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ABSTRACT
We empirically analyze five online communities: Friendster,
Livejournal, Facebook, Orkut, and Myspace, to study how so-
cial networks decline. We define social resilience as the ability
of a community to withstand changes. We do not argue about
the cause of such changes, but concentrate on their impact.
Changes may cause users to leave, which may trigger further
leaves of others who lost connection to their friends. This may
lead to cascades of users leaving. A social network is said to be
resilient if the size of such cascades can be limited. To quan-
tify resilience, we use the k-core analysis, to identify subsets
of the network in which all users have at least k friends. These
connections generate benefits (b) for each user, which have to
outweigh the costs (c) of being a member of the network. If
this difference is not positive, users leave. After all cascades,
the remaining network is the k-core of the original network
determined by the cost-to-benefit (c/b) ratio. By analysing
the cumulative distribution of k-cores we are able to calculate
the number of users remaining in each community. This al-
lows us to infer the impact of the c/b ratio on the resilience
of these online communities. We find that the different online
communities have different k-core distributions. Consequently,
similar changes in the c/b ratio have a different impact on the
amount of active users. Further, our resilience analysis shows
that the topology of a social network alone cannot explain its
success of failure. As a case study, we focus on the evolu-
tion of Friendster. We identify time periods when new users
entering the network observed an insufficient c/b ratio. This
measure can be seen as a precursor of the later collapse of the
community. Our analysis can be applied to estimate the im-
pact of changes in the user interface, which may temporarily
increase the c/b ratio, thus posing a threat for the community
to shrink, or even to collapse.
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1. INTRODUCTION
Online Social Networks (OSN), such as Facebook or Friend-

ster, can quickly become popular, but can also suddenly lose
large amounts of users. The appearance of competing OSN,
with different functionalities and designs, create unexpected
shifts of users that abandon one community for another [15].
While the dynamics of growth in these online communities
are an established research subject [3, 21], there are still many
open questions regarding the decline of online communities,
in particular related to large OSN [37]. What are the rea-
sons behind the decision of users to stop using an OSN? What
is the role of the social network in keeping user engagement,
or in the spreading of user dissatisfaction? Are there network
structures that lead to higher risks of massive user departures?
In this article, we assess the question of the relation between
the topology of the user network, and the cascades of user de-
partures that threaten the integrity of an online community.
We build on previous theoretical work on network effects [5],
providing the first empirical study of this phenomenon across
successful, failed, and declining OSN.

The most successful OSN attract millions of users, whose in-
teractions create emergent phenomena that cannot be reduced
back to the behavior of individual users. The OSN is a com-
munication medium that connects a large amount of people,
which would stay together only if their interaction dynamics
leads to the emergent entity that we call the community. The
OSN and its users form a socio-technical system in which the
persistence of the community depends on both the social in-
teraction between users, and the implementation and design
of the OSN. In this context, the social resilience [1] of an on-
line community is defined as “The ability of the community to
withstand external stresses and disturbances created by envi-
ronmental changes”. In particular, the technological compo-
nent of the OSN can change the environment of the users, and
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create stress that threatens the cohesion of the community. As
an example, changes in the user interface pose a general risk
for user engagement in OSN.

The fast pace of the Internet society has already led to
the total disappearance of some very large online communi-
ties. The most paradigmatic example is Friendster, one of
the first and largest OSN, which suffered a massive exodus of
users towards competing sites. This led to its closure in 2011,
to reopen as an online gaming without its profile data. As a
reaction, the Internet Archive 1 crawled as much informa-
tion as possible, creating a timeless snapshot of Friendster

right before its closure. If, on the other hand, Friendster

was still an alive and active community, this data would have
been kept private and never made accessible at such scale.
Before closure, users were warned and offered to delete their
data from the site, leaving all the remaining data from this
community as one of the largest publicly available datasets on
social behavior.

The decay of Friendster is commented in a comedy video
of the Onion News, in which a fictitious “Internet archaelogist”
explains Friendster as an ancient civilization 2. While pro-
posed as a satire of the speed of Internet culture, this video
illustrates the opportunities that a failed OSN offers for re-
search. The users of such a community leave traces that allow
us to investigate its failure. In this sense, we can name our
work as Internet Archeology, because we analyze non-written
traces of a disappeared society, aiming at understanding the
way it worked and the reasons for its demise.

In this paper, we provide a quantitative approach to the
collective departure of users from OSN. We start from a the-
oretical perspective that, under the assumption of rational
user behavior, allows us to define a new metric for the re-
lation between network topology and massive user leaves. We
apply this metric to high quality datasets from Friendster

and Livejournal, comparing their social resilience with par-
tial datasets from Facebook, Orkut, and Myspace. The re-
search presented here is based on publicly available datasets,
allowing the independent validation of our results, as well as
the extension to further analyses [19]. We find that social re-
silience differs greatly across the different networks we study.
Interestingly, however, more resilient networks are not neces-
sarily more successful. This indicates that success and failure
cannot be explained by topology alone. Instead, envrironmen-
tal factors, e.g. competition, design choices, user behaviour,
etc., play a considerable role in the faith of an OSN. As an
application of our analysis, we focus on the time evolution of
Friendster, tracking the changes in its social resilience and
investigating how it decayed to a complete collapse. We fin-
ish by commenting on the limitations and extensions of our
approach, and outline possible future applications.

