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Organic Design of Massively
Distributed Systems: A Complex
Networks Perspective
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Introduction
Networked computing systems are becoming in-
creasingly large, complex and – at the same time
– important for our everyday lives. Many of the
services we rely on, are now being collaboratively
provided by thousands or millions of machines
in large Peer-to-Peer (P2P) systems or data cen-
ters. Sustaining the robustness and manageability
of such systems are challenging tasks. Because of
the ongoing miniaturization of network devices,
their price-decline as well as the proliferation of
mobile and embedded computing equipment, sce-
narios in which billions of devices are connected
to global-scale information systems become reality.
Promising aspects of the coalescence of the virtual
and physical world that results from the increasing
incorporation of communication technology into
everyday objects, as well as the associated technical
and societal challenges have been highlighted in the
visions of Ubiquitous Computing [46] or the Internet
of Things [30].

Building services and applications in an envi-
ronment of numerous dynamic and error-prone
communication devices poses enormous technical
challenges in terms of scalability, efficiency, man-
ageability, and robustness. It is frequently argued
that, in order to cope with these challenges, com-
puting technologies need to adopt the remarkable
self-organization, self-adaptation and self-healing
qualities of biological systems. Facilitated by
advances in the study of principles underlying self-
organization mechanisms as well as the massively
increasing complexity of technical infrastructure,
in recent years the vision of Organic Computing has
been gaining momentum. The development of as-

sociated technologies is likely to go hand-in-hand
with a cutback of sophisticated algorithmic schemes
and deterministically organized communication
structures. Instead, adopting a heterodox approach
that utilizes simple mechanisms that underlie self-
organization, adaptivity, robustness, and resilience
in natural systems is reasonable.

Driven mainly by the availability of massive
data sets, during the last decade these principles
have been studied in a variety of different con-
texts, including disparate fields like biology, physics,
computer science, economics, and sociology. The
resulting interdisciplinary strand of research is
subsumed as complex systems science and here we
argue that it offers a promising and quickly evolv-
ing methodological framework for the modeling,
design, and control of organic computing systems.
Providing a set of tools and abstractions to analyze
the collective properties of systems comprised of
a large number of stochastic, interacting elements,
complex systems science addresses one of the key
questions emerging in the scenario described above:
How can we analyze, monitor, and control the struc-
ture and dynamics of massively distributed systems
evolving from distributed mechanisms?

In this article we address some aspects that arise
in the management of robust and adaptive overlay
topologies for massively distributed systems. Here
we adopt the perspective of statistical mechanics
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Abstract
The vision of Organic Computing addresses
challenges that arise in the design of future
information systems that are comprised of nu-
merous, heterogeneous, resource-constrained
and error-prone components. The notion or-
ganic highlights the idea that, in order to be
manageable, such systems should exhibit self-
organization, self-adaptation and self-healing
characteristics similar to those of biological
systems. In recent years, the principles underly-
ing these characteristics are increasingly being
investigated from the perspective of complex
systems science, particularly using the con-
ceptual framework of statistical physics and
statistical mechanics. In this article, we review
some of the interesting relations between statis-
tical physics and networked systems and discuss
applications in the engineering of organic over-
lay networks with predictable macroscopic
properties.

on the emergence of complex structures and col-
lective dynamics in networks – an area that has
been particularly active and successful during the
last decade. In Sect. “Overlays, Random Graphs,
and Complex Networks”, we summarize structured
and unstructured approaches to the management of
overlay networks. Here we additionally review the
relevance of random graph theory for the design
of unstructured systems and introduce the rela-
tions between the study of statistical mechanics
and complex networks as well as the modeling of
dynamical processes. In Sect. “Managing Organic
Overlays – A Thermodynamic Perspective”, we dis-
cuss abstractions from statistical mechanics and
statistical physics in the design of organic overlay
networks. In Sect. “Conclusion and Outlook”, we
summarize challenges and opportunities of using
complex systems science in the engineering of dis-
tributed systems with predictable and controllable
self-* properties.

Overlays, Random Graphs,
and Complex Networks

Overlay networks – which define virtual connections
on top of physical communication infrastructures
– are becoming an increasingly important issue. As

argued in [45], the possibility to define communi-
cation topologies and protocols at the application
layer without having to make a – potentially globally
– coordinated change of existing protocols, stan-
dards, and communication infrastructures is an
important factor for a quick proliferation of novel
services on the Internet as well as in large-scale
data centers. The research of overlay topologies as
well as efficient distributed algorithms providing
core functionality like search, routing, and con-
tent dissemination has received a lot of attention
recently.

