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Noise-induced volatility refers to a phenomenon of increased level of fluctuations in the collective dynamics of
bistable units in the presence of a rapidly varying external signal, and intermediate noise levels. The archetypical
signature of this phenomenon is that—beyond the increase in the level of fluctuations—the response of the system
becomes uncorrelated with the external driving force, making it different from stochastic resonance. Numerical
simulations and an analytical theory of a stochastic dynamical version of the Ising model on regular and random
networks demonstrate the ubiquity and robustness of this phenomenon, which is argued to be a possible cause
of excess volatility in financial markets, of enhanced effective temperatures in a variety of out-of-equilibrium
systems, and of strong selective responses of immune systems of complex biological organisms. Extensive
numerical simulations are compared with a mean-field theory for different network topologies.
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I. INTRODUCTION

Noise has effects a priori unexpected on the organization
of complex systems made of interacting elements, as shown
by stochastic resonance (SR) [1], coherence resonance [2],
noise-induced phase transitions [3], noise-induced transport
[4], and its game theoretical version, the Parrondo’s Paradox
[5]. SR occurs in a system when a small applied (subthreshold)
periodic signal is amplified by the addition of noise and the
maximum of amplification is found for intermediate noise
strengths. More generally, SR refers to the situation where
noise and nonlinearity combine to increase the strength in
the system response. Among others, SR was shown to appear
in optical [6] and magnetic systems [7,8], and was thought
to be relevant in various fields, ranging from Earth climate
[9] and the dynamics of ice ages [10], to neurobiology
[11,12] and visual perception [13]. Generally SR is studied
in bistable systems, where the amplification of a subthreshold
periodic signal is achieved through the synchronization of
noise-induced interwell hopping of the dynamic variable and
the driving signal. The signal is maximally amplified when
the level of noise is such that the Kramers time, which is the
intrinsic lifetime associated with the noise-induced transition
between the two stable states, equals half of the period of the
external forcing. The bistability of the dynamic variable can be
given either explicitly [14]—for low dimensional systems—or
emerge from the interaction of the many constituents as for
the magnetization in the Ising model in the ferromagnetic case
[15,16]. However, systems of many interacting constituents
may depart from the paradigmatic setting of SR, as there is
no interwell hopping for the macroscopic observable, and thus
the bistability is only preserved at the microscopic level.

The Ising model, driven by a periodic signal, has been
extensively studied in the realm of the kinetic Ising model
and dynamical phase transitions [15–20]. When a spatially
extended Ising system—for temperatures below the Curie
temperature—is forced by a weak periodic influence, the mag-
netization performs dynamics around its nonzero equilibrium
fixed point, resulting in a nonzero time-averaged magnetiza-
tion. For a given temperature, by increasing either the field
strength or the period of the signal, the system becomes able
to hop between the two symmetric equilibrium fixed points

inducing a zero average magnetization. The nature of this
transition, from a nonzero to a zero average magnetization, can
be manifold and depends on the control parameter. For weak,
subthreshold forcing strength and finite-size systems—where
interwell hopping is enabled by the fluctuations—SR is at the
origin of the transition. In large enough systems, such that
finite-size fluctuations can be neglected, and for intermediate
field strengths, they experience a dynamical phase transition
through a nucleation process [16]. For stronger forcing, the
transition is forced by the exogenous field, with no contribution
from endogenous factors.

In this paper, we investigate the behavior of systems
composed of many interacting constituents under the influence
of a time-varying external forcing. The Ising model framework
is used as a generic example of such systems. In contrast to the
classical SR studies, where the period of the periodic forcing
is of the order of the Kramers time, we are interested in much
faster signals. Additionally, aperiodic signals are included
to the external forcing, a setup much closer to real world
examples, which will yield some surprising differences to the
cases involving periodic forcing.

We find, for periodic and aperiodic signals alike, that for
intermediate values of the noise intensity, the system dynamics
shows a maximum in amplitude [8,21]. Interestingly, the
phenomenon of increased amplitude, which consists of an
amplification of the signal for a periodic forcing, morphs into
an increase of the system-wide fluctuations, uncorrelated with
the signal for an aperiodic forcing. We call this phenomenon
“noise-induced volatility” (NIV).

There are many examples of systems composed of a
large number of interacting units that are subjected to a
rapidly varying—periodic or aperiodic—common forcing. A
first example refers to the empirical observations of strong
amplifications of thermal noise into effective renormalized
temperatures by quenched heterogeneities in materials [22],
in organized flows in liquids [23] and in granular media near
jamming [24]. We argue that NIV also provides a conceptual
framework to model the immune systems of complex bio-
logical organisms, viewed as multistable complexes, which
switch their mode of operation under the influence of noisy
perturbations by pathogens and other stress factors [25–27].
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Another important application of the proposed mechanism
of volatility amplification can be found in financial markets.
The phenomenon of “excess volatility” [28] constitutes one of
the major unsolved puzzles in financial economics and refers
to the ubiquitous observation that financial prices fluctuate
with much larger amplitudes than they should if they obeyed
the fundamental valuation formula, linking the share price
of a company to its expected future dividends and discount
factors [29]. The model described below can be applied
to represent a market of interacting investors, where the
external forcing represents the news (i.e., the publicly available
information about the traded assets) that investors use to
update their estimates of the asset’s fair value. In addition
to the phenomenon of the increased volatility compared to the
news amplitude, our framework allows us to address two other
well-known phenomena of financial markets: namely, the fact
that the news is a poor predictor of future price changes [30]
and the phenomenon of clustered volatility, quantified by the
slowly decaying temporal dependence of volatility [31].

