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We  explore  the  dynamics  of  default  cascades  in  a network  of  credit  interlink-ages  in  which  each  agent
is  at  the  same  time  a borrower  and a lender.  When  some  counterparties  of an  agent  default,  the  loss  she
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defaults  less  likely.  We  show  that  this  view  is not  always  true.  In  particular,  the  diversification  of  credit
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inancial crisis

. Introduction

One of the most important issues that the Global Financial Crisis
GFC) has brought to the fore concerns the effects on systemic risk
f the increasing interdependence both among the main actors of
nancial markets and among financial markets across countries.

n particular, the notion of too-big-too-fail becomes more subtle,
hile the regulatory mechanisms based only on a bank’s own  risk
ay  fail to mitigate aggregate risk-shifting incentives, and can, in

act, accentuate systemic risk (Acharya, 2009).
Increasing interdependence of global financial markets – mainly

chieved by means of liberalization of capital flows – may  be sup-
osed to lead to greater worldwide financial stability, as risks are
pread around the world. Increasing interdependence of economic
gents, on the other hand, allows for a better diversification of indi-
idual risk, as risks are spread around the set of connected partners:
he larger the number of borrowers a lender is connected to in a

etwork of borrowing/lending relationship, the smaller the fraction
f an idiosyncratic shock (which leads to the default of a borrower)
he lender has to bear. This, other things being equal and assuming

∗ Corresponding author.
E-mail address: sbattiston@ethz.ch (S. Battiston).
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572-3089/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
oi:10.1016/j.jfs.2012.01.002
diosyncratic shocks are not correlated, i.e. they are not springing
rom the same source. It is reasonable to conjecture, therefore, that
ndividual risk diversification leads to a lower systemic risk. There is
t least one good and obvious reason to think that this is indeed the
ase. Consider a network of borrowing/lending relationships. Sup-
ose agent i lends 1 unit to each node in a neighborhood consisting
f k borrowers. When a borrower defaults (hence the idiosyncratic
hock to i), the loss the lender experiences (due to the non per-
orming loan) amounts to her relative exposure to the borrower.
he relative loss amounts to 1/k. By increasing the number of coun-
erparties so that chik tends asymptotically to infinity, the impact
f a negative shock (the relative exposure to each borrower) tends
o zero. Since the lender hit by an idiosyncratic shock does not feel
he pinch and does not react to it, there will not be further reper-
ussions of the shock itself. In this case, we  can rule out domino
ffects and default cascades. Hence enhanced risk diversification
hrough increasing network density reduces systemic risk.

The GFC has cast doubt on these conclusions. The breakdown
f a relatively small segment of the US financial system has not
nly spread to the other segments – an obvious consequence of

nterdependence – but has also pushed the system on the verge
f a “financial meltdown” at the time of the Lehman Brothers
ankruptcy. Moreover, this event has triggered a financial cri-
is worldwide due to capital market integration. One  legitimate

dx.doi.org/10.1016/j.jfs.2012.01.002
http://www.sciencedirect.com/science/journal/15723089
http://www.elsevier.com/locate/jfstabil
mailto:sbattiston@ethz.ch
dx.doi.org/10.1016/j.jfs.2012.01.002
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onjecture therefore, is that increasing interdependence of agents
nd integration of financial markets in principle may  not reduce
ut increase the risk of a systemic collapse.

Empirical research aimed at estimating systemic risk before
he GFC found very little evidence of global vulnerability (Bartram
t al., 2007), confirming the view that risk diversification had been
ushed so far as to reduce systemic risk to a negligible level. A
emarkable body of empirical literature on stress-testing in finan-
ial systems also confirmed the view, stating that the default of
n individual institution was typically not able to trigger a domino
ffect (see Elsinger et al., 2006; Boss et al., 2004; Furfine, 2003).
he empirical evidence accumulated during the GFC, however, has
aised legitimate doubts on the adequacy of the procedure adopted
o carry out these stress-tests (Haldane, 2009; Amini et al., 2010).
he unraveling of the GFC has overwhelmingly shown that systemic
isk is not negligible and domino effects are likely despite the recent
mpressive increase of risk diversification (Brunnermeier, 2008).

According to the theoretical literature, Allen and Gale (2000)
s the most important contribution to the analysis of “financial
ontagion” through credit interlinkages among banks. They show
hat, given full diversification of risk at the level of the individual
ank, the spread of an unexpected liquidity shock and its sys-
emic effects depend crucially on the pattern of interconnectedness
mong banks. When the network is complete – i.e. density is at its
aximum – and the amount of interbank deposits held by each

ank is evenly spread over all other banks, the impact of the shock
s easily mitigated. When the network is connected but incomplete,

ith banks only having few counterparties, the system is more frag-
le. When the incomplete network assumes the typical structure of

 “wheel” or a “cycle”, the shock may  lead to a systemic collapse.
n this case, in fact, the shock is toppling one bank after the other
long the network cycle. In the end, therefore, given full diversi-
cation of (individual) risk, a complete network is more resilient
han an incomplete one.

A recent, post-crisis strand of literature has tried to identify
he conditions upon which an increase of network density – i.e.

 scenario in which the topology of the network tends toward
ompleteness – is not beneficial, i.e. does not reduce systemic risk
see Battiston et al., 2009; Stiglitz, 2010; Castiglionesi and Navarro,
010; Allen et al., 2010; Wagner, 2010). In the present paper we
ontribute to this new line of research by exploring the mechanisms
hat, following the default of an agent, may  lead to an increase of
ystemic risk when connectivity increases. Our approach is related
o the framework put forward by (Eisenberg and Noe, 2001) in order
o analyze the effects of an agent’s default on the cash flows of the
ounterparties. Such framework has been further studied also in
ai and Kapadia (2010a) and in Cont et al. (2010),  where the default
f a bank decreases the value of the assets of each counterparty
n the interbank market. In this approach, the representation of
he agents in the credit network is stylized and based on account-
ng identities. Behavioural assumptions are kept to a minimum:
gents neither choose their capital structure (and thus their level
f financial robustness), nor the partners to be connected to. More-
ver, agents do not interact strategically. This static balance sheet
pproach – similar in spirit to the procedure adopted to carry out
tress tests on banks – may  look somehow mechanical (Christian
nd Upper, 2011) but allows to characterize analytically the emer-
ence of systemic risk as function of essentially two determinants:
) the fraction of defaulting counterparties of each agent and ii) the
nitial financial robustness of each agent (Gai and Kapadia, 2010a).

In our paper, we model a network of borrowing/lending rela-

ionships among financial institutions (“banks”). These institutions
re also active on “financial markets”, i.e. they trade financial obli-
ations with agents outside the network itself. For instance, they
an collect deposits from households or get short-term loans from

w
t
n
d
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utside investors. Each agent is represented by a stylized balance
heet. Balance sheets are interrelated, as the asset of one agent
lending bank) is a liability for another agent (borrowing bank). The
ntertwined dynamics of the individual equity ratios are the driv-
ng force of the change in the credit network. In particular we  will
ocus on changes produced by borrowers’ defaults, which weaken
he financial robustness of lenders and may  therefore induce fur-
her defaults. In this context, therefore, from the initial default of
ne or few agents may  endogenously follow the default of some
ther agents in a full-fledged default cascade.