2. RELATED WORK
Recent research has focused on the question of growth and

decay of activity or interest-based social groups [24]. This
line of research analyzes social groups as subcommunities of
a larger community, tied together due to underlying common
features of their members. Such approach can be equally ap-
plied to scientific communities and online social networks [3,

1http://archive.org/details/friendster-dataset-201107
2https://www.youtube.com/watch?v=7mFJdOsjJ0k

38, 34], revealing patterns of diffusion and homophily that
respectively spread group adoption, and increase internal con-
nectivity. In particular, the big datasets provided by online
communities allow the study of group creation and mainte-
nance [21]. These results lead to applied techniques to predict
the fate of interest-based groups, and to improve clustering
analysis of social networks. Our work differs from these pre-
vious results in the scope of our analysis: Instead of looking
at small to medium sized groups within larger communities,
we look at the OSN as a whole. In our approach, users are
not connected to each other due to certain common interest
or affiliation, but through an online platform that maintains
their social links and serves as communication medium.

Another research topic close to our work is the analysis of
individual churn, defined as the decision of a user to stop us-
ing a service in favor of a competitor. This topic has received
significant attention due to its business applications, where
previous works explore how individual users disconnect from
P2P networks[18], and stop using massive multiplayer online
games [22]. Regarding OSN, a recent study shows the relation
between social interaction and user departure in the online
community Yahoo answers [10]. Furthermore, the same ques-
tion has been addressed in a recent article [37], analyzing a
mysterious online social network of which nor the name, size,
nor purpose is explained. While these results are relevant for
the question of user engagement, it is difficult to consider them
in further research if we do not have information about the na-
ture of the studied network. Social networks can have very dif-
ferent roles in online communities, requiring a differentiation
between traditional social networking sites and online com-
munities with a social network component, but where social
interaction is mediated through other channels. The results
of [37] reveal that 65% of the users that have no friends still
remain active after three months, indicating that such social
network is not precisely necessary for a user to use the site.
As an example, a Youtube user does not need to create and
maintain social contacts to interact with other users, which
can be done through videos and comments independently of
the social network.

Our work complements the previous results on individual
user departures mentioned above, as we analyze the social re-
silience of the online community at the collective level. We
build on these empirically validated microscopic rules of churn,
to focus on cascades of departures through large OSN. We an-
alyze the macroscopic topology of the social network and its
role in the survival of the community. This kind of macroscopic
effects are relevant to study the emergence of social conven-
tions [25], an dynamics of politically aligned communities [14],
in addition to the case of OSN we address here.

The particular problem of enhancing resilience by fixing
nodes of a social network has been proposed and theoreti-
cally analyzed [5], aiming to prevent the unraveling of a social
network. This implies that social resilience can be analyzed
through the k-core decomposition of the social network, as ex-
plained in Section 3.1 . In addition, k-core centrality is the
current state-of-the art metric to find influential nodes in gen-
eral networks [23]. Regarding OSN, the k-core decomposition
was applied for a global network of instant messaging [26],
as well as for the Korean OSN Cyworld [2, 8], motivated by
user centrality analysis rather than social resilience. To our
knowledge, this article introduces the first empirical analysis
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of social resilience, relating changes in user environment with
cascades of departing users, through analysis based on the the
k-core decomposition of different OSN.

3. SOCIAL RESILIENCE IN OSN

3.1 Quantifying Social Resilience
A characteristic property of any online social network is the

presence of influence among friends. In particular, individual
decisions regarding participating or leaving the network are, to
a large extent, determined by the number of one’s friends and
their own engagement [3]. Therefore, users leaving a commu-
nity have negative indirect effects on their friends [37]. This
may trigger the latter to also leave, resulting in further cas-
cades of departing users which may ultimately endanger the
whole community. Social resilience acts to limit the spread of
such cascades.

One approach to quantify social resilience is by natural re-
moval of nodes based on some local property, for example de-
gree [26]. By studying the network connectivity after such
removals, one can identify nodes with critical importance for
keeping the community connected. Importantly, by focusing
on local properties we can only quantify the direct effects that
a node removal has on the connectivity of the network.

In this paper, we propose an extension based on the k-core
decomposition [23]. A k-core of a network is a sub-network in
which all nodes have a degree ≥ k. The k-core decomposition
is a procedure of finding all k-cores, ∀k > 0, by repeatedly
pruning nodes with degrees k. Therefore, it captures not only
the direct, but also the indirect impact of users leaving the
network. As an illustration consider Figure 1, which shows
targeted removal of nodes with degrees < 3. On one hand,

Figure 1: Effects of node removals on network connec-
tivity as captured by degree only (A → B) and k-core
decomposition (A → C → D → E)

starting from the network in A and removing all nodes with
degrees < 3, produces the network in B. The black nodes in B
have been removed (and thus are disconnected), and the final
network consists of the 9 white nodes. The transition A → B
shows only the direct effects of users with < 3 friends leaving.

On the other hand, starting again from A, and applying
the k-core procedure, will repeatedly remove nodes until only

those with degrees ≥ 3 remain. The first step, A→ C, removes
the same black nodes as before. Continuing, C → D, removes
those nodes that have been left with < 3 neighbours in C, and
disconnects them as well. The final step, D → E, finishes the
process by disconnecting the last white node in D that was
left with < 3 friends. As a result, the final network is the fully
connected network of the 4 white nodes. Hence, supposing
that users leave a community when they are left with less than
3 friends, the k-core decomposition captures the full cascading
effect that departing users have on the network as a whole.

