
The Link between Dependency and Cochange:
Empirical Evidence

Markus Michael Geipel and Frank Schweitzer

Abstract—We investigate the relationship between class dependency and change propagation (cochange) in software written in Java.

On the one hand, we find a strong correlation between dependency and cochange. Furthermore, we provide empirical evidence for the

propagation of change along paths of dependency. These findings support the often alleged role of dependencies as propagators of

change. On the other hand, we find that approximately half of all dependencies are never involved in cochanges and that the vast

majority of cochanges pertain to only a small percentage of dependencies. This means that inferring the cochange characteristics of a

software architecture solely from its dependency structure results in a severely distorted approximation of cochange characteristics.

Any metric which uses dependencies alone to pass judgment on the evolvability of a piece of Java software is thus unreliable. As a

consequence, we suggest to always take both the change characteristics and the dependency structure into account when evaluating

software architecture.

Index Terms—Modularity, class dependency, open source

Ç

1 INTRODUCTION

ACCORDING to Lehman [30] and common experience,
continual change effort is needed to keep a piece of

software up-to-date, and Parnas noted that effort is needed
to compensate for software “aging” [39]. Therefore, as
Bohner and Arnold [3] and Bennett and Rajlich [2] point
out, a good software architecture should be evolvable,
flexible; in other words, easy to modify. This means that the
change behavior of software plays a primordial role.
Generally speaking, software is considered flexible if
changes are contained to the target module and the rest of
the system is “isolated from change” [35]. If changes
“propagate” [41], the architecture is considered suboptimal
for several reasons: First, a larger change comprising many
modules causes more effort than a small surgical change.
Second, a larger change may introduce more defects than a
smaller one [35]. And, finally, a newly introduced defect
may be harder to fix as each one of the changed files might
contain it. Thus, the more modules are affected by change,
the harder it becomes narrowing down the problem.

It is important to realize that there is an abundance of

best practice rules and common wisdom about the change

behavior of software architecture and how to isolate

modules from change. In general, simultaneous change of

several modules, in other words, cochange [22], is believed to

arise when modules exhibit strong coupling, for instance, if

responsibilities are not clearly separated or implementation

details are not hidden behind interfaces. See Martin [35] for

a comprehensive overview.

Given this concept of strong coupling, it does not come as
a surprise that works on change and change propagation
regularly emphasize the role of dependencies, which are
seen as measurable manifestations of this coupling. Tsantalis
et al. [45], for instance, call certain types of dependencies
between classes axes of change. Sangal et al. [42] point out that
a high concentration of dependencies acts as a propagator of
change. They warn that—“[c]hange propagators make systems

brittle because they increase the likelihood that the effect of a change

will propagate to a disproportionately large portion of the system.”

Finally, MacCormack et al. [33] go so far as to present a
method to calculate the so-called Propagation Cost of a
software based on the dependency structure.

These examples indicate that several authors assume—in
some cases implicitly—two issues:

1. Changes propagate from one module to another along
dependencies between these modules. Without this
assumption, analyzing the dependency structure in
the context of cochanges would not make sense.

2. All dependencies are more or less comparable in their
propensity to propagate change. Only with this assump-
tion, it makes sense to calculate measures such as
“propagation cost” based on the dependency struc-
ture, as done by MacCormack et al. [33] for instance.

In one sentence: To use the dependency structure as an
indicator, predictor, or metric for the cochange behavior of a
software architecture, there must be a link between
dependencies and cochange, and this link must be more or
less linear. Yet, to our knowledge, this assumption has never
been the dedicated subject of any large-scale analysis, except
in the form of preliminary results we presented in [17].

A review of previous research on cochange or change
propagation with an empirical framing reveals two aspects.
First, the question about the causes of change propagation
has been skipped by many researches in favor of a
predictive approach in which the causes of change

1432 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012

. M.M. Geipel and F. Schweitzer are with the Chair of Systems Design, ETH
Zurich, Kreuzplatz 5, CH-8032 Zurich, Switzerland.
E-mail: markus.geipel@alumni.ethz.ch, fschweitzer@ethz.ch.

Manuscript received 15 June 2010; revised 25 July 2011; accepted 19 Aug.
2011; published online 31 Aug. 2011.
Recommended for acceptance by H. Gall.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2010-06-0182.
Digital Object Identifier no. 10.1109/TSE.2011.91.

0098-5589/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 13,2021 at 08:19:00 UTC from IEEE Xplore. Restrictions apply.

propagation are implicitly contained in a prediction func-
tion or as inputs to a machine learning algorithm. Examples
for predictive approaches include: Hassan and Holt [22],
Tsantalis et al. [45], Ying et al. [47], Zimmermann et al. [48].
Second, there are two abstraction levels targeted by
researchers: We can mainly differentiate between fine-
grained analysis (e.g., [48], in the tradition of program
slicing [14], [24]), targeting single functions or even
statements in the code, and coarse-grained analysis, having
entire classes or files as their subject (e.g., [22], [29], [33],
[42], [44], [45], [47]).

In respect to these different research lines, the present
paper is positioned as follows: We add to the discussion on
the causes of cochange directly. We are not concerned with
the prediction of future changes or cochanges by means of
machine learning. We decided to set this focus because we
believe that the mechanism of change propagation is as yet
not sufficiently established, as we pointed out in the
previous paragraphs. Furthermore, we follow the line of
coarse-grained analysis for mainly two reasons: Our
motivation is the quality of the software architecture; thus,
we focus on the mechanisms which spread change across
the entire architecture. We do not extend our analysis to the
ones at work within single source files. Our aim is to keep
our model simple and focused. Consequently, we define
dependencies as follows: There is a directed dependency
between module A and B if A depends on B in such a way
that A is not operational without module B. In the case of
Java, this means that A would not compile in the absence of
B. We look at the details in Section 3.1.

In the following section, we condense the just-presented
discussion to research questions, and explain why we
attribute importance to them. Section 3 presents the
empirical approach with which we address these questions.
The results are presented in Section 4, followed by a
detailed discussion in Section 5. Finally, conclusions are
drawn in Section 6.

2 RESEARCH QUESTIONS

If changes propagate along dependencies, we should
be able to make two observations: First, if code modules
are linked by dependency, they should be linked by
cochange significantly more often than unconnected mod-
ules. More formally, this means that the probability that two
modules are subject to cochanges given that they are
dependent should be higher than the respective probability
for independent modules. The first research question is
whether this is really the case: Are dependent modules more
likely subject to cochange than independent ones?

The second observation concerns the propagation along a
path of dependencies. It is often assumed (e.g., [33], [42], [45])
that a change may cause a cascade of subsequent changes
traveling through the dependency network. In this case, not
only direct dependencies matter but also indirect ones: Thus,
if A depends on B and B on C, A depends indirectly on C with
distance 2. In this case, we should be able to observe a
decreasing probability of cochange with increasing distance
between the modules in the dependency graph. The second
research question is thus: How does the probability of cochange
change with distance in the dependency graph?

Finally, let us take a closer look at the second assumption
formulated in the previous section: In the absence of further
knowledge, all dependencies are assumed to be equal. Yet,
to our knowledge no large-scale empirical study has ever
confirmed this. Thus, the final question we investigate in
this paper is the following: Are dependencies homogeneous in
their correlation with co-changes? The answer to this question
has important practical ramifications: If the majority of
dependencies are a significant transmitter of change
propagation, they should be minimized just as Lieberherr
and Holland [31] suggest. On the other hand, if only specific
dependencies matter, general dependency minimization is
not a sensible approach. It can even be counterproductive:
The simplest way to eliminate a dependency would be to
integrate the functionality a class depends upon into the
class itself. This would lead to classes with low cohesion
and a vague responsibility profile. Both properties to be
avoided [35]. Refactoring should go the opposite way: The
responsibilities are to be divided, each implemented in a
separate class. This would actually generate dependencies;
weak ones though, as opposed to strong ones. A clear
separation of responsibilities also enhances readability of
the code. Furthermore, these new dependencies are a sign
of code reuse, a cornerstone of good software design (see
Hunt and Thomas [25, ch. 2]). Finally, we cannot per se
assume that propagated changes are evenly distributed. In
software engineering, as in other disciplines, Pareto’s
rule—also known as the 80-20 rule—is a recurrent theme.
For example, as a rule of thumb, 80 percent of the defects
are concentrated in only 20 percent of the code.1

In the same way, change propagation might not be
distributed uniformly over the set of dependencies. If we
find a high concentration, this has consequences for
refactoring, the process of restructuring code [38]. If we
are able to identify change propagation “hot spots,”
refactoring effort can be targeted more efficiently.

