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Abstract – We study the collective dynamics of an ensemble of coupled identical FitzHugh-
Nagumo elements in their excitable regime. We show that collective firing, where all the elements
perform their individual firing cycle synchronously, can be induced by random changes in the
interaction pattern. Specifically, on a sparse evolving network where, at any time, each element is
connected with at most one partner, collective firing occurs for intermediate values of the rewiring
frequency. Thus, network dynamics can play the role of noise and connectivity in inducing this
kind of self-organised behaviour in highly disconnected systems which, otherwise, would not allow
for the spreading of coherent evolution.

Copyright c© EPLA, 2012

Introduction. – The spontaneous emergence of coher-
ent behaviour in populations of interacting units —be
they of physical, chemical, biological, or technological
nature— is crucial to their collective function. Synchro-
nisation of several kinds occurs in such disparate systems
as mechanical oscillators, biomolecular reactions, neural
networks, insect societies, hormonal cycles, coupled lasers,
and Josephson junctions. Mathematical models for this
variegated class of phenomena have been proposed in
terms of ensembles of coupled dynamical systems of
different types: linear and nonlinear oscillators, chaotic
elements, excitable units, among others [1,2].
It is a well-established fact that, in a population of inter-

acting elements, sufficiently strong, attractive coupling
induces self-organised synchronisation. This occurs even
in the presence of external noise, or when the individual
behaviour of each element is chaotic, or when elements
are not identical to each other, with the proviso that the
population is well-interconnected in such a way that infor-
mation about the state of any element can reach any other.
While the structure of the interaction network —i.e. the
connectivity pattern that defines which elements inter-
act with each other— can affect details in the collective
dynamics [3], connectedness and strong coupling generally
guarantee synchronisation.

(a)E-mail: tessonec@ethz.ch

It has recently been shown that, both in synchronisation
and in contact processes (such as epidemics spreading),
instantaneous lack of connectivity can be compensated
by dynamical rewiring of the interaction network [4,5].
Specifically, in populations with very sparse, disconnected
instantaneous patterns, the respective transitions to full
synchronisation and to endemic states are triggered by
increasing the rewiring rate. This result is relevant, espe-
cially, to biological and social networks, where potential
contacts between the members of a population are not
continuously realised, but can occasionally be activated.
In this letter, we disclose a novel phenomenon concern-

ing the collective dynamics of populations of excitable
units on evolving networks. Interacting excitable elements,
which individually perform a “firing” cycle in phase space
if perturbed strongly enough from their quiescent state,
are known to undergo collective synchronised firing
induced by external noise [6,7] and by repulsive interac-
tions [8]. We show here that, even in the absence of noise,
an ensemble of coupled FitzHugh-Nagumo excitable
elements on an evolving, very sparse, network exhibits
collective firing for intermediate values of the rewiring
rate. This phenomenon is characterised numerically for
different network topologies and semi-quantitatively
explained in terms of the perturbations that network
reconnections impose on the individual dynamics of each
element.
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Excitable elements on an evolving network.
– FitzHugh-Nagumo excitable elements constitute an
archetypical model for type-II excitability, which occurs
in many natural and artificial systems ranging from
epidemic spreading, to neural and cardiac tissues [9,10] to
chemical reactions and electronic devices [11]. In type-II
excitability, the excitable regime —which, as explained
below, is characterised by the existence of a locally stable
equilibrium— is reached via an inverse Hopf bifurcation,
through the transformation of a limit cycle into a fixed
point. The FitzHugh-Nagumo model is defined in terms
of an activatory (fast) variable x and an inhibitory
(slow) variable y. We consider an ensemble of N sparsely
connected FitzHugh-Nagumo elements, whose dynamics
is given by

εẋj = xj − 1
3
x3j + yj +Kj(t) (xj∗ −xj) , (1)

ẏj = a−xj , (2)

for j = 1, . . . , N . The time-dependent factor Kj(t) weights
the interaction between elements j and j∗, as explained
below. The small parameter ε measures the time-scale
ratio between the fast and slow variables xj and yj .
The positive parameter a characterises the dynamical
regime of the non-interacting (K ≡ 0) element: for a< 1, it
performs a periodic oscillation in the (xj , yj)-plane, while
for a� 1 its behaviour is excitable. In this latter regime,
and in the absence of external perturbations, the non-
interacting element asymptotically approaches the sole
stable fixed point (xeq, yeq) = (a, a