We proceed by formalizing social resilience based on a gen-
eralized k-core decomposition. To this end, we present a the-
oretical model in which rational users decide simultaneously
either to stay in the network or to leave it. These decisions are
based on maximizing a utility function that weighs the benefits
of membership against the associated costs. We show that the
equilibrium network which maximizes the total payoff in the
community, corresponds to a generalized k-core decomposition
of the network.

3.2 Generalized k-core decomposition
Following [17], we extend the traditional k-core decompo-

sition by recognizing that the pruning criterion need not be
limited to degree only. Let us define a property function Bi(H)
that given a sub-network H ⊆ G associates a value, ni ∈ R,
to node i. A generalized k-core of a network G is, then, de-
fined as a sub-network H ⊆ G, such that Bi(H) ≥ k, ∀i ∈ H
and k ∈ Z. The general form of Bi allows us to model differ-
ent pruning mechanisms. For example, the traditional defini-
tion of the k-core can be recovered in the following way – for
every node i take its immediate neighbourhood, Ni, and fix
Bi(H) := |Ni|, ∀H ⊆ G. Other authors have also shown that
considering weighted links in Bi can more accurately reveal
nodes with higher spreading potential in weighted networks
[13].

Note that by definition higher order cores are nested within
lower order cores. We use this to define that a node i has
coreness ks if it is contained in a core of order ks, but not in
a core of order k′ > ks.

3.3 A rational model for OSN users
Here, we model the cost-benefit trade-off of OSN users in

the following way. Assume that users in a given network, G,
incur a constant integer cost, c > 0, for the effort they must
spend to remain engaged. Accordingly, they receive a benefit
or payoff from their friends in the network. Let the benefit of
user i be the property function Bi(H) with i ∈ H. Assume
non-increasing marginal benefits with respect to the size of H,
i.e. B′′i (H) ≤ 0, otherwise costs are irrelevant as any cost level
could be trivially overcome by increasing the size of H. This
assumption is also supported by other empirical investigations
of large social networks which show that the probability of a
user to leave is concave with the number of friends who left
[3, 37].

Users can select one of two possible actions – stay or leave.
The utility of user i, is Ui = 0, if he chose leave or Ui =
Bi(H)− c, for stay. Finally, since users are rational, they will
try to maximize their utility and so will choose stay as long
as Ui > 0.

It is easily seen that the equilibrium network, G∗, which
maximizes the total utility, U(G) =

∑
i Ui, is composed of
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users who choose stay when c < kis, and leave otherwise. In
other words, node i should remain engaged in the network as
long as the cost, c, does not exceed its generalized coreness,
kis. In this sense, G∗ corresponds to the generalized k-core of
G.

To illustrate that G∗ is indeed an equilibrium network, we
need to show that no user has an incentive to unilaterally
join it or leave it. Consider a node, j ∈ G∗ who chooses
stay. This node would belong to a generalized k-core, kjs,
and by definition, Bj(H) − kjs ≥ 0. Since, j stayed in the
network, it must be that c < kjs, therefore Bj(H) − c > 0.
So, j will be forfeiting positive utility, should he decide to
leave. In the same manner, consider another node l /∈ G∗

who chooses leave, thus his coreness kls ≤ c. All his friends
with the same coreness would have left the network, therefore
the only benefit that l could obtain from staying would come
from his connections with nodes in higher cores. The benefit,
Bl, from such connections must not exceed kls, otherwise l
would have belonged to a higher core in the first place. Since
kls ≤ c we have Bl < c. This implies that l necessarily obtains
negative utility from staying, so he has no incentives to do so.
Moreover, G∗ is optimal, as we showed that any change from
the equilibrium actions of any user inevitably lowers his utility
and decreases the total utility in the network. We also argue
that it is reasonable to expect this equilibrium network to be
reached in an actual setting, since it maximizes the utility of
all users simultaneously, as well as the welfare of the network
provider.

In the rest of the paper, we approximate Bi as proportional
to the number of i’s direct friends, Ni, i.e. Bi = bNi, for some
b ∈ Z. Taking kis to be the coreness of i, by definition it holds
that bNi ≥ kis. The maximum cost, c, that i would tolerate as
a member of the community must be strictly smaller than its
coreness, hence bNi > c and Ni > c/b. The last result implies
that the minimum number of friends that a node i needs to
remain engaged must be strictly larger than c/b. Therefore,
kis ≥ K, i.e. the coreness of a participating user i must not
fall below a critical value K with K given by:

K = (c/b) + 1 (1)

Based on the above discussion, we see that a user will re-
main in a network with a high c/b ratio if its coreness ks is
high. This is because, by definition, i is part of a connected
network of nodes with large minimum degrees and hence large
benefits. In contrast, simply having a large degree does not
imply that a user will obtain large utility from staying. Note
that a high-degree node may nevertheless have low coreness.
This means that i would be part of a sub-network in which all
nodes have low minimum degrees. As a result a lower c/b ratio
would suffice to start a cascade of users departing, that can
quickly leave i with no friends and thus drive it to leave too.
Finally, we define social resilience of a community as the size
of the K core. In other words, this is the size of the network
that remains after all users with ks ≤ c/b have been forced
out. This definition allows us to quantify social resilience and
reliably compare it across communities even for unknown c/b
ratios, as shown in Section 5.

4. DATA ON ONLINE SOCIAL NETWORKS
For our empirical study of social network resilience, we use

datasets from five different OSN. The choice of these datasets

aims at spanning a variety of success stories across OSN, in-
cluding successful and failed communities, as well as commu-
nities currently in decline. The size, data gathering methods,
and references are summarized in Table 1, and outlined in the
following.

