S8,S11 S3,S6, S9,S12 S1,S4, S7,S10

Figure 1 | Scatter plots for questions 1 (first and third column) and 3 (second and fourth column). The green lines show median smoothing: the x-axis

has been split into equally sized bins of size 10 (arbitrary), and the medians in each bin are plotted. The bottom row shows median smoothing with shaded

areas corresponding to error bars between the first and third quartile of each bin. Note the scaling of the x- and y-axis.
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Figure 2 | Residuals vs. fitted values for both information conditions and all questions. The first two rows show the no-information condition, while

the last two – the aggregate information condition. Questions are numbered from left to right and top to bottom. The mutual information (MI) is shown

on top of each plot (see Methods for definition of MI).
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between the distance to the average and the ensuing adjustment of
one’s guess. In contrast, there is a positive linear relation in the
aggregate information regime.

We formalise this qualitative argument by the following linear
regression model.

Dxi tð Þ~b0zb1 �x t{1ð Þ{xi t{1ð Þð Þz i tð Þ, ð1Þ

with the associated null hypothesis H0 : b1~0, and two-sided
alternative H1 : b1=0.

Due to the experimental set-up, in particular the nature of the
questions, subjects did not have a solid idea about the true answers.
However, the questions were not too hard to prevent educated
guesses about the approximate order of magnitude. Lorenz et al.20

note that the initial opinion distribution for each question is right-
skewed – a majority of estimates are low and a minority fall on a fat
right tail. Nevertheless, in Methods, we justify using Eq. 1 to model
the aggregate information regime.

It is important to mention that, in principle, regression models,
such as ours, cannot make explicit claims regarding cause and effect.
Rather, the primary goal is to mathematically derive one variable
from the other with as high fidelity as possible. We posit that in
the empirical case considered here, one is able to infer the main
causality direction, because the study was designed with the main
purpose of evaluating how social influence affects one’s decisions.
Therefore, subjects were exposed to social information prior to their
decision making. We, therefore, argue that in the aggregate regime,
one of the main causes for an opinion change is knowledge of the
mean (other causes being unobservable factors, such as conviction in
own opinion, beliefs about others’ expertise, etc.).

Table 4 shows all results of estimating the linear model. We focus
primarily on the estimation of b1, as the constant term, b0, is heavily
influenced by a few outliers, and thus exhibits large standard errors

even when significant. From the reported p-values, we see that the
impact of the distance to the mean opinion, �x t{1ð Þ{xi t{1ð Þ, is
highly significant across all questions (with low rob. std. errors) in
explaining one’s own opinion change. Furthermore, the size of the
effect shows that knowledge of the mean accounts for a considerable
part of the opinion change.

Discussion
Our main goal in this paper was to quantify how people respond to
social influence when making decisions. In particular, we focused on
a limited-information scenario, in which individuals possessed the
mean of all opinions. This form of indirect social influence is pre-
valent in a wide range of collective decisions, e.g. norm compliance,
product recommendations and purchases. Quantifying individual
human behaviour in such contexts contributes to understanding
such collective decisions.

We used a unique dataset from an experiment in which subjects
had to guess the answer to quantitative questions repeatedly, while
knowing the mean of all guesses. We studied how the change in
individual guesses relates to their distance from the mean. Our

Figure 3 | QQ Plots. Theoretical quantiles of a normal distribution versus sample quantiles for all six questions. There are outliers in the data resulting in

non-normal residuals. Question numbers (Q) are indicated on the top left corner of each plot.

Table 2 | Breusch-Pagan test for heteroscedasticity. Each column
corresponds to one of the six questions. Since the linear model
has only one regressor the Koenker version of the test has one
degree of freedom for all questions

Q1 Q2 Q3 Q4 Q5 Q6

LM
statistic

0.46 11.84 0.0037 4.607 7.5679 1.1711

p-value 0.5 0.0005 0.95 0.03 0.005 0.28
samples 192 192 192 192 188 188
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analysis shows that a linear model is sufficient to explain this rela-
tionship for all experimental questions, with a significant and con-
siderable impact. Furthermore, this finding holds for questions with
correct answers that differ by about 10 orders of magnitude.
Therefore, we emphasize that the result is not a first-order approxi-
mation of a non-linear regime around a narrow range of �x{xi.

Our quantitative insights represent a striking statistical regularity.
Despite individual differences in subjects, e.g. emotions, conviction
in one’s own opinion, beliefs about the competency of others, and
tendency to conform to the group opinion, the same mathematical
relationship underlies the individual reactions to social influence.
This suggests that once initial guesses are formed, diversity among
subjects does not play a role in the adjustment of subsequent esti-
mates. Moreover, we argue that the linear nature of the response is
due to the level of information aggregation in the experiment. We
believe that the availability of more fine-grained information, such as
allowing group interactions or providing the opinion distribution,
would recover the complex non-linear response found in most mod-
els of social influence.