We document the phenomenon of noise-induced volatility
by numerical and theoretical calculations on a stochastic
dynamical version of the Ising model on fully connected,
regular as well as random networks, in the presence of rapidly
varying periodic and aperiodic signal. NIV also constitutes a
new indicator for an approaching phase transition [32].

This paper is organized as follows. In the following section,
we introduce the model studied and the measures chosen
to quantify the phenomenon studied. In Sec. III, we revisit
the case where the system is driven by a periodic forcing,
focusing on the case of fast signals, by means of Monte
Carlo simulations and by means of an analytical approach.
In Sec. IV, we present the main contribution of the paper:
the study of the system driven by an aperiodic forcing. In
Sec. V, we go beyond the fully connected case, focusing on
different network topologies and on a paradigmatic example
of this phenomenon: the excess volatility in financial markets.
Finally, Sec. VI presents a discussion and conclusions of the
obtained results.

II. MODEL DESCRIPTION AND
DIAGNOSTIC VARIABLES

Consider a system composed of N interacting units that
can be in one of two states: s = ±1. The units are updated
sequentially, randomly chosen at each unit micro-time δ =
1/N (i.e., N updates are equivalent to one time unit at the
macroscopic level, that is, one Monte Carlo step [33–35]).
The update of the state si of a given unit i from t to t + δ is
given by

si(t + δ) = sgn

(
f (t) + ξi(t) + K(t)

N∑
j=1

ωij sj (t)

)
. (1)

The value si(t + δ) is determined by three competing contribu-
tions: (i) a common external dynamic forcing term f (t) (force,
pathogens abundance, news); (ii) an annealed unit-specific
term ξi(t) that we will call noise (thermal fluctuations or
threshold, intrinsic susceptibility of a unit immune system
compartment, investor idiosyncratic opinion, or private infor-
mation); (iii) an interaction term between units controlled by

the amplitude K(t) (elastic coupling, feedback loops between
immune system elements, social impact).

The system’s behavior will be investigated under the
influence of two different types of external signals. To relate
to the existing literature, we will use a smooth periodic signal,
fp(t) = A sin(ωt), with period 2π/ω and strength A; this
implies that, when averaged over time, the standard deviation
of the signal is σfp

= A/
√

2. Along this paper, we denote by
signal amplitude the standard deviation of the signal σf . As a
periodic signal is a rather stylized and artificial setup, we will,
in a later section, also analyze the response of such a system
to a stochastic process. The simplest choice of a stochastic
process with tunable characteristic time scale is the Ornstein-
Uhlenbeck (OU) process, which has exponentially decaying
memory and is defined by dfap = −θfapdt + AdWt , with
0 mean, strength A, inverse time scale θ > 0 and Wt is a
Wiener process with normalized variance and zero mean. The
asymptotic solution of the OU process is

fap(t) = A

∫ t

−∞
e−θ(t−τ ) dWτ , (2)

which gives a signal amplitude σfap
= A/

√
2θ .

The noise term ξi(t) of each unit in Eq. (1) follows an
independent stochastic process, whose values are, at every
micro-time-step, drawn from the cumulative distribution func-
tion G(0,D), with zero mean (〈ξi(t)〉 = 0) and variance D2.
Thus, 〈ξi(t) ξj (t + nδ)〉 = D2δnδij . If f (t) = 0 and G(0,d)
corresponds to a logistic distribution, the dynamical rule
of Eq. (1) is equivalent to the kinetic Ising model with
Glauber dynamics (cf. appendix) where D2 is related to the
temperature.

In the interaction term in Eq. (1), the matrix of weights
ωij defines the network connectivity between units, both in
topology and relative strength. We assume that the interactions
between units are governed by connections that evolve much
slower than the dynamics of the whole system. This amounts
to considering a static network with fixed normalized weights∑

j ωij = 1. The effective coupling strength is given by
K(t), which may depend on time to reflect global softening-
hardening in rupture processes, evolving physiological states
of immune systems, and changes of social cohesiveness and/or
social influence in financial markets.

The macroscopic dynamics of the system is captured by the
instantaneous “magnetization”:

m(t) = 1

N

∑
i

si(t), (3)

which fluctuates around its time-average Q, which is computed
as

Q = 〈m(t)〉t = 1

T

∫ T

0
m(t)dt, (4)

where T is the duration of the simulation. We study the
normalized standard deviation:

σ̃ = σm

σf

=
√

〈[m(t) − Q]2〉t√
〈f (t)2〉t

, (5)

of m(t), describing the “volatility” of the system dynamics
scaled by the signal amplitude, σf . As the response of
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the system to an external influence is not instantaneous,
the time-lagged correlation between the input signal and the
magnetization, defined by

ρ(τ ) = 〈[m(t + τ ) − Q]f (t)〉t
σmσf

, (6)

provides an additional insight on the level of synchronization
between the external influence and the overall system dynam-
ics at a lag of τ . The lag where the correlation is maximal will
be called optimal lag, τ ∗ = maxτ ρ(τ ).