3 AN EMPIRICAL APPROACH

To answer the questions presented in the previous section,
we propose an empirical approach based on data from
35 large Java projects. This section documents this approach,
starting with a definition of dependency, followed by the
methods by which dependency and cochanges are extracted
from the data. Next, the statistical analysis designed to
answer the research questions is presented. The section
concludes with a description of the data sources.

3.1 Class Dependencies

As already pointed out in the introduction, we take a
coarse-grained approach to dependency. By doing this, we
follow the example of Sullivan et al. [44], Sangal et al. [42],
MacCormack et al. [33], and LaMantia et al. [29]. All these
authors focused on the file level to calculate dependency.
They followed the Design Structure Matrix methodology.
The analysis of software dependencies is, however, not
bound to this methodology and various representations of
the concept of dependency are used in the literature. Challet
and Lombardoni [7], for instance, use a graph notation and

GEIPEL AND SCHWEITZER: THE LINK BETWEEN DEPENDENCY AND COCHANGE: EMPIRICAL EVIDENCE 1433

1. New empirical support was published by Fenton and Ohlsson [10].

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 13,2021 at 08:19:00 UTC from IEEE Xplore. Restrictions apply.

refer to the dependencies as dependency network, while
Hassan and Holt [22], employing basically the same
methodology, use the term call graph.

As we use Java programs as our data source, we speak of
class dependencies instead of file dependencies. As in Java,
public classes are defined in separate files, one file per class;
the conceptual connection to the just cited publications is
very strong.

How can the network of class dependencies be repre-
sented? Two mathematically equivalent notations are at our
disposition: the graph notation and the adjacency matrix
notation. In this paper, we stick to the adjacency matrix view,
staying in line with the Design Structure Matrix community.
The adjacency matrix view is the most widely used notation
in this specific area. See the work of Steward [43] for an
introduction to the Design Structure Matrix methodology
and Sullivan et al. [44] for its application to software.
Furthermore, we think that the adjacency matrix notation
results in more readable mathematics.

We refer to the dependency matrix as D, where Di;j ¼ 1
means that i depends on j. Di;j ¼ 0, on the other hand, is
interpreted as independence. There is a dependency between
classes i and j if: 1) i extends or implements j, 2) i uses j as
member or variable, 3) i references members or calls a
method of j. In each of these cases, we setDi;j ¼ 1. Please note
that D is an asymmetric matrix. To add more discriminatory
power to this approach, we differentiate between these three
types of dependencies by using a subscript to D: Da, Db, and
Dc. Da refers only to the dependencies generated by
extension or implementation, Db the ones where j is used
as a member of i, and finally, Dc refers to dependencies
caused by all other references to j.

Please note that these dependencies on the class level are
different from dependencies on the statement level which
are the target of analysis, for instance, in program slicing
[14], [24]. Also, the differentiation of statement-level
dependencies into data and control dependencies [23] does
not apply to class level dependencies.

To illustrate the extraction of dependencies from the
source code, we take a closer look at the class Single-

UserRatingInfo contained in the Azureus project. Fig. 1
shows a shortened version of the class. SingleUserRa-
tingInfo extends the functionality of RatingInfoList
(line 1) and thus is dependent on it. This dependency is
recorded in D and Da. Furthermore, SingleUserRating
Info uses the class TOTorrent (lines 3, 5, and 6), another
dependency, this time recorded in D and Dc. On the other
hand, SingleUserRatingInfo is used by the class
PlatformRatingMessenger (source not listed here),
meaning that PlatformRatingMessenger is dependent
on SingleUserRatingInfo. To perform this dependency
extraction automatically, we used the Eclipse Java devel-
opment tools (JDT), as did Gall et al. [13] before us.

Of course,D is only valid at one particular point in time as
not only elements of a system change but also the structure of
the dependency network itself: Software projects grow; new
modules are added and sometimes old ones are removed. In
our case, we take the latest snapshot ofD. Removed nodes are
no longer of interest. Furthermore, the fact that the currently
existing nodes are of different age does not interfere with our
analysis. The only serious issue is changing dependencies.
Fortunately, with rare exceptions, the following rule holds
true throughout the projects in our data set: A dependency
between two classes i and j comes into existence simulta-
neously with the creation of the younger class. This also
facilitates the calculation of dependency ages. The depen-
dency is removed with the removal of either i or j. In
between, dependencies are basically constant. Thus, only the
different ages of the dependencies might interfere with our
analyzes. We address the issue in Section 3.6.

3.2 Cochange

In the previous section, the dependency matrix was
defined. In contrast to this static view, we now define a
dynamic view on the software architecture based on
cochanges. We show how a matrix similar to the depen-
dency matrix D can be calculated. Its entries do not indicate
dependency, but the number of times the classes have been
changed simultaneously. Let us refer to this matrix as C and
to the event of two classes being changed at the same time
as cochange (see [22]).

To constructC, we need: first, the set of classes. Let us usen
to denote their number. Second, we need change events
which record modification of the classes. Henceforth, we use
m to refer to the number of recorded change events. An event
in the change history can be expressed as an n-dimensional
vector ~h. Each entry shows in binary form whether a class has
been modified. Imagine, for example, a piece of software with
three classes. The change event ~h1 ¼ ð011ÞT indicates that
classes two and three were modified. Each~h thus corresponds
to one commit in the version control system.

The change history consisting of all ~h can be written in
matrix form: Each change vector forms a column in the
change history matrix H:

H ¼
�
~h1
~h2 . . .~hm

�
: ð1Þ

H is of size n�m. By multiplying H with its transposed HT

the cochange matrix C is derived:

C ¼ HHT : ð2Þ

C has dimension n� n and indicates how many times each
element has been modified concurrently with other ele-
ments. The diagonal diagðCÞ tells us how often each
element was changed in total, while the sum of the diagonalP

diagðCÞ gives us the total number of changes to the
system. An entry Ci;j ¼ 3 tells us that classes i and j have
been modified three times together. Please note that C in
contrast to D is symmetric.

Until now, our definition of cochange has been abstract.
We now define it in the context of our change data, which
consists of CVS logs (see also Section 3.7): A cochange event
comprises all classes whose changes have been committed at
exactly the same time by exactly the same author. The same

1434 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012

Fig. 1. The source code of the class SingleUserRatingInfo from the
Azureus project. ([...] omitted parts).

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 13,2021 at 08:19:00 UTC from IEEE Xplore. Restrictions apply.

definition has been used by Ball et al. [1], although they
used the term Modification Record instead of cochange. It is
important to note that we only consider change events and
not add events. The reason for this is that projects often start
outside of a version control system and are initially
imported in one add event. Even later, occasionally whole
subsystems are added at once. We argue that such creation
cochanges do not provide information on the evolvability of
the software and thus exclude them.

We argue that the just presented commit-based cochange
construction reflects the real cochange relationships rather
accurately for the following reason: There is psychological
pressure to make one cohesive set of changes one and only
one commit. First, there is pressure not to split the cohesive
set of changes into more than one commit as a split would
generate an inconsistent version in the repository. A
common rule in development, though, is to avoid an
inconsistent commit at all costs because it may seriously
impede the work of the group. Some groups even collect
symbolic fines for contributors who cause a nightly built to
fail. Second, there is pressure to put as few changes as
possible in one commit as a commit should ideally comprise
a small, self-contained, easily described fix or contribution.
Furthermore, frequent commits prevent merge conflicts. In
the Open Source community, this is referred to as the
“Commit early, commit often!”-rule.

It should not be left unmentioned though that alternative
ways of cochange calculation exist. A more complex
alternative to the method just described was introduced
by Zimmermann et al. [48]. They propose a sliding window
such that two classes are connected if they have been
modified by the same author within a time window of
�t seconds. The motivation behind this approach is that the
commit-based method does not count changes as cochanges
which are temporally very close but do not belong to the
same commit. For the same reason, German [18] extended
the method of Ball et al. [1] with two tunable parameters.