In a nutshell, we  carry out the following exercise. We  assume
n initial allocation of assets and liabilities across agents and an
nitial set of defaults. We  then derive a law of motion for the finan-
ial robustness – as measured by the equity ratio – of the agents
oncerned by the default of one or more counterparties. Finally, we
nvestigate how the size of the default cascade is affected by the ini-
ial distribution of robustness and by the level of risk diversification
n the network.

The core feature of our model of the credit network is the fact
hat balance sheets are interrelated, and therefore the dynam-
cs of the individual equity ratios are intertwined. This fact is
he source of the externalities which play a crucial role in the

odel. We  introduce a distinction between two  types of exter-
alities which correspond to different properties in relations to
ystemic risk. With the first type, the default of an agent (bor-
ower) has an obvious and immediate effect on the financial
obustness of its counterparties (lenders) in a credit network. The
on-performing loan, in fact, translates into a reduction of the

ender’s equity. However, there are no further effects of the default
n the counterparties. Whenever the market value of total assets
n the counterparty’s portfolio becomes smaller than that of liabili-
ies, the counterparty in turn defaults. If some other counterparties
n turn, default on their counterparties a cascade of defaults may
nsue.

In this baseline scenario, which we  label as external effect of the
rst type, we find different regimes, in which increasing connectiv-

ty may have a beneficial role or a detrimental one (or no role at all).
hen financial robustness is not very different across agents (the

egree of heterogeneity and therefore the variance of equity ratios
s relatively small), increasing connectivity makes the system more
esilient to systemic defaults. More precisely, with increasing con-
ectivity the system remains stable even at lower values of average
obustness. On the other hand, increasing network density, may
timulate systemic defaults when: the initial robustness is hetero-
eneous across agents (high variance), but the average robustness
s low and there is an initial large enough shock. The reason why,
rom a systemic point of view, in such a situation it is better to con-
entrate risk instead of diversifying it is that spreading the losses
ake more agents default (since are already fragile).
We also model an external effect of the second type which, in

ontrast to the first type, involves an amplification of losses along
he chain of lending relations. The ambiguous role of diversifica-
ion on systemic risk is in this case much more pronounced. We
uspect this second mechanism to appear in several situations, but
n this paper we focus on one specific case. Namely, we show how
he mechanism arises if, in addition to the ingredients of the base-
ine model, we  assume that agents borrow also short-term and are
xposed to the potential run of the short-term lenders. When the
gent is hit by the default of one or more of her counterparties (for
revity, the initial default), her short-term creditors cannot rule out
hat other counterparties may  default, because they do not know

ith certainty the situation of the counterparties. This means that

he chances that the agent defaults have increased, although tech-
ically she is still solvent. As a result, short-term creditors have to
ecide whether to roll-over debt to the agent or not, taking into
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Table 1
Balance-sheet composition. The components of both assets and liabilities are classi-
fied in terms of maturity and in terms of whether they generate a financial exposure
to  some other agents within the financial network. hh = households, b = banks.

Maturity Nature Assets Liabilities

Short-term Network ASN
i

(credit to banks) LSN (debt to banks)
Short-term No Net. ASC (cash) D (hh deposits)
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ccount that the other creditors do the same reasoning. In other
ords, the second type of externalities may  arise when considera-

ions of illiquidity enter into the picture, in the presence of imperfect
nformation.

For sake of simplicity, we do not model the coordination game
f the short-term creditors and we follow instead a reduced form
pproach. We  assume that creditors, due to imperfect information,
ecide to run on an agent when (i) she has a low level of robust-
ess and (ii) the number of her defaulting counterparties exceeds

 certain threshold. In the face of a run, when the agent has to pay
ack short-term debt, the first line of defense consists of her liquid
ssets. If these are insufficient, however, the agent may  decide to
ell under distress some of her long-term assets, in order to pay back
he remaining debt. This fire-selling scenario has been modeled in
everal previous works (e.g., Brunnermeier and Pederson, 2009).
ur contribution here consists in combining the fire-selling with

he direct loss from the default. Let us emphasize that, fire-selling
mplies a further loss for the agent, in addition to the initial loss due
o the default of the counterparty. This additional repercussion can
ead the agent to insolvency, making illiquidity and insolvency two
ntertwined problems.

In the case of this externality of second type, we find that: (i)
or relatively “high” levels of the cross-sectional average robust-
ess, increasing connectivity is always beneficial; (ii) for “low”

evels, increasing connectivity does not have any effect on sys-
emic risk, while (iii) for intermediate levels of the average financial
obustness, increasing connectivity has first a beneficial and then a
etrimental effect. In this case, the reason why diversification can
e detrimental is the following. Because of the information incom-
leteness on the side of the creditors, the probability that a run
ccurs depends on the absolute number of defaulting counterpar-
ies in the credit portfolio of an agent. When there are already a few
efaults in the system, then a higher level of diversification implies
hat more of these defaulting agents can belong to the credit port-
olio of the agent. If, in addition, the agent is fragile, there are more
hances that the run is triggered.

In summary, in our model diversification is neither always good
or bad. It can have ambiguous effects, and in presence of loss
mplification it typically does. The precise outcome depends cru-
ially on the allocation of assets and liabilities across agents and
he structure of their mutual exposures. In comparison with the
esults on diversification found in (Battiston et al., 2009), it should
e noticed that while, there, a detrimental effect of diversification
esults from the dynamics of the network-based financial accel-
rator – outside the default cascade, here we propose an entirely
lternative mechanism which occurs within the cascade.

The paper is organized as follows: Section 2 introduces the
odel. We  define first the structure of the agents’ balance sheet.

hen, we describe the chain of events triggered by the propaga-
ion of losses caused by counterparties’ defaults. We  derive the
ynamics under the two types of external effect in Sections 2.1
nd 2.2.  In Section 3, we report and discuss the results. Section 3.3
oncludes.

. The model

We consider a set of n financial institutions (“banks”) connected
n a network of borrowing/lending relationships (credit network
or short) with each other. As a first approximation, one can think of
he credit network as the network of interbank loans. These institu-

ions are also active on “financial markets”, i.e. they trade financial
bligations with agents outside the network itself. For instance,
hey can collect deposits, which are liabilities of the banks and
ssets of agents outside the credit network, i.e. households.

s
d
d
t

i
Long-term Network ALN

i
(OTC credit) LLN (OTC loans, b-held bonds)

Long-term No Net. ALM
i

(mortgages) LLH (hh-held bonds)

Each institution is represented by a balance sheet. In a sense, we
ill provide a model of balance sheet dynamics in the following. A

imilar approach to modeling financial institutions can be found in
isenberg and Noe (2001) and Shin (2008).

We  classify balance sheet items along two dimensions. The first
imension is the maturity (short-term or liquid vs. long-term or

lliquid assets/liabilities – “A/L” herefter). The second dimension
s the relation (or lack thereof) of the a/l to the credit network.
ome of the a/l, in fact, represent a credit interlinkage as they create

 financial exposure to some other agents in the network. Some
ther a/l, on the other hand, do not represent a credit interlinkage
ecause they are issued and purchased in financial markets outside
he credit network.