Friendster
The most recent dataset we take into account is the one re-
trieved by the Internet Archive, with the purpose of preserv-
ing Friendster’s information before its discontinuation. This
dataset provides a high-quality snapshot of the large amount
of user information that was publicly available on the site, in-
cluding friend lists and interest-based groups. In this article,
we provide the first analysis of the social network topology of
Friendster as a whole.

Since some user profiles in Friendster were private, this
dataset does not include their connections. However, these
private users would be listed as contacts in the list of their
friends who were not private. We symmetrized the Friendster
dataset by adding these additional links. Due to the large
size of the Friendster dataset, we symmetrized the data by
using Hadoop, which we distribute under a Creative Commons
license 3.

Livejournal
In Livejournal, users keep personal blogs and define different
types of friendship links. The information retrieval method for
the creation of this dataset combined user id sampling with
neighborhood exploration [29], covering more than 95% of the
whole community. We choose this Livejournal dataset for its
overall quality, as it provides a view of practically the whole
OSN.

Note that the design of Livejournal as an OSN deviates
from the other four communities analyzed here. First, Live-
journal is a blog community, in which the social network func-
tionality plays a secondary role. Second, Livejournal social
links are directed, in the sense that one user can be friend of
another without being friended back. In our analysis, we only
include reciprocal links, referring to previous research on its k-
core decomposition [23]. By including this dataset, we aim at
comparing how different interaction mechanisms and platform
designs influence social resilience.

Orkut
Among declining social networking sites, we include a partial
dataset on Orkut [29], which was estimated to cover 11.3% of
the whole community. Far from the quality of the two previous
datasets, we include Orkut in our analysis due to its platform
design, as this dataset includes users that did not have a limit
on their amount of friends. Furthermore, Orkut has a story of
local success in Brazil4, losing popularity against other sites
at the time of writing of this article.

MySpace
One of the most famous OSN in decline is Myspace, which was
the leading OSN before Facebook’s success [15]. We include a
relatively small dataset of 100000 users of MySpace [2], which
was aimed to sample its degree distribution. This dataset was
crawled through a Breadth-First Search method, providing a
partial and possibly biased dataset of Myspace. We include

3web.sg.ethz.ch/users/dgarcia/Friendster-sim.tar.bz2
4http://www.digitaltrends.com/computing/facebook-taking-
over-globally-with-almost-700-million-users/
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Table 1: Outline of OSN and datasets
name launch date status in 2013 crawl date users links source

Livejournal 1999 in decline Dec 2006 5.2× 106 2.8× 107 [29]

Friendster 2002 discontinued Jul 2011 1.17× 108 2.58× 109 Internet Archive

Myspace 2003 in decline Oct 2006 105 6.8× 106 [2]

Orkut 2004 in decline Nov 2006 3× 106 2.23× 108 [29]

Facebook 2004 successful May 2008 3× 106 2.36× 107 [36]

this dataset as an exercise to study the influence of sampling
biases in the analysis of social resilience.

Facebook
We want to complete the spectrum of success of OSN, from the
collapse of Friendster to the big success of Facebook. The
last dataset we include is a special crawl which aims at an
unbiased, yet partial dataset as close as possible to the whole
community [36]. This dataset was retrieved based on regional
networks, for which social connections among the members of
that subnetwork were accessible at the time of the crawl.

The partial datasets on Orkut, MySpace, and Facebook al-
low us to analyze of OSN that are still “alive”, in the sense
that they have not been discontinued yet. As an analogy to
the autopsy of Friendster, we provide a biopsy of the other
OSN, taking a small sample due to their privacy and data
availability issues. Our results on these datasets are valid to
the extent of their publicly available data, while we can be
confident that our analysis of Livejournal and Friendster

are representative of their complete user bases.

5. EMPIRICS OF OSN RESILIENCE

5.1 K-core decomposition
Following the analysis of the model presented in Section 3.3,

we computed the k-core decomposition for each of the OSN
datasets introduced above. Among those datasets, Friend-

ster and Livejournal cover the vast majority of their respec-
tive communities. Figure 2 shows a schematic representation
of the k-core decomposition of Friendster and Livejournal.
Each layer of the circles corresponds to the nodes with core-
ness ks, with an area proportional to the amount of nodes
with that coreness value. The color of each layer ranges from
light blue for ks = 1, to red for ks = 304. The distribution
of colors reveals a qualitative difference between both com-
munities: Friendster has many more nodes of high coreness
than Livejournal, which has a similar color range but many
more nodes with low ks. This difference indicates that, to keep
together as a community, Livejournal needs to have a much
lower c/b than Friendster. This scenario is rather realistic, as
Livejournal is a blog community in which users create large
amounts of original content.

Our theoretical argumentation, presented in Section 3.3, im-
plies that node coreness is a more reasonable estimator for
resilience than node degree. A degree of at least ks is a nec-
essary condition for a coreness of ks, but a high degree does
not necessarily mean a high coreness. Taking Friendster an
example, Figure 3 shows the boxplot for the distribution of ks
versus node degree, indicating the spread of ks for nodes of
similar degree. The empirical data shows that a high degree
does not necessarily mean a high ks, even finding nodes with
very low ks and very high degree. Nevertheless, it is clear
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Figure 2: Left: Overview of the k-core decomposition
for Friendster and Livejournal. Layers are colored ac-
cording to ks, with areas proportional to the amount of
nodes with such ks. Right: boxplot of k-shell indices
by degree for Friendster. Dark lines represent the
mean, and dashed bars show extreme values. Boxes
are arranged in the x-axis according to the middle
value of their bin.

that ks is likely to increase with degree, but mapping degree
to coreness would wrongly estimate the resilience of the com-
munity as a whole. By measuring coreness, we can detect that
some nodes belong to the fringe despite their high degree, as
the coreness integrates global information about the centrality
of the node.