In the case of the periodic signal, a common measure
in stochastic resonance research is the spectral amplification
factor (SAF) [36],

R = Sω[m(t)]

Sω[fp(t)]
= Sω[m(t)]

σ 2
f

, (7)

which is the ratio of the power spectrum density of the
magnetization Sω[m(t)] over the power spectrum density of
the driving signal, Sω[fp(t)] = σ 2

f = A2/4, both at the driving
frequency ω.

III. PERIODIC SIGNAL

A. Simulations results

First, we consider an homogeneous, complete, network
(ωij = 1/(N − 1)) and a constant coupling strength K(t) =
k = 1. The results reported below are not significantly different
for random graphs with large average connectivity or when the
connections allow for an unbiased statistical sampling within
the population. As previously said, we set G to be a Gaussian
distribution with standard deviation D, and zero mean. Even
though the system loses its equivalence to the kinetic Ising
model with Glauber dynamics, all the qualitative properties
of the system remain unchanged. Without external forcing
(A = 0), the system experiences, as for the equilibrium Ising
model, a continuous phase transition at Dc � 0.80k, separating
the ordered phase with two stable fixed points at ±Q(D),
from the disordered phase, with a single stable fixed point at
Q(D) = 0. For the equilibrium case (A = 0), the dependence
of Q(D) as a function of D is shown by the continuous line in
Fig. 1(b).

In Fig. 1(a), we plot the spectral amplification factor as a
function of noise strength for signals with different periods.
The symbols are obtained by simulations of the model with
106 units. We observe that, even for relatively small periods, an
increase of amplification exceeding one order of magnitude is
achieved for a broad range of intermediate value of noise,
the hallmark of stochastic resonance. Figure 1(b) shows
the average magnetization, Q(D), which is the usual order
parameter in the kinetic Ising model studies, for the same
signals as in Fig. 1(a). In Sec. III B, we will develop a theory
which shows that the global dynamics can be assimilated to
a motion within a potential that exhibits a transition from a
monostable to a bistable regime. For fast signals, Q(D) has
a value close to the equilibrium fixed point (continuous line),
suggesting that the dynamics of m(t) can be well described
as fluctuations around this stable (or metastable) point, i.e.,
m(t) performs intrawell dynamics. For slower signals, larger
fluctuations around the equilibrium fixed point are observed,
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FIG. 1. (Color online) (For periodic signals) Different measures
as a function of the standard deviation of the noise in Eq. (1), D, for
weak periodic signals with amplitude σfp

= 0.01. The period of the
signal is in the legend of (b). Symbols are obtained for simulations
with a system size N = 106 and the lines are the result of the
linear approximation presented in the main text. The vertical thin
dotted line indicates DT for ω = 2π/512, where the transition from
intra- to interwell dynamics occurs. The vertical thick dotted line
indicates the critical value of noise Dc, where the phase transition
takes place. For D ∈]DT ,Dc[, m(t) performs interwell dynamics. (a)
Spectral amplification factor R, as defined by Eq. (7). (b) Average
magnetization Q. For D < Dc, Q = 0 indicates that the system
performs interwell dynamics. (c) The normalized standard deviation,
σ̃p . (d) Instantaneous correlation between m and f , ρ(0), defined
by Eq. (6). (e) Correlation between m and f at the optimal lag. (f)
Optimal lag, τ ∗, normalized by the period of the driving force.

as Q(D) vanishes already for D < Dc, indicating symmetric
oscillations around m(t) = 0, i.e., m(t) performs interwell
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dynamics. By DT (A,ω,N ), we denote the threshold value of
the noise strength at which the potential barrier between the
two equilibrium fixed points become small enough, such that
the system performs interwell hopping and thus Q(D) goes to
zero. The noise strength threshold DT approaches Dc as either
ω or N are increased or A is decreased. In the opposite limits,
it will tend to zero.

Independent on the driving frequency, the maximum in the
amplification is always found at DT . For fast signals where
DT ∼ Dc, this maximum is observed at the equilibrium phase
transition. This happens in the presence of two competing
phenomena near the equilibrium phase transition: on the one
hand, a divergence in the susceptibility, making the system
very sensitive to small changes in the external influences; on
the other, critical slowing down, which inhibits the reaction of
the system. For slow signals, where DT < Dc, together with a
more abrupt vanishing of Q, a pronounced jump in the spectral
amplification factor R, defined in Eq. (7), is observed at D =
DT , where the response of the system is greatly increased by
the transition from intra- to interwell dynamics. For DT <

D < Dc, the amplification decreases with D, as the position
of the minimum (±m0(D)) approaches 0 for D approaching
Dc from the left.

Figure 1(d) shows the dependence of the correlation at
zero lag on the noise strength. A minimum of instantaneous
correlation is observed at the same values of D, where the
maximum in R occurs. This result confirms the existence of a
double peak of the non-normalized instantaneous covariance,
as was found by Leung et al. [7,8].

