Modeling online collective emotions

Authors: David Garcia and Frank Schweitzer

Proceedings of the 2012 workshop on Data-driven user behavioral modelling and mining from social media-DUBMMSM '12, CIKM2012 (2012)

Abstract

A common phenomenon on the Internet is the appearance of collective emotions, in which many users share an emotional state. Online communities allow users to emotionally interact with large amounts of other users, creating collective states faster than in offline interaction. We present our modeling framework for collective emotions in online communities. This framework allows the analysis and design of agent-based models, including the dynamics of psychological states under emotional interaction. We illustrate the applications of our framework through an overview of two different models. Based on this framework, our first model of emotions in product reviews communities reproduces the empirical distribution of emotions towards products in Amazon. The second model within our framework reproduces the emergence of emotional persistence at the individual and collective level. This persistence pattern is similar to the one revealed by our statistical analysis of IRC chatrooms. Further applications of our framework aim at reproducing collective features of emotions in a variety of online communities.