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Abstract – Based on the analysis of the dependency network in 18 Java projects, we develop
a novel model of network growth which considers both preferential attachment and the addition
of new nodes with a heterogeneous distribution of their initial degree, k0. Empirically we find
that the cumulative distributions of initial and final degrees in the network follow power law
behaviours: 1−P (k0)∝ k1−α0 , and 1−P (k)∝ k1−γ , respectively. For the total number of links
as a function of the network size, we find empirically K(N)∝Nβ , where β ∈ [1.25, 2] (for small
N), while converging to β ∼ 1 for large N . This indicates a transition from a growth regime
with increasing network density towards a sustainable regime, which prevents a collapse due to
ever increasing dependencies. Our theoretical framework allows us to predict relations between
the exponents α, β, γ, which also link issues of software engineering and developer activity. These
relations are verified by means of computer simulations and empirical investigations. They indicate
that the growth of real Open Source Software networks occurs on the edge between two regimes,
which are dominated either by the initial degree distribution of added nodes, or by the preferential
attachment mechanism. Hence, the heterogeneous degree distribution of newly added nodes, found
empirically, is essential to describe the laws of sustainable growth in networks.

Copyright c© EPLA, 2011

How do real networks grow? Tracing the complete
history of empirical networks is difficult and rare. A notice-
able exception are dependency networks in Open Source
Software (OSS) projects. In this letter we provide empiri-
cal evidence that their evolution is governed by the addi-
tion of nodes with a very skewed initial degree distribution.
This differs from most common network growth models
and leads us to develop a novel model of network growth
which extends existing analytical approaches to encom-
pass the role of inhomogeneities.
So far, many modelling approaches, most notably the

preferential attachment, simply assume that i) at any
time step τ a constant number of nodes is added to the
network, that ii) each new node is linked to the network
with a constant number of links, and that iii) neither
nodes nor links are deleted [1–3]. If such assumptions hold,
this results in a growth N(τ)∝ τη of the total number of
nodes in the network, and K(τ)∝ τλ of the total number
of links, where both exponents η� 1 and λ� 1. Such a
network growth could be called sustainable, in contrast to
the two limiting cases of a) accelerated growth [4–6], if
λ/η > 1, or b) saturated growth, if λ/η < 1. Both of these
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growth processes are not sustainable in the long run as
they either lead to collapse or to stagnation [7]. There
is, at least for observable intermediate time scales, also
empirical evidence of networks growing with increasing
link density, for example the World Wide Web [8,9]. Here
we focus on OSS as another example.
The evolution of software was recently investigated

by means of statistical physics, ranging from the self-
organised software dynamics [10,11], to the analysis of
the network topology of the dependency networks [12–14],
and to network motifs in software networks [15]. However,
results obtained for N(τ) or K(τ) refer to macroscopic
properties, which are compatible with a large variety of
“microscopic” assumptions about node and link additions
(or deletions). More importantly, the kinetic exponents
may change over time and may reach 1 only asymptoti-
cally, which would point to changes in the growth mecha-
nism on intermediate time scales. Eventually, in addition
to the total number of nodes and links, there are other
characteristics of the network structure and dynamics
which need to be predicted and to be verified empirically.
In this letter, we address these problems both theoreti-
cally and empirically by i) developing a detailed model of
network growth which includes the heterogeneous degree
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Table 1: Empirical results obtained for 18 Open Source Java
projects. N gives the maximum number of nodes (classes) at
the date of the last snapshot taken; α, γ are the exponents for
the initial and final degree distribution. β is the value of the
exponent describing the growth of the total number of links as
a function of network size.

Project N α β γ

eclipse 28898 2.7(1) 1.06(4) 2.6(1)
springframework 7707 3.5(1) 1.02(4) 2.9(1)
fudaa 7610 2.7(1) 1.1(1) 2.7(1)
jpox 7259 2.49(8) 1.08(2) 2.44(8)
architecturware 7110 2.7(1) 1.00(3) 2.8(1)
jena 6619 3.5(1) 0.99(3) 2.9(1)
hibernate 5938 2.5(2) 1.03(3) 2.5(1)
sapia 4129 3.44(8) 1.00(2) 3.0(1)
rodin-b-sharp 4077 2.8(1) 1.03(2) 2.6(1)
azureus 4051 2.9(2) 1.14 (5) 2.6(2)
jedit 3997 2.9(1) 1.01(1) 2.93(8)
jaffa 3854 3.0(3) 1.1(1) 2.7(3)
jmlspecs 3590 2.4(2) 0.97(6) 2.6(2)
openxava 3000 3.2(2) 1.04(4) 2.9(2)
phpeclipse 2881 2.8(1) 1.02(2) 2.73(8)
personalaccess 2687 3.1(1) 0.95(6) 2.9(1)
xmsf 2576 2.2(1) 1.08(3) 2.3(1)
aspectj 1856 2.5(1) 1.03(4) 2.5(1)