Most of this research has been done in the con-
text of P2P systems, which are now increasingly used
for the cost-efficient distribution of data for example
by means of the BitTorrent protocol, the provision of
video-telephony services like Skype, or even to face
challenges emerging in large-scale scientific setups
like the Large Hadron Collider[43]. One usually dis-
tinguishes structured and unstructured approaches
in the management of overlay topologies. Most of
the currently deployed systems belong to the former
category. In such structured systems, virtual con-
nections between machines are created in a globally
consistent way to construct a particular network
topology. While this allows for the development of
highly efficient algorithms for distributed search,
routing, or information dissemination, the major
difficulty is to maintain this fine-tuned topology
under dynamic conditions. Reconsidering the sce-
nario outlined in Sect. “Introduction”, maintaining
fine-tuned structures will entail massive complexi-
ties due to the excessive fluctuation of participating
devices and the associated concurrency. In fact, for
the distributed hash table Chord it has been argued
in [7] that in settings with very large numbers of
highly dynamic participants, the communication
overhead imposed by mere topology maintenance
and management schemes could exceed the cost
for actual data transfer operations and thus domi-
nates performance. It has further been argued that
designing, implementing, and debugging topology
maintenance schemes pose a huge challenge due
to the massive concurrency that is introduced by
failing or joining machines. These problems of struc-
tured overlays are well known in the literature and
question their usability in future scenarios like the
one laid out in Sect. “Introduction”. Hence, alterna-
tive approaches for dealing with large and dynamic
settings are being studied.
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Unstructured Topologies
and Random Graph Theory

A straight-forward idea is to use unstructured over-
lays in which virtual connections between machines
are created in a simple, uncoordinated fashion
while still allowing all machines to communicate
with each other. While this reduces the overhead of
topology management, it necessitates probabilis-
tic algorithms for example for distributed search
or routing that make no – or at least less specific
– assumptions about the structure of the network
or the placement of data items. Such schemes are
inevitably less efficient compared to those tailored
for a particular network structure. Nevertheless,
they are significantly simpler to implement and
allow for larger degrees of freedom in terms of
adapting the network structure to operational
conditions.

In terms of modeling performance and ro-
bustness, most unstructured approaches to the
management of overlays rely – either explicitly or
implicitly – on results from the field of random graph
theory which was established more than 50 years
ago [20]. In order to explain the analogies between
large, dynamic networked systems and statistical
mechanics, we briefly recall one of the basic models
of random graph theory. The so-called G(n, p) model
defines a probability space that contains all possible
graphs or networks1 G with n nodes. Assuming that
edges between pairs of nodes are being generated by
a stochastic process with uniform probability p, the
G(n, p) model assigns each network G with n nodes
and m edges the same probability to be created:

PG(n, p)= pm · (1 – p
)n(n–1)/2–m

This simple stochastic model for networks has been
used in the modeling of a variety of real-world
networks. In particular, one can use it to make
predictions about the properties of unstructured
overlays, if virtual connections are assumed to be
created at random with probability p or, alternatively,
if an average number of p · n(n – 1)/2 connections
are established between randomly chosen pairs of
nodes.

In general, in the study of random networks one
is particularly interested in properties that hold for
a subset of network realizations whose probability

1 Throughout this article, we will use the terms graph and network
interchangeably.

measure converges to 1 as the size of the gener-
ated networks (in terms of the number of nodes)
increases. In this case one can say that a property
holds asymptotically almost surely for a randomly
generated network. This is because the probability
to draw a network that does not exhibit the prop-
erty in question quickly vanishes. An authoritative
overview of the interesting results derived from this
perspective can be found in [14]. Two well-known
examples of particular relevance for the design of
overlay networks are results on the critical per-
colation threshold and the diameter. The critical
percolation threshold refers to a point in the G(n, p)
model’s parameter p above which the generated net-
works almost surely contain a connected component
that is of the order of the network size. For the G(n, p)
model it has been found that connected components
of a random graph are with high probability of the
order log(n) if p < 1/n. For p > 1/n the connected
component is of the order n [20]2. In practical terms,
this result is a crucial prerequisite for the feasibil-
ity of unstructured overlay management schemes
since it tells that – if at least a certain minimum
number of connections is created in a random and
uncoordinated fashion – all machines will be able
to communicate with each other with a high prob-
ability. Another set of results that are important for
overlays with random structures relates the param-
eter p to the diameter of the resulting topology. It
further gives a criterion for the emergence of so-
called small-world topologies which are assumed
to have a diameter of the order of the logarithm of
the network size. For the G(n, p) model, it has been
shown that the diameter is with high probability of
order log(n)/log(np), if the average number of links
per node is at least 1. In the design of unstructured
topologies, this argument is crucial to reason about
the efficiency of search and routing schemes.

