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Network evolution based on centrality
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We study the evolution of networks when the creation and decay of links are based on the position of nodes
in the network measured by their centrality. We show that the same network dynamics arise under various
centrality measures, and solve analytically the network evolution. During the complete evolution, the network
is characterized by nestedness: the neighborhood of a node is contained in the neighborhood of the nodes with
larger degree. We find a discontinuous transition in the network density between hierarchical and homogeneous
networks, depending on the rate of link decay. We also show that this evolution mechanism leads to double
power-law degree distributions, with interrelated exponents.
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I. INTRODUCTION

The underlying mechanisms of link formation governing
the evolution of a network ultimately determine its emergent
properties at the aggregate level [1,2]. In particular, there
exists ample empirical evidence that the network evolution
can be driven by centrality, where nodes with higher centrality
are more likely to form or receive links [3,4]. The notion
of centrality was recognized to play a fundamental role in
the most despair fields, ranging from dynamical systems [5],
synchronization [6], biology [7], and economics [3,4]. In spite
of its importance, a formal understanding of how networks
evolve when the formation of links depends on the centrality
of the nodes is still missing.

Depending on the context, several measures of centrality
have been introduced to quantify the importance of the
position of a node in a network: degree, eigenvector,
betweenness, closeness, PageRank and Bonacich centrality
are the most prominent ones [8,9]. Due to this variety, few
attempts have been made so far to elucidate the common
features underlying the emergent properties of networks
evolving by centrality [10].

At the macroscopic level, some real world networks exhibit
a high degree of clustering while, coincidentally, their degree
distributions show power-law tails. Taken together, these
two characteristics indicate a hierarchical organization in the
network [11]. In social and economic [12,13], as well as
biological systems [14], it has been found that the hierarchical
organization of networks can further be characterized by
nestedness [14,15]: The neighborhood of a node is contained
in the neighborhood of the nodes with higher degrees. In these
examples, the extent of nestedness (defined as the fraction
of links belonging to the nested structure) was shown to
be above 93% [15]. A recent study [16] also finds nested
core-periphery structures in over 100 large sparse real-world
social and information networks.

In this paper, we study a model of network evolution
where links are created or removed based on the centrality
of the nodes incident to the links [17]. We show that in this
model the network evolution is independent of the particular

centrality measure used. Thus, this model provides a general
framework to study the evolution of networks under various
measures of centrality. We show that there exist stationary
networks which are highly hierarchical when the rate of link
creation is low. Moreover, the networks are nested during the
complete network evolution. As we show, both a hierarchical
organization as well as network nestedness can be the
outcomes of a centrality-based network formation process. We
further show that in this framework, double power-law degree
distributions [18–20] can be stationary solutions, and that each
power-law exponent has a univocal relation to the other.

The paper is organized as follows. In Sec. II we introduce
the basic network formation process and discuss the generality
of its underlying assumptions, by showing the independence of
the dynamics with respect to the particular centrality measure
used. Next, in Sec. III, we provide the characterization of
the asymptotic network structures generated by our network
formation process. In Sec. IV we then extend the basic network
formation process by allowing for heterogeneous linking
probabilities among the nodes in the network and study the
effect this has on the emerging network structures. Finally,
Sec. V concludes.

II. MODEL STUDIED

We consider a network composed of N nodes, initially
connected by an arbitrary network. Each node has a centrality
associated with it. At a constant rate (set arbitrarily to one and
a priori equal for all nodes), a node is randomly selected
and modifies its neighborhood: with probability α ∈ [0,1],
it creates a link to the node with the highest centrality it is
not already connected to. With the complementary probability
1 − α, a link of the selected node decays. If this happens,
then the node removes the link to the neighbor with the
lowest centrality. If the node is connected to all the other
nodes in the network (resp. it is isolated), and it has to create
(resp. remove) a link, nothing happens. One can show that the
network formation process is ergodic, and starting from any
initial network yields the same asymptotic results. Thus, and
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without any loss of generality, in the following we consider an
empty network as the initial condition.

Note that, when links are created, we could assume that
a node has only local information of the network [21] and
creates a link to the one with the highest centrality in its
second-order neighborhood. It turns out that this leads to
the same network evolution process. This makes sense in
situations where centrality is known ex ante, for example, when
centrality is a measure of performance in interorganizational
networks [22], or it indicates the fitness of biological species
[7].

The general dynamics we have introduced above can be
applied to different areas. In the following we provide a few
illustrative examples. A first example can be given for ecolog-
ical networks. Consider a population of biological species in
a catalytic network [7]. Let species i = 1, . . . ,N have fitness
values yi � 0 that evolve according to the dynamics

ẏi =
N∑

j=1

aij yj − φyi,φ � 0,

where aij ∈ {0,1} is the ij -th element of the symmetric adja-
cency matrix A. In terms of relative fitness xi = yi/

∑N
j=1 yj ,

we get

ẋi =
N∑

j=1

aij xj − xi

N∑
k,j=1

akjxj .

This dynamics has a fixed point given by the eigenvector
v � 0 corresponding to the largest real (Perron-Frobenius)
eigenvalue λPF of A. Hence, in this model, the stationary fitness
distribution is directly given by the eigenvector centrality.
Applying this centrality measure to our network formation
process mimics an evolutionary process in which links to high
fitness species are created while links to low fitness species
decay.

A second example comes from a socio-economic context.
Consider a population of agents whose payoffs are interde-
pendent in a network. The agents choose a contribution level
xi � 0 and receive a payoff πi given by

πi = xi − 1

2
x2

i + λ

N∑
j=1

aij xixj ,

where λ < 1/λPF [23]. Then, the unique Nash equilibrium
satisfying the first-order condition ∂πi/∂xi = 0 is given by
the Bonacich centrality [8