distribution of newly added nodes, and ii) by verifying the
predictions of our general model against a novel data set
of growing networks.
We start by describing the empirical findings, to moti-

vate the assumptions of the network growth model, later.
We have used a dataset of 18 OSS projects (see table 1),
which are programmed in Java. The network consists of
nodes, which are Java classes (each file corresponds to one
class), and links representing dependencies between these
classes. For example, one class can call a function defined
in another class, use another class or inherit another one.
During software evolution, new classes are added to the
project and are linked to existing classes based on prin-
ciples defined in software engineering. So, if we are able
to reveal a universal dynamics underlying such growth
processes, this is a remarkable result on its own. For the
time-dependent evolution of the OSS projects, we rely on
version control systems which record all changes made.
For our analysis, we have used snapshots of intervals of
30 days, for a project life span between 2.7 and 8.2 years
—which goes much beyond the few snapshots available
for previous investigations of OSS growth [13,14,16,17].
Nevertheless, we may use these studies as a point of refer-
ence, as they also study some topological properties, such
as the cumulative degree distribution P (k).
In order to derive analytical results about the latter,

let us define n(k, τ) as the degree distribution, i.e.
the number of nodes with total degree k at time τ .

Obviously 2K(τ) =
∑N(τ)
k=1 k n(k, τ). The complementary

cumulative degree distribution at time τ is then given by

P (k, τ) = 1−∑l<k n(l, τ)/N(τ). We can replace the
real time τ by using the scaling τ ∝N1/η, which means
K(N)∝Nβ , where β = λ/η. This procedure implies that
the number of nodes is increasing, i.e. the deletion of
nodes is not considered. Figure 1 illustrates the empirical
results for these quantities by showing examples of four
OSS projects of very different size, while table 1 contains
the detailed information for all projects investigated.
Looking at the final complementary cumulative degree

distribution 1−P (k) obtained for the maximum size of the
project, we clearly identify a power law 1−P (k)∝ k1−γ
(fig. 1, left panel), which characterises the structure of the
final product. Dependent on the size of the project, values
between 2 and 3 are found, with a tendency towards values
closer to 3. For the growth of the OSS projects (fig. 1,
middle panel) we obtain slightly bend curves for the four
projects which indicate that the exponents β change over
time, as can be also seen in fig. 2. To calculate β, for every
project the total degree as a function of system size was
split into different windows (of size 500) for each of which
β was estimated. Starting at values of β ∈ [1.25, 2], they
converge to smaller values around β ∼= 1, which implies
that fewer dependencies are added as the network ages.
Thus, we observe a transition from accelerated to sustain-
able growth. The right panel of fig. 1 further presents the
most interesting empirical finding that, different from the
above mentioned assumptions about preferential attach-
ment and most modelling approaches, newly added nodes
have a very heterogeneous initial degree k0. In fact we
observe a power law for the complementary cumulative
initial degree distribution P (k0)∝ k1−α0 , where α is related
to the initial conditions of the software growth, i.e. to soft-
ware design. It remains to reveal the inherent relations
between the three exponents α, β, γ which is done by the
following analytical approach.
We assume that nodes are added to the project at a

constant rate, i.e. η= 1. Moreover, time t is given by
the total number of nodes, t=N . For the dynamics of
the degree distribution we postulate the following rate
equation:

ṅ(k, t) = δk,k0(t)+n(k− 1, t)ω[k− 1→ k]
+n(k+1, t)ω[k+1→ k]
−n(k, t){ω[k→ k− 1]+ω[k→ k+1]}. (1)

This is a first-order approximation of the dynamics.
The term δk,k0(t) in eq. (1) describes the addition of
a new node with an initial degree exactly equal to k0.
In accordance with our empirical findings, this degree is
randomly drawn from a truncated power law distribution
g(k0) with exponent α; i.e.

Prob[k0(t) = k] =min((α− 1)/kα, t− 1). (2)

This broad initial degree distribution indicates the role
of modularity and anticipation to change in software
engineering [18], where different problems have to be
isolated and solved separately. From this distribution, it
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Fig. 1: (Colour on-line). Left: final complementary accumulated degree distribution 1−P (k)∝ k1−γ . Right: initial complemen-
tary cumulated degree distribution 1−P (k0)∝ k1−α. Middle: total number of links K(N)∝Nβ as a function of the network
size N . Colours indicate four different OSS projects: architecturware (black circles), eclipse (blue squares), jEdit (violet stars),
sapia (magenta triangles). See table 1 for more details. The small symbols, represent the complete empirical datasets, while the
large ones the binned data.
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Fig. 2: (Colour on-line) Evolution of exponent β. Different
symbols represent the 18 OSS projects given in table 1, while
the dashed line gives the median of β obtained from all projects.

