
The Co-evolution of Socio-technical Structures in Sustainable Software
Development: Lessons from the Open Source Software Communities

Marcelo Serrano Zanetti
ETH Zurich

mzanetti@ethz.ch

Abstract—Software development depends on many factors,
including technical, human and social aspects. Due to the
complexity of this dependence, a unifying framework must be
defined and for this purpose we adopt the complex networks
methodology. We use a data-driven approach based on a large
collection of open source software projects extracted from
online project development platforms. The preliminary results
presented in this article reveal that the network perspective
yields key insights into the sustainability of software develop-
ment.

Keywords-complex networks; statistical physics; social net-
works; software dependency graphs; open source software; free
software; quantitative analysis; mining software repositories

I. INTRODUCTION

The open source way of software development has been
the focus of a considerable amount of academic research
[1], not to mention the commercial interest evolving around
it. Indeed, in some cases, open source software (OSS) can
compete with or even outperform its commercial competi-
tors; the APACHE HTTP server being a good example for
such a success of OSS development.

OSS is an interesting research topic because it occurs
at a global scale and the vast majority of the information
flow goes through the Internet. Therefore, given suitable data
mining tools, online data can be used in empirical research
covering most of the aspects involved in OSS development.
Available data range from the whole source code history
stored in code repositories and project development plat-
forms (e.g. SOURCEFORGE and more recently GITHUB), to
the actual interaction between developers and users available
in the form of discussion forums and mailing lists.

In order to understand the processes shaping OSS, it is
necessary to bridge complementary perspectives of mul-
tiple disciplines [2]. Social sciences are needed in order
to understand interactions between developers and users,
management and economic sciences provide insights into the
organizational structure of projects and software engineering
allows us –among other things– to assess the impact of tech-
nical aspects like design patterns, programming languages
and paradigms.

A solid understanding of how the interplay of these
processes hinders or fosters sustainable software engineering
is relevant for software projects in general. Therefore, the
impact of interdisciplinary research on the dynamics of

OSS projects is believed to stretch out far beyond the OSS
domain. However, in order to study the interrelation of
technical, social and organizational facets of software engi-
neering in a quantitative way, one first needs to be able to re-
frame them in a unifying framework. An interesting aspect of
OSS is that the communities of users and contributors as well
as the structural features of software architectures can be
studied from a network perspective. Due to recent advances
of complex networks methods in assessing the structural and
dynamical features of networks with complex structures, we
argue that the resulting set of tools and abstractions is a good
candidate for this task. As of today, the complex networks
framework is a well established methodology and has been
successfully applied in multiple research fields, including the
social sciences, technical systems, biology and economics
(see e.g. [3], [4]).

There are research works addressing the network nature of
different aspects of software development separately, usually
focusing on very specific research questions and applica-
tions, for example the automatic detection of developer
roles within a project [5] or the evolution of dependencies
and conflicts between software components [6]. However,
to the best of our knowledge, the relations between and
co-evolution of networks representing different aspects of
software projects have not been studied from this unifying
perspective. Therefore the main goal of our research is to
add this perspective to the current understanding of the co-
evolution of the socio-technical structures found in software
development processes.

By pursuing this goal, we want to contribute not only
to the OSS community, but also to the other disciplines
involved. More specifically, we aim at

• studying the impact of programming languages and
programming paradigms on dependency structures and
co-change (chains of changes triggered by punctual
modifications) dynamics.

• proposing metrics capturing features of sustainable soft-
ware architectures which may be implemented in tools
aiding distributed software development.

• contributing to physics of complex networks by en-
riching existing network growth models with domain
knowledge inspired by the dynamics observed in OSS.

• measuring the impact of developer turnover (replace-
ment) on the OSS development process.

978-1-4673-1067-3/12/$31.00 c© 2012 IEEE
ICSE 2012, Zurich, Switzerland
Doctoral Symposium

1587

• understanding the dynamical interdependence and inter-
action (co-evolution) of socio-technical networks found
in OSS communities.

• predicting how the aforementioned issues result on suc-
cess or failure of OSS projects and their communities,
by defining determinant factors and their respective re-
levance through statistical analysis and identifying what
mechanisms, unique to OSS development processes,
could be applied in domains away from software.

As emphasized above, OSS provides a great amount of
online data and we aim to bridge practice with well founded
scientific methodology supported by empirical research. In
the next sections we describe our methodological approach,
related work, our preliminary results and research outlook.