On the assets’ side of the balance sheet of bank i, “short-term”
ssets AS

i
are liquid, i.e. they can be promptly sold on the mar-

et, while AL
i

are long term illiquid assets, i.e. assets which can
e liquidated only at the cost of a non negligible loss of market
alue. AkN

i
, k = S, L are assets that represent liabilities of some other

gents in the network (for instance interbank loans). There are also
wo types of assets that are traded on financial markets, i.e. they
o not have another financial institution as a counterparty: ASC

i
can

e assimilated to cash available to financial institutions (e.g. bank
eserves); ALM

i
are long term assets such as mortgages or long term

onds.
Similarly, on the liabilities’ side, LS

i
represents short-term debt

hile LL
i

is long term debt. LkN
i

, k = S, L are agent i’s liabilities that
epresent assets for some other agents in the network: LSN

i
can

e thought of as loans obtained on the interbank market, while
LN
i

are loans negotiated over-the-counter with other agents. The
gent’s liabilities towards households are represented by deposits,
i, which are short-term in the sense that they are subject to poten-

ial withdrawal at any time. Bonds issued by the bank and held by
ouseholds LLH

i
are long term because they imply an obligation of

eimbursement only at maturity on a time scale longer than the
short term”. Table 1 summarizes the composition of the balance
heet.

The difference between total assets Ai and total liabilities Li is
et worth or the equity base. In the following we  will focus on the
nancial ratio:

i = ASC
i

+ ALM
i

+ ASN
i

+ ALN
i

− LSN
i

− Di − LLN
i

− LLH
i

ALN
i

= Ai − Li

ALN
i

, (1)

hich is the ratio of equity over the long-term network-related
omponent of assets. This “equity ratio” is an indicator of financial
robustness”.

The exercise we carry out in the paper consists first in deriv-
ng a law of motion for the financial ratio, in presence of defaults
f counterparties. We  assume to start from a given initial alloca-
ion of assets and liabilities across agents and thus with a given
istribution of financial robustness across agents. We  also assume

ome initial defaults. These initial defaults may  or not trigger other
efaults. In any case, we compute recursively the effect of these
efaults on the balance sheets of the counterparties and the coun-
erparties of the counterparties, downstream along all paths in the
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Fig. 1. Representation of the credit relations between agent i and its obligors in
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the main determinants of the default cascade (as also found in (Gai
and Kapadia, 2010a)). However, it may  not be obvious at a first
thought that the same level of relative loss kfi/ki, can occur with

1

he  simplest case (left). Another scenario: agent i has obligations to both long-term
reditors (k1 − k4) and short-term creditors (h1 − h3), while it has long-term claims
n  some obligors (j1 − J4)) (right).

etwork. At the end of this cascading process there is a number
f default accumulated. We  will study how the cascade dynamics
s affected by the distribution of initial level of robustness across
gents and on the network structure. At the end of one cascading
rocess all agents are replaced by new agents. This is a sort of stress
est for the whole financial network, in which the shock is repre-
ented by the initial default, and the response is given by the final
umber of defaults.

In terms of informational set, agents are assumed to know which
gents have defaulted, but they do not know the exposures of
heir counterparties to other agents. Only in the extreme case of
ully connected network, connections are trivially known to every-
ne. Moreover, agents do not know with certainty the level of
obustness of their counterparties. Therefore, they cannot antici-
ate whether there will be a large default cascade or not. Fig. 1
hows a visual illustration of the situations leading to two differ-
nt types of external effects. In the first situation (left), the default
f some counterparties affect agent i, but there is no further reper-
ussions. In the second situation (right), the presence of short-term
enders creates the potential for further repercussions on i herself,
s it will be clear in the following section.

.1. External effect of the first type

Suppose that counterparty j of agent i defaults on her long-term
bligations at time t. This affects ALN

i
(t), i.e. the network-related

ong-term component of the balance sheet in the same period,
hich will be reduced by a fraction a of the nominal value of the

bligation of agent j to i, ALN
ij

(t) :

LN
i (t) = ALN

i (t − 1) − aALN
ij �(I)

j
(t), (2)

here �(I)
j

(t) indicates if agent j defaults at time t. The parameter a
easures the fraction of funds that agent i is assumed to loose, in

he short-term, when the counterparty j defaults. For sake of sim-
licity, here, this fraction  ̨ is assumed to be the same across agents,
ut it could be made heterogeneous. With a = 0, banks do not loose
nything, which implies that default do not have any externality
n the counterparties.

It is not unfrequent that defaults propagate on the time scale of
ays or weeks, as it has been the case during the various episodes
bserved during the fall of 2008. Such short time horizon makes

easonable the following assumptions. First, agents are not able to
odify their exposures to other agents in reaction to the defaults

ccurring in the financial network. Secondly, agents are not able
o recover, within the duration of the cascade, most of the proceeds

d

i
d

al Stability 8 (2012) 138– 149 141

rom the liquidation of the assets of the defaulted counterparties,
o that a ≈ 1.1 We  will discuss the case a < 1 at the end of Section
.2.

Moreover, in the scenario we  are looking at, within the dura-
ion of a default cascade, agent i’s assets at time t are affected by
he bankruptcy of agent j independently of the period in which
er bankruptcy has occurred. It is then convenient to rewrite the
quation above as follows:

LN
i (t) = ALN

i (0) − aALN
ij �j(t), (3)

here ALN
i

(0) represents the “initial value” of network-related long-
erm assets (in the following the initial condition will be denoted as
he beginning of a cascade of defaults), and �j(t) indicates if agent

 has defaulted at time t or in any period before t.
Considering the nexus of credit interlinkages, the total loss to

gent i due to non-performing loans (“bad debt”) can be indicated
y
∑

jA
LN
ij

�j(t). Agent i becomes insolvent when net worth becomes
egative:

SC
i + ALM

i + ASN
i + ALN

i − a
∑

j

ALN
ij �j(t) − LSN

i − Di − LLN
i − LLH

i < 0,

(4)

here to simplify the notation, we dropped the indication of the
ime 0. Let us denote the relative exposure of i to j in terms of long
erm liabilities as follows:

ij =
ALN

ij

ALN
i

. (5)

From this definition follows that the matrix W of relative expo-
ures is non-negative and row-stochastic. Dividing both sides of Eq.
4) by ALN

i
and recalling the definition of the equity ratio above we

onclude that solvency requires the following quantity to be positive

i(t) = �i(0) − a
∑

j

Wij�j(t), (6)

i(0) represents the initial financial robustness of i. The term

jWij�j(t) accounts for all relative losses (due to the default
f some of her counterparties) experienced by agent i since the
eginning of the cascade.2 Notice that this measure of financial
obustness is an inverse measure of aggregate asset risk. Thus, the
ame argumentation of the paper can be recast in terms of asset
isk.