is apparent that modules spanning multiple scales have to
be written to implement the functionality expected from
software projects.
For the transition rate of growth processes, k→ k+1,

we assume

ω[k→ k+1] =
{
k0(t)

K(t)
+
(
σ+
r

2

)}
k. (3)

This rate is proportional to k, i.e. it is based on
preferential attachment. Without that assumption, the
process would result in a single-scale network which is
not in accordance with the empirical studies above. Two
different processes are included in this transition rate: in
the first term a newly added node links to k0(t) existing
ones, which are selected with a probability proportional to
their relative degree k/K, while in the second term links
between existing nodes are created. σ and r are constants
described below. The transition rate corresponding to
the deletion of links, k→ k− 1, is also assumed to be
proportional to the degree of the node,

ω[k→ k− 1] =
{
σ− r
2

}
k. (4)

This formalism provides a complete model for the depen-
dency dynamics in software. If the network dynamics due
to the addition of nodes with heterogeneous degree k0,
does not play any role, i.e. k0(t) = 0, the dynamics is
only governed by the addition/deletion of links distributed
between existing nodes. Then, the rate equation (1), in the
continuous limit and for large N , can be transformed into
the following Fokker-Planck equation:

∂tn(k, t) =−∂k [r k n(k, t)] + ∂2kk[σ2 k2 n(k, t)] (5)

which is equivalent to the following Langevin dynamics for
the degree ki of a single node i,

k̇i(t) =−r ki(t)+σ ki(t) ξi(t). (6)

This describes the known law of proportional growth
[19,20], where r is the mean growth (drift) and σ is
the variance of the normalised random force ξi(t). It
is well known [21] that this dynamics, if coupled with
birth and death processes, yields a power law distribution
1−P (k)∝ k1−γ , with γ equal to 2, i.e. known as Zipf’s
law. In fact, this law was empirically confirmed for the
in-degree distribution of Linux packages [16] as well as for
Java projects [17] whereas the out-degree distribution, at
least for the latter dataset, clearly followed a log-normal
distribution.
In this letter, we are interested in another limiting

case of the dynamics given by eq. (1) where the addi-
tion/deletion of links among existing nodes expressed by
σ and r are negligible. I.e., we emphasise network growth
based on the addition of nodes with a broad initial degree
distribution, g(k0). This assumption is fully justified for
the broad distribution of initial degrees found empirically.
This regime is described by the governing principle of soft-
ware engineering, incrementality, where new functionality
is added on top of the existing one. Moreover, there is a
tendency to open/closed design [18]: once implemented,
classes have a fixed interface with only internal changes
not affecting their connectivity with others. In this case,
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the dynamics is fully described by the following set of
equations:

ṅ(1, t) = δ1,k0(t)−
k0(t)

K(t)
n(1, t),

ṅ(k, t) = δk,k0(t)+
k0(t)

K(t)
{(k− 1)n(k− 1, t)− k n(k, t)}

(7)

and the initial condition n(k, 0) = n0 δk,n0−1. I.e. initially
a small number of nodes (e.g. n0 = 2) with a degree of
n0− 1 is assumed, which describes a small, fully connected
network to start with. From this set of equations, we first
derive the dynamics for the total number of links, K(t).
By definition, for a single network realisation K̇(t) = k0(t)
holds. The ensemble average 〈K(t)〉 over many realisations
of the network growth process is then given by

〈K̇(t)〉= 〈k0|k0 < t〉+ t ·Prob[k0(t)> t]. (8)

The first term represents the expected value of k0(t)
restricted to k0(t)< t, which applies if the number drawn
from the distribution g(k0) is lower than the current
network size (t=N) and, thus, the newly added node
is able to establish as many links as drawn from the
distribution. If this is not the case, i.e. k0(t)> t the node
can only create at most t− 1 links, which is described by
the second term. By recasting the power law distribution
for g(k0), we get

〈K̇(t)〉= α− 1
2−α +

t2−α

2−α. (9)

Asymptotically, we find that the total number of links
grows in time or with network size t=N , respectively,
as a power law, K(t)∝ tβ , with the exponent β = 3−α if
α< 2; β = 1, otherwise.
By applying the ensemble average to eqs. (7), we

are further able to find a mean-field approximation for
the dynamics of the degree distribution n(k, t). Using
〈δk,k0(t)〉=Prob[k= k0(t)] = (α− 1)/kα and similar argu-
ments as in eq. (9), we find that

〈k0(t)〉= t2−α 1

2−α +
α− 1
α− 2 . (10)

By analysing the solution of eqs. (9), (10) we find
two different regimes for the ratio 〈k0(t)〉/〈K(t)〉:
i) if α> 2, then 〈k0(t)〉 ∝ (α− 1)/(α− 2) and 〈K(t)〉 ∝
(α− 1)/(α− 2); ii) if α< 2, 〈k0(t)〉 ∝ t2−α/(α− 2) and
〈K(t)〉 ∝ t3−α. Both regimes, however, yield identical
result, i.e. 〈k0(t)〉/〈K(t)〉= ζ(α)t, with ζ(α) a normalisa-
tion constant. Thus, we can rewrite eqs. (7) as

〈ṅ(1, t)〉 = (α− 1)− 〈n(1, t)〉
ζ(α) t

,

〈ṅ(k, t)〉 = (α− 1)
kα

+
(k− 1)〈n(k− 1, t)〉− k〈n(k, t)〉

ζ(α) t
.