Statistical Mechanics of Complex Networks
As argued in [15], the existence of so-called critical
points in the G(n, p) model’s parameter p and the
associated sudden change of macroscopic qualities
like diameter or connectedness, highlights inter-
esting relations to phase transition phenomena in
statistical physics, i. e., sudden changes of material
properties as aggregate control parameters (e. g.,

2 Interestingly this is a so-called double-jump transition, i. e., for p= 1/n the
size of the connected component is of the order n

2
3 .
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temperature or pressure) change slightly. In re-
cent years, these analogies to fundamental natural
phenomena have been substantially deepened by
reframing the study of random graph structures in
terms of statistical mechanics and statistical physics
(see e. g., [2, 11, 19, 21, 23, 37]). This perspective is
possible since statistical mechanics reasons about
configurations of many-particle systems, just like
random graph theory reasons about network con-
figurations. Each of these particle configurations –
the so-called microstate – fixes the exact positions
and energy states of all particles present in a given
volume of space at a given temperature and total
energy. On the basis of energy distributions, particle
positions and fluctuations induced by temperature
as well as a quantum approximation, each microstate
can be assigned a probability based on combinato-
rial arguments. The set of all possible microstates
thus defines a probability space which is called a
statistical ensemble. The study of material properties
translates to reasoning about the probability mea-
sures for a subset of these particle configurations,
just like random graph theory reasons – for instance
– about the probability of the subset of network
configurations with a given diameter.

On the basis of these similarities, it has been
shown for instance in [23] that the G(n, p) model of
classical random graphs can be reframed in terms
of the so-called grand-canonical ensemble of many-
particle systems. In this perspective, the study of
statistical ensembles with fixed thermodynamic
quantities like volume, chemical potential, and tem-
perature in statistical mechanics translates to the
study of network ensembles with fixed aggregate
statistics like a given number of nodes or edges, de-
gree distributions, degree-degree correlations, or
clustering coefficients. In the resulting ensembles all
realizations with the same aggregate statistics (e. g.,
all networks with a particular degree sequence) are
assumed to have equal probability. In statistical me-
chanics, this corresponds to an adiabatic situation
in thermodynamic equilibrium while at the same
time the accessible states are being constrained by
certain fixed quantities. In the remainder of this
article we will thus refer to such probability spaces
as constrained adiabatic ensembles.

During the last decade such constrained adia-
batic ensembles of networks have been studied
extensively in the fields of complex networks and
statistical mechanics [2, 34]. A particularly active

strand of research in this direction is the study of en-
sembles with fixed degree distributions following,
for instance, a power law. This is, the probabil-
ity that a randomly chosen node in the network
has exactly k links, is proportional to k–γ for some
γ ∈ [2, ∞). Since the classical G(n, p) model can be
viewed alternatively as an adiabatic ensemble with
a fixed Poissonian degree distribution, this natu-
rally extends earlier works on random graphs. Since
power-law degree distributions have been observed
for a number of real-world networks [2], the asso-
ciated constrained adiabatic ensemble effectively
serves as a null model for these kinds of systems.

Over recent years, a rich set of results both on
the collective properties of such networks, as well as
on simple local mechanisms by which they emerge
have been obtained. Extensive surveys of results
based on this statistical physics perspective on com-
plex network structures can be found in [10, 12].
Prominent results for the special case of networks
with heavy-tailed degree distributions include their
resilience against random faults [16] and targeted
attacks [17] or the performance of probabilistic dis-
tributed search schemes [1]. In the remainder of this
article, we illustrate that these results and – more
importantly – the underlying methodological frame-
work are relevant for the design of robust networked
systems with organic properties.

Dynamical Processes in Complex Networks
So far, we have commented on the structural prop-
erties emerging in networks being drawn from
constrained adiabatic ensembles. For the design of
distributed algorithms which must operate in an
efficient and reliable way in large dynamic overlays,
it is equally important to have tools at hand that
allow one to reason about dynamical processes (like
e. g., information dissemination, synchronization,
or distributed search) operating upon them. In order
to formalize the problem, a useful representation
of a network is its adjacency matrix A where each
element is aij = 1 (aij = 0) if the nodes i and j are
connected (respectively, disconnected). Then, the
spectrum of such a network is given by the set of n
eigenvalues of its adjacency matrix. For the G(n, p)
model, it is possible to characterize the spectrum
of the networks in the limit of diverging network
sizes. In this model, and if there is a giant cluster that
spans the complete network, the probability p(λ) of
finding an eigenvalue λa in the spectrum follows the

78 Informatik_Spektrum_35_2_2012



so-called semi-circle law [31]:

p(λa)=

⎧
⎨

⎩

√
4 n p(1–p)–(λa)2

2π n p(1–p) if |λa| < 2
√

n p(1 – p)

0 if |λa| ≥ 2
√

n p(1 – p)

The bulk of the distribution of eigenvalues is
centered around the null eigenvalue, with a charac-
teristic size proportional to

√
n. However, the largest

eigenvalue λa
1, is proportional to p · n.