Let us now assume that each agent i with ki counterparties, has
oughly comparable exposure to them. Then, it is Wij = 1/ki (uni-
orm risk sharing). Let us indicate with kfi the number of defaulting
artners of agent i. Hence

∑
jWij�j(t) = kfi/ki is the fraction of

efaulting counterparties, which measures the relative impact of
efaults on financial robustness. In the case of uniform risk shar-

ng, therefore, the law of motion of the equity ratio above can be
ritten as follows:

i(t) = �i(0) − a
kfi

ki
. (7)

Eq. (7) implies that the fraction of defaulting counterparties is
For instance one can assume that defaulted banks’ assets are distributed to
epositors first and to other creditors next, as in (Iori et al., 2006).
2 Notice that the dynamics of insolvency is completely independent of introduc-

ng � and normalizing as we have done. The procedure simply allows to rewrite the
ynamics in a convenient way.
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ery differing probability, depending (1) on the values of kfi, ki and
he probability p of individual defaults, and (2) on the presence (or
ack thereof) of correlations. Let us illustrate this statement with
ome examples.

If  defaults are uncorrelated, the probability P{kfi, ki} of occur-
ence of kfi defaults among ki partners follows a binomial

istribution, P{kfi, ki} =
(

ki

kfi

)
pkfi (1 − p)ki−kfi . This probability

ecreases sharply with kfi, for kfi > kip, for given ki and p. In par-
icular, for a given value of p and kfi/ki, the larger is ki, the less
robable it is to observe kfi simultaneous defaults. For instance, con-
ider p = 0.1 and kfi/ki = 0.2. The probability to have 2 defaults out
f 10 counterparties (P{2, 10}∼0.2) is much larger than the proba-
ility to have 20 defaults out of 100 (P{20, 100}∼0.001). Thus, when
efaults are not correlated, the event consisting of several simulta-
eous defaults among the counterparties of an agent with a large
ortfolio is quite rare.

If instead defaults are correlated, the probability of simul-
aneous defaults is not binomial anymore. In contrast to the
ncorrelated case, it may  be more likely to observe many simulta-
eous defaults than only few ones. Unfortunately, there is no simple
ay to describe mathematically such probability, as it depends on

he structure of the correlation (Frey and McNeil, 2003).
Notice that, even if the average individual default probability

s known (or can be estimated from the frequency of defaults in
he whole population), the probability of joint defaults remains
nknown if the correlation is unknown. But the correlation of
efaults in a network depends itself on the default probability and
he network structure. For our purposes, it suffices the assump-
ion that either defaults are uncorrelated or they are completely
orrelated, as it will be clear in Section 3.

In the dynamics of �i presented above, the shock caused by the
efault of one agent is uniformly spread among the creditors. This

s the external effect of type 1. The external effect of defaults is, in a
ense, conservative because it is divided across the agents who bear
ome financial exposure to the defaulting partner but it does not
et amplified during its propagation. In a more realistic setting, in
hich the lender can recover at least part of the interbank claim on
efaulted agents, the external effect of type 1 would be mitigated.

n the present framework, for sake of simplicity and based on the
ssumption (see earlier) that the legal settlement of the bankruptcy
akes much longer than the unraveling of the cascade, we rule out
epossession of the assets of the defaulted agents on the part of the
ender.

.2. External effect of the second type

In this section, we focus on another type of external effects in
hich the losses due a counterparty default can cause additional

osses to the agent. Losses are – in a sense – amplified along each
onnection. In this paper, we investigate how this type of effect can
rise in a specific scenario3 in which a liquidity run and the conse-
uent fire-selling on the asset side generates a further repercussion
o the agent, in addition to the first direct loss due the counterparty
efault. In a sense, the external effect of the second type com-
ines the externality of the first type with the fire-selling scenario

lready well investigated in the literature (see e.g., Brunnermeier
nd Pederson, 2009). In the following, we first discuss how illiquid-
ty originating from the default of one or more counterparties of an
gent can lead to her insolvency, due to the possibility of a run of its

3 Other scenarios, e.g., involving credit derivatives would be plausible candidates,
ut they are not investigated here.

|
w
t

d

al Stability 8 (2012) 138– 149

hort-term lenders. Notice that the run is not modelled explicitly.
e assume that the run occurs or not depending on the level of

obustness of the agent and on the number of her counterparties in
efault. Based on such assumption, we  derive a law of motion for
obustness that incorporates the external effect of second type.

An agent i facing the request to repay a part of her liabilities -
enote such amount as �LSN

i
– becomes illiquid in case her liquid

ssets are not sufficient to cover for the payment:

SN
i + ASC

i − �LSN < 0. (8)

An agent can well be illiquid even if she remains solvent – i.e.
ven if net worth remains positive – (see Eq. (4)).

In terms of informational set, we  have in mind the situation in
hich short-term creditors do not know with certainty the level of

obustness of the counterparties of the agent. In the presence of this
nformation imperfection, the default of one or more of the coun-
erparties of i, can trigger the illiquidity of i, even if she can absorb
he shock due to the defaults and remain solvent. This happens in
wo stages.

Firstly, the default of some counterparties is a shock that reduces
he asset side of i and thus, in presence of uncertainty on the future,
ncreases the chances of default of i. More specifically, recall that,
s discussed earlier, the probability of occurrence of the relative
oss due to defaults, kfi/ki, depends in non-trivial way on the val-
es of kfi, ki, the probability p of individual defaults, and on the
resence of correlation. Thus, when short-term creditors of agent

 observe a number of simultaneous defaults among her counter-
arties, they face uncertainty along several dimensions: Has the
robability of default increased? Were there interdependencies
mong the counterparties who  defaulted? Does this mean that the
emaining counterparties are also likely to fail shortly after? Finally,
s there something systematically wrong in the way  the agent has
hosen her counterparties?

In other words, imperfect information on the financial health of
he counterparties of agent i and the structure of the correlations
mong their possible defaults, implies that short-term lenders can-
ot exclude that the probability of default of i has increased, even

f at the moment she is still solvent. It follows – and this the second
tep – that it is rational for the short-term lenders of i to consider
he option of refusing to roll-over debt to i. This is even more so,
iven that, at the same time, all other short-term lenders may also
nd up deciding not to roll-over, i.e., that there could be a run on
gent i.

To continue with the sketch of the situation we imagine here, let
s assume that, as a result of the defaults among i’s counterparties,
ome of i’s lenders refuse to roll-over their short-term loans and
gent i will have to pay back short-term debt. She will first try to
atisfy this need using her liquid assets Af. If these are not sufficient,
.e. |�LSN

i
| > AS

i
, then i may  decide to sell some of her long-term

ssets. For the sake of simplicity, in the following we  assume that
he first line of assets sold under distress consists of securitized

ortgages. If the market of such type of securities is liquid the
gent is able to re-balance her liquidity position without any loss.
owever, if the market is not very liquid agent i may  be forced to a
re-selling, i.e. to sell below market price. Then, the nominal value
f assets to be sold exceeds, in absolute value, the value of liabilities
o be repaid:

�ALM | = q(|�LSN | − AS), (9)
i i i

here q = p(market)/p(fire) ≥ 1 is the ratio of the market price over
he selling price.4 Whether and when creditors will eventually run

4 Incidentally, notice that in Gai and Kapadia (2010b), as a result of counterparties
efaults and short-term lender refuse to roll-over, agents decide to hoard liquidity
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Notice that if the initial robustness is distributed across agents
S. Battiston et al. / Journal of F

 i.e. refuse to roll over to i – is an issue that has been extensively
nvestigated in the vast literature on bank runs. Most works find
hat investors run when the shock hitting the bank is relatively
arge and the bank is already relatively fragile (Rochet and Vives,
004). In line with this literature and motivated by the previous
iscussion, we assume (without modeling the coordination game
mong creditors) that there is a run of all the creditors if the number
f defaults is larger than a certain threshold that increases with the
obustness of the agent,

fi > ��i(0),  (10)

here � is a scale factor, with 0 ≤ � ≤ 1. In other words, there is a
un when several counterparties default and the agent has already
ow robustness.