(11)

These equations reveal a competition between two differ-
ent processes: the growth of the network caused by the
addition of links with a broad initial degree distribution
(first term) and the growth of a node’s degree caused by a
mechanism akin to preferential attachment (second term).
If α is small, the first case dominates and the expected
degree distribution is simply given by

〈n(k, t)〉= (α− 1)
kα

t. (12)

On the other hand, if α is large and the addition of
new nodes with a heterogeneous initial degree distribution
can be neglected, we recover the usual Barabási-Albert
model with n(k, t)∝ k−3. That means if the initial degree
follows a Gaussian distribution which, according to the
generalized central limit theorem, is expected to occur for
α� 3 our model recovers the standard scale-free behaviour
with exponent γ = 3. Thus, we have found two different
regimes for the final degree distribution, which depend of
the exponent of the initial degrees distribution α: γ = α if
α< 3; γ = 3, otherwise.
To conclude, our analytical approach has provided a

firm relation between the three different exponents α,
β, γ, which can be tested in two different ways: i) by
computer simulations of the full dynamics for various
network sizes N and distribution of initial degrees; ii) by
comparison with the empirical findings from the 18 OSS
projects. The results are shown in fig. 3. They confirm
that the analytical approximations are indeed valid and
in good agreement both with the computer simulations
and the empirical results. Most interestingly, they reveal
that the growth dynamics of real OSS networks is on the
edge between two regimes: for α< 3, the initial degree
distribution and hence the addition of new nodes would
dominate the whole growth process, whereas for α> 3 the
preferential attachment of links between existing nodes
would dominate. Moreover, all the projects in our dataset
show α> 2. As the empirical findings verify, none of these
regimes fully cover real software growth. In particular, the
heterogeneous degree distribution of newly added nodes
cannot be neglected.
Eventually, we wish to point to the self-organising

dynamics observed in OSS which turns an initially
accelerated network growth (β > 1) into a sustainable one
(β→ 1). For mature projects, this transition prevents soft-
ware growth from collapsing caused by the non-linearly
increase of dependencies between classes. This raises the
question whether this transition indicates a shift from
developing the core functionality (during the first steps
of the project) to actually using it (after the project has
grown). Such an explanation is in line with the observed
transition from an increasingly connected network to
a sparser one, as the network grows. We emphasise,
however, that even in such a scenario the initial degree
distribution has proven to be the key ingredient in the
network evolution.
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Fig. 3: (Colour on-line) Upper panel: exponents β for the
growth of the total number of links. Lower panel: exponents
γ of the power law degree distribution of the final network,
both as a function of the exponent α of the initial degree
distribution. The different thin lines correspond to simulations
of the model described for various network sizes: (dotted lines)
N = 2× 103, (dashed lines) N = 105. The thick lines indicate
the analytical results. Marks with error bars correspond to the
empirical results for the 18 projects.

The exponent β also describes the effort, or social
activity, of developers adding new classes to the soft-
ware. The larger this exponent, the more collaboration
is needed to ensure further project growth, either explic-
itly through interaction between devolopers, or implicitly
through documentation. It is a remarkable finding that
this exponent is closely related to the other two expo-
nents α, γ, describing a very different “dimension” of the
software evolution, namely software engineering. This may
shed new light on the underlying principles of software
design and software project management.
Finally, we point out that the growth mechanism based

on a heterogeneous initial degree distribution was largely
overlooked in previous studies of complex network evolu-
tion. To the best of our knowledge, only in [22] network
growth with power law initial degree distribution was
succinctly studied as a limiting case of a local search
mechanism; however, its emerging properties were not
computed.
We emphasise that the results presented in this letter

go beyond the specific application for software growth
and could also be used to recast known network dynamics
processes in different areas. We argue that this may open
a new strand of research for network growth processes
in those areas where network dynamics is not based
on the addition of links and nodes at a constant (or

single-scaled) rate. For examples, network evolution
governed by scale-free processes can be related to self-
organised criticality, or similar processes. With our
approach we have demonstrated how such processes can
create network dynamics at all possible scales, generating
growth by means of avalanches that completely reshape
the outcome network.
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