5.2 Resilience comparison
Extending the above observations, we computed the k-core

decomposition of the three additional OSN, aiming at com-
paring their relation between their environment, measured
through c/b, and the amount of users expected to be active
under such conditions.

We focus our analysis on the Complementary Cumulative
Density Function (CCDF) of each network, defined as P (ks >
K). As shown in Section 3.3, the cost-benefit-ratio c/b cor-
responds to a value K that determines the nodes that leave
the network, which are those ks coreness below K (Eq. 1).
Under this conditions, the CCDF of ks measures the amount
of nodes that will remain in the network under a given c/b,
allowing us to compare how each OSN would withstand the
same values of cost and benefit.

The right panel of Figure 3 shows the log-log CCDF of the
five OSN. The first two communities to compare are Livejour-
nal and Friendster, as the datasets on these two are the most
reliable. First, the CCDF of Friendster is always above the
CCDF of Livejournal. This is consistent with the structure
shown in Figure 2, where it can be appreciated that Live-

journal has many more nodes in the fringe than Friendster.
Second, both CCDF reach comparable maximum values, re-
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Figure 3: CCDF of ks for all five OSN. The horizontal
dashed line shows the cut at 0.2.

gardless of the fact that Friendster was 20 times larger than
Livejournal. Such skewness in the coreness of Livejournal

can be interpreted as a result of a higher competition for at-
tention, as expected from a blog community in comparison
with a pure social networking site, like Friendster was.

Focusing on the tails of the distributions, we can compare
the patterns of resilience for environments with high K. The
comparison between the resilience of these communities is heav-
ily dependent of the value of K, as for example, Livejour-

nal is less resilient than Facebook for values of K between 10
and 50, but more resilient below and above such interval. A
similar case can be seen between Friendster and Orkut, as
their CCDFS cross at 60 and 200. Thus, Friendster would
be more resilient than Orkut if K lies in that interval, while
Orkut would have a larger fraction of active nodes if K < 60
or K > 200.

It is important that these comparisons are made between the
reliable datasets of Friendster and Livejournal, compared
with partial datasets from the other communities. While our
conclusions on the first two OSN can be seen as global findings
on the community as a whole, the rest are limited to the size
of the datasets available. A particularly clear example of the
effect of the crawling bias is the distribution of coreness for
Myspace, which shows an extreme resilience in comparison to
all the other datasets, with the exception of Orkut for K < 50.
As commented in Section 4 , the method used for Myspace was
very biased towards nodes of high degree, leaving an unrealistic
picture of the resilience of the whole community. Additionally,
the low starting value of the CCDF of Facebook could be
related to the crawling method of the dataset, restricted to
regional networks. This highlights the importance of publicly
available datasets for academic research: While we are able to
make a major autopsy of Friendster and Livejournal, our
analysis of the other three datasets can be considered a biopsy,
as we can only use a small sample of them.

Regardless of any crawling bias, we found that these net-
works have maximum coreness numbers much higher than pre-
vious results. The maximum ks found for the network of in-

stant messaging was limited to 68 [26], and close to 100 for
the OSN Cyworld [8]. Livejournal has a maximum ks of 213,
Friendster of 304, Orkut of 253, and Myspace as a very deep
core of ks = 414. The exception lies in the Facebook dataset,
where we find a maximum ks of 74. This evidence shows that
OSN can have much tighter cores than the ones found in pre-
vious research, revealing that they contain small communities
with very high resilience.

As a final comparison, we focus on the values of K for the
catastrophic case of the networks losing 80% of their nodes,
i.e. where the CCDF has a value of 0.2. The data shows
that both Facebook and Livejournal would lose 80% of their
users under a value of K close to 10. For the case of the un-
successful communities of Orkut and Friendster, it requires
a much worse environment, with values of K above 60. This
way, the empirical data supports the idea that, under the same
environmental conditions, Facebook and Livejournal are less
resilient than the three other networks, which were less suc-
cessful. This means that the topology of their social network
is not enough to explain their collapse, but indicates that bad
decisions in design and interface changes can spread through
the network and drive many users away.

6. NOT POWER-LAW DEGREE DISTRIBU-
TIONS

In Section 3.3, we modelled the large-scale cascades of de-
partures as the result of rational users evaluating their net
benefits of staying in the network. However, investigating if
OSN have power-law degree distributions is important, as it
could provide an alternative model for user exodus. In particu-
lar, networks with power-law degree distributions do not have
an epidemic threshold below which a ”sickness” cannot spread
[32]. Instead, the sickness will survive within the network for
an unbound amount of time and eventually infect most of the
nodes. Such sickness could be a meme or a social norm, but
could also be the decision of leaving the community.

Power-law degree distributions arise from empirically tested
mechanisms of preferential attachment [26], and bursty behav-
ior in link creation [11, 30]. Numerous previous works have
reported power-law degree distributions in social networks [2,
8, 26, 29]. Nevertheless, most of these works rely on goodness
of fit statistics, and do not provide a clear test of the power-
law hypothesis. It states that the degree distribution follows

the equation p(d) = α−1
degmin

(
d

degmin

)−α
for d ≥ degmin. This is

usually described as p(d) ∝ d−α, and often argued as valid if
metrics such as R2, or F1 are high enough. While a high good-
ness of fit could be sufficient for some practical applications,
the power-law hypothesis can only be tested, and eventually
rejected, through the result of a statistical test, assuming a
reasonable confidence level.