The effect of the signal frequency on the system behavior
is shown in Fig. 2, where we plot the amplification R as a
function of the period of the signal for different values of D. For
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FIG. 2. (Color online) For periodic signals with amplitude σfp
=

0.02/
√

2 and different values for the standard deviation of the
noise D specified in the legend. The spectral amplification factor
R as a function of the period, 2π/ω. Symbols are obtained for
simulations of a system with N = 9 × 104 and the lines represent
the linear approximation given by Eq. (15). Three regimes of R can
be identified as a function of the period: (1) increasing amplification
with increasing period, (2) plateau with intrawell dynamics, (3) for
D � Dc, stark increase of amplification due to interwell dynamics.
Similar results are found for larger system sizes, where the third
regime appears for larger periods as the finite-size fluctuations are
reduced.

D > Dc, where the macroscopic system dynamics is described
by a monostable potential, the dependence is composed of
two regimes. The first regime is where the amplitude of the
oscillations of m(t) increases with the period as m(t) is pushed
for longer durations into one direction, allowing for greater
deviations from the origin. For larger signal periods, R reaches
a plateau, which constitutes the second regime, where the
diffusive motion of m(t) is confined by the potential. The
same behavior is observed for D 
 Dc, where the potential
barrier between the two minima cannot be overcome by the
system, restricting the dynamics to intrawell motions. Finally,
for D � Dc, the dependence shows a transition into a third
regime. If the potential barrier is not too high compared with
the noise intensity and the finite-size fluctuations, the system
is able to perform interwell dynamics for large enough periods
of the external driving. These interwell dynamics are observed
as a second rapid increase in R. The period at which this
transition happens is the double of the Kramers time.

B. Analytical approach

In order to understand these results, we now develop a
mean-field theory, which becomes exact in the thermodynamic
limit and for weak signal amplitudes. As our system is
composed of many interconnected units, we can rewrite Eq. (1)
by replacing the interaction term by the global instantaneous
magnetization and by explicitly writing down Eq. (1) in the
form of

si(t + δ) =
{+1 if ξi(t) � −k m(t) − f (t)
−1 if ξi(t) < −k m(t) − f (t).

Averaging over multiple noise realizations, the expected value
for the state of the ith unit, at time t + δ is thus given by

〈si(t + δ)〉ξ = 1 − G(−k m(t) − f (t)) − G(−k m(t))−f (t))

= 1 − 2G( − k m(t) − f (t)), (8)

where G(θ ) is the cumulative distribution function of the noise
term ξi(t), i.e., G(θ ) = ∫ θ

−∞ dθ ′g(θ ′). Summing over all the
units and given that only spin i is updated over the micro-time-
step δ, we get that the updated instantaneous magnetization is
exactly

m(t + δ) = m(t) + 1

N
[si(t + δ) − si(t)]. (9)

By averaging over the complete population and identifying
1/N = δ as dt in the thermodynamic limit, Eq. (9) transforms
into a continuous process, which reads〈

dm(t)

dt

〉
= 〈si(t + dt)〉 − m(t). (10)

With ṁ(t) = 〈dm(t)/dt〉 and substituting Eq. (8) into Eq. (10),
we get

ṁ(t) = −m(t) + 1 − 2G( − k m(t) − f (t)), (11)

which constitutes a general closed form evolution equation for
the magnetization of the system.

From the point of view of the mean-field limit, the noise
ξi(t) can be either quenched or annealed, as the complete
noise is condensed into the last term in Eq. (11). For A = 0
(no external driving), the stationary solution of Eq. (11) gives
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the dependence of the equilibrium fixed point m0(D) as the
solution of the implicit equation,

m0(D) = 1 − 2G( − k m0(D)). (12)

This solution exhibits a supercritical pitchfork bifurcation as
a function of D, as expected for an Ising-like system, which
is displayed by the continuous line in Fig. 1(b). The critical
parameter is found equal to Dc = k

√
2/π , when ξi(t) is drawn

from a Gaussian distribution.
The emphasis of this paper is on the system’s reaction to

fast, subthreshold (A 
 1) signals, so that interwell dynamics
can be neglected. Thus, a perturbation expansion m(t) = m0 +
m1(t) up to first order yields

d

dt
m1(t) = −η(D) m1(t) + φ(D) f (t) + O

(
m2

1

)
, (13)

where φ(D) ≡ 2g(−km0), η(D) ≡ 1 − 2kg(−km0), and g =
dG/dξ . The dependence of φ and η as a function of the noise
strength is displayed by the dash-dotted lines in Fig. 1(b).
Based on Eq. (13), φ(D) can be interpreted as the attenuation
of the signal by the noise in the individual constituents of the
system as φ(D) � 1/k for any D. The value of φ(D) weights
the impact of the external forcing on the global dynamics.
The parameter η(D) can be understood as the strength of the
restoring force that tends to bring m(t) back to its equilibrium
value m0, after being driven away by the influence of f (t).
The larger η, the closer the dynamics of m(t) will be to m0

and the shorter will be the memory of m(t). The value of
η(D) controls the contribution of the endogenous part of the
dynamics. In the particular case where f (t) is constant, m1(t)
approaches the fixed point f φ(D)/η(D). Since φ(D) remains
finite when D passes through Dc, it is the vanishing of η(D)
at D = Dc and its smallness in the vicinity of Dc that is at the
origin of the amplified volatility. Based on Eq. (13), we can
now compute the approximate value of the different measures
for the external signals and compare them to the simulations
of the actual system.