Our finding also contributes to the design of agent-based models
for collective decisions. Such models play an important role in testing
individual-level interaction mechanisms that lead a population to
favourable collective decisions. While most prominent models rely
on ad-hoc assumptions about individual behaviour (e.g. linear voter
model, Schelling’s segregation model), with the increasing availabil-
ity of experimental data, there is a growing interest in basing these
assumptions on empirical regularities. The rule we revealed can,
therefore, be used to further model, quantify and design collective
decisions under aggregated information.

Methods
The model is estimated by the method of Ordinary Least Squares (OLS), which is
based to the following assumptions: (a) E i=xið Þ~0 (linear model is correct),

(b) i*N 0,s2
� �

(normality of the error distribution), (c) Var i=xið Þ~s2 (homo-
scedasticity), and (d) E i, j

� �
~0 (independence of errors). First, to assess the overall

feasibility of the linear model, we plot the residuals from the OLS estimation of Eq. 1
versus the fitted values, commonly known as a Tukey-Anscombe plot (Figure 2). A
strong trend in the plot is evidence that the linear model is not suitable, consequently
(a) is violated.

For the no-information case, arguably, it is not reasonable to expect Eq. 1 to be valid
as subjects did not have access to any information. Thus, any causal relation between
Dxi(t) and �x t{1ð Þ{xi t{1ð Þ can be ruled out a priori.

As seen in Figure 2, the residuals in the no information regime do not fluctuate
randomly around the fitted values – a strong evidence against assumption (a). On the
other hand, comparing with the aggregate information case, the Tukey-Anscombe
plots do not exhibit a visible dependence between residuals and model fit, thus
support assumption (a).

To actually quantify the presence of a trend in Figure 2, we compute the mutual
information (MI) between the fitted values and their residuals. The concept of mutual
information originates in information theory, and, intuitively speaking, measures the
amount of information that two variables share, i.e. how much knowing one of these
variables reduces uncertainty about the other21. Formally, the mutual information,
I(X, Y), between variables X and Y, equals H(X) 1 H(Y) – H(X, Y), where H(X) is the
information (entropy) in X, and H(X, Y) is the joint entropy of X and Y. If X and Y are
independent then H(X, Y) 5 H(X) 1 H(Y), and thus the mutual information, I(X, Y),
equals 0. We also make use of the inequality I(X, Y) # min{H(X), H(Y)} to derive the
normalisation Inorm(X, Y) 5 I(X, Y)/min{H(X), H(Y)}. In this way our MI estimate
has an upper bound of 1, which is attained only if X and Y are identical.

The advantage of computing MI is that it is not only sensitive to linear correlations,
but also to non-linearities that are not captured in the covariance22. The MI estima-
tions for all questions are shown above each plot in Figure 2. Unsurprisingly, there is
stronger dependency between residuals and fitted values in the no-information
regime, especially where a trend is clearly visible. In contrast, all questions in the
aggregate regime show very low values of MI.

Second, in Figure 3 we check normality of errors by plotting the quantiles of the
residual distribution against the quantiles of a normal distribution. The off-diagonal
points in all questions clearly indicate the presence of a few large outliers, as expected
for skewed data. Nonnormality of residuals plays no role for the BLUE (best linear
unbiased estimator) properties of OLS estimators, provided (a) and (c) hold (the
homoscedasticity assumption is evaluated below). However, exact t and F statistics
will be incorrect. Therefore, we make use of the relatively large sample size in all
questions to justify the asymptotic normality property of the OLS estimators23. It can
be shown that by employing the central limit theorem and conditional on (a) and (c),

Table 3 | First-order serial correlation of residuals

Estimate Robust std. errors t-value p-value samples df

Q1 a0 23.6 14.02 20.26 0.79 191 189
a1 0.3 0.12 2.47 0.01

Q2 a0 0.46 12.61 0.04 0.97 191 189
a1 20.19 0.1 22 0.05

Q3 a0 7.2 836 0.009 0.9 191 189
a1 0.03 0.07 0.47 0.64

Q4 a0 21.88 22.36 20.08 0.93 191 189
a1 0.05 0.16 2.14 0.03

Q5 a0 20.32 14.9 20.02 0.9 187 185
a1 20.07 0.05 21.43 0.15

Q6 a0 23.6 1388 20.003 0.99 187 185
a1 20.01 0.07 20.19 0.85

Table 4 | Robust linear regression of Eq. 1. Uncorrected standard errors are reported for comparison only. Last column shows degrees of
freedom

Estimate Std. Errors Robust std. errors t-value p-value samples df

Q1 b0 2176.46 14.98 15.55 211.35 , 2.2 3 10216 192 190
b1 0.97 0.02 0.1 9.57 , 2.2 3 10216

Q2 b0 35.33 12.6 12.9 2.74 0.007 192 190
b1 0.27 0.05 0.09 2.89 0.004

Q3 b0 21321.5 828.2 853 21.55 0.12 192 190
b1 0.83 0.05 0.1 6.25 2.7 3 1029

Q4 b0 2146.3 23.2 23.7 26.2 3.8 3 1029 192 190
b1 0.6 0.01 0.03 18.8 , 2.2 3 10216

Q5 b0 6.8 14.8 15.1 0.5 0.66 188 186
b1 0.4 0.04 0.1 3.72 0.0003

Q6 b0 2821 103 1387 20.6 0.55 188 186
b1 0.46 0.02 0.03 15.3 , 2 3 10216
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OLS produces estimators that are approximately normal24, hence t-test can be carried
out in the same way.