Notice that when the run occurs, agent i has to repay an amount
orresponding to the total aggregate short-term loan she received,
.e. |�LSN

i
| > LSN

i

LSN
i

, since all the creditors run. This is done by reducing ALM
i

ccording to Eq. (9).  As a result, in case of a run after the defaults,
he equity of i decreases as follows:

i(t) − Li(t) = Ai − Li − a
∑

j

ALN
ij �j(t) − AS

i − �ALM
i + �LSN

i

= Ai − Li − akfiA
LN
ij0 − AS

i − q(�LSN
i − AS

i ) + �LSN
i

= Ai − Li − akfiA
LN
ij0 − (q − 1)(LSN

i − AS
i ).

After normalizing by A(LN), we finally obtain the following
ynamics:

i(t)

⎧⎪⎨
⎪⎩

�i(0) − a
kfi

ki
− bi if �i(0) < �kfi

�i(0) − a
kfi

ki
otherwise

,  (11)

here the parameter

i = (q − 1)
LSN

i
− AS

i

ALN
i

, (12)

measures the impact on agent i of the cost of the run (q − 1)
SN
i

− AS
i
, relative to the long-term network related assets. Notice

hat, in addition to the shock due to i’s counterparty defaults, in
ase of run, agent i, faces now a further decrease of equity. This
mplification of the initial shock characterizes what we call external
ffect of the second type. The idea that a liquidity run can trigger

 fire-selling is well-known. Our contribution here is to cast this
ithin the framework of the default cascade and show that its effect

s to amplify the initial losses. Notice also, that if we rule out runs for
ll agents, either because they do not make use of short-term credit,
r because the threshold is never reached (� = 0), this is equivalent
o set bi = 0, so that we recover the dynamics with external effects
f the first type (Eq. (6)).

For the sake of simplicity, in the following we  focus on the case
n which the parameter bi is homogenous across agents, bi = b for
ll i.
. Default cascades

The initial default of one or more agents in the credit network
riggers the default of other agents, i.e. a cascade or avalanche of

y withdrawing short-term lending from other agents in the network. Here we  do
ot  focus on the liquidity evaporation issue, but on the propagation of insolvency.

a
p

i

u
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efaults. The development of a cascade in the model is generated
pplying recursively the dynamics of Eq. (11). The cascading pro-
ess is deterministic and terminates after a finite number of steps.5

n the final state of the cascade, a certain fraction s of the agents has
efaulted. This is the size of the cascade, which, in our framework,
aptures the magnitude of the systemic risk to which the credit net-
ork is exposed. In the following, we  investigate how to determine

he size of the cascade and the role played by diversification for
nancial stability.

The fraction of defaults at the end of the cascade (i.e., the size of
he cascade) can be computed as the stable fix point of a recursive
quation for the cumulative fraction of failures. We  will derive this
quation first in the presence of externalities of the first type6 and
hen in the general case of external effects of the second type.

.1. External effects of the first type

We first focus on the dynamics described in Section 2.1 by Eq.
6). It is instructive to illustrate a simplified version of the compu-
ation method. Suppose the network is a regular graph, i.e. each
gent has the same number of connections k. The fraction s(t + 1)
f agents who  will default in the future time step of the dynamics
epresented by Eq. (6) is simply the fraction of agents who happen
o go below the default threshold in the current time step. In a large
ystem, such fraction approximates the probability that the robust-
ess of a randomly chosen agent is below the threshold. Moreover,

n a mean-field approximation, we  can replace the expected frac-
ion of defaults among the counterparties of each agent with the
urrent fraction of defaults in the population. We  can thus write

(t + 1) = P

{
�i − kfi

k
< 0

}
≈ P{�i < s(t)} (13)

Assuming that agents who  default are not replaced or refinanced
uring the cascade, then the cascade size is at least the initial frac-
ion of defaults s(1). We,  thus, obtain the following equilibrium
ondition:

 = F(s) = max{s(1), ˚(s)}, (14)

here ˚(x) =
∫ x

−∞ p(�)d� is the cumulative distribution of robust-
ess up to the value x. This yields a recursive equation in s whose
olution is the size of the cascade. One can improve the compu-
ation using a better estimation of expected number of defaults
mong the counterparties of a given agent. However, the procedure
s conceptually the same.

The outcome of the cascade depends of course on the initial dis-
ribution of robustness across agents. If agents have low robustness,
he cascade tends to be larger because the default of some agents
s more likely to cause the default of other agents. In the following,

e will assume that the initial distribution of robustness when the
ascade starts can be approximated by a Gaussian with mean m and
tandard deviation ��. The values of mean and standard deviation
ave an impact on the shape of the function in Eq. (14): a decrease
f robustness shifts the function F(s) to the right, while a decrease
f �� makes the slope steeper. In Fig. 2 (left and right), the function
(s) is plotted for some values of m and �� and two examples of
xed points are illustrated.
ccording to a Gaussian distribution, there is always a positive
robability that some agents have a value of robustness below 0,

5 This number is smaller than the number of agents since agents are not re-started
f  failed during the cascade (Kleinberg, 2007).

6 Notice that this method differs from the graph generating function approach
sed in (Gai and Kapadia, 2010a), which builds on (Callaway et al., 2000).
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Fig. 2. Plot of R.H.S. of the simplified fixed point Eq. (13) for the cascade size. Examples of curves for m = 0.4, 0.6 and � = 0.2 (left). The curve for m = 0.6 has two stable points,
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lose,  respectively, to 0 and 1 and one unstable point. In the case of m = 0.4 there is
he  large fraction of initial defaults the cascade stops immediately. Examples of cu
(1)  ≈ 0.1, the fraction of defaults ends up close to a complete default, s ≈ 0.9.

ecause the support of the Gaussian stretches to the whole real
ine.7 In general, there is an expected number of initial defaults
hat depends simply on the mean and standard deviation of the
istribution. We  denote these initial defaults as endogenous.

However, in line with the spirit of a stress testing exercise,
e are interested in investigating the response of the financial
etwork, given a certain distribution of robustness, to shocks
f varying intensity. Therefore, in addition to the endogenous
efaults, we assume that, at time 0, a fraction y0 of randomly chosen
gents default. By varying y0, we vary the intensity of the shock hit-
ing the financial network at the beginning of the cascading process.

e denote these defaults as exogenous.
Notice that in this modelling framework one can also investigate

he effect of systematic shocks hitting all agents in the same way.
ndeed, one can study, as we do in the following, the outcome of the
ascade for varying levels of the average robustness across agents.
hifting the mean of the distribution down, say from m1 to m1 − ∈ is
quivalent to assuming that a systematic shock ∈ has hit all agents
efore the dynamics starts.