For predictive works, for instance, the sliding window
approach is a very sensible approach as the parameter �t
can be optimized based on prediction success. In our case,
however, we do not have such a benchmark as our work is
exploratory. See also the discussion in the introduction. We
thus explicitly decided against the sliding window ap-
proach as it introduces a new degree freedom, �t (or even
more parameters). Its concrete value is subject to discussion,
and argues for a specific value rest subjective or bound to
situation specific optimization. We did not find convincing
arguments for a universally valid value of �t. Following
Occam’s Razor, we thus favor the simpler solution even if it
might introduce a bias. In any case, the sliding window
parameter �t would, depending on its value, also introduce
a bias. We discuss possible problems caused by such a bias
in detail in Section 5.1.

3.3 Dependencies and Cochange

To explore the connection between dependency and change
propagation, we need to compare the change behavior of
dependent classes with the one between independent ones.
The fact that two classes (i and j) have been modified at
least once simultaneously is expressed by Ci;j � 1. Further-
more, the fact that two classes are connected by a
dependency is expressed by Di;j ¼ 1. A straightforward

measure for the influence of dependencies on change
propagation is the conditional probability PD :¼ P ðCi;j �
1jDi;j ¼ 1Þ given i 6¼ j. Read: the probability that two
different classes have been modified together at least once,
given that they are connected by a dependency. PD is
calculated from the data as follows:

PD ¼
jfDi;j ¼ 1 ^ Ci;j � 1gj

jfDi;j ¼ 1gj : ð3Þ

This means that we divide the number of dependencies
(positive entries in the dependency matrix) which accumu-
lated at least one cochange by the total number of
dependencies. In the same way, we define PDa

, PDb
, and PDc

.
As a reference, we also compute the conditional

probability P:D :¼ P ðCi;j � 1jDi;j ¼ 0Þ that two uncon-
nected classes Di;j ¼ 0 have been modified together at least
once. P:D is calculated as follows:

P:D ¼
jfDi;j ¼ 0 ^ Ci;j � 1gj

jfDi;j ¼ 0gj : ð4Þ

This means that we divide the number of empty entries in
the dependency matrix for which there exists a correspond-
ing positive entry in the cochange matrix by the total
number of empty entries in the dependency matrix. The
comparison of PD with P:D reveals the possible degree of
correlation between dependencies and cochange. A com-
parison of PDa

, PDb
, and PDc

enables us to check whether the
different dependencies play different roles with respect to
the cochange behavior.

To compute error margins for the empirical measures,
we assume a binomial distribution. Let us consider PD: To
calculate PD, we iterate through all dependencies, sum up
the ones which where involved in a cochange, and take the
average. This corresponds to process behind the binomial
distribution where the positive outcomes of n independent
yes/no experiments are summed up and averaged (for
more information, see [37, Section 1.3.6.6.18.]). This means
that the binomial distribution will provide more accurate
error estimates than the normal distribution, which would
be the standard choice in the absence of further knowledge.
Please note that in any case, for large n, the normal
distribution approximates the binomial distribution.

3.4 Indirect Dependencies and Cochange

PD indicated the probability that two-dependent classes
change at least once together (cochange) in the project
history. We will now investigate the existence of changes
transitively propagating along dependencies. In other
words: Do indirect dependencies matter? as we asked in
research question two. To address this question, let us
extend the concepts of Sections 3.1 and 3.3 to indirect
dependencies. Let Dl

i;j ¼ 1 if a path of length l exists
between two classes i and j. With the concept of Dl, we
extend PD to PDl , giving the probability that two classes
connected by a dependency path2 of length l are changed
together at least once.

GEIPEL AND SCHWEITZER: THE LINK BETWEEN DEPENDENCY AND COCHANGE: EMPIRICAL EVIDENCE 1435

2. In practice, the distances can be calculated by any algorithm
calculating the convex hull of a graph. A standard algorithm is the Floyd-
Warshal algorithm [11], [46]. A discussion of the pros and cons of convex
hull algorithms is beyond this paper. See, for instance, [20] for more
information.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 13,2021 at 08:19:00 UTC from IEEE Xplore. Restrictions apply.

If cochanges propagate along a path of dependency, which
function in l would PDl delineate? Leaving apart parallel
paths of change propagation, we can assume exponential
decay: ðPDÞl. Yet, we need to keep in mind that change may
also propagate between independent classes: P:D may be
nonzero. We thus add an intercept c to the equation.
Consequently, the most simple approximation for PDl is

PDl ¼ ðPDÞl þ c: ð5Þ

This equation can be checked against data: We fit the
empirically measured PDl to (5) with the ordinary least
squares method. To check whether the model explains the
patterns found in the data, the quality of the fit needs to be
quantified.

Different measures for the quality of fit exist. We are
considering as candidates the standard measures offered by
the statistics toolbox of the Matlab software:

1. Sum of squares due to error (SSE): Measures the total
deviation of the data from the fit.

2. Coefficient of determination (R2): Measures the
proportion of variability in a data set that is
accounted for by the model. The closer R2 is to 1,
the better the fit.

3. Degree-of-freedom adjusted coefficient of determi-
nation (adj. R2): R2 adjusted to account for the
residual degrees of freedom (number of observations
minus the number of fitted coefficients).

4. Root mean squared error (standard error): Estimate
of the standard deviation of the residuals.

We decided to use adj. R2 for the following reasons: First,
the R2 are bound between �1 and 1, which makes a
comparison between the different projects easy. The other
measures are unbound and values are thus harder to
interpret and compare in a list overview such as the one we
present. Second, the concept of proportion of variability
explained by the model fits our intent to show the
expedience of the proposed model best as it basically gives
its “explanatory power” in percent. Finally, standard error
and SSE can only be interpreted in a comparative way: to
compare different models, for instance. But this is not our
objective. We are only interested in the explanatory power
of one model.

We put forth the proposition that good fits between the
data and expression (5)—values of adj.R2 close to 1—provide
empirical evidence for the existence of change propagation
along paths of dependencies and thus indirect dependencies
would matter.

3.5 Homogeneity of Dependencies

In 1905, the economist Max Otto Lorenz proposed a concise
method to analyze and visualize income inequalities [32].
Since then, the so-called Lorenz curve has been used to
describe concentration and inequality in various contexts.
In this paper, we use it to analyze the concentration of
propagated changes, and thus answer our third research
question. In the following paragraphs, we briefly explain
how the Lorenz curve is constructed from our data. For a
more in-depth description of Lorenz curves, we refer the
reader to the original work of Lorenz [32] or Gastwirth [15].

To begin with, we need the number of propagated changes
for each single dependency. Let us refer to this set as �:

� ¼ fCi;j : Di;j ¼ 1g: ð6Þ

In this case, we considered all dependencies. Alternatively,
dependencies with no observed cochanges can be excluded.
The resulting �0 is defined by

�0 ¼ fCi;j : Di;j ¼ 1 ^ Ci;j > 0g: ð7Þ

The next steps are equally valid for � and �0 even
though we only write �.

First, � is normalized such that the entries of the result �
sum up to one:

�k ¼ �k

,Xj�j
l¼1

�l: ð8Þ

Second, the entries of � are rearranged in ascending
order such that the following constraint is satisfied:

r < s) �r � �s: ð9Þ

Finally, the Lorenz curve LðxÞwith x 2 ½0; 1� is calculated by
cumulating the first x percent of the elements of ����:

LðxÞ ¼
Xbx�j����jc
k¼0

�k: ð10Þ

LðxÞ is interpreted as follows: The x percent least active
dependencies accumulate LðxÞ percent of the propagated
changes; the x percent most active dependencies are
associated with 1� Lð1� xÞ percent of the propagated
changes. For clarity’s sake, we refer to 1� Lð1� xÞ as :LðxÞ.

Please note that an equal distribution leads to LðxÞ ¼ x.
In a plot, this results in a straight diagonal line (line of
equality) and serves as a reference. Any unequal distribu-
tion results in a convex curve. The higher the concentration
or inequality is, the higher the curvature and thus the
deviation from the diagonal line.

While the Lorenz curve is a very instructive representa-
tion of concentration, we cannot show the respective curve
of each one of the 35 projects. To compress a Lorenz curve
to one number, Gini [19] introduced the so-called Gini-
Coefficient g:

g ¼ 1� 2

Z 1

0

LðxÞdx: ð11Þ

g ranges from 0 to 1. As mentioned previously, an equal
distribution leads to a straight diagonal line. In this case,
g ¼ 0. The maximum concentration on the other side is
indicated by g ¼ 1. As the Gini-Coefficient represents
concentration as one scalar value, it also enables us to
compare different concentrations.

3.6 Excluding the Effect of Time

Concentration of cochanges is per se not an indication that
dependencies are heterogeneous concerning their change
propagation. It can be assumed that older dependencies
had more time to propagate change. A system in which
dependencies of different age are present will thus
necessarily exhibit an uneven distribution of cochanges.