3/3− a) and remains
quiescent there. Under a sizeable perturbation, however,
the element may exit the vicinity of the fixed point and
return to it after a long excursion in phase space —usually
referred to as a firing cycle, or spike.
Our FitzHugh-Nagumo elements interact through a

sparse evolving network such that, at any given time,
each element is coupled to at most one partner. The
coupling constant in eq. (1) is Kj(t) = k when element j
interacts with a generic partner j∗ (not necessarily the
same at all times), and Kj(t) = 0 when j is isolated.
This rather extreme sparseness determines, in a sense, the
most unfavourable situation for the emergence of collective
phenomena in an ensemble of interacting units. Based on
previous studies on evolving networks [4,5], we expect
network dynamics to replace connectivity in triggering
collective behaviour.
In our numerical simulations, we study two different

schemes for the network dynamics. In the first one,
the network consists of exactly N/2 undirected links,
distributed in such a way that every element is always
coupled to exactly one partner. As time elapses, two
connected pairs of elements are occasionally chosen at
random to mutually exchange their partners. Thus, two
links in the network are rewired.
The second scheme for network dynamics is built on top

of an underlying (undirected, connected) network G with

a fixed number of links. During the dynamical evolution,
however, only a subset of the links is active. The links
of the underlying network G thus represent the potential
connections in the actual interaction pattern. The initial
network is generated by successively selecting elements in
a random order. If the chosen element is isolated, the link
to one of its still isolated neighbours in G gets activated. If
no available neighbours exist, the element remains with no
active connection. During evolution, an inactive link from
G is occasionally chosen at random and gets activated. At
the same time, pre-existing links of the newly connected
elements become deactivated.
It is not difficult to realise that, if there is no correlation

between the degrees of neighbour nodes in the underlying
network G, the frequency ω+(z) with which an isolated
node of degree z becomes connected, exactly equals the
frequency ω−(z) with which it becomes isolated when it
is connected. In turn, the probability P to find the node
connected to any partner satisfies

Ṗ = ω+(z)(1−P )−ω−(z)P. (3)

Therefore, for asymptotically long times, P = 1/2 for any
z. In other words, in our second reconnection scheme and
for long times, there are on the average N/2 connected
elements —and, consequently, N/4 links— at any time.
The resulting interaction pattern is thus twice as sparse
as in the first scheme.
In both reconnection schemes, we denote by λ the

reconnection rate, i.e., the probability per time unit that
the partner of any given element changes.

Order parameters. – To characterise the collective
properties of our system in the framework of the standard
theory of synchronised oscillators [12], it is convenient to
compute a quantity describing the phase of each excitable
element along its firing cycle. For the model defined by
eqs. (1) and (2), the excursion in phase space occurs
around the origin of the (xj , yj)-plane. Thus, a suitable
definition of the phase is simply

φj(t) = tan
−1
[
yj(t)

xj(t)

]
. (4)

The behaviour of the ensemble, including possible tran-
sitions between different collective dynamical regimes, can
be statistically characterised by a pair of order parameters
defined in terms of the individual phases φj(t) [7,8]. First,
we take the average of the location of the particles on the
unit circle,

ρ(t) exp[iΨ(t)] =
1

N

N∑
j=1

exp[iφj(t)], (5)

and compute the Kuramoto order parameter as ρ≡
〈ρ(t)〉, where 〈·〉 stands for the time average over a long
time interval [12]. This parameter measures the degree
of synchronisation attained by the ensemble: with full
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synchronisation we have ρ= 1, whereas for a state where
phases are uniformly distributed over [0, 2π) we have
ρ∼N−1/2.
In excitable systems, however, the Kuramoto order

parameter does not allow to discern between the case
where phases are statically synchronised at the fixed
point φeq = tan

−1(yeq/xeq), and the case where they rotate
coherently, as expected to occur in the regime of collec-
tive firing. To discriminate between static and dynamic
synchronisation, we compute the Shinomoto-Kuramoto
order parameter [13],