For the periodic forcing, the dynamics of the magnetization
yields

mp(t) = Aφ

η2 + ω2
[−ω cos(ωt) + η sin(ωt)] + m0. (14)

Together with Eq. (7), this gives a spectral amplification factor
equal to

Rp = 4

A2

(
Aφ

η2 + ω2

)2
ω2 + η2

4
= φ2

η2 + ω2
. (15)

Figure 1(a) shows that, for fast signals (where DT � Dc),
the value of R obtained from this approximation matches well
with the simulation results. Deviations from the approximation
appear for slower signals when DT does not coincide with Dc

and nonlinear effects cannot be neglected anymore.
As can be seen in Fig. 1(a), the spectral amplification

factor can reach values above 100, showing that this system,
even without considering interwell dynamics, is able to
show remarkable reactions to a weak forcing. Two distinct
amplification mechanisms of subthreshold periodic signals can
be identified by comparing the simulation with approximation
results. The first mechanism, being present for finite and
infinite systems, is the increase of the output amplitude by

the decrease of the value of η: By reducing the restoring force
of m(t), such that it can be further displaced from m0, the
oscillation amplitudes are increased. The second mechanism
is the amplification through interwell jumps, which is only
present in finite systems, as a subthreshold driving force
cannot overcome the potential barrier without the existence
of a source of fluctuations, like finite-size effects. Note that in
the thermodynamical limit, where the approximation is valid
for any frequency, at Dc where η(Dc) = 0, it follows from
Eq. (15) that the fluctuations of m(t) for nonzero frequencies
will always be finite.

In addition to the spectral amplification factor R, we also
measure the normalized variance of m(t), σ̃ , which measures
the volatility of the dynamics, independent of the exact shape
of the power spectrum. This measure is convenient as it can be
used for comparison with the aperiodic signal, for which R is
not defined. From Eq. (14), the normalized variance of r(t) is

σ̃p
2 = 2

A2
〈mp(t)2〉t = 2

A2

ω

2π

∫ 2π
ω

0
mp(t)2dt = φ2

η2 + ω2
.

(16)

The equivalence between Eqs. (15) and (16) is due to the
use of a linear response approximation in the macroscopic
dynamics of the systems, neglecting the response at higher
order harmonics of the driving signal. As a consequence, the
approximation of the spectral amplification factor Rp is better
fitted by the simulations than σ̃p.

From Fig. 1(c), we see that the mean-field approximation
matches well the values of σ̃ obtained by simulations for
intermediate signal periods. For large periods, the interwell
dynamics destroys the match, and for fast signals (small pe-
riods), the finite-size fluctuations overshadow the fluctuations
induced by the signals.

The correlation between mp(t) and fp(t) is given by

ρp(τ ) = η cos(ωτ ) + ω sin(ωτ )√
η2 + ω2

, (17)

and, for the optimal lag, we obtain

τ ∗
p =

arctan(ω
η

)

ω
, (18)

which follows directly from Eq. (14). The correlation at zero
lag is shown in Fig. 1(d). As for the results of R, the simulation
results are well captured by the mean-field approximation for
high frequencies and deviate due to interwell dynamics for
lower frequencies. As was observed in [8], a dip in correlation
is observed for intermediate values of the noise amplitude.
This dip occurs at DT , concomitant with the maximum in
the amplification measured by R. This apparent contradiction
can be explained by the results shown in Fig. 1(f), which
plots the optimal lag between m(t) and f (t) normalized by
the period of the signal. At DT , m(t) and f (t) are maximally
lagged, reducing the correlation at lag zero. On the other hand,
the correlation at the optimal lag has a value close to one,
explaining the high amplification of the signal. This behavior
can also be found in the approximation, although there the
maximum of amplification and minimum of instantaneous
correlation is found at Dc as our approximation neglects
interwell dynamics. From Eqs. (17) and (18) it follows that,
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FIG. 3. (Color online) Size dependence of the maximal correla-
tion between the magnetization and the signal with σf = 0.01 and
different time scales for several noise intensities: D = 0.7 (solid
lines), D = 0.8 (dotted lines), D = 0.9 (dashed lines). Characteristic
time scales of the signal are specified in the legends. (top) Periodic
signals, where ρ(τ ∗) converges to 1 for any value of D in the
thermodynamic limit. The rate of convergence increases with the
signal period. (bottom) In case of aperiodic signals, the value of ρ(τ ∗)
does not converge to 1 in the thermodynamic limit and depends on
D and θ . At D = Dc, the maximal correlation ρ(τ ∗) is significantly
reduced compared to D = Dc.

in the thermodynamic limit, there exists an optimal lag τ ∗
p , for

which perfect correlation is achieved for any frequency and
any noise strength, i.e., ρp(τ ∗

p ) = 1.
However, perfect correlation is not achieved for any

frequency in finite systems as shown by the dependence of
ρ(τ ∗) in Fig. 1(e), where the deterioration of the correlation
with increasing driving frequencies is observed. The origin of
this effect lies in the finite-size fluctuations, which vanish in the
thermodynamic limit, as Fig. 3 (top) shows. ρ(τ ∗) converges
to 1 for infinite systems, at a rate of convergence depending
on D and the driving period.