In order to study continuous dynamical pro-
cesses in networks, we consider that each node i is
endowed with a continuous variable xi which de-
scribes its current dynamical state. Then, the change
of its state can be thought to be given by

d

dt
xi = fi(xi) + C

n∑

j=1

�ij · h(xj), (1)

where f (xi) is a function describing a determinis-
tic change of state of node i given its current state,
and h(xj) is a coupling function given the state of
node j, and C is the coupling strength. In (1), �ij are
the elements of the so-called Laplacian matrix, L.
Such a matrix is defined as �ij = – kiδij + aij, where
ki is the degree of node i, and δij are the elements
of the identity matrix. The Laplacian matrix natu-
rally extends the Laplacian operator ∇2 – as used in
the description of dynamics in spatially extended,
physical systems – into a discrete manifold.

Different kinds of collective behavior have been
observed in the study of dynamical processes in
networks emerging from different constrained adia-
batic ensembles [5, 12]. Whenever different nodes
show the same dynamics, it can be said that a syn-
chronized state has emerged. In general, it was
shown [9] that such synchronized states are sta-
ble if λl

n/λ
l
2 < β, where λl

n and λl
2 are (respectively)

the largest and smallest nonzero eigenvalues of the
Laplacian matrix, and β is given by the functions
f (x) and h(x) describing the dynamical properties
of the system. This means that there is a relation-
ship between structural properties of the network
(in terms of its eigenvalues) and dynamical process
taking place at the level of nodes as to whether the
system is able to synchronize. This runs against typi-
cal intuition on synchronization phenomena, stating
that if the coupling strength is large enough, the
system should exhibit a synchronized state. Further-
more, if a synchronized state emerges the question
of how much time the system needs to reach such

a state emerges. For arbitrary network ensembles
it was shown [4] that the consensus time is of the
order TC = (lnC – ln ε/2)/λl

2, where C is an integra-
tion constant (related to the initial conditions) and
ε is a synchronization threshold, i. e., the difference
below which nodes are assumed to be synchronized.

Statements on the impact of the Laplacian
spectrum play an important role when assessing
the properties of synchronization and consensus
schemes applied in distributed systems and relating
the emerging collective dynamics to the topology of
the network. In structured and unstructured over-
lays, synchronization models have been proposed
to provide a network-wide synchronous notion of
time epochs or protocol cycles [6, 8, 29, 42]. In fact,
it is even possible to infer from the synchronization
dynamics at the level of individual nodes statements
about the cluster structure and the Laplacian matrix
of the network [41]. Finally, regarding detrimental
collective phenomena like the synchronization of pe-
riodic routing messages described in [22], an analysis
of the spectral properties of networks is crucial.

Dynamical processes additionally can take place
in a discrete space. Perhaps the simplest of such pro-
cesses are random walks in a network. The question
how fast a node receives and spreads information in
such a random process is important for example in
the study of stochastic search and transport phe-
nomena[35]. To quantify this, the random-walk
centrality Ci was introduced which – for node i –
is given by:

Ci =
ki∑
i ki

(
Pii(t) –

ki∑
i ki

)–1

Here, Pii(t) is the probability that a random walk
which started at i at time zero, returns to the same
node after t time steps, and can be readily computed
by means of the adjacency matrix A. This index
shows that nodes with large centrality receive in-
formation faster. In the case of limited bandwidth
capacities, it indicates that such nodes may become
overloaded first.

Arguments about the relation between spectral
properties of networks and the dynamics of ran-
dom walk-related processes have been used – again
implicitly and explicitly – in a variety of contexts
like multicast communication [24], database replica
maintenance [18], the computation of network-
wide aggregates [26], or random sampling [48]. By
means of the spectral perspective on the equivalent
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of the Laplacian operator in networks, it is pos-
sible to study the performance of these schemes for
unstructured overlays given that they are drawn
from a particular statistical ensemble. This clearly
demonstrates the relevance of these techniques for
the design of organic networked systems, while at
the same time highlighting interesting mathematical
relations to fundamental natural phenomena being
studied in statistical physics.