The following proposition characterizes the size of the cascade.

roposition 1. Consider the process of Eq. (6).  Assume the network
f firms is a regular random graph with degree k. Assume also the initial
robability distribution of robustness is Gaussian8 with mean m and
ariance �2 = �2/k: p(�(t = 0)) ∼ Gauss(m,  ��). Let ˚(x) =

∫ x

−∞ p(�)d�

enote the cumulative probability distribution of � up the value x, and
0 = ˚(0) denote the fraction of firms whose robustness is below zero
t t = 0. Moreover, assume that at time t = 0 there is a fraction y0 of
xogenous defaults. Then:

. The fraction s of failures at the end of the cascade process is the
solution of
s = max{s0 + y0, F(s, m, ��)} (15)

7 It would be interesting, to know the empirical distribution of the variant of
quity ratio, �i that we  have introduce in this paper. However, differently from the
ase of the usual equity ratio, there are no readymade statistics and one would need
o  look at the balance sheets of the institutions in order to estimate the amount of
ssets that have a network valence.
8 A similar computation could be carried out for other probability distributions

f  robustness p(�).

s
o
m
y

u

s
c

ne stable point coinciding with the initial fraction of defaults, s(1) ≈ 0.33. Despite
or m = 0.4, � = 0.05 and � = 0.4 (right). In the case of � = 0.05, from an initial value

F =
k∑

kf =1

(
k
kf

)
skf (1 − s)k−kf ˚

(
akf

k

)
(16)

. A stable fixed point always exists.

Notice that Eq. (15) provides an analytical expression for the cas-
ade size.9 The result holds also for random graphs in the limit of
mall degree variance. It is possible to extend the result to the case
f heterogenous networks with a given degree distribution p(k).
n the expression of F, one needs to also sum over varying level of
he connectivity degree k, and to weight each term by the corre-
ponding value of probability p(k). However, in so doing we  would
ntroduce additional dimensions to the parameter space. This case

ill be investigated in future work.
In this paper we  want to focus on the effect of the average level k

f the diversification and how it affects the cascade size s, depend-
ng on the values of the parameters �, m and the exogenous shock
0. We  find, that typically, the cascade size is either s0 + y0 itself (i.e.,
o new defaults are induced by the initial ones), or a full cascade
f the whole financial system is triggered. In particular, there are
ifferent regimes, in which individual risk diversification may  have
ither a beneficial (stabilizing) macroeconomic role, or a detrimen-
al one, or no role at all. Further work should aim at deriving some
eneral results on the exact transition boundaries between these
egimes in the space of the parameters �, m and y0. However, even
f these general results are not yet available, the proposition above
llows to prove (simply by existence) a few interesting results and
o draw some relevant implications for financial stability. Findings
re illustrated in scenarios, related to specific regions of the param-
ter space. To help the reader getting a general picture, the detailed
escription of each finding is preceded by a concise but simplified
tatement. All results concern the default cascade size depending
n the following parameters: the standard deviation � and mean
 of the robustness distribution, the size of the exogenous shock
0 and the connectivity degree k of the agents in the network.

In order to better understand the implications of the findings, let
s recall the meaning of the parameters and their range of variation.

9 As for all trascendental equations, i.e., involving non-polynomial functions, the
olution has to be computed numerically. But this can be done with arbitrary pre-
ision. This is not the same as finding the cascade size with simulations.
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tion, assume that at time t = 0 there is a fraction y0 of exogenous
defaults. Then:
S. Battiston et al. / Journal of F

he average financial robustness m, ranges in [0 1]. A value m = 0
eans no equity. Because the distribution is Gaussian and thus

ymmetric, t also means that half of the agents have robustness
elow 0. Instead, m = 1 means that equity is as large as long-term
etwork-related assets (see Eq. (1)). Given the range of m,  values of
he standard deviation of robustness � > 0.5 can be considered as
arge, while values � < 0.1 are small. Finally, since y0 represents the
nitial fraction of defaulting agents, values y0 > 0.3 are quite large,

hile y0 < 0.05 represent typical situations in normal course of the
conomy.

Scenario 1. A fragile system is prone to systemic default,  even if there
re no exogenous shocks. Even in the absence of exogenous defaults,
0 = 0, for any value of the standard deviation �, the cascade size s
ends to 1 for decreasing values of m.  Fig. 2 shows how the fix point
olution of Eq. (13) varies as a function of m and �. A decrease in

 shifts to the right the function F. The slope of F decreases with
. However, it is clear that no matter how steep is the slope (i.e.,
mall �) there is always a value of m small enough so that F(s) > s
or all n ∈]0 1[and thus the only stable point is the one closer to

 = 1. The same result applies to Eq. (15). Thus, when the average
obustness across agents is low enough, the endogenous defaults
rigger a systemic default even in the absence of any exogenous
hock. In this case, diversification is irrelevant, as shown in Fig. 3.
ndeed the size of the cascade remains constant with k and close to
, when the average robustness is low.

Scenario 2. Diversification prevents systemic defaults when the
nancial condition overall is “not too bad”. There exists a range of
he parameter values (�,m) ≈ [0 0.15] × [0.2 0.5], y0 < 0.1, where the
ascade size s decreases with diversification k. Fig. 3 (right) shows
hat, for a given m, s eventually drops to small values as k increases.

Thus, when financial robustness is not very different across
gents (small variance of robustness) and the exogenous shock is
ot large, then diversification makes the system more resilient to
ystemic defaults. More precisely, with a larger diversification, the
ystem remains stable even at lower values of average robustness.
his result is in line with the pro-connectivity view mentioned in
he Introduction. However, results are not always in this direction.

Scenario 3. Diversification may in some cases lead to
ystemic defaults. There exists a range of values, e.g.,
�,m) ≈ [0.4 1] × [0.2 0.8], where the cascade size s increases
ith diversification k, as shown in Fig. 4 (left). This is a quite

ounterintuitive result which requires a more detailed explanation.
First of all, it is not always necessary a big loss to cause the

efault of an agent. If her robustness is low, i.e. her equity is small
elative to her assets, even a relatively small loss may  be sufficient
o push the agent beyond the threshold of default. This depends
n the structure of assets and liabilities, as defined by the solvency
ondition in Eq. (4).  What happens then, when an agent suffers a
oss bigger than the critical one, i.e. the loss which would be exactly
ufficient to make her default? The excess loss – i.e. the difference
etween the actual and the critical loss – does not have any addi-
ional effect on the agent and her creditors. Then consider the case
n which initial robustness is heterogeneous and many agents are
ragile. With a low level of diversification, the initial default of an
gent causes a big loss to counterparties that are already fragile.
hese counterparty fail, but many more could have failed, would
he loss been shared more broadly. So the momentum of the initial
oss is dampened on the way.

Instead, when the level of diversification is higher, then every
efault adds only a little loss to each counterparty. Thus, when the
ccumulated losses eventually exceed the solvency threshold, they

o so by little margin, so that “no loss is lost”, so to say. In other
ords, the momentum of the initial defaults is not dampened on

he way. This implies that there can be situations in which the ini-
ial endogenous and exogenous defaults are capable of triggering a o
al Stability 8 (2012) 138– 149 145

ystemic default when the diversification is high, while the cascade
tops on the way when the diversification is low.