1436 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 13,2021 at 08:19:00 UTC from IEEE Xplore. Restrictions apply.

This means that we cannot compare the Lorenz curve

found in the data with the line of perfect equality. Instead,

as the reference curve, we use the hypothetical concentra-

tion which would be caused by the existing age distribution

under the assumption of homogeneous change propaga-

tion. This homogeneous change propagation is the implicit

assumption of any method inferring change behavior from

the dependency network only, as pointed out in Section 1.
Let us assume that dependencies accumulate cochanges

linearly in time. This means that the expected number of

cochanges c depending on age t of the dependency can be

expressed by the following function:

cðtÞ ¼ b1 þ b2t: ð12Þ

b1 and b2 are constants specific to a given project. Next, the

average number of cochanges per dependency in the real data

is calculated. We thus have an ĉðtÞ to which cðtÞ can be fitted.
Based on cðtÞ, we can calculate the number of cochanges

each of the dependencies in the data would exhibit if the

earlier discussed homogeneity of change propagation

assumption held true. From this hypothetical cochange

distribution, the hypothetical Lorenz curve L�ðxÞ is com-

piled. L�ðxÞ serves a reference, giving the concentration of

cochanges, the system would exhibit if age was the only

difference between the dependencies. If LðxÞ has a stronger

bent than L�ðxÞ, cochanges concentrate more than we
would expect based on the existing age differences. To
facilitate the comparison of LðxÞ and L�ðxÞ, we calculate the
respective Gini-Coefficients g and g�. Similar values of g and
g� imply that dependencies are homogeneous in their
influence on cochanges. If g is significantly larger than g�,
dependencies are heterogeneous and consequently the
cochange behavior is not a mirror image of the dependency
structure.

3.7 Data Sources

For several reasons, our study focuses on Java projects: Java,
unlike other popular languages such as C++ was designed
from scratch to be an object-oriented language. Each class is
defined in a separate file. For this reason, file changes can be
directly mapped to class changes. Furthermore, Java enjoys
a high popularity in the Open Source community: On
SourceForge (http://www.sf.net)—the largest Open Source
incubator site—Java is used in approximately 25 percent of
the projects (in August 2007). This makes Java the most
popular language used.

The project set used in this paper comprises 35 projects,
and is listed in Table 1. SourceForge served as our main
data source, contributing 33 of the projects. Detailed
information on each of them could, at the moment of
writing, be found at http://NAME.sf.net, where NAME

GEIPEL AND SCHWEITZER: THE LINK BETWEEN DEPENDENCY AND COCHANGE: EMPIRICAL EVIDENCE 1437

TABLE 1
Summary of Statistical Analysis

For the definitions and information on the error margins, see Section 3.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 13,2021 at 08:19:00 UTC from IEEE Xplore. Restrictions apply.

stands for the name of the project. They were selected as
follows: We took the 36 largest3 Java projects using CVS as
version control system. Next, we verified the data quality,
which led to the exclusion of three projects: easyeclipse
was excluded as it only constitutes a repackaging of the
Eclipse IDE. Furthermore, the projects OpenQRM and
OACBPMF were excluded as their version log files show
hardly any activity taking into account their size. They have
been developed outside SourceForge and were later just
copied to SourceForge.

Finally, the set of SourceForge projects was complemen-
ted with two further projects: AspectJ (see http://www.
eclipse.org/aspectj/) and Eclipse,4 both hosted by IBM.
This makes, all in all, 35 projects. We added Eclipse and
AspectJ for two reasons: first to alleviate the bias toward
only one hosting site and second, to also include projects
which are developed mainly by a firm (IBM). As we argue
in Section 5.1 in more detail, adding such projects to the
analysis alleviates the bias toward noncommercial Open
Source software.

The data used in this study is available online: http://
www.sg.ethz.ch/research/social_organizations/structure_
and_dynamics_of_open_source_software.

4 RESULTS

In this section, we present and interpret the empirical
results of the analysis described in the previous section. The
structure of this section parallels the list of research
questions presented in Section 1.

4.1 Dependencies and Cochange

As pointed out in Section 3.3, the probabilities PD and P:D
provide evidence for the influence dependencies exert on
the cochange behavior.

Table 1 (columns one and five) shows the empirical
values of PD and P:D for our sample set of 35 projects. PD
ranges between approximately 15 and 60 percent, P:D is
less than 5 percent for all projects except the project
aspectj.5 This means that the existence of a dependency
between two classes significantly raises the chance of
change propagation. Yet, we have to acknowledge that in
all analyzed projects except for three, the majority of the
dependencies are change neutral: More than half of the
dependencies never change in the entire development
history propagated. This is an important point which we
will revisit in the discussion on homogeneity of dependen-
cies (Section 4.3).

Let us now differentiate between the three types of
dependencies considered. Columns two to four depict the
empirical values of PDa

, PDb
, and PDc

. It can be seen that
dependencies generated by inheritance or extension (PDa

)
exert the strongest influence on the cochange dynamics,

followed by dependencies generated by a part-of relation-
ship (PDb

). The question is: “Does this difference matter?”
We first approach this question with statistics. Normally, a

T-Test would tell us whether the means of the distributions
PDa

, PDb
, and PDc

differ in a statistically significant way. We
would need to assume the data to be normally distributed
though. However, we do not even know if they are at least
from the same distribution. Thus, we decided to conduct a
two-sample Kolmogorov-Smirnov test (two-sample KS-test)
to check whether the distributions are similar. A two-sample
KS-test is nonparametric and distribution free, which means
that we do not have to make assumptions about the
distribution of the data (not to be confused with the one-
sample KS-test). The null hypothesis is that two data sets
(for instance, PDa

and PDb
) are from the same continuous

distribution. The alternative hypothesis is that they are from
different continuous distributions.

The results from the two-sample KS-test support the
hypothesis that the three respective distributions are
distinct. The statistical significance level reached is 1 per-
cent, meaning that the probability of a false negative for the
given test and data is 1 percent.

Nonetheless, as Carver [5], [6] points out, one should not
overestimate statistical significance. Statistical tests are not a
substitute for common sense: Not every difference that is
statistically significant is necessarily important in practice.
Looking at the three distributions not from a statistician’s
point of view but from a software engineer’s point of view,
we doubt that the difference betweenPDb

andPDc
plays a role

in practice. The difference between PDa
and PDb

/PDc
seems

more relevant. It means that class inheritance generates
significantly stronger dependencies between classes than
any other form of dependency such as call or composition.

Coming back to our first research question, “Are
dependent modules more likely subject to cochange?”, we
can conclude that the pronounced difference between PD
and P:D supports the view of dependencies as propagators
of change.

4.2 Indirect Dependencies and Cochange

In Section 3.4, we argued that if indirect dependencies
matter and change propagation along a path of dependen-
cies exists, the relation between the length l of this path and
the probability of a cochange occurring at least once in the
project history Pl

D should fit approximately ðPDÞl þ c.
Fig. 2 shows the fit for the Azureus project. It can be seen

that in the case of Azureus the empirical data indeed follow
the theoretical model. And, the Azureus project is no

1438 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012

3. The size was measured as the number of Java classes in the code
repository.

4. See http://www.eclipse.org/ for further information and dev.eclipse.
org:/cvsroot/eclipse for the exact source we used in the analysis.

5. Aspectj is a special case as many classes in its software repository
make use of aspect-oriented programming [28]. This means that many
dependencies are generated by the aspect weaver. Such dependencies are
invisible in our analysis. We assume that these “invisible” dependencies are
responsible for the high value of P:D in aspectj.

Fig. 2. Share of active dependencies depending on distance.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 13,2021 at 08:19:00 UTC from IEEE Xplore. Restrictions apply.

exception: Table 1 lists the goodness of the fit (adjusted R2)
for all 35 projects.

As indicated by the high values of R2, the model
describes the empirically measured PDl quite well for the
majority of the analyzed project. Twenty-nine fits out of 37
have an adjusted R2 larger than 0.9, meaning that more than
90 percent of the variance in the empirically measured PDlb

is explained by the model.
This high level of congruence between the model and the

data is evidence for change propagation along a path of
dependencies and answers our second research question:
“How does the probability of cochange change with
distance in the dependency graph?” Consequently, this
means that indirect dependencies are also important and
should be considered when modeling cochanges.