We followed the state-of-the-art methodology to test power
laws [9], which roughly involves the following steps. First, we

created Maximum Likelihood (ML) estimators α̂ and d̂egmin

for p(d). Second, we tested the empirical data above d̂egmin

against the power law hypothesis and we recorded the corre-
sponding KS-statistics (D). Third, we repeated the KS test for
100 synthetic datasets that follow the fitted power law above

d̂egmin. The p-value is then the fraction of the synthetic D
values that are larger than the empirical one. Thus, for each
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Figure 4: Complementary cumulative density function (cdf) and probability density functions (pdf) of node

degree in the five considered communities. For each pdf, lighter lines show the ML power-law fits from d̂egmin.

Vertical dotted lines indicate d̂egmin.

degree distribution, we have the ML estimates d̂egmin and α̂,
which define the best case in terms of the KS test, with an
associated D value, and the p-value.

Ultimately, a power law hypothesis cannot be rejected if (i)
the p-value of the KS-test is above a chosen significance level
[9], and (ii) there is a sufficiently large amount of datapoints
from degmin to degmax [33]. We found that the degree dis-
tributions of Facebook, Friendster, Orkut and Livejournal

have p-values well below any reasonable significance threshold,
showing an extremely reliable empirical support to reject the
power-law hypothesis (Table 2).

Table 2: Power law fits of the degree distributions of
the analyzed networks.

dataset d̂egmin α̂ ntail D p

Friendster 1311 3.6 2.9× 105 4.59 < 10−15

LiveJournal 88 3.3 81141 0.02 < 10−15

Facebook 423 4.6 4918 0.14 < 10−15

Orkut 171 3 2.8× 105 0.02 < 10−15

MySpace 2350 3.6 623 0.03 0.22

For the case of Myspace, a KS test gives a p-value of 0.22,
which can be considered high enough to not reject the power-
law hypothesis [9]. Therefore Myspace satisfies the first crite-
rion, but when looking at the range of values from degmin to
degmax (roughly one order of magnitude), and the low amount
of datapoints included, this KS-test composes a merely anec-
dotal evidence of the extreme tail of Myspace. If accepted,
the power-law distribution would explain just 0.623% of the
Myspace dataset. In addition, BFS methods have been shown
to bias the macroscopic properties of the datasets they pro-
duce [31]. This leads to the conclusion that, while we cannot
fully reject the power-law hypothesis, we can safely state that
the dataset does not support the hypothesis otherwise. Fig-
ure 4 shows the degree distributions and their CCDF. For each
OSN, we show how the typical log-log plot of the PDF is mis-
leading, as a simple eye inspection would suggest power-law
distributions, but a robust statistical analysis disproves this
possibility.

7. THE TIME EVOLUTION OF FRIENDSTER
In this section, we describe a post hoc case study of the way

how Friendster rose and collapsed, using the available timing
information in the dataset.

7.1 Social growth mechanism
The Friendster dataset does not provide the date of cre-

ation of user accounts or social links, but it includes a user id
that increased sequentially since the creation of the site. We
analyzed the time series of Friendster in an event time scale,
where each timestamp corresponds to the id of each user. We
measured the time distance of an edge e, which connects users
u1 and u2, as the difference between the ids of these users
d(e(u1, u2)) = |id(u1) − id(u2)|. In the following, we show
how early users connected to later users, making the network
grow.

We divided the network in time slices of a width of 10 million
user ids, with a last smaller slice of 7 million ids. Each of
these 12 slices contains a set of nodes that have connections i)
to nodes that joined the community before, ii) to nodes that
joined the network afterwards, and iii) internally within the
slice. This way, for the slice of time period t we can calculate
its internal average degree 2|Ein(t)|/|N(t)|, where Ein(t) is
the set of edges between nodes in the slice t, noted as N(t).

As an extension, we define Ep(t) and Ef (t) as the sets of
edges towards nodes that joined the community before t (past
nodes), and nodes that joined after t (future nodes). We mea-
sured the time range of connections to the past P (t) as the
mean distance of the edges in Ep(t), and the rage of connec-
tions to the future F (t) as the mean distance of their future
counterpart Ef (t). By definition, the amount of past nodes for
the first slice is 0, equally to the amount of future nodes for the
last slice. If the process of edge creation was completely in-
dependent of these timestamps, the network would have some
arbitrary sequence of node ids. In such network, P (t) would
steadily increase with each slice, having an expected value of
|N |/2 for the last one, where |N | is the size of the network.
Similarly, F (t) would decrease from |N |/2 at the first slice,
converging at 0 in the last one.

The time evolution of the range of connections to past and
future is shown in the left panel of Figure 5. Each circle repre-
sents a slice of the network, with growing t from left to right.
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Figure 5: Left: Schema of connectivity of Friendster
users across time. Each circle represents a slice of the
network of width of 10 million user ids. Blue squares
represent past users and red squares represent future
users, with a distance from their slice according to
P (t) and F (t) respectively. The dashed lines show the
expectation of these two metrics in a random id se-
quence of the network. Right: Likelihood of a Friend-

ster user to leave, given the amount of active friends
of the user. The decreasing likelihood validates de
assumption that users are more likely to leave when
they do not have enough active friends.