Next, we verify the homoscedasticity assumption, (c), of i tð Þ. To this end, we run
the Koenker studentised version of the Breusch-Pagan test25. This test regresses the
squared residuals on the predictor in Eq. 1 and uses the more widely applied Lagrange
Multiplier (LM) statistics instead of the F-statistics. Although more sophisticated
procedures, e.g. White’s test, would account for a non-linear relation between the
residuals and the predictor, we find that the Breusch-Pagan test is sufficient to detect
heteroscedasticity in the data. Table 2 shows that the null hypothesis of homosce-
dastic error can be rejected with high significance for Questions 1, 2, 4, and 5. The
consequence for the OLS method is that the estimated variance of b1 will be biased,
hence the statistics used to test hypotheses will be invalid. Furthermore, none of the
OLS estimators will be asymptotically normal. Thus, to account for the presence of
heteroscedasticity, we use robust standard errors.

Finally, the serial correlation in (d) is tested by assuming the following AR(1)
process for the error term

bi tð Þ~a0za1bi t{1ð Þzji tð Þ ð2Þ

withbi being the residuals from estimating Eq. 1 and ji tð Þ*N 0,z2ð Þ. One-period lag
is sufficient to model error correlation, given that subjects answered the same ques-
tion over just 5 rounds. In addition, by excluding the first guess when no information
was available, we have effectively 4 periods. The OLS estimation of Eq. 2 in Table 3
indicates that a1 either is not significantly different from 0 (Questions 3, 5 and 6) or
has a small effect when significant (Questions 1 and 4). Consequently, inferences
based on t-tests and F-tests can be carried out.

All data analysis was done with R (http://www.r-project.org/, version 2.15.0).
Quantile plots of the residuals were generated with rqq (package lawstat,version 2.3).
Breusch-Pagan heteroscedasticity test was implemented by bptest (package lmstat,
version 0.9-29). Finally to estimate Eq. 1, we used the standard lm function with
robust standard errors calculated by hccm (package car, version 2.0-12). Mutual
information was computed with multiinformation (package infotheo, version 1.1.0).
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14. Latané, B. The psychology of social impact. American Psychologist 36, 343–356
(1981).

15. Groeber, P., Schweitzer, F. & Press, K. How groups can foster consensus: the case
of local cultures. Aritifical Societies and Social Simulation 12, 1–22 (2009).

16. Hegselmann, R. & Krause, U. Opinion dynamics and bounded confidence:
models, analysis and simulation. Journal of Artificial Societies and Social
Simulation 5, 1–24 (2002).

17. Groeber, P. & Rauhut, H. Does ignorance promote norm compliance?.
Computational and Mathematical Organization Theory 16, 1–28 (2010).

18. Bikhchandani, S., Hirshleifer, D. & Welch, I. Learning from the behavior of others:
conformity, fads, and informational cascades. The Journal of Economic
Perspectives 12, 151–170 (1998).

19. Hu, N., Zhang, J. & Pavlou, P. A. Overcoming the J-shaped distribution of product
reviews. Commun. ACM 52, 144–147 (2009).

20. Lorenz, J., Rauhut, H., Schweitzer, F. & Helbing, D. How social influence can
undermine the wisdom of crowd effect. Proceedings of the National Academy of
Sciences 108, 9020–5 (2011).

21. Cover, T. M. & Thomas, J. A. Elements of Information Theory Ch.2 (Wiley-
Interscience, New York, 2006).

22. Kraskov, A., Stögbauer, H. & Grassberger, P. Estimating mutual information.
Phys. Rev. E 69, 066138 (2004).

23. Baltagi, B. H. Econometrics Ch. 5 (Springer, Berlin, 2011).
24. Wooldridge, J. Introductory Econometrics Ch.5 (Cengage Learning, Mason, 2005).
25. Koenker, R. A note on studentizing a test for heteroscedasticity. Journal of

Econometrics 17, 107–112 (1981).

Acknowledgements
We would like to thank Ingo Scholtes and Antonios Garas for their useful comments in the
early version of this manuscript.

Author contributions
P.M. and C.T. designed the analysis. P.M. analysed the data. P.M., C.T. and F.S. wrote the
manuscript.

Additional information
Competing financial interests: The authors declare no competing financial interests.

License: This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareALike 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

How to cite this article: Mavrodiev, P., Tessone, C.J. & Schweitzer, F. Quantifying the effects
of social influence. Sci. Rep. 3, 1360; DOI:10.1038/srep01360 (2013).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 1360 | DOI: 10.1038/srep01360 6

http://www.r-project.org
http://creativecommons.org/licenses/by-nc-sa/3.0

	Quantifying the effects of social influence
	Introduction
	Results
	Discussion
	Methods
	Acknowledgements
	References