II. RESEARCH METHODOLOGY

In this section we describe some of the tools provided by
complex network methodology and how we seek to apply
them to achieve the goals mentioned above. We also describe
a set of data that has already been collected and comment on
how it will serve to answer the questions considered above.

A. Data Sets

Data on coordination and development processes of OSS
projects can easily be found online, concentrated e.g. in
software repositories such as SOURCEFORGE and GITHUB.
Apart from acquiring the detailed source code history from
version control systems like CVS, SUBVERSION or GIT,
we have also extracted communication data from publicly
accessible forums, mailing-lists and bug tracking systems.
Based on this approach, in a preparatory phase of the project
we have built a comprehensive database of projects hosted
on SOURCEFORGE. We are currently complementing this
database by data on source code history and developer
collaborations available via the API of GITHUB, which
has recently superseded SOURCEFORGE as the largest open
source project hosting platform. Apart from these sources,
we have further collected data on popular projects like
ECLIPSE, which must be crawled separately.

In our project, we lay emphasis on the fact that the
purpose of software is likely to give rise do very different
architectural patterns, dependency structures and developer-
user interactions. In order to study how this affects the
development process, we particularly distinguish between
projects implementing generic programming frameworks or
platforms (like e.g. MONO, ECLIPSE or ASPECTJ) that
expose a large part of their inner structure to highly-skilled
developers and “end user” software (like e.g. JEDIT or GIMP)
which has a much smaller “contact surface“ and is mainly
being used by non-programmers.

B. Complex Networks Methods in OSS Research

Once data on the evolution of the source code, the
interaction between developers as well as the communication

between users has been collected, we need to interpret
these in terms of networks in order to apply our complex
networks approach. An established approach of studying
software from the network perspective is to consider func-
tional dependencies between programming abstractions at
different scales, like e.g. procedures, types, classes, modules
or packages. From a complex networks perspective, data
on the evolution of these networks can then be used to
check predictions of well-known universal models of net-
work growth [7], to study their correlation with co-change
dynamics [8] as well as to model the increase of package
incompatibilities [6].

A further domain where taking a network perspective
appears promising is in the study of social processes arising
in software development. In order to build a simple proxy
for a collaboration network, two developers can e.g. be
connected to each other if both contribute to the same
file (or class, module, etc) within a given time interval
(adopted e.g. by [5] in order to identify developers roles).
By considering data from OSS forums, mailing-lists and
bug tracking systems, we are further building developer and
user interaction networks and couple them with both the
developer collaboration as well as the software architecture
network. Combining these networks and correlating inter-
action, communication and collaboration events taking place
in them promises interesting perspectives for the study of
dynamical processes in OSS development.

In recent years, the complex networks community has
developed a number of quantitative metrics which capture
structural features like e.g. clusters as well as the impact of
nodes and clusters on dynamical processes like e.g. infor-
mation or failure spreading, consensus, opinion formation
or synchronization [4]. As an example, the modularity of a
software architecture, which is considered a key feature that
contributes to the sustainability of large scale projects [9],
can be captured by specific network metrics which will be
described in section III. In our research, we study how these
metrics can contribute to a quantitative understanding of the
interdependence of human, social and technical aspects of
software engineering.

For the particular research goals outlined in section I,
we plan to correlate structural features of dependency and
collaboration networks with the underlying programming
paradigms and programming languages and study how they
impact co-change dynamics and coordination effort. In so
far as we are able to identify network structures that exert
a beneficial or detrimental effect on the project success,
monitoring the evolution of the corresponding quantita-
tive metrics may aid distributed software development and
project management. Centrality metrics (like e.g. degree,
betweenness or eigenvector centrality) promise to be useful
to evaluate the importance of individual developers and users
for the project and thus provide interesting perspectives for
the study of developer turnover. Following the idea of socio-

1588

technical congruence put forth in [10], the co-evolution of
communication, collaboration and dependency networks can
be studied, thus allowing to shed light on the question how
they influence software evolvability, quality and coordination
effort. For this, we aim at using the conceptual framework
proposed by [11], which provides an interesting approach to
the quantitative study of coupled networks.

The larger an OSS project, the less knowledge of the
system as a whole individual developers have. From this
point of view, OSS development processes can be seen
as a complex system. A further interesting aspect of the
complex networks perspective on the evolution of network
structures is the fact that it allows to relate the micro-
level dynamics (e.g. the evolution of dependencies between
individual classes and procedures or the interaction between
particular developers) with macro-level features of the re-
sulting networks, like e.g. the strengthening or weakening
of modularity, the emergence of co-change cascades or
fluctuations in coordination events and conflicts. We believe
that a solid understanding of this micro-macro link is crucial
for the design of development policies and monitoring tools
that foster sustainable software engineering.