Managing Organic Overlays –
A Thermodynamic Perspective

From an engineer’s perspective, being able to assess
the structural and dynamical properties of networks
with complex structures sounds appealing. How-
ever, since most of the findings are based on simple
stochastic models for complex systems one needs to
be careful when applying them to real-world sys-
tems: Statistical ensembles of complex networks
should be viewed as mere null models for networked
systems with complex structures and it is unlikely
that they accurately reproduce the properties of so-
phisticated infrastructures like the Internet, which
are subject to numerous technological constraints.
Some of the fallacies that can arise when imprudently
applying oversimplified complex network models to
sophisticated technical infrastructures have been
summarized for instance in [47].

Nevertheless, given that the statistical mechan-
ics perspective on networks is able to reason about
structural and dynamical properties that are relevant
for the design and operation of overlay networks, it
is reasonable to study how one can use models for
complex networks in a constructive rather than in an
explanatory way. Overlay management schemes can
explicitly be designed based on a stochastic model
that gives rise to a class of topologies whose prop-
erties are advantageous for a particular setting. By
means of distributed probabilistic protocols – like
for instance suitably configured random walk sam-
pling or rewiring schemes – reproducing a stochastic
model is often much simpler than implementing and
debugging complex algorithms that precisely control
the topology.

The perspective of statistical mechanics actually
allows one to contrast this approach with traditional
structured and unstructured overlays: From this
point of view structured approaches give rise to states
of small (statistical) entropy in the sense that only
a small subset of all possible network realizations

are accessible. This maximizes the amount of infor-
mation one has about the detailed structures of the
network. This information can then be used to de-
sign algorithms that utilize the network structure
to provide efficient key lookups, routing, and infor-
mation spreading. However, maintenance schemes
are required to prevent a gradual loss of structure –
and thus increase of entropy – due to the dynamics
of users and devices, hard- and software failures or
communication errors. As such, the overhead in-
duced by topology maintenance mechanisms can
be viewed in analogy to the input of energy that is
used by nonequilibrium biological systems to pre-
vent the entropy increase that is due to the second
law of thermodynamics. Analogously, unstructured
approaches can be related to states of maximum sta-
tistical entropy in which all network realizations
are equally likely, as the topology is constructed in
a completely uncoordinated fashion. In this case, dis-
tributed algorithms can not use a priori information
about the detailed structures of the network struc-
ture and therefore flooding or exhaustive search are
the only viable options.

One of the most interesting aspects of complex
network science is that it allows one to explore
the interesting middle-ground of statistically or
thermodynamically structured topologies with inter-
mediate levels of entropy. These networks are neither
completely random nor deterministic. They rather
introduce a statistical structure (like a particular
type of degree sequence, a certain clustering coef-
ficient, or correlations between data location and
network structures) that facilitates adaptivity and
that allows one to solve algorithmic tasks more effi-
ciently than in unstructured systems. For distributed
search in P2P systems, it has been shown in [39]
that generic structures of randomly generated net-
works with a power law degree distribution can be
exploited in order to improve search performance,
while being oblivious to the details of the top-
ology. Similar results have been obtained for routing
schemes making use of correlations between node
addresses and network structure, particular cluster-
ing structures, or an embedding into Euclidean or
Hyperbolic coordinate spaces [13, 27, 36, 38, 44].

Enforcing Ensembles
In Sect. “Statistical Mechanics of Complex Net-
works”, we commented on the rich body of results on
collective properties like connectedness, diameter,
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resilience against faults and attacks, as well as on
the performance of dynamical processes like infor-
mation dissemination, synchronization, consensus
and gossiping schemes. Since these statements are
derived based on statistical ensembles, they are
necessarily stochastic. However, statements on prop-
erties that hold asymptotically almost surely become
more reliable as the size of the network topology
(in terms of the number of nodes) increases, just
like statements on properties of thermodynamic
systems become more reliable as the volume being
considered is increased. This applies for instance to
stochastic guarantees on the diameter or connect-
edness of overlay networks emerging from suitable
stochastic processes. Again, this is due to the fact
that it is becoming increasingly unlikely to generate
a network realization from a set whose probability
measure converges to zero under the given construc-
tion process3. This often contrasts with the kind of
guarantees one can obtain for structured overlay
networks.