4.3 Heterogeneity in the Cochange Distribution

In Section 3.5, we presented the tools to quantify the
concentration of cochange and thus check the homogeneity
assumption. The results are now presented in two steps:
First, we focus on a single project, Eclipse, and second, we
take a broader look at the whole sample of 35 projects.

Fig. 3 shows in black the Lorenz curve for the Eclipse
project considering all dependencies, according to (6). It can
be seen that this curve is strongly bent. As a reference, the
dashed line marks the line of equality (diagonal line) and the
dotted lines mark the point where x ¼ 90%. The graph
indicates that the most active 10 percent of the dependencies
are responsible for over 70 percent of the change propagation
along dependency links. This result is based on approxi-
mately 235,000 dependencies and nearly 284,000 cochanges.

The reference curve L�ðxÞ is shown in gray. It indicates
the hypothetical cochange distribution resulting from an
architecture with homogenous change propagation but the
same age distribution as the real-world architecture (see
Section 3.6 for the definition). L�ðxÞ clearly shows less
concentration than LðxÞ: It predicts only 19.96 percent of
cochanges for the most active 10 percent dependencies. This
means that different ages of the dependencies are not a

sufficient explanation for the high concentration of co-
changes found in the data.

The situation is similar for the other projects. Table 1 lists
the Gini Coefficients g for all 35 projects, and throughout
the sample the concentration is very high; on average 0.78.
Even if we factor in the age differences between classes, the
picture does not change: The hypothetical concentration
caused by age differences is just 0.18 on average (see g�).

We conclude that cochanges highly concentrate consis-
tently throughout the entire set of projects. Thus, the
homogeneity assumption must be rejected. Our third
research question,“Are dependencies homogeneous in their
correlation with cochanges?”, needs to be answered with a
clear no.

5 DISCUSSION

We start our discussion by exploring limits of the just
presented results as well as possible threads to their
validity. Next, implications and future research perspec-
tives are analyzed.

5.1 Limitations and Threads to Validity

In this section, we discuss a number of threads to the
validity of our study. The purpose is to give further
arguments for our research decisions and to define the
limits of this study.

5.1.1 Possible Bias in the Data Selection

As explained in Section 3.7, we tried to select a representa-
tive set of projects. Still, it is impossible to make a
completely unbiased selection. The first objection suggest-
ing itself is that taking the majority of the projects from the
same hosting site might introduce a bias. Nevertheless, we
argue that Sourceforge hosts a broad variety of projects and
the projects in our selection have no obvious connections
with each other. They differ in purpose and involved
programmers. A second, more substantial objection is that
all projects are Open Source projects and thus it is not sure
whether the results also pertain to commercial projects. We
counter that there are projects in our selection which are to a
large part developed by firms, such as Eclipse (IBM).
There is one similarity, though, that all these projects share:
They are projects developed over years with a community
associated with them. The study is missing short-term
remittance work for a specific customer. We are not sure,
though, whether these kinds of projects are actually
valuable for research on software engineering as, by
definition, they hardly evolve. Finally, we argue that,
provided the results in Table 1 are quite clear and depict
a rather homogeneous situation—which is the case—it is
our belief that closed source or Open Source projects from
other hosting sites exhibit vastly different behavior. None-
theless, replication of our results for commercial products
and further Open Source is essential to establish a solid
theory of dependency and change.

5.1.2 Programming Language Differences

What differentiates us from most other authors who
worked on dependency structures in software [29], [33],
[42], [44] is that we used Java programs instead of C++
programs. There are two reasons for this: First, Java is the

GEIPEL AND SCHWEITZER: THE LINK BETWEEN DEPENDENCY AND COCHANGE: EMPIRICAL EVIDENCE 1439

Fig. 3. Concentration of cochanges. Solid black line: The Lorenz curve
LðxÞ for the distribution of cochanges among all dependencies in Eclipse
(see (6)). Solid gray line: The Lorenz curve L�ðxÞ which would
be generated by the age differences among dependencies only (see
Section 3.6). The dashed line marks the line of perfect equality.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 13,2021 at 08:19:00 UTC from IEEE Xplore. Restrictions apply.

most frequently used language on SourceForge, based on
number of projects. Second, Java was designed as an object-
oriented language from the beginning, in contrast to many
other object-oriented languages which are often just
procedural languages with an extension for the Object-
Oriented paradigm. We believe that class dependencies can
thus be extracted from Java programs with higher accuracy
and less ambiguity than from C++ programs for instance.
See also Section 3.7 where we argued that this higher
accuracy is due to the stringent Object-Oriented design of
Java as opposed to C++. In all other aspects, we followed
the dependency concept used in the just cited publications.

Given the structural similarity of object-oriented lan-
guages, we argue that the general results presented in this
paper should pertain to the whole group of Object-Oriented
languages. Nonetheless, further studies are needed to
confirm this (see also Section 5.2). Clearly, the results
presented in this paper are limited to the Object-Oriented
paradigm. In procedural languages, the concept of depen-
dency is different and we cannot expect per se dependencies
between functions to behave equivalently to class dependen-
cies. Further investigations in this field would be worthwhile.

5.1.3 Possible Errors in the Cochange Calculation

As discussed in Section 3.2, there are mainly two methods
to construct the cochange graph: the commit-based one,
which we used in this paper, and the sliding window
approach. In Section 3.2, we gave a number of arguments
for our choice, but also pointed out that both methods may
introduce errors. The purpose of this section is to analyze in
how far such an error jeopardizes our results.

First of all, what is the nature of the bias for both
methods of cochange calculation? In general, we can say
that the commit-based method is underestimating the
number of cochanges. The sliding window may either over-
or underestimate the number of cochanges depending on
the value of �t. The latter would thus make it possible to
“tune” the results, a possibility that should be avoided for a
empirical study aimed at verifying or falsifying claims. For
machine learning algorithms, on the other side, a tunable
parameter �t can be very useful: For prediction problems,
we could determine a suitable �t by minimizing an error
function based on prediction errors in a test set. For our
study, there is no such error function.

Apart from this consideration, possibly underestimating
the number of cochanges might have the following con-
sequences for the validity of the results in this paper: We first
asked: Are dependent modules more likely subject to
cochange? We found that independent modules have, on
average, a probability of 33.16 percent to be involved in a
cochange during the life span of a project, unconnected ones
a probability of 1.94 percent (Table 1). This is a difference of
one order of magnitude. Even if all additionally counted
cochanges in a sliding window approach behaved in exactly
the opposite way to ones counted by the commit-based
approach, the number of cochanges would need to roughly
double to invalidate our result. Second, we asked: How does
the probability of cochange change with distance in the
dependency graph? We found that the function PDl ¼
ðPDÞl þ c is a good approximation of the probability of
cochange dependent on distance l in the dependency graph

(Table 1). Such a result might be disturbed more easily than
the previously discussed one. Nonetheless, also in this case
there is no plausible reason for additionally counted
cochanges to be vastly different in behavior compared to
the ones already counted by the commit-based approach.
Finally, we found that cochanges highly concentrate (Fig. 3).
To level out this very pronounced concentration (compare g
and g� in Table 1) we would need to double the cochanges
and all of them would need to behave in the exact opposite
way than the already counted ones, a situation that seems
very unlikely. However, this is an aspect for further research.

5.1.4 Directed versus Undirected Dependencies

For the calculation of the conditional probabilities in
Section 3.3, we relied on directed dependencies. This means
that if class i depends on class j, then Di;j ¼ 1 but not
necessarily Dj;i ¼ 1. Alternatively, we could argue that
dependencies should be treated as undirected ones. If i
depends on j and j is changed, imight need to be modified as
well. Equally, one could argue that also a change in i might
trigger a change in j. Therefore, we might assume D to be
symmetric (Di;j ¼ Dj;i).

The question is: Did we miss a part of the dependencies
by treating them as directed (D unsymmetric)? We will now
show that this difference would not qualitatively change
our results. First of all, it should be noted that the difference
of P:D and PD is very pronounced (see Table 1) and a large
distortion would be needed to invalidate our conclusion. To
approach the problem in an analytical way, let us look at the
expression to calculate the conditional probabilities and
how they would change. PD was defined in (3) as

jfDi;j ¼ 1 ^ Ci;j � 1gj
jfDi;j ¼ 1gj :

What happens if we make D symmetric? We will roughly
double the number of entries holding a 1 in D as circular
dependencies are abhorred by software engineers and
count among the so-called antipatterns of object-oriented
software engineering: “The dependency structure between
packages must be a directed acyclic graph (DAG). That is,
there must be no cycles in the dependency structure” [34].
Empirical analysis performed by us using the database of
this paper showed that direct circular dependencies are rare
indeed. Based on this reasoning, we expect the denominator
to roughly double. What happens to the numerator?
Actually, it will also roughly double because C is already
symmetric. The ^ connector will evaluate the same for the
newly added dependencies as it did for their already
existing symmetric counterparts. If both the denominator
and the numerator roughly double, our results are stable.