This feature obviously depends on the way  the propagation of
istress has been defined in the model, which includes a sort of

imited liability of agents. Still, the result raises an interesting issue,
n particular in connection to how the losses associated to defaults
re socialized.

Scenario 4. Diversification has no effect when the system is fragile,
elatively to the exogenous shock. There exists a range of parame-
er values, i.e. (�,m) ≈ [0 0.4] × [0 0.2], with y0 > 0.1 where s does
ot change with k (see Fig. 4, right). Thus, if robustness is not
ery heterogeneous and the average is low, then varying the level
f diversification has no effect. The systemic default occurs any-
ay. There is no gain in distributing losses more widely because

he exogenous shock is already big enough to knock down every-
ody. There is also no gain in concentrating the losses among fewer
ounterparties because the most robust agents are not much more
obust than the weak ones.

.2. External effects of the second type

In this section, we  apply the procedure already described in the
revious section to the dynamics defined in Eq. (11). We  also make
n additional assumption concerning the heterogeneity of robust-
ess across agents. One may  argue that, if agents have a high level
f diversification in their financial exposure, then this affects not
nly the loss they face as a result of the default of a counterparty
ut also the variations in the initial robustness from an agent to
nother. To put it straight, imagine each agent diversifies its expo-
ure, with equal weights, on the entire set of other agents. Then,
he individual robustness may  still vary, since it depends on the
hoice of the level of short-term vs. long-term assets and liabili-
ies. However, differences in robustness between any two  agents
hould decrease because all agents have almost the same port-
olio of ALN assets. Notice that if the standard deviation u of the
obustness decreases, then, as long as the average m is positive, the
raction of endogenous defaults, i.e. the agents that are already ini-
ially below 0, decreases. This can be expected to make the system

ore resilient. Thus, in order to verify if the results found in the
revious sections still hold when the heterogeneity decreases with
he diversification, we assume that the variance of the robustness
cales as �2

� = �2/ki. This is a marked decrease in heterogeneity
 variance tends to zero for large ki – which corresponds then to
uite a conservative scenario. Notice that the assumption is in line
ith (Battiston et al., 2009), where the financial robustness is the

esult of an endogenous dynamic process. The size of the cascade
nder the dynamics including credit runs is characterized in the
ollowing proposition.

roposition 2 (.). Consider the process of Eq. (11). Assume the net-
ork of firms is a regular random graph with degree k. Assume also

he initial probability distribution of robustness is Gaussian10 with
ean m and variance �2

� = �/k : p(�(t = 0)) ∼ Gauss(m,  ��). Let

(x) =
∫ x

−∞ p(�)d� denote the cumulative probability distribution of
 up the value x, and s0 = ˚(0) denote the expected fraction of firms
hose robustness is below zero at t = 0 (endogenous defaults). In addi-
10 A similar computation could be carried out for other probability distributions
f  robustness p(�).
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ig. 3. Cascade size diagram. The fraction s of defaulted agents is plotted in gray sc
xogenous shock y0 = 0, intermediate variance, � = 0.2 (left). Case: y0 = 0.1, � = 0.1 (r

. The fraction s of failures at the end of the cascade process is the
solution of the equation

s  = max{s0 + y0, G(s, m,  ��, b�)} (17)

G =
k∑

kf  =1

(
k
kf

)
skf (1 − s)k−kf

(
˚

(
akf

k

)
(1 − ˚(�kf ))

+˚

(
akf

k
+ b

)
˚(�kf )

)
(18)

. A stable fixed point always exists.

Again, we study how the level of diversification k impacts on the
ascade size s. In addition to the parameters �, m and y0 (respec-
ively, standard deviation and mean of robustness, and exogenous
hock) already at play in Section 3.1,  we have here one more param-
ter, namely the cost of the credit run, b. As before, we observe
ifferent regimes for the behavior of the cascade size.

The meaning of the values of the parameters m,  � and y0 has
een explained in the previous section. For the scale factor � a

alue close to 0 means that short-term lenders are very little sen-
itive to the defaults among i’s counterparties. For instance if kf = 3
nd gamma = 0.01, then a run occurs only of agent i has an initial
obustness smaller than �kf = 0.03 (see Eq. (11)).

a
(
fi

Fig. 4. Cascade size diagram (see Fig. 3). Case: y0 =
 a function of diversification degree ki and average robustness m. Case: absence of

Finally, to give a concrete idea of the meaning to the values of
he parameter b, consider the following relatively severe scenario:

 marginal cost of fire-selling of 50%, i.e., q − 1 = 0.5; a small amount
f cash and a large ratio of short-term network-related liability to
ong-term network-related assets, so that, e.g., LSN

i
− ASC

i
/ALN

i
= 0.8.

his yields a value b = 0.4 for the impact of the cost of the run (see
q. (12)). Thus, values b < 0.1 correspond to mild cost of runs while
alues b > 0.3 correspond to significant cost of runs.

Scenario 5. In the absence of runs and large exogenous shocks,
iversification prevents systemic defaults. There exists a range of
arameter values � ∼ [0 0.3], y0 < 0.1 where cascade size s decreases
ith diversification k for a given average robustness m ∈[0.11] (see

ig. 5, left). Thus, when the exogenous shock is not very large,
hen diversification makes the system more resilient to systemic
efaults. More precisely, with a larger diversification, the system
emains stable even at lower values of average robustness. In par-
icular, the result suggests that, as long as robustness is positive,
here is always a level of diversification (provided the number of
gents is also large enough) so that systemic defaults disappear.
gain, in this parameter range the behaviour supports the pro-
onnectivity view.
Scenario 6. In the presence of runs, diversification has an
mbiguous effect. There exists a range of parameter values, e.g.,
�,m) ≈ [0 0.5] × [0.10.5], b > 0.2, � > 0.02, where the cascade size s
rst decreases and then increases with diversification k (see Fig. 5,

 0, � = 0.8 (left). Case: y0 = 0.2, � = 0.2 (right).
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Fig. 5. Cascade size diagram (see Fig. 3). Case: y0 = 0, b = 0, � = 0.3 (left). Case: y0 = 0.01, b = 0.4, � = 0.1, � = 0.3 (right).
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Fig. 6. Cascade size diagram (see Fig. 3). Case: y0 = 0, b = 0

ight; Fig. 6, left and right). This finding is in stark contrast with
he one of the previous point and results directly from the credit
uns. When agents observe that one of their obligors has a large
umber of defaulting counterparties, compared to her robustness,
hey decide to withdraw their short-term funds from her. The run
mposes a cost that often pushes the agent into default, although
ot always. This depends on her initial level of robustness and also
n the cost b of the credit run (see Eq. (12)). The boundary curve
eparating the regime where cascades are small from where they
re large has a rebound for increasing k. With larger values of b
uch rebound grows steeper. This means that higher costs of credit
uns imply stronger adverse effects of diversification. However, for
maller values of � the rebound starts only at larger values of k.
hus, a higher threshold for the credit run to occur implies that the
dverse effect of diversification steps in only at larger values of k.