So far, we have discussed the link between the
abstraction of constrained adiabatic ensembles of
networks and collective network properties. How-
ever, from a practical perspective this link is useless
if we cannot relate the ensemble description of
a system to the distributed processes shaping the
overlay at the level of individual nodes. In real-world
systems, one may be confronted with situations in
which the actual stochastic dynamics constructing
the overlay depend on external factors that can-
not easily be influenced. Here one can often use
tools from statistical mechanics (like e. g., master
equations or mean-field approximations) to de-
rive aggregate statistical quantities of interest –
and thus the ensemble description of the system –
from a stochastic description of individual nodes
(see e. g., the application of this procedure in [3]).
The situation is different when we wish to actually
design a topology management scheme that con-
structs a network topology drawn from a particular
constrained adiabatic ensemble which has desirable
properties. In this case, one can often employ a con-

3 Since in practice one necessarily deals with finite-size systems, it is important
to note that technically one also needs to consider how fast the associated
probability converges as the network size increases. It is often possible to give
analytical expressions for these so-called finite-size effects. While we refer the
interested reader to [19] for more details, at this point it is sufficient to note
that the properties mentioned above hold for networks whose size is reasonably
small (of the order of a few hundred to a few thousand nodes) to be of practical
value for the envisioned scenario.

figuration approach to analytically derive the local
stochastic dynamics from the ensemble description.
In the following we will briefly demonstrate this
approach for the particular case of random scale-
free networks. The actual distributed mechanism
has been presented and evaluated in much detail
in [40, 41].

The basic idea is to start with an arbitrary con-
nected topology that has been generated for instance
by a bootstrapping process. One can then progres-
sively rewire all connections by means of a biased
random walk sampling scheme like the one pro-
posed in [48]. Again referring to [40, 41] for a more
detailed algorithmic description of the protocol,
each rewiring of an existing connection e between
two nodes i and j in the topology is initiated by one of
their endpoints. This node deletes the connection e
and creates a sampling message that contains the ad-
dresses of i and j. By means of two consecutive biased
random walks of length l, two new nodes v and w (the
final nodes at which the two random walks reside
after l steps) are sampled. In a distributed setting,
the address of the first node v sampled by the first
random walk can be incorporated in the sampling
message passed along in the second random walk.
In this case, the final node w has all information
needed to establish a new overlay link e′ = (v, w) if
it does not exist already. The process is illustrated in
Fig. 1, which shows a random walk rewiring of edge
e initiated by node 0. A first random walk takes three
steps and finds node v = 3. After another 3 steps
a second endpoint w= 6 is found and the new edge
e′ = (3, 6) is created. From a statistical mechanics
perspective, this scheme results in the fact that edges

Fig. 1 Rewiring of edge e initiated by node 0 by means of two
consecutive random walks with step length three. The red
dotted edge is replaced by the green dotted one
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mimic a random particle motion according to an en-
gineered energy landscape which in this particular
case is defined according to the adiabatic ensemble
of scale-free networks.

If the transition kernel of the random walk sam-
pling is configured appropriately and the random
walk is sufficiently long, the topology is guaranteed
to be drawn from the desired adiabatic ensemble
once all connections have been rewired. Here, the
number of random walk steps needed to allow the
system to equilibrate (i. e., forget about the arbitrary
initial topology) is crucial to apply equilibrium argu-
ments about the targeted ensemble. In experiments
described in [40], we have found a length of log(n)
steps to be sufficient where n is the number of nodes.
An analytical approach that is based on the frame-
work described in Sect. “Dynamical Processes in
Complex Networks” can be used to derive an upper
bound for the required random walk length (see de-
tails in [40]). On the basis of a configuration model
approach for a constrained adiabatic ensemble of
scale-free networks that was introduced in [28] as
well as the Metropolis–Hastings algorithm [25] we
can actually derive the required transition kernel
for the random walk. In order to effectuate an en-
semble with a particular exponent γ one has to
configure the random walk such that each node i
forwards a sampling message to a neighbor j with
probability

Pi,j =
di

dj

(
i

j

) 1
γ–1

(2)

Fig. 2 Time evolution of
5000 node networks during
adaptation runs with
γ ∈ [2.1, 3.5]

where i, j are numeric, not necessarily unique node
identifiers chosen uniformlyat random from an iden-
tifier space. The effect of the resulting rewiring pro-
cess on the degree distribution is shown in Fig. 2
in terms of the evolution of the fitted degree distri-
bution exponent as well as the Kolmogorov–Smirnov
statistic D which quantifies the goodness of the fit.
The decreasing values for D show that the hypothe-
sis that the topology is indeed a random network
with a power-law degree distribution becomes more
reasonable. Since the network is sampled at random,
for this simple topology management mechanism
one can thus safely rely on all analytical results
that hold for an adiabatic ensemble of random
scale-free networks with the chosen exponent.