To summarize, our approach combines quantitative mea-
sures from the complex network literature with issues related
to software engineering practices. This takes into account
the technical aspects of software architecture and also the
dynamic processes resulting from social interaction. In the
next section we describe the current status of our research.

III. PRELIMINARY RESULTS AND PUBLICATIONS

This PhD project has recently completed the first year of
research. One of our results so far is a modeling framework
that allows to describe the growth of tree structures. It
augments simpler models for hierarchical networks com-
monly used in network literature with specific knowledge
about software engineering processes (e.g. nodes at dif-
ferent levels in the inheritance hierarchy having different
attachment probabilities). We are currently applying it in the
analysis of inheritance trees found in object-oriented (OO)
programming languages and seek to map it to the evolution
of the hierarchical organization of software developers. By
studying the position of developers in this hierarchy, we
hope to be able to study how developer turnover affects
software projects. Part of these results have been presented
at the European Conference on Complex Systems 2011 [12],
and we are now preparing a submission to a peer-reviewed
journal.

A second line of research which we are currently pursuing
is the analysis of the role of modularity on software develop-
ment [13]. Quantitatively, for a given definition of modules
or clusters, a measure of modularity is usually computed in
a network framework by

Q =

∑n
i eii −

∑n
i aibi

1−∑n
i aibi

(1)

where eij is the fraction of all edges in the network that
link nodes in module i to nodes in module j, ai =

∑n
j eij ,

bi =
∑n

j eji (column and row sum respectively) while n is
the total number of existing modules. If the network is an
undirected graph the matrix defined by e is symmetric and
ai = bi [14]. The metric defined by equation (1) measures
the fraction of network edges that connect nodes within the
same module (

∑n
i eii) minus the expected value of the same

quantity measured from a random network with the same
node/module allocation (

∑n
i aibi). If the first is not better

than random Q = 0 [15]. However, Q would not be defined
if all edges are concentrated within a single module because
the scaling factor 1 −∑n

i aibi = 0 (no modular structure).
In such a case we define Q = 0 as well. In general, Q ∈
[−1, 1], i.e. the more modular the network, the closer Q is to
1. Figure (1) provides two examples of networks and their
respective Q scores.

(a) Q=0.8499 (b) Q=0.0545

Figure 1. Network examples where nodes (circles) with the same color
are part of the same module. (a) modular network. (b) random connectivity.

In the analysis of software structures, this tool is useful
because in many cases module definitions are given by
means of programming constructs like classes, namespaces
or packages. The Q–metric can thus be used to study how
well the cluster structures in the dependency networks cor-
responds to the modular decomposition of a project in terms
of packages, namespaces, etc. In the following analysis,
we have applied the Q–metric to the data set described
in section II-A. In particular, we have studied the time
evolution of the Q–metric of JAVA projects, using class-level
dependency networks and a definition of modules based on
JAVA packages. In the following, the data are shown for the
ECLIPSE IDE, the JEDIT text editor, the AZUREUS torrent
client as well as the machine learning library YALE. For
the case of JEDIT, the software repository contained the
auxiliary and external package structure but not the JEDIT
core. For each project, monthly snapshots of the source code
were extracted from their respective source code repositories
over a maximum period of eight years. Figure (2) shows
the time trajectories of each of those projects in a phase
space composed of their Q–metric scores as a function of
the size of the project (number of classes). We observe that
as the project grows, the correspondence of the dependency
network to the modular project structure tends to deteriorate.

By studying the release history of each project indi-
vidually, we were able to verify that development efforts
preceding major software releases tend to restore the cohe-
rence of modular structures deteriorated previously by the
inclusion of new dependencies. This explains for instance

1589

50 200 1000 5000 20000

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

Number of Classes

Q

eclipse
jedit
azureus
yale

50 100 200 500 2000

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

Number of Classes

Q

2000-02-01
 v.2.3pre3

2001-01-01
 v.3.0

2002-05-01
 v.4.0

2008-02-28
 v.4.2

jedit

Figure 2. Source code modularity as a function of project size (x axis in log. scale). From left to right, the trajectories in time of four JAVA projects (see
text). The trend is to lose modularity as the software project grows in size. (left) all projects. (right) focus on release events of JEDIT.