ζ = 〈|ρ(t) exp[iΨ(t)]−〈ρ(t) exp[iΨ(t)]〉|〉 , (6)

which differs from zero for synchronous firing only.
A third relevant order parameter, frequently used in the

analysis of stochastic transport [14], is the current, which
we compute as

J =

〈∣∣∣∣∣∣
1

N

N∑
j=1

ẋj(t)

∣∣∣∣∣∣
〉
, (7)

i.e., as the time average of the absolute mean velocity
along the coordinate x. It gives a measure of the level of
(not necessarily synchronised) firing in the ensemble.

Numerical results. – We have performed extensive
computer simulations of the model defined by eqs. (1)
and (2) for a= 1.02 (excitable regime) and k= 1, with the
corresponding network dynamics. The results presented
here are qualitatively representative of a broad parame-
ter range in the same regime. Order parameters were
computed after the system reached a stationary state, with
no further changes in its dynamical behaviour.
In fig. 1, we show numerical results for the order

parameters as functions of the reconnection rate λ, for
the first reconnection scheme and various system sizes.
Both for small and large values of λ, the Kuramoto order
parameter is equal to one, while the Shinomoto-Kuramoto
order parameter and the current vanish. This situation
corresponds to a state where all the elements of the
ensemble are at rest at the same point in phase space,
namely, the fixed point (xeq, yeq).
For intermediate reconnection rates, on the other hand,

we find an interval where the Kuramoto order parame-
ter ρ < 1, indicating that the elements are distributed
over phase space. Within the same interval, both the
Shinomoto-Kuramoto order parameter ζ and the current
J become positive and attain considerably high maxima.
This is an indication of collective firing with a concurrent
phase-space flow, and constitutes our main finding: recon-
nection events at intermediate rates induce self-organised
coherent behaviour in an otherwise disconnected ensemble
of FitzHugh-Nagumo excitable elements.
Figure 1 also shows that the order parameters become

independent of the system size as N grows. This suggests
that the regime of collective firing exists even in the
thermodynamic limit.
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Fig. 1: (Colour on-line) The order parameters as functions
of the reconnection rate λ, for the first reconnection scheme,
with k= 1, a= 1.02, and ε= 10−3. Upper panel: the Kuramoto
order parameter ρ. Central panel: the Shinomoto-Kuramoto
order parameter ζ. Lower panel: the current J . Different curves
correspond to different system sizes: N = 10 (�), 50 (�), 200
(♦), 800 (�), and 2000 (�). Joining lines are plotted as a guide
to the eye.
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Fig. 2: (Colour on-line) As in fig. 1, for a system of size N = 400
and different values of the time-scale ratio: ε= 1 (�), 10−1 (�),
10−2 (♦), 10−3 (�), 10−4 (�), and 10−5 (�).

Figure 2 displays the order parameters for different
values of the time-scale ratio ε in a system of size N = 400.
These results show that, when there is no difference in the
time scales associated to the variables x and y (ε= 1),
collective firing is absent and all the elements remain
quiescent at the fixed point. As ε decreases, however,
the phenomenon takes place for intermediate values of λ
and seems to approach a well-defined limit for ε→ 0. We
provide a semi-quantitative analysis of this limit in the
next section.
To relax the condition that every element has a

partner at any time, we have used our second recon-
nection scheme with two kinds of topologies for the
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Fig. 3: (Colour on-line) As in fig. 1 for the second reconnection
scheme, with ε= 10−3 and N = 400. Open symbols: scale-free
underlying network generated by preferential attachment with
m= 3 (♦) and 10 (�). Full symbols: small-world underlying
networks generated by rewiring with p= 0.01 (�) and 0.1
(�). The solid line corresponds to the results for the first
reconnection scheme.