The Micro-Macro Link
An interesting aspect of the procedures described
above is that they allow one to analytically link
a stochastic model for the micro-scale dynamics
of an overlay (at the level of individual nodes and
protocol messages) with the collective properties
that are observable at the system level. The three
levels that naturally arise in this perspective are
depicted in Fig. 3. At the microscopic level, one as-
sumes a stochastic model that captures the behavior
of individual nodes with respect to the way connec-
tions in the overlay are being constructed. In the
previous section, we discussed that such a stochastic
micro-model can be related to an adiabatic statis-
tical ensemble – which defines the next level of
description – and vice-versa. At the level of statistical
ensembles, aggregate network statistics like average
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Fig. 3 Micro-macro link provided by a thermodynamic approach
to the design of overlay networks

degree, system size, degree distributions or other
correlations effectively serve as thermodynamic
quantities that constrain the accessible states and
thus determine the structural and dynamical prop-
erties of the system. By measuring the probability
of network configurations with particular macro-
scopic characteristics, one can then make strong
probabilistic statements about collective properties
like diameter, connectedness, or spectral properties
which emerge at the macro-level of the system.

At the intermediate level of statistical ensembles,
rather than a single ensemble, one may further con-
sider a set of ensembles with different constraints.
By means of the micro-macro link exemplified in the
previous section, it is possible to provide distributed
adaptation strategies which switch between overlay
topologies drawn from different ensembles based
on the environmental conditions. Reconsidering the
particular distributed sampling scheme exemplified
above, the exponent parameter γ actually defines
a point in a continuum of adiabatic ensembles of
scale-free networks that can be tuned by changing
the parameter in the random walk bias, thus effec-
tively changing the stochastic connection rewiring
dynamics.

Adaptation in Organic Overlays –
Triggering Phase Transitions

While the possibility to switch between different
ensembles by tuning a sampling bias can be useful
per se (e. g., to switch between random and scale-free
topologies), particularly interesting aspects that can
be utilized are phase transition phenomena, i. e., the
existence of critical points in the space of control
parameters at which the macroscopic properties of

the resulting topology change suddenly. This may in-
volve smooth (second-order) or abrupt (first-order)
changes as well as phase transitions with hysteresis
effects. Such critical points are of primary interest
for the complex networks community and a number
of analytical results have been obtained that relate
these points to a qualitative change of macroscopic
network properties. For scale-free networks, such
phenomena have been studied in detail. When con-
sidering a continuum approximation of scale-free
networks (justified in the thermodynamic limit of
infinite systems), the probability for a node to have
exactly k connections is given by a Zeta (also called
scale-free) distribution,

P(k)=
k–γ

ζ(γ )

with ζ : R→ R being the real-valued Riemann
Zeta function, ζ(γ )=

∑∞
i=1 i–γ . Many results for

critical phenomena in networks with fixed degree
distributions are due to the so-called Molloy–Reed
criterion [32] which links the relation of the distri-
bution’s first two moments to the existence of a giant
connected component. This has been used success-
fully to study – as mentioned before – the error and
attack tolerance of random power-law networks. For
this special case, in [16] it was found that at least
a fraction

r := 1 –

(
ζ(γ – 2)

ζ(γ – 1)
– 1

)–1

of nodes need to fail at random for the giant con-
nected component of a power-law network to be
destroyed. Regarding the control parameter γ –
which determines the behavior of the distributed
rewiring scheme described in Sect. “Enforcing En-
sembles” – the convergence behavior of the Zeta
function results in a phase transition once the pa-
rameter crosses the critical point γ = 3. For γ ≥ 3,
the terms ζ(γ – 2) and ζ(γ – 1) are constants, thus
resulting in a constant nonzero value for the crit-
ical fraction r. For γ ∈ (2, 3), the term ζ(γ – 2)
diverges. In this range r → 1, i. e., almost all nodes
can be removed at random without destroying the
giant connected component. The parameter γ thus
effectively allows one to produce a continuum of
constrained adiabatic ensembles while at the critical
point γ = 3, the resilience properties of the resulting
networks undergo a qualitative change.
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The same argument about the change in the con-
vergence behavior of the Zeta function has actually
been used to derive phase transitions in terms of
diameter, attack resilience [17] or the efficiency of
spreading phenomena [33]. Given that – depending
on the used distributed algorithms, as well as the
current operational conditions – these properties
can be both desirable or detrimental. So, the know-
ledge about these effects can actually be used for an
active adaptation of collective network qualities. For
the random walk rewiring described in Sect. “En-
forcing Ensembles”, all one has to do is to change the
control parameter γ in (2). Figure 4 shows simula-
tion results that have been obtained based on this
idea and that were originally presented in [40]. Here,
the random rewiring protocol described above has
been applied continuously, while at certain times
(indicated by vertical lines in Fig. 4a and b) the pa-
rameter γ was changed. After each modification, the