Their horizontal alignment represents the present with respect
to the slice, and each circle is connected to a blue square on the
below that represents past nodes, and a red square above that
represents future nodes. Circles have a size proportional to
|N(t)|, which keep approximately constant throughout time.
The darkness of each circle is proportional to its internal con-
nectivity |Ein(t)|, and the width of the connections from cir-
cles to past and future squares are proportional to |Ep(t)| and
|Ef (t)| respectively. Internal connectivities decrease through
time, as early slices had significantly higher |Ein(t)|. This in-
dicates that the initial root of users of Friendster was much
more tightly connected among themselves than towards other
nodes, creating a denser subcommunity of old users. A pos-
sible explanation for this pattern is that Friendster started
as an OSN for dating, and its design was later shifted towards
generalized networking as it became popular.

The squares of Figure 5 left are positioned according to the
mean past P (t) and future F (t) distances of each slice. As
a comparison with random network construction, dashed lines
show their expected values as explained above. For early slices,
the mean future distance is significantly lower than its random
counterpart, revealing a connectivity pattern that limits the
range of future connections. This shows a decay in the dif-
fusion process through the offline social network, where the
potential of a user to bring new users decreases through time.
This suggests a possible “user expiration date” after which a
user of a OSN cannot be expected to bring new users.

7.2 Microdynamics of user activity
We used the Friendster dataset to explore the empirical

properties of the benefit function Bi(H), explained in Section
3.2. In our rational model, that function determines when a
user i becomes inactive, given some quantifiable properties of
its social environment H. While the dataset does not provide
precise activity statistics to estimate Bi(H), we can estimate
the conditions for users to become inactive through their se-
quence of ids. Following the methodology of [26], we approx-

imate the time when a user became active as its id in the se-
quence, and the maximum timestamp associated to its edges
as the time when it became inactive. This way, we only take
into account user activity as link creation in the social net-
work, leaving out other actions such as creation of messages
or sharing of pictures.

For each user, we extracted the events when a friend be-
comes inactive, or when a friend joins the network, calculating
the amount of active friends Nact of the user in each of those
events. This value determines the period when the user is cre-
ating new friends, until Nact reaches its maximum value, after
which the user has decreasing amounts of active friends and
ends becoming inactive itself. After this maximum value, we
calculate the likelihood of a user leaving the OSN (L) given
its amount of active friends P (L|Nact), in order to provide a
first estimation of the social conditions for users becoming in-
active in Friendster. The right panel of Figure 5 shows this
likelihood, revealing that users are much more likely to leave
when they have low amounts of active friends. This validates
our assumption that the benefits of a user are monotonically
increasing with its amount of active neighbors, as they are
much less likely to leave the OSN when they have a sufficient
amount of active friends.

Two additional observations can be done about the likeli-
hood P (L|Nact). First, the shape of its dependence of Nact
reveals high variance, despite of its fast decrease. This indi-
cates that the likelihood of users leaving scales with connectiv-
ity, i.e. the fraction of users likely to leave the OSN does not
vanish when network size and density tend to infinity. Sec-
ond, there is a small trend at the tail of the likelihood, where
some values seem to increase. Our statistics do not fully vali-
date the existence of this increase, as there are very few users
with so many friends, but we can observe that the monoton-
ically decreasing behavior up to that level does not exist any
more. This suggests the presence of information overload [28],
in which users with very large amounts of friends might be
unable to cope with all the information provided by the OSN,
and thus perceiving lower benefits.

7.3 Resilience and decline of Friendster
We combined the sequence of user ids with the k-core de-

composition of Friendster to study how its resilience changed
over time. In particular, we explored the relation between the
coreness of users and the time when they joined the commu-
nity. To analyze the changes in resilience, we divided the users
along the median of the distribution of coreness values, k̄s = 6.
This way, for each period of time, there is an amount of users
in the lower half of the distribution (ks < k̄s). When such
amount increases, the new members that joined the OSN in
that period are at higher risk to leave than when they have
coreness values above the median. We measure the resilience
of these time-dependent parts of network as the ratio between
users with ks < k̄s, and the total amount of users in the slice.

We created slices of 100000 user ids, calculating a point
sample estimate of P (ks < k̄s). Inset of Figure 6 shows the
time evolution of this ratio, with a dark area showing 99%
confidence intervals. First, we notice that the skewness of ks
does not affect our statistic, as the confidence intervals are
sufficiently concentrated around the point estimates. Second,
we can identify certain time periods when the new users of
Friendster only connected to its fringe, having larger ratios
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of nodes with coreness below the median. The first moment
with a peak is at the very beginning, to drop to ratios around
0.3 soon after. This shows that the set of very early users did
not fully exploit the social network, and it took a bit of time
for the OSN to become more resilient. The second peak is
shortly after having 22 million users, which coincides with the
decay of popularity of Friendster in the US. Finally, the ratio
of users at risk went above 0.5 before the community had 80
million accounts, showing a lack of cohesion as its shutdown
approaches, as new users do not manage to connect to the rest.

To conclude our analysis, we explored how the spread of
departures captured in the k-core decomposition (see Section
3.3) can describe the collapse of Friendster as an OSN. As
we do not have access to the precise amount of active users of
Friendster, we proxy its value through the Google search vol-
ume of www.friendster.com. The inset of Figure 6 shows the
relative weekly search volume from January 2009. At some
point in 2009, Friendster introduced changes in its user in-
terface, coinciding with some technical problems, and the rise
of popularity of Facebook 5. This led to the fast decrease of
active users in the community, ending on its discontinuation
in 2011.
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Figure 6: Weekly Google search trend volume for
Friendster. The red line shows the estimation of the
remaining users in a process of unraveling. Inset: time
series of fraction of nodes with ks < 6.