underlying network G. We recall that, with this scheme,
the resulting instantaneous interaction pattern is —as
was shown above— more sparse than in the previous case.
Firstly, we have considered a scale-free underlying network
generated by the preferential attachment rule [15], where
each added node is connected to m pre-existing nodes.
Secondly, we have taken a small-world network built up
from the rewiring, with probability p, of the links of a
two-dimensional network with Moore neighbourhood,
following the Watts-Strogatz prescription [16]. We have
numerically verified that, as advanced above, the average
number of connected elements at long times fluctuates
around N/2. For the scale-free networks, this number
is slightly, but systematically, larger, which can be
attributed to spurious degree-degree correlations in the
highly heterogeneous degree distribution generated by
preferential attachment in our finite-size system.
Figure 3 shows the order parameters for a system of

size N = 400, underlain by scale-free networks with two
values of m and small-world networks with two values of
p. Solid curves stand for the corresponding results for the
first reconnection scheme. Overall, the results are largely
independent of both the reconnection scheme and the
topology of the underlying network and, consequently, of
the number of connected elements.

Interpretation. – Whereas a full analytical descrip-
tion of synchronised firing in dynamical networks of
FitzHugh-Nagumo excitable elements seems to be out of
reach, it is possible to sketch a semi-quantitative picture
that plausibly explains the occurrence of this collec-
tive phenomenon for intermediate values of the network
reconnection rate. The following arguments focus on our
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Fig. 4: Phase-space dynamics of a single non-interacting
FitzHugh-Nagumo excitable element j on the (xj , ηj) plane.
The narrow line represents eq. (8). Arrowed bold lines are
possible trajectories of the element. The fixed point (xeq, ηeq) is
represented as an empty circle. The grey arrow schematises the
effect of a perturbation from the fixed point toward negative
values of ηj .

first reconnection scheme, but can be straightforwardly
extended to the second.
Consider eqs. (1) and (2) for ε→ 0. In this limit,

and in the absence of interactions (k= 0), the fast vari-
able xj(t) follows adiabatically the slow variable yj(t)
along the nullcline ẋj = 0. Let us introduce the auxiliary
variable

ηj(xj) =
1

3
x3j −xj (8)

which, along the nullcline, satisfies ηj = yj + k (xj∗ −xj).
For k= 0, we have yj ≡ ηj . Differentiating with respect to
time and taking into account eq. (2) yields

η̇j = a−xj(ηj)+ kξj , (9)

with ξ = ẋj∗ − ẋj and xj(ηj) given by the inverse of the
function in eq. (8). Note that xj(ηj) is defined piecewise,
depending on how xj compares with ±1.
The arrowed bold lines in fig. 4 represent the phase-

space trajectories of a non-interacting element. In the limit
ε→ 0, it is always found on the stable branches (either
xj <−1 or xj > 1) of the nullcline, and asymptotically
approaches the fixed point at (xeq, ηeq) = (a, a

3/3− a),
plotted in the figure as an empty dot. If, as illustrated
by the grey arrow, the element is perturbed from the
fixed point toward negative values of ηj and beyond the
minimum ηj(xj = 1) =−2/3, it immediately reaches the
leftmost stable branch and begins its excursion upwards.
When it reaches ηj(xj =−1) = 2/3, it jumps to the right-
most branch and, from then on, it moves toward the fixed
point. The firing cycle is thus completed. Integration of
eq. (9) with k= 0 and a� 1 shows that, if the leftmost
branch is reached at ηj ≈−2/3, the time spent on that
branch is τleft = 1/2+O[a− 1]. In turn, the typical time
for relaxation toward the fixed point on the rightmost
branch is τright = a

2− 1.
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Fig. 5: (Colour on-line) Upper panel: standard deviation σξ of
the “noise” ξj(t) as a function of the reconnection rate λ, for
k= 1, a= 1.02, N = 400, and different values of the of the time-
scale ratio: ε= 1 (�), 10−1 (�), 10−2 (♦), 10−3 (�), 10−4 (�),
and 10−5 (�). Lower panels: time evolution of the coordinate
xj and the “noise” ξj of three randomly selected elements, for
ε= 10−3, with λ= 0.32 (upper row) and λ= 3.2 (lower row).