IV. APERIODIC SIGNAL

We now turn our attention to the case where the com-
mon forcing is aperiodic. In this section, we will consider
an external force, which is described by the OU process
introduced in Eq. (2). Figure 4 illustrates the typical dynamic
behaviors of m(t) for different values of noise strengths D for
a single realization of the driving force fp(t). For D � Dc, the
magnetization fluctuates around mo(D) = 0, with increasing
amplitudes as D approaches Dc. The fluctuation amplitude
deceases again when m(t) performs intrawell dynamics for
D < Dc, where Q(D) = 0.

We will compute the same observables as for the periodic
signal and investigate the differences. The formal solution of
the linearized version of the dynamics, Eq. (13), is given by

m1(t) = Aφ

∫ t

−∞
e−η(t−τ )

∫ τ

−∞
e−θ(τ−τ ′) dWτ ′ dτ, (19)

0 1000 2000
t

-0.6

-0.3

0

0.3

m(t)

FIG. 4. (Color online) For aperiodic signals: time evolution of the
magnetization m(t) for different noise intensities D obtained with the
same realization of the driving force f (t) and ξi(t). N = 104, σap =
0.04, θ = 1.0, k = 1.0, D = 2.0,1.0,0.8 (smaller to larger amplitude
of m(t)’s fluctuations), and D = 0.7 (bottom curve fluctuating around
m(t) = −0.6).

which describes the dynamics around m0. The normalized
variance of m1(t) described by Eq. (19) is now given by

σ̃ 2
ap = φ2

η (θ + η)
. (20)

In Fig. 5(a), we compare the normalized variance obtained by
means of numerical simulations with this theoretical result. We
find a very good agreement between the two for fast signals,
with the same deficits due to inter-well dynamics as for the
periodic case with slower signals. However, by comparing σ̃ap

for the aperiodic signal with the periodic case σ̃p, we observe a
major difference. Whereas for the periodic case, the volatility
of the dynamics shows a finite maximum value at Dc, the
volatility diverges if the system is driven by an aperiodic signal
as η(Dc) = 0. This divergence of the normalized volatility
σ̃ap is not to be understood as an explosion of the dynamics,
as m(t) cannot exceed [−1, + 1]. It reflects the immensely
amplified reaction to a weak external forcing, consistent with
the diverging susceptibility in equilibrium phase transitions.
The fact that this divergence is absent for a periodic forcing
stems from the discreteness of the power spectrum of the
input signal. It is worth mentioning that the good match
between the analytical approach—which becomes exact in the
thermodynamic limit—and the numerical simulations shows
that the phenomenon is not due to finite-size fluctuations, but
is an emergent property of the system.

The correlation between the forcing fap(t) and the magne-
tization, m(t + τ ), is given by

ρap(τ ) =
√

η2 + θη

η2 − θ2
[(η + θ ) e−θτ − 2θ e−ητ ] (21)

and is shown in Fig. 5(b) for zero lag, together with the
simulation results, which are found in good agreement. The
optimal lag for which ρap(τ ) is maximum occurs at

τ ∗
ap =

ln
(

η+θ

2η

)
θ − η

, (22)

yielding a maximal correlation of

ρap(τ ∗
ap) = 2

θ
θ−η

(
η

θ + η

) η+θ

2(θ−η)

. (23)
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FIG. 5. (Color online) For aperiodic signals: different measures
as a function of the standard deviation of the noise in Eq. (1), D,
for weak aperiodic signals with amplitude σfp

= 0.01. The inverse
of the signal’s time scale θ is given in the legend. Symbols are
obtained for simulations with a system size N = 106 and the lines
are the result of the linear approximation presented in the main
text. (a) Normalized standard deviation σ̃ , measuring the volatility
amplification. (b) Instantaneous correlation between m and f , ρ(0),
defined by Eq. (6). (c) Correlation between m and f at the optimal
lag. In contrast to the periodic signal, a system driven by an aperiodic
signal is not able to follow the signal, even at the optimal lag, which
is well described by the mean-field approximation. (d) Optimal lag
τ ∗ normalized by the time scale of the signal.

Here, we find the second major difference between the periodic
and aperiodic driving. For the periodic signal, it is always
possible to find a lag at which the correlation between the
forcing and the system’s response is perfect. For the aperiodic
signal (see Figs. 5(c) and 3 (bottom)), on the other hand, even
in the thermodynamic limit, the dynamics of the system can
be almost unrelated to the forcing. Perfect correlation is only
reachable for very slow signals, i.e., limθ→∞ ρap(τ ∗

ap) = 1.
Given that the forcing—an OU process—has a continuous
power spectrum, and that the response of the system is fre-
quency dependent, the spectrum of the macroscopic dynamics
is distorted when compared to the one of the forcing, which
has the effect of decreasing the correlation. Indeed, the system
is only able to follow the part of the signal spectrum with
frequencies lower than η(D), which describes the rate at
which the system can effectively react to external stimuli.
As with decreasing θ , the contribution of lower frequencies

in the signal’s spectrum is higher, the correlation for fixed D

increases with decreasing θ .
For D ≈ Dc, the volatility amplifies many times that of

the driving signal f (t). Concomitantly, ρ vanishes for every
value of the lag τ , indicating that the volatility of the system is
generated by an internal collective behavior. It is important to
note that, even though the system dynamics are endogenously
generated, they are initiated by an exogenous driving of the
system. This is further confirmed by the good agreement
between the approximation and simulations for fast signals.
It is the shadow of the diverging susceptibility together with
the vanishing rate of the reaction of the equilibrium model at
Dc, which is responsible for the observed NIV phenomenon.