the drastic fluctuations present in the phase plot of JEDIT
(see major releases marked by vertical lines in the right plot
of Figure (2)). From the initial version 2.3pre3 to 3.0, a
significant deterioration of the Q–metric is observed in a
period of less than one year, however the release of version
3.0 did nothing to restore it. According to commonly used
version numbering conventions, the major revision number
is increased upon a significant redesign of the software. The
Q–metric suggests that this is not the case for the release
of version 3.0. And indeed, the release notes of version 3.0
justify that the major revision number was increased only
because a scripting framework was added to the software.
It was only the release of version 4.0 –which according
to the release notes re-implemented the document object
model as well as the API of the software– which restored
the coherence of the cluster structure of dependencies and
the modular decomposition of the project to a level at which
the architecture could grow further in a sustainable regime
which lasted almost six years in our data set.

IV. CONCLUSION AND OUTLOOK

The results shown in section III demonstrate that the Q–
metric known from the study of modularity in complex
networks is a promising macroscopic approach to study the
source code evolution and as described in Section II-B, such
a metric could be used as a tool to warn developers about
the deterioration of software modularity. It thus provides
a simple mapping from local development activity to its
respective impact on the system as a whole. However,
since we are still in an early stage of our project, these
results are necessarily preliminary and further efforts are
required to demonstrate the meaningfulness of the Q–metric
in terms of sustainability of software development processes.
Furthermore –in line with the main goal of our project–
we need to expand this approach in order to capture social
processes like coordination and communication acts and
how they map to the software structures. We hope that this
research approach eventually allows us to handle some of the
aspects of the co-evolution of the socio-technical structures
found in software development.

While we are well aware that the complex networks ap-
proach taken by our project has its own specific limitations,
we think that it is an important contribution to the field since

it allows to integrate the rich results of socio-dynamics with
software engineering in a substantiated and quantitative way.

ACKNOWLEDGMENT

We acknowledge the Swiss National Science Foundation
for financial support through grant CR12I1 125298 and Ingo
Scholtes and Claudio Juan Tessone for valuable comments.

REFERENCES

[1] G. von Krogh and E. von Hippel, “The promise of research on
open source software,” Management Science, vol. 52, no. 7,
p. 975, 2006.

[2] C. Gacek and B. Arief, “The many meanings of open source,”
IEEE Software, vol. 21, pp. 34–40, 2004.

[3] M. E. J. Newman, “The structure and function of complex
networks,” SIAM review, pp. 167–256, 2003.

[4] ——, Networks: an introduction. Oxford Univ Press, 2010.
[5] M. Pohl and S. Diehl, “What dynamic network metrics can

tell us about developer roles,” in ICSE CHASE Proceedings.
ACM, 2008, pp. 81–84.

[6] M. A. Fortuna, J. A. Bonachela, and S. A. Levin, “Evolution
of a modular software network,” PNAS, 2011.

[7] T. Maillart, D. Sornette, S. Spaeth, and G. von Krogh,
“Empirical tests of zipfs law mechanism in open source linux
distribution,” Phy. Rev. Letters, vol. 101, 2008.

[8] M. M. Geipel and F. Schweitzer, “The link between depen-
dency and co-change: Empirical evidence,” IEEE Transac-
tions on Software Engineering, 2011.

[9] D. L. Parnas, P. C. Clements, and D. M. Weiss, “The modular
structure of complex systems,” Software Engineering, IEEE
Transactions on, vol. 11, no. 3, pp. 259–266, 1985.

[10] M. Cataldo, J. D. Herbsleb, and K. M. Carley, “Socio-
technical congruence: a framework for assessing the impact
of technical and work dependencies on software development
productivity,” in Proceedings of the ESEM ’08. ACM, 2008.

[11] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and
S. Havlin, “Catastrophic cascade of failures in interdependent
networks,” Nature, vol. 464, 2010.

[12] C. J. Tessone, F. Schweitzer, and M. S. Zanetti, “Software
evolution: From inhomogeneous evolution to coarse-grained
dynamics,” in European Conference on Complex Systems,
Book of Abstracts, Viena, 2011, pp. 57–57.

[13] M. S. Zanetti and F. Schweitzer, “A network perspective
on software modularity,” in GI LNI Proceedings 200 ARCS
Workshops, 2012.

[14] M. E. J. Newman, “Mixing patterns in networks,” Phy. Review
E, vol. 67, p. 026126, 2003.

[15] M. E. J. Newman and M. Girvan, “Finding and evaluating
community structure in networks,” Physical Review E, vol. 69,
p. 026113, 2004.

1590