Scenario 7. Diversification has no effect when the system is fragile,
elative to the exogenous shock. There exists a range of parameter
alues, i.e. �,m ∈[00.4] × [00.2], with y0 ∈[0.051], � = 0.1 and b > 0.2,
here the cascade size s is constant with diversification k. An exam-
le can be seen in Fig. 6, right) for m < 0.22. Thus, if the average
obustness is low, then the level of diversification has no effect
ecause the systemic default occurs anyway.
Robustness of the results in case of partial asset recovery. It is inter-
sting to discuss how the results are affected in case banks are able
o recover in part the funds invested in contracts with defaulted
ounterparties. This corresponds to the case of the parameter a < 1. c
 0.05, � = 0.3 (left). Case: y0 = 0.05, � = 0.1, b = 0.5, � = 0.3.

s shown in Fig. 7 (top left and right), in absence of runs,11 diversi-
cation is, as before, always beneficial but the cascades are reduced

n size. In the presence of runs (Fig. 7, bottom left and right),
ven with values a = 0.25 or a = 0.5 the ambiguous role of diver-
ification persists. The case a = 1 (not shown) is very similar to

 = 0.5.12

To understand the reason, notice that in Eq. (11), the parameter
 affects directly only the term in the dynamics that accounts for
he externalities of the first type. The fact that agents recover part of
he funds implies that in the face of defaulting counterparties their
obustness decreases less and thus the run is less probable to occur.
owever, in case short-term creditors do make a run, the cost of the

un is not decreased by having a < 1, because the damage created
y the run is independent of the losses due the defaulted coun-
erprties. The cost of the run is already captured by the parameter
. Therefore, the overall effect of a < 1 is to make the system more
obust again large cascades when diversification is small. However,
hen diversification is large, then large cascades are still triggered

s in the case a = 1.
11 See the note regarding the expressions “absence of runs” or “presence of runs”.
12 Of course in the case a = 0 and with no initial shock (y0 = 0) (not shown), then no
ascade occur.
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.3. Concluding remarks

In this paper, we contribute to the literature on the effects of
isk diversification on systemic risk by developing a new model
f default cascades in financial networks in which two kinds
f external effects of the defaults may  occur. An externality of
he first type occurs when the loss incurred by an agent fac-
ng the default of a counterparty is simply proportional to the
elative exposure of the agent to her counterparty. An external-
ty of the second type, instead, depends also on the absolute
umber of defaults among the counterparties. In this paper,
e have shown how the second type of externality may  arise

n presence of possible runs on the agent by her short-term
enders.

We have investigated how the number of defaults in the system
epends on the diversification under various conditions. In partic-
lar we have tested how the impact of diversification depends on
he average robustness of the agents, the degree of heterogene-
ty of financial conditions across agents (cross-sectional variance),
he size of the exogenous shocks and cost of credit runs. We
ave shown that credit risk diversification has ambiguous results,
specially in the presence of credit runs. Indeed the benefit of dilut-
ng the loss of the defaults is counterbalanced by the fact that

gents are more exposed to credit runs when they have many
ounterparties.

This analysis contributes the following message to the debate
n policies aiming at enhancing financial stability: Individual risk

O
t
T
t

 left). Case: a = 0.5, y0 = 0.05, � = 0.1, b = 0, � = 0.3 (top right). Case: a = 0.25, y0 = 0.05,
 right).

iversification may  have ambiguous effect at systemic level. In par-
icular, network structure and heterogeneity of levels of financial
obustness across agents should be carefully taken into account
hen trying to devise policies that enhance the resilience of the
nancial system.

Our work can be extended in various directions. One line of fur-
her research we  want to investigate in the future is to what extent
hese results are affected by assuming different network structures.
nother one concerns the endogenous evolution of links over time.
inally, one could try to replicate and enrich these results in the 3-
ates theoretical framework that is more commonly followed in
nancial economics (Allen et al., 2010).
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ppendix A.

roof of Proposition 1. We  ask what is the fraction s of nodes
hat have failed so far at time t. This is

(t + 1) = Pr{�i(t + 1) < 0} = Pr

⎧⎨
⎩

k∑
j=1

�j(t) > �i(0)

⎫⎬
⎭ . (A.1)

For simplicity, we assume the network is a regular graph with
egree k. Whether a given node i fails by the time step t + 1, it
epends on the number kf of the neighbors that have already failed,
ut of the total number k of neighbors. Denote �j(t) = 1 iff j has
efaulted any time before or at t, and 0 otherwise. Then, at time
tep t + 1, the possible events are kf =

∑k
j=1�j(t) = 1, 2, . . . , k. In

ach of these events, the probability that node i fails, depends
n the initial value of its robustness. Assume all failures that
ave occurred so far are uncorrelated across agents. Then, they

ollow a binomial distribution, Pr{kf failures among k neighbors} =
k
kf

)
pkf (1 − p)k−kf , where p is the probability that any given node

as failed so far. In the limit of a large network it is p = n(t). Finally,
e need to take into account that firms do not recover during the

ascade and thus the fraction of failure can only increase. Therefore,

(t + 1) = max

⎧⎨
⎩s0,

k∑
kf =1

(
k
kfi

)
s(t)kf

× (1 − s(t))k−kf Pr

{
�i(t) ≤ akf

k

}}
, (A.2)

here s0 is the initial fraction of failures. This is a recursive equa-
ion of the type s(t + 1) = F(s(t)). Once the probability distribution
f � is specified, the fixed points are the solutions of s = F(s). For
xample, in the case of regular graph, with � following a Gaussian
istribution with mean m and standard deviation � we obtain:

(t + 1) = max

⎧⎨
⎩s0,

k∑
kf =1

(
k
kf

)
s(t)j(1 − s(t))k−kf

1

�
√

2	

∫ akf k

−∞

exp

(
− (u − m2)

2�2

)}
= max

⎧⎨
⎩s0,

k∑
kf =1

(
k
kf

)
s(t)kf

× (1 − s(t))k−kf
1
2

(
1 + erf

(
akf /k − m

�
√

2

))}
(A.4)

Notice that F(s) > s0 with s0 > 0 strictly for m < ∞ and � > 0. Since
n addition F(s) is not decreasing, there exists at least one stable
xed point. There maybe more than one but what matters here

s only the smallest stable fixed point s with s ≥ S0. The Equation
bove can be solved numerically with arbitrary precision for any
hoice of the parameters. The results are shown in Fig. 1.

In general it would also be possible to account for heteroge-
eous degree distribution. This requires however a more extended
nalytical treatment that goes beyond the objective of this paper.�
roof of Proposition 2. The procedure is the same as in the Proof
f Proposition 1 with the difference that the probability that agent

’s robustness goes below the threshold depends not only on the
irect loss due to the defaulting counterparties but also on whether

W

al Stability 8 (2012) 138– 149 149

he credit run occurs or not. Since the credit run occurs iff the
obustness is smaller than the number of defaulted counterparties
ime the factor � , we  obtain{

agent i defaults
}

= (A.5)

{
�i(t) ≤ akf

k

}
P{�i > �kf (t)} + P

{
�i(t) ≤ akf

ki
+ b

}
P{�i ≤ �kf (t)}.

(A.6)

By replacing the expression above in Eq. (A.1) we  obtain the first
oint of the proposition. The existence of the solution follows as in
he previous proof.�
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