V. EXTENSIONS OF THE PHENOMENON STUDIED

A. Different networks

To show that the NIV phenomenon, characterized by
the increase of volatility and decrease of correlation to the
aperiodic forcing, is robust with respect to the structure of
the network, Fig. 6 shows the normalized volatility σ̃ and
the maximum in correlation ρ(τ ∗) as a function of D (the
standard deviation of the noise term in Eq. (1)) for different
networks. We consider a two-dimensional regular grid with
Moore neighborhood and random small-world connections
with varying concentration pw. Changing pw from 0 to 1
interpolates between the regular two-dimensional (2D) lattice
and the completely random network. For each pw, the peak
in volatility is still concomitant with the vanishing of ρ at the
threshold value DT (pw). The noise intensity threshold DT (pw)
is increasing in pw, as larger global interconnection enhances
the cooperative organization, and larger noise is needed to
destroy the ferromagnetic state.

For one-dimensional (1D) lattices, the NIV phenomenon
is still present, with a minimum in the cross correlation and
a maximum in the volatility at DT . As is well known, the

4

8

12

16

σ∼

0.0001
0.03
0.1
1.0

0.4 0.5 0.6 0.7 0.8

D

0

0.2

0.4

0.6

ρ(τ∗)

p
w =

FIG. 6. (Color online) For an aperiodic signal: (top) the nor-
malized volatility σ̃ and (bottom) the correlation at optimal lag
ρ(τ ∗) as a function of the standard deviation of the noise D for
different small-world random connection concentrations pw of a
two-dimensional regular grid with Moore neighborhood. For pw = 0,
the network is a 2D regular grid with Moore neighborhood. For
pw = 1.0, the network is a random graph with an average degree,
d = 4. The other system parameters are N = 106, σf = 0.01, θ = 1,
k = 1.
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one-dimensional Ising model undergoes a first-order phase
transition at zero temperature, and DT converges to 0 in
the thermodynamic limit. Notwithstanding the absence of a
continuous phase transition, the susceptibility and relaxation
time still diverge, exhibiting an essential singularity at zero
temperature [37,38], which explains the survival of the NIV
phenomenon in 1D.

B. Excess volatility in financial markets

By the definition of our model given by Eq. (1), it is
clear that it is also interpretable as a model of opinion
dynamics, where si(t) is the opinion of agent i at time t ,
in line with the established literature on discrete choice [39].
The external forcing f (t) can be seen as the flux of news,
which is common to all agents, the noise εi(t) contains the
agents’ private information and the coupling term represents
the social interaction between agents. The dynamics of the
global opinion is then given by m(t).

When applied to the social system of financial markets, the
agents are investors and si(t) corresponds to their opinion on
whether the asset is over- or underpriced and hence to their
willingness to buy (+1) or to sell (−1). The global demand is
the given by m(t), which impacts on the price as

log[p(t + 1)] = log[p(t)] + m(t + 1)

λ
. (24)

Here λ represents the liquidity depth of the market, which
is assumed constant and m(t)/λ is the financial return r(t)
from period t to period t + 1. This equation expresses a linear
market impact of the demands, which is a common hypothesis
in stylized models of financial markets [40,41]. The results
below do not change qualitatively for more general nonlinear
impact functions [42].

To apply our model to the financial markets, we use the
coupling strength k instead of D as the control parameter.
Rather than assuming a fixed coupling strength for investors,
we propose that the impact of colleagues’ opinions on a given
investor may be slowly varying with time. This effect reflects
the fact that, in times of greater uncertainty, investors tend
to be more influenceable by their surrounding [43]. There
are many varying sources of uncertainty that impact financial
markets, including the economic and geopolitical climate and
past stock market performance. In the spirit of Ref. [44], all
these factors are embodied into the notion that K(t) undergoes
a slow random walk with i.i.d. increments K(t + δt) − K(t) ∼
N (0,σk), which is confined in the interval [k − �k; k + �k].
This later constraint ensures that social imitation remains
bounded. We could have used an Ornstein-Uhlenbeck process
or any other such confining dynamics, without changing the
crucial results presented below. More complex models of
sophisticated investors involve the strategic adaptations of
the traders’ propensity to imitate to the reliability of their
colleagues in recent outcomes [45–47].

By the mechanism of sweeping of the coupling strength
K(t) close to the critical coupling strength kc (for fixed noise
strength D) [48,49], we expect and find a transient burst of
volatility in response to the aperiodic driving force f (t) with
constant amplitude and time scale. Figure 7 shows a typical
realization, where the return r(t) exhibits transient bursts,
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FIG. 7. (Color online) (Upper panel) Sample dynamics r(t)
(black bursty line) when the coupling strength K(t) of the interactions
between agents undergoes a confined random walk (green) in
[k − �k; k + �k] with �k = 0.5 and step size σk = �k/

√
5000.