The situation is a little bit different for (4). P:D was
defined as

jfDi;j ¼ 0 ^ Ci;j � 1gj
jfDi;j ¼ 0gj :

Roughly doubling the dependencies will reduce the
number of nondependent class pairs (jfDi;j ¼ 0gj) by
approximately jfDi;j ¼ 1gj. Please note that jfDi;j ¼ 1gj is,
in practice, much smaller than jfDi;j ¼ 0gj. For instance, in
the project azureus, there are 3;147 classes. There are

1440 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 13,2021 at 08:19:00 UTC from IEEE Xplore. Restrictions apply.

17;012 dependencies and thus 3;1472 � 17;012 ¼ 9;886;597
independent pairs of classes. There is a difference of several
orders of magnitude and our results are thus stable.

5.1.5 Correlation versus Causation

It is important to note that a correlation between depen-
dence and cochange is a necessary but can never be a
sufficient condition for causation. If A and B are correlated,
we cannot automatically conclude that A causes B.
Correlation is symmetric. Thus, it could also be generated
by B causing A. Finally, there could be an unobserved C
causing both A and B. Also, in this case we would observe
a correlation. What does this mean for our study? The
common opinion in the literature is that dependencies cause
cochange. The reversal seems not very plausible: It is hard
to conceive of a mechanism by which the act of changing
two classes simultaneously would also introduce a depen-
dency. It is more plausible that the introduction of a
dependency causes a cochange. The third possibility that an
unobserved C causes both cochange and dependency
cannot be excluded though. We could conceive another
type of connection or influence, not captured by our
definition of dependency, which causes both cochange and
dependency. Finally, we need to keep in mind that change
activity of a developer is a precondition to cochange.
Change in software as it is is intrinsically linked to the
intention of the developer, which, as are all human
intentions, are difficult to quantify or determine (see also
[8]). This means that by answering the just-mentioned
research questions positively with our empirical analysis,
we show that the classically assumed link between
dependency and cochange has not been falsified. We do
not prove, however, that it exists. In any way, from a
philosophy of science point of view, there are convincing
arguments that proofs of this kind are not possible at all: For
an in-depth discussion see Popper [40].

5.1.6 Possible Errors in the Data

A final thread to the validity of this study is the possibility of
erroneous data. The data as described in Section 3.7 consist
of dependency relationships and change logs. The parsing of
CVS change logs is straightforward and does not require
sophisticated algorithms. We do not expect errors here.
Furthermore, given the maturity of CVS, we judge the
produced logs to be reliable. Still, there might be information
missing: Often projects start without version control or not
under the version control of SourceForge. This means that
we miss events in the beginning of the project. We argue that
the information missing is not problematic as the logs used
capture, on average, a development history of nearly five
years, which we consider a sufficient database for our study.

The construction of the dependency network is more
complicated than the change data. As pointed out in
Section 3.1, we used the Eclipse Java development tools,
which are a core part of the Eclipse platform. Given its
widespread use and maturity, we assume correct function-
ing. Yet, we cannot entirely rule out the possibility of bugs in
code we wrote ourselves. Manual inspection did not reveil
any problems. However, given the high amount of data,
manual inspection was only feasible on the basis of spot
samples. We therefore invite other researchers to indepen-
dently reproduce the dependency data we published,
employing tools different from ours.

5.2 Implications and Future Work

This section discusses the implications of the results
presented in Section 4. It also gives an outlook on possible
continuations of the work. We first concentrate on the
theory and then look at practical perspectives.

5.2.1 Toward a Theory of Dependency and Change

Many of the results presented in this paper evidence that
the general perception of dependencies as vectors or axes of
change propagation (see Sangal et al. [42]) is correct.
Furthermore, we were able to provide empirical evidence
for the transitive propagation of changes via a path of
dependencies. With this finding, we back assumptions
made by MacCormack et al. [33], for instance.

Apart from these points, our findings also challenge
common assumptions on the relationship between depen-
dency and cochange. As pointed out in the introduction,
several authors (e.g., [33], [42], [45]) implicitly assume an
equal distribution of cochanges among dependencies. In
light of our results, this seems to be problematic. If half of
the dependencies are not involved in cochanges (see
Section 4.1), the dependency structure of a piece of
software is a very crude measure for its change behavior.
This point is further strengthened by the inequality
between the three types of dependencies we differentiated
as well as by the results presented in Section 4.3: If the
most active 10 percent of the dependencies are responsible
for over 70 percent of the cochanges, as is the case in
Eclipse, then the cochange behavior is hardly a mirror
image of the dependency structure. The high values of
inequality among the dependencies throughout the entire
set of analyzed projects clearly show that the link between
the dependency structure and the cochange behavior is
more complicated than previously thought.

We draw the following conclusions: In theoretical
investigations of software evolution, we cannot treat all
dependencies alike. A differentiated view on dependency
between classes is needed. Furthermore, as many depen-
dencies are never involved in change propagation, a
lopsided minimization of dependencies will not necessarily
improve the architecture in respect to its flexibility. We
should keep in mind that dependencies—independently of
the programming language used—serve a purpose: code
reuse. Each dependency means that functionality was not
duplicated but reused. Consequently, a highly connected
class in the dependency network is not necessarily an
evidence of flawed design but distinguishes the class as
very important. Only if this importance goes along with
change propagation does the design deserve a critical look.
This also means that approaches relying solely on the
dependency structure to judge the change behavior and
flexibility of a software architecture are problematic. We
argue that both the dependency view and the cochange
view need to complement each other to paint a full picture
of the software architecture.

To round off this discussion, let us take a look at three
open issues or possible future lines of research, respectively.
We consider them to be the next steps in a comprehensive
theory of dependency and change.

In this paper, we focused on the connection between
dependency and cochange. Dependency is not the only

GEIPEL AND SCHWEITZER: THE LINK BETWEEN DEPENDENCY AND COCHANGE: EMPIRICAL EVIDENCE 1441

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 13,2021 at 08:19:00 UTC from IEEE Xplore. Restrictions apply.

possible driver of cochange though. To predict change, a
variety of factors have been considered in the literature [9],
[22], [45], [47], [48]. Some of them might also be important in
the context of cochange. As an example, let us look at
complexity. Take, for instance, cyclic complexity by McCabe
[36]. In this context, Capiluppi et al. [4] already explored the
relationship between cumulative change and complexity in
an evolving Open Source system. They found correlations
between high cumulative change and high complexity. Such
an analysis could be connected with the dependency view. A
relevant research question, in our opinion, would be whether
complexity of a class correlates with its involvement in
cochange events. Another one would be: Are dependencies
between complex classes more likely to be an axis of change?
Similar questions can be asked for any further metric which
was successfully used in change prediction.

A second direction of possible future research would be
the extension of our analysis to non-object-oriented lan-
guages. One might argue that non-object-oriented languages
belong to the past; still it cannot be dismissed that a number
of large and important pieces of software are mainly written
in plain C: the GNU/Linux operating system and Apache, to
name only two. Besides C, COBOL is also still widely used in
industry, government, and the military, especially in legacy
software. The core question is whether function dependen-
cies exhibit similar characteristics as class dependencies.

Finally, besides our definition of dependency, others are
possible. Especially, more fine grained or weighted depen-
dencies deserve consideration. In this study, we choose a
very simple definition to build a baseline model. Future
research could further test dependency definitions against
this baseline model and thus determine the stability of the
results in the face of varying concepts of dependency.