Fig. 4 Time Evolution of
scale-free network during
multiple adaptation cycles.
Start/end times of
adaptation cycles are
indicated by vertical lines

network was allowed to equilibrate by progressively
resampling all connections according to the new
constrained adiabatic ensemble. Figure 4a shows the
evolution of the fitted degree distribution exponent
γ . The Kolmogorov–Smirnov statistic D depicted
in Fig. 4b shows the goodness of the assumption
that the connectivity distribution indeed follows
a power law with the fitted exponent. Smaller values
for D again represent a larger reliability of the fit.
Here, it can clearly be seen that near the end of the
adaptation cycles (which was at the same time the
beginning of a new one with a different γ ), the de-
gree distribution of the network does indeed follow
a power law.

On the basis of the theoretical findings regard-
ing the critical point of γ = 3 for the robustness
of the topology against attacks, one would expect
that the robustness changes qualitatively between
the last two adaptation rounds, i. e., when the ex-
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ponent of the topology is increased from 2. 1 to 3.5.
To exemplify this theoretical result, Fig. 4c,d shows
the network topology that remains after 10% of the
most connected nodes have been removed from a
300 node network at these two different points in
the adaptation process. The large number of isolated
nodes and clusters in Fig. 4c and the comparison
with the topology shown in Fig. 4d clearly show
the practical implications of this theoretical finding
in terms of resilience. In summary, this particular
phase transition effect in equilibrium ensembles of
scale-free networks can be used to make a trade-
off between desirable and detrimental properties.
In phases where efficient spreading is needed, the
topology can be sampled from an adiabatic en-
semble with γ ∈ (2, 3). Similarly, according to [39]
γ ∈ (2, 2.3) should be chosen to maximize the effi-
ciency of a random walk-based distributed search
in scale-free topologies. In situations where attacks
or a spreading of failures are being detected, the
local connection sampling can be instrumented such
that the resulting topology is much more resilient
against these effects, while at the same time reducing
the efficiency of distributed search and information
dissemination.

Conclusion and Outlook
In this article, we have summarized the statistical
mechanics and the statistical physics perspective on
the modeling of complex network structures. We
then outlined some ideas on how this perspective
can constructively be used in the management of
overlay networks for very large, dynamic systems.
In particular, we argue that – at least in very large
and highly dynamic systems – it can be easier to
enforce a particular statistical ensemble which will
give rise to desirable macro-level properties and
performance of distributed schemes than using
sophisticated topology maintenance schemes. By
means of active randomization of protocols, one can
thus obtain strong, thermodynamic guarantees for
the structure and dynamics emerging in sufficiently
large systems. For the design of robust and adaptive
organic computing systems, we thus argue that ran-
domization and loosening precise control are crucial
ingredients.

While first examples of actual distributed mecha-
nisms that allow one to actively use some of the in-
triguing results of complex network science have
been given, this work is necessarily incomplete. For

the future, we envision for instance mechanisms that
make use of the natural dynamics of Peer-to-Peer
systems for the efficient construction and adap-
tation of an overlay topology with complex, yet
predictable structures and properties. For this, rather
than actively rewiring connections, one can use the
natural turnover of machines and users (an effect
usually called churn) and apply random connection
sampling schemes only as nodes join the system,
machines change their characteristics, or existing
connections fail. By assuming that the system is in
a state of equilibrium, the collective properties of the
overlay network can then be predicted in analogy to
the analysis of many-particle systems by means of
statistical mechanics. Moreover, within this frame-
work it may be possible to reduce the costs induced
by structure maintenance protocols massively, thus
making such an approach suitable for large and
dynamic systems. Referring again to the scenario
depicted in Sect. “Introduction”, one may thus be
tempted to summarize the challenges of future sys-
tems, as well as the idea of addressing them in the
framework presented in this article in the following
way:

As network devices become more akin to particles
in terms of number, size, and stochastic behavior,
can we design distributed systems using models,
methods, and abstractions from statistical me-
chanics and thermodynamics?

Considering recent advances in the statistical
physics’ study of complex systems in general, and
complex networks in particular, one can argue that
this is true at least for some aspects of large dynamic
systems. An interesting prospect of this perspective
is the fact that – in contrast to particles in thermo-
dynamic systems – we can actually program devices
to change their local dynamics in a meaningful way,
for instance to actively trigger transitions between
phases in which the network is more resilient or
allows for more efficient spreading or distributed
search.

Given the current surge of interest in the sta-
tistical mechanics approach to the modeling of
complex networks, we thus think that it is reasonable
to foresee a number of interesting applications in
the engineering of organic computing systems and
in the design of mechanisms for sustainable future
techno-social systems.
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