We scale the search volumes fixing 100% as the total amount
of users with coreness above 0, 68 million. At the point when
the collapse of Friendster started, the search volume indi-
cates a popularity of 78% of its maximum. We take this point
to start the simulation of a user departure cascade, with an
initial amount of 58 million active users, i.e. users with core-
ness above 3. The second reference point we take is June 2010,
when Friendster was reported to have 10 million active users 6,
corresponding to 15% of the 68 million user reference explained
above. The search volume on that date is 14%, showing the
validity of the assumption that the maximum amount of active
users corresponds to those with coreness above 0. Thus, these
10 million remaining users correspond to nodes with ks > 67.

Given these two reference points, we can approximate the
collapse of the network through its “unraveling” per k-core.
Our assumption is that a critical coreness Kt, as defined in

5www.time.com/time/business/article/0,8599,1707760,00.html
6en.wikipedia.org/wiki/Friendster

Eq.1, starts at 3 and increases by 1 at a constant rate. Such
Kt is the result of an increasing cost-to-benefit ratio, and thus
all the nodes with ks < Kt would leave the community. Then,
for each timestep, the amount of remaining users would corre-
spond to the CCDF shown in Figure 3. In this simulation, K
increases at a rate of 6 per month, i.e. from 3 to 67 between
our two reference points.

The red line of Figure 6 shows the remaining users under this
process, with dashed values after the second reference point of
June 2010. We can observe that this process approximates
well the decay of Friendster from the start of its decline, to
its discontinuation in 2011. The R2 value for this fit is 0.972,
leaving some slight underfit through 2009. This fit show the
match between two approximations: on one side the search
volume as an estimation of the amount of active users, and
on the other side the amount of remaining users when the c/b
ratio increases constantly through time.

8. DISCUSSION
In this article, we have presented the first empirical analysis

of social resilience in OSN. We approached this question using
a theoretical model that relates the environment of the OSN
with the cascades of user departures. We showed how a gener-
alized version of the k-core decomposition allows the empirical
measurement of resilience in OSN. Previous theoretical works
[5] and empirical observations [37] suggest the existence of
constant cost and monotonous benefits, which lead to a stable
solution that corresponds to the k-core decomposition of the
social network. Among the costs that users face when using an
OSN, there are time costs to adapt to the user interface and
set up privacy settings [27], including the risk of revealing pri-
vate information, or sharing pictures with undesired contacts
[20]. The managers and owners of OSN have thus an interest
in lowering this cost, usually introducing new technologies like
link recommender systems or automatized friend lists [28].

We provided an empirical study of social resilience across
five influential OSN, including successful ones like Facebook

and unsuccessful ones like Friendster. We have shown that
the hypothesis of a power-law degree distribution cannot be
accepted for any of these communities, discarding the epidemic
properties of complex networks as a possible explanation for
large-scale cascades of user departures. Our k-core analy-
sis overcomes this limitation, quantifying social resilience as
a collective phenomenon using the CCDF of node coreness.
We found that the topologies of successful sites are less re-
silient than the unsuccessful ones. This indicates that the
environmental conditions of an OSN play a major role for its
success. Thus, we conclude that the topology of the social
network alone cannot explain the stories of success and failure
of the studied OSN, and it is necessary to focus future em-
pirical analysis in additional dimensions of user activity [36].
Additionally, we found very high maximum coreness numbers
for most of the OSN we studied. The existence of these su-
perconnected cores indicates that information can be spread
efficiently through these OSN [23].

As a case study, we provided a detailed analysis of the
changes in Friendster through time. We detect that the range
of connections towards future nodes is much lower than the ex-
pectation from a random process. We provide an estimation
of the likelihood of users to leave depending on their amount
of active friends, finding that users with less active friends are

47



more likely to leave. Not surprisingly, this likelihoood func-
tion reveals some heterogeneity among users in the decision
when to leave, in line with previous research where personal-
ity traits, like extroversion, play a role in online activity [6].
Finally, we applied all our findings to Friendster’s collapse,
fitting an approximated time series of active users through the
spread of user departures predicted by the k-core decomposi-
tion.

Our analysis focused on the macroscopic resilience of OSN,
but further research is necessary to better understand the in-
dividual conditions for users to leave an OSN. Clickstream
datasets would allow to measure the time users spend in each
social network, to quantify passive activity (viewing pictures,
reading comments), and how they migrate across OSN [4].
This type of data would add an independent dimension of ac-
tivity in the from of wall posts [35], picture shares and likes
[7], allowing more precise validations of when users become
inactive and under which situation.

Our formulation of a generalized k-core can be applied when
user decisions are more complex than just staying or leaving
the network, for example introducing heterogeneity of benefits
or weights in the social links. For example, link weight can be
estimated from implicit interactions [16], which can be incor-
porated to our k-core analysis through the formulation of [12].
Another open question is the role of directionality in the so-
cial network, and how to measure resilience when asymmetric
relations are allowed. The benefits of users of these networks
would be multidimensional, representing both the reputation
of a user and the amount of information it receives from its
neighborhood. The work presented here is theoretically lim-
ited to the study of monotonously increasing, convex objective
functions of benefit versus active neighborhood. While empir-
ical studies support this assumption [3, 37], it is possible to
imagine a scenario where information overload decreases the
net benefit of users with very large neighborhoods, creating
nonlinearities where the generalized k-core is not a stable so-
lution. We leave this questions open for further research, and
the study of social resilience in other types of online commu-
nities.
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