5.2.2 Toward a Practical Application

As for the analysis of change behavior, an early example of
version control system log analysis is the work of Ball et al.
[1]. They also underline the value of change logs for future
investigations. Later, with the rise of version control
systems and Open Source software, analyzing change
behavior of software has become feasible on a large scale.
Kazman and Carrière [27], for example, show how the
software architecture of a project can be partially recovered
based on evidence found in the version control system logs,
and Graves et al. [21] show that under certain conditions
metrics calculated based on the change histories are more
useful in predicting fault rates than metrics calculated on
the actual source code. Consequently, project histories and
version logs became a popular research target. In particular,
the change behavior caught the interest of researchers. To
better control change, there has been substantial research in
predicting cascading changes: Hassan and Holt [22],
Clarkson et al. [9], Ying et al. [47], Zimmermann et al.
[48], Tsantalis et al. [45]. Furthermore, from the analysis of
these change logs the so-called change coupling between
modules can be calculated, as Gall et al. [12] demonstrate.
Recent work also led to practical tools which can be
integrated into the development process: see, for example,
the work of Gall et al. [13].

The main difference between previous work and the
research presented in this paper is that it focuses on
analyzing the possible connection between dependency and

cochange while previous work aimed mainly at practical
applications such as change prediction and online advice
for the programmer. In this paper, we investigated the
general relationship between dependency and cochange.
We think that this approach generates strong synergy with
more applied lines of research as our findings may inform
future tools and change prediction approaches.

We will now sketch such a practical application and
show how a combination of the dependency view (D) and
the change coupling view (C) could be used to target
refactoring effort; not in theory, but in practice. The basic
idea is to filter the dependency matrix D and weight the
entries with their cochange activity. This can be accom-
plished by multiplying D and C element-wise:

D0i;j ¼ Di;j � Ci;j: ð13Þ

Fig. 4 compares the resulting D0 with D visually for one
specific project: AspectJ. In the right graph D0, all change
neutral dependencies are removed and the remaining edges
are weighted by the amount of changes propagated
according to expression (13). This graphical representation
enables us to identify hot spots of change propagation in the
architecture: Especially, cluster E shows high change
propagation. In clusters A and B, change propagation is
more centralized and forms star-like structures. This
implies that the central node of the star should be the
target of refactoring. Cluster D, on the other hand,
disintegrates into a few strong change couplings. Finally,
clusters C and F are densely connected but hardly cause
change propagation, which means that their dependencies
are change neutral. Consequently, refactoring effort should
primarily concentrate on the classes in clusters E and B.

Besides the graphical representation, the raw cochange
matrix may also provide guidance. The link with the highest
number of cochanges can easily be identified. As an example,
let us consider Azureus. The most change-active depen-
dency, with 44 cochanges, is the one between the class
DownloadManagerImpl (package org.gudy.azur-

eus2.core3.download.impl) DownloadManagerCon-
troller (same package). DownloadManagerImpl is also
the class which involved in the highest number of cochange
events (203). It can be considered the cochange hot spot in
Azureus. The question is now: Did we find a design problem?
Indeed, manual inspection of these classes reveals a number
of design flaws we already mentioned in Section 1. First of all,
both classes take too many responsibilities. They count 144
(the third highest value in the software) and 82 public
methods, respectively. The methods are only loosely related
to each other; their cohesion is low. This clearly violates the
Single Responsibility and the High Cohesion rule ([35,
ch. 10]). Furthermore, responsibilities are not properly
divided betweenDownloadManagerImpl and Download-
ManagerController. Coupling between the two classes is
high. Even though DownloadManagerImpl provides an
interface (DownloadManager), it is not consistently used by
DownloadManagerController. Apart from that, the class
fan-out complexity of DownloadManagerImpl is 64, which
means that it uses immediately 64 subordinate classes (see
[26] for the original definition). Code style tools such as
Checkstyle (http://checkstyle.sourceforge.net) already con-
sider a Fan-Out of 20 a rule violation. Finally, it is important

1442 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 13,2021 at 08:19:00 UTC from IEEE Xplore. Restrictions apply.

to note that the just described problems are not present in the
other classes of the same package or superpackage.

From these observations, we can conclude we have not
only identified a cochange hot spot but also an example of
particularly problematic software design. However, until
the just-described method can be used as a productive tool
several aspects need to be clarified in future research: We
think that more case studies are needed to find out whether
our example is representative.

6 CONCLUSIONS

For the dependency analysis, we built on work by Sangal
et al. [42] and MacCormack et al. [33] which we adapted to
Object Oriented software, namely, Java. For the cochange
calculation, we followed Ball et al. [1]. The contribution of
this paper is having brought both together to empirically
analyze the link between dependency and cochange. In
particular, we asked two questions: First, “Do changes
propagate from one module to another along dependencies
between these modules?” We provided positive evidence
for this propagation of change by calculating conditional
probabilities and fitting a propagation model to the
collected data. Second, we asked “Are all dependencies
more or less comparable in their propensity to propagate
change?” We used Lorenz Curves and Gini Coefficients to
quantify the skewedness of the distribution of cochanges on
dependencies. The results clearly showed that cochanges
distribute in a highly unequal manner.

The picture of dependencies resulting from these find-
ings is two sided: On the one side, the classical picture of
dependencies as propagators of cochange is supported. On
the other side, the finding that the lion’s share of actually
propagated changes concentrates on a small subset of the
dependencies is new and counterintuitive. As a conse-
quence, we argue that inferring the cochange characteristics

of a software architecture solely from its dependency
network results in a severely distorted approximation of
cochange reality. Furthermore, dependencies should not
necessarily be seen as a nuisance because, as we argue in
Section 5.2.1, change neutral dependencies enable code
reuse, an important ingredient of a flexible architecture.
Finally, to target refactoring effort, the dependency structure
alone is not enough. It needs to be complemented with an
analysis of the change logs of the project. In Section 5.2.2, we
provided a brief practical example in which a combined
analysis of dependencies and change coupling lead us to
design flaws in the Azureus software.

In that sense, we hope that the results and approaches

presented in this paper foster a better understanding of the
nature of software dependencies, spawn discussion, and

support the development of new software engineering tools.

ACKNOWLEDGMENTS

The authors acknowledge financial support by the Swiss

National Science Foundation (SNSF) (Grant CR12I1_125298).

REFERENCES

[1] T. Ball, J. Kim, A. Porter, and H. Siy, “If Your Version Control
System Could Talk,” Proc. ICSE Workshop Process Modelling and
Empirical Studies of Software Eng., 1997.

[2] K.H. Bennett and V.T. Rajlich, “Software Maintenance and
Evolution: A Roadmap,” Proc. Conf. Future of Software Eng.,
pp. 73-87, 2000.

[3] S. Bohner and R. Arnold, Software Change Impact Analysis. IEEE CS
Press, 1996.

[4] A. Capiluppi, A. Faria, and J. Ramil, “Exploring the Relationship
between Cumulative Change and Complexity in an Open Source
System,” Proc. Ninth European Conf. Software Maintenance and
Reeng., pp. 21-29, 2005.

[5] R. Carver, “The Case against Statistical Significance Testing,
Revisited,” J. Experimental Education, vol. 61, no. 4, pp. 287-292,
1993.

GEIPEL AND SCHWEITZER: THE LINK BETWEEN DEPENDENCY AND COCHANGE: EMPIRICAL EVIDENCE 1443

Fig. 4. Left: The code dependency network D of AspectJ. Right: Change coupling C superimposed on D (see (13)). While some clusters, i.e., E,
constitute hot spots of change propagation, it can also be seen that some high interdependence in D is not necessarily associated with high
cochange activity: Clusters C and F are densely connected (left) but do not show change propagation (right). For more details on the specific graph
layout algorithm used, see [16].

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 13,2021 at 08:19:00 UTC from IEEE Xplore. Restrictions apply.

[6] R.P. Carver, “The Case against Statistical Significance Testing,”
Harvard Educational Rev., vol. 48, no. 3, pp. 378-399, 1978.

[7] D. Challet and A. Lombardoni, “Bug Propagation and Debugging
in Asymmetric Software Structures,” Physical Rev. E, vol. 70, no. 4,
p. 046109, 2004, doi: 10.1103/PhysRevE.70.046109.

[8] N. Chapin, J. Hale, K. Khan, J. Ramil, and W. Tan, “Types of
Software Evolution and Software Maintenance,” J. Software
Maintenance and Evolution: Research and Practice, vol. 13, no. 1,
pp. 3-30, 2001.

[9] P. Clarkson, C. Simons, and C. Eckert, “Predicting Change
Propagation in Complex Design,” J. Mechanical Design, vol. 126,
pp. 788-797, 2004.

[10] N. Fenton and N. Ohlsson, “Quantitative Analysis of Faults and
Failures in a Complex Software System,” IEEE Trans. Software
Eng., vol. 26, no. 8, pp. 797-814, Aug. 2000.