Consider now the effect of interaction (k �= 0) on the
individual dynamics of element j. If the reconnection rate
λ is sufficiently small, so that λ−1� τleft, τright, element
j remains connected to the same partner j∗ over times
which are long as compared with the typical time scales
needed to reach the vicinity of (xeq, ηeq). Irrespectively
of the value of k, the two coupled elements approach the
fixed point well before their mutual link breaks and they
are reconnected to different partners. When reconnection
finally happens, however, all elements will be found near
the fixed point and the change of partner will have
essentially no effect on the subsequent dynamics of j.
Therefore, the whole ensemble converges to (xeq, ηeq) over
times of order τleft+ τright and remains there indefinitely.
For sufficiently small λ, hence, sustained collective firing is
absent.
As λ grows and reconnection becomes more frequent,

the term kξj in the right-hand side of eq. (9) acquires
the character of a fluctuating force, analogous to additive
noise. Since ξj(t) = ẋj∗(t)− ẋj(t), its time dependence
consists of a relatively smooth variation along the periods
where element j’s partner j∗ does not change, punctuated
by sharp delta-like “kicks” when reconnection occurs.
Even if j has already reached the vicinity of (xeq, ηeq),
a kick due to reconnection with an element which is
transiting the leftmost branch region may force j to move
away from the fixed point and reinitiate its firing cycle.
This event is schematised by the grey arrow in fig. 4. At
appropriate values of the reconnection rate, with most of
the ensemble near (xeq, ηeq), just a few “outliers” along
the firing cycle are able to induce a cascade of transitions
from the fixed point to the cycle, and collective firing is

thus triggered. Our numerical results show that, precisely,
collective firing occurs for λ� 1∼ (τleft+ τright)−1.
If reconnection grows even more frequent, within the

time scales relevant to the dynamics of a single element,
the “noise” term kξj averages out to its mean value over
the whose ensemble. Therefore, each element is effectively
subject to the action of the average state of the ensemble.
In this situation, the interaction between elements is
equivalent to global (all-to-all) coupling [4,5]. Since all the
elements are identical, global coupling leads the ensemble
to collapse to the fixed point [2], and collective firing is
thus suppressed.
The upper panel of fig. 5 shows the standard deviation
σξ of the “noise” ξj(t), averaged over the ensemble and
over time, as a function of the reconnection rate λ and
for various values of the time-scale ratio ε. The lower
panels show the coordinate xj(t) and the “noise” ξj(t)
as functions of time for a few selected elements, and two
values of the reconnection rate: λ= 0.32 (upper row),
which corresponds to the threshold of global firing, and
λ= 3.2 (lower row), where global firing is well developed.
For the latter, the synchronous pulsing of the coordinate
xj(t) is apparent.

Conclusion. – Synchronised collective firing in ensem-
bles of coupled excitable elements was known to be trig-
gered by external noise [6,7] and by disorder in the inter-
action pattern [8] —in this latter case, due to the simul-
taneous presence of attractive and repulsive interactions.
In both situations, the emergence of this form of collective
behaviour requires the intensity of noise or the degree of
disorder to be neither too small nor too high: it is at an
intermediate level of fluctuations that the system has the
appropriate dynamical flexibility as to self-organise into
coherent evolution.
In this letter, we have shown that, in the absence of

external noise, the fluctuations associated with network
dynamics —when the interaction pattern is rewired with
a certain frequency— are as well able to induce collec-
tive firing of coupled excitable elements. As in the previ-
ous instances, coherent evolution is observed for inter-
mediate values of the rewiring frequency. In the present
situation, network dynamics has the crucial additional
role of replacing the connectivity necessary to warrant
the spreading of information about the individual states
of the excitable elements all over the ensemble. In fact,
by construction, the instantaneous interaction pattern is
highly diluted, with at most one neighbour connected to
each element at any time. This effect of network dynamics
had already been pointed out in chaotic synchronisation
and in contact processes [4,5]. Our results suggest that the
phenomenon of collective firing is remarkably independent
of the underlying structure of interactions and has a well-
defined behaviour in the thermodynamic limit of infinitely
large ensembles.
The present analysis pertains to the study of the ample

variety of systems where interaction patterns are not
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static, but change with time either driven by external
influences or in response to the state of the system itself,
or as a combination of both effects. While this important
dynamical aspect of complex systems has often been disre-
garded, our results —among other recent work— high-
light its role in the emergence of self-organised collective
evolution.
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