(Lower right panel) Quickly vanishing (respectively, long memory
of) the autocorrelation of r(t) (thin lines) [respectively, |r(t)| (thick
line)] for two values of k and of �k. (Lower left panel) NIV resonance
in the presence of a time varying K(t), with �k = 0.1 (circles),
0.2 (squares), 0.5 (diamonds). The other parameters are N = 104,
σap = 0.04, D = 1.

associated with excursion of K(t) in the neighborhood of kc.
The lower left panel of Fig. 7 shows the robustness of the
NIV phenomenon as a function of the average coupling k:
Even with a fluctuating K(t), a large volatility peak appears
for intermediate values of k. The lower right panel shows
very short-range correlations of r(t) but very long-range
correlations of the financial volatility |r(t)| (another equivalent
proxy for volatility), very similar to empirical observations of
financial returns [31]. Such long persistence of the volatility
can be traced back to the slow diffusive nature of K(t) in
line with the investors’ slowly changing trust in the economy.
From the previous section, it also follows that during times
of crisis and strong social interaction (k close to kc), the
dynamics is generated mostly exogenously, well in line with
the documented inability of news events to explain large price
movements [30].

VI. CONCLUSIONS

In this paper, we have investigated the behavior of a system
composed of coupled bistable units under the influence of a—
rapidly varying—common exogenous forcing and independent
noise sources. Independently of the shape of the driving
force, intermediate noise strengths trigger a strong level of
fluctuations of the macroscopic dynamics around the critical
value separating the ordered from the disordered phases. For
a periodic forcing, this peak corresponds to a pronounced
amplification of the signal, with a strong correlation between
the macroscopic dynamics and the driving force at the optimal
lag, the paradigmatic signatures of stochastic resonance.

When the driving force is aperiodic a similar peak appears,
but here the amplitude of the fluctuations exceeds by far those
observed for periodic signals. Coincidental with the increase
of fluctuations, the correlation between the driving force and
the system dynamics is completely destroyed. This shows that
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even though these fluctuations are induced by the common
forcing, the macroscopic dynamics has an endogenous origin.
This phenomenon of noise-induced volatility contrasts with
that of stochastic resonance, with the major difference being
that it is not the signal, but the fluctuations that are amplified.

Moreover, this phenomenon of noise-induced volatility also
constitutes a new indicator for the approaching of a phase
transition [32], and it applies to a broader range of real-world
systems due to the more common setup given of a coupled
system driving by an aperiodic forcing and its robustness with
respect to changes in the underlying network of interactions.

As an example of a system where this phenomenon can be
observed, we have proposed the social system of stock markets,
in which we have been able to not only explain the excess
of volatility observed in stock prices, but also the apparent
absence of correlation between news and price changes and
the persistence of volatility during times of crises.

APPENDIX: EQUIVALENCE TO THE KINETIC ISING
MODEL WITH GLAUBER DYNAMICS

A popular update mechanism in the kinetic Ising model
literature was introduced by Glauber [50]. In it, the probability
for a spin to flip is given by

pflip = 1

eβ�Ei + 1
, (A1)

where �Ei is the energy gained by the system through the spin-
flip and β = 1/kT . With si = ±1 and Ei = −si(

∑
j Kij sj +

f ), which is the energy of the state si , Eq. (A1) can be rewritten
as

pflip = psi→−si
= 1

esi2β[
∑

j Kij sj +f (t)] + 1
= 1

esi2β� + 1
, (A2)

where � = ∑
j Kij sj + f . With the transition rate given by

Eq. (A2), we can compute the probability of being in state si

at time t + δ by

p(si ; t + δ) = p(si ; t)psi→si
+ p(−si ; t)p−si→si

(A3)

= p(si ; t)

(
1− 1

esi2β�+1

)
+p(−si ; t)

1

e−si2β�+1

= [p(si ; t) + p(−si ; t)]
1

e−si2β� + 1

= 1

e−si2β� + 1
= p(si), (A4)

which is independent of time and gives us the probability of
finding spin i in state si . Equation (A4) can be rewritten as

si(t + δ) =
{+1 with Prob = (e−2β� + 1)−1

−1 with Prob = (e2β� + 1)−1

=
{+1 with Prob = 1 − F (−�)
−1 with Prob = F (−�), (A5)

where F (x) is the cumulative density function (CDF) of a
logistic distribution with zero mean and variance π2/12β2.

The model studied in this paper, defined by Eq. (1), can be
rewritten as

si(t + δ) =
{+1 if ξi(t) � −�

−1 if ξi(t) < −�

=
{+1 with Prob = 1 − G(−�)

−1 with Prob = G(−�), (A6)

with G(x) being the CDF of the probability density function of
ξi(t), with zero mean and variance D2. By direct comparison
of Eqs. (A5) and (A6), one can see that the model defined by
Eq. (1) is equivalent to the kinetic Ising model with Glauber
dynamics if the distribution of the noise is chosen to be a
logistic distribution.
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