[11] R. Floyd, “Algorithm 97: Shortest Path,” Comm. ACM, vol. 5, no. 6,
p. 345, 1962.

[12] H. Gall, M. Jazayeri, and J. Krajewski, “CVS Release History Data
for Detecting Logical Couplings,” Proc. Sixth Int’l Workshop
Principles of Software Evolution, pp. 13-23, 2003.

[13] H. Gall, B. Fluri, and M. Pinzger, “Change Analysis with Evolizer
and Changedistiller,” IEEE Software, vol. 26, no. 1, pp. 26-33, Jan./
Feb. 2009.

[14] K. Gallagher and J. Lyle, “Using Program Slicing in Software
Maintenance,” IEEE Trans. Software Eng., vol. 17, no. 8, pp. 751-
761, Aug. 1991.

[15] J.L. Gastwirth, “The Estimation of the Lorenz Curve and Gini
Index,” The Rev. of Economics and Statistics, vol. 54, no. 3, pp. 306-
316, 1972.

[16] M.M. Geipel, “Self-Organization Applied to Dynamic Network
Layout,” Int’l J. Modern Physics C, vol. 18, no. 10, pp. 1537-1549,
Oct. 2007.

[17] M.M. Geipel and F. Schweitzer, “Software Change Dynamics:
Evidence from 35 Java Projects,” Proc. Seventh Joint Meeting of the
European Software Eng. Conf. and the ACM SIGSOFT Symp.
Foundations of Software Eng., pp. 269-272, 2009.

[18] D. German, “An Empirical Study of Fine-Grained Software
Modifications,” Empirical Software Eng., vol. 11, no. 3, pp. 369-
393, 2006.

[19] C. Gini, “Measurement of Inequality of Incomes,” The Economic J.,
vol. 31, pp. 124-126, 1921.

[20] M. Goodrich, R. Tamassia, and J. Wiley, Algorithm Design:
Foundations, Analysis, and Internet Examples. Wiley, 2002.

[21] T. Graves, A. Karr, J. Marron, and H. Siy, “Predicting Fault
Incidence Using Software Change History,” IEEE Trans. Software
Eng., vol. 26, no. 7, pp. 653-661, July 2000.

[22] A. Hassan and R. Holt, “Predicting Change Propagation in
Software Systems,” Proc. 20th IEEE Int’l Conf. Software Main-
tenance, pp. 284-293, 2004.

[23] J. Hennessy, D. Patterson, D. Goldberg, and K. Asanovic, Computer
Architecture: A Quantitative Approach. Morgan Kaufmann, 2003.

[24] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural Slicing
Using Dependence Graphs,” ACM Trans. Programming Languages
and Systems, vol. 12, no. 1, pp. 26-60, 1990.

[25] A. Hunt and D. Thomas, The Pragmatic Programmer: From
Journeyman to Master. Addison-Wesley Professional, Oct. 1999.

[26] D. Kafura and G. Reddy, “The Use of Software Complexity
Metrics in Software Maintenance,” IEEE Trans. Software Eng.,
vol. 13, no. 3, pp. 335-343, Mar. 1987.

[27] R. Kazman and S. Carrière, “Playing Detective: Reconstructing
Software Architecture from Available Evidence,” Automated Soft-
ware Eng., vol. 6, no. 2, pp. 107-138, 1999.

[28] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin, “Aspect-Oriented Programming,”
Proc. 11th European Conf. Object-Oriented Programming, M. Akşit
and S. Matsuoka, eds., pp. 220-242, 1997.

[29] M. LaMantia, Y. Cai, A. MacCormack, and J. Rusnak, “Analyzing
the Evolution of Large-Scale Software Systems Using Design
Structure Matrices and Design Rule Theory: Two Exploratory
Cases,” Proc. Seventh Working IEEE/IFIP Conf. Software Architecture,
pp. 83-92, 2008.

[30] Program Evolution: Processes of Software Change, M.M. Lehman and
L.A. Belady ed. Academic Press, 1985.

[31] K.J. Lieberherr and I.M. Holland, “Assuring Good Style for Object-
Oriented Programs,” IEEE Software, vol. 6, no. 5, pp. 38-48, Sept.
1989.

[32] M. Lorenz, “Methods of Measuring the Concentration of Wealth,”
Am. Statistical Assoc., vol. 9, no. 70, pp. 209-219, 1905.

[33] A. MacCormack, J. Rusnak, and C.Y. Baldwin, “Exploring the
Structure of Complex Software Designs: An Empirical Study of
Open Source and Proprietary Code,” Management Science, vol. 52,
no. 7, pp. 1015-1030, 2006.

[34] R. Martin, “Granularity,” C++ Report, vol. 8, no. 10, pp. 57-62,
1996.

[35] R. Martin, Clean Code: A Handbook of Agile Software Craftsmanship.
Prentice Hall, 2008.

[36] T.J. McCabe, “A Complexity Measure,” IEEE Trans. Software Eng.,
vol. 2, no. 4, pp. 308-320, Dec. 1976.

[37] M. Natrella, C. Croarkin, P. Tobias, J.J. Filliben, B. Hembree, W.
Guthrie, L. Trutna, and J. Prins, “NIST/SEMATECH E-Handbook
of Statistical Methods,” NIST/SEMATECH, http://www.itl.nist.
gov/div898/handbook/, 2011.

[38] W.F. Opdyke and R.E. Johnson, “Refactoring: An Aid in
Designing Application Frameworks and Evolving Object-Oriented
Systems,” Proc. Symp. Object-Oriented Programming Emphasizing
Practical Applications, 1990.

[39] D. Parnas, “Software Aging,” Proc. 16th Int’l Conf. Software Eng.,
pp. 279-287, 1994.

[40] K. Popper, Conjectures and Refutations: The Growth of Scientific
Knowledge. Routledge, 2002.

[41] V. Rajlich, “A Model for Change Propagation Based on Graph
Rewriting,” Proc. Int’l Conf. Software Maintenance, pp. 84-91, 1997.

[42] N. Sangal, E. Jordan, V. Sinha, and D. Jackson, “Using
Dependency Models to Manage Complex Software Architecture,”
Proc. 20th Ann. ACM SIGPLAN Conf. Object-Oriented Programming,
Systems, Languages, and Applications, pp. 167-176, 2005.

[43] D.V. Steward, “The Design Structure System—A Method for
Managing the Design of Complex Systems,” IEEE Trans. Eng.
Management, vol. 28, no. 3, pp. 71-74, Aug. 1981.

[44] K.J. Sullivan, W.G. Griswold, Y. Cai, and B. Hallen, “The Structure
and Value of Modularity in Software Design,” SIGSOFT Software
Eng. Notes, vol. 26, no. 5, pp. 99-108, 2001.

[45] N. Tsantalis, A. Chatzigeorgiou, and G. Stephanides, “Predicting
the Probability of Change in Object-Oriented Systems,” IEEE
Trans. Software Eng., vol. 31, no. 7, pp. 601-614, July 2005.

[46] S. Warshall, “A Theorem on Boolean Matrices,” J. ACM, vol. 9,
no. 1, pp. 11-12, 1962.

[47] A.T. Ying, R. Ng, and M. Chu-Carroll, “Predicting Source Code
Changes by Mining Change History,” IEEE Trans. Software Eng.,
vol. 30, no. 9, pp. 574-586, Sept. 2004.

[48] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller, “Mining
Version Histories to Guide Software Changes,” IEEE Trans.
Software Eng., vol. 31, no. 6, pp. 429-445, June 2005.

Markus Michael Geipel studied computer
science at the Technische Universität München
(University of Technology, Munich) and the
University of Texas at Austin. He graduated
from the Technische Universität München with
highest distinction and later received the doc-
torate degree from the ETH Zurich. He currently
works in R&D at the German National Library,
were he focuses on the topics software quality,
linked data/Semantic Web, and architectures for

large-scale data processing.

Frank Schweitzer has been a professor and
chair of systems design at ETH Zurich since
2004. He is also an associated member of the
Department of Physics at the ETH Zurich. His
research interests focus on applications of
complex systems theory to the dynamics of
social and economic organizations. He is a
principal investigator of several interdisciplinary
research projects. The Swiss National Science
Foundation has funded his proposal “On the

Interplay between Social Interactions and Software Architecture in Open
Source Software” for 24 months. A list of recent publications, talks, and
other scientific activities can be found on his website: http://
www.sg.ethz.ch/.

1444 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 13,2021 at 08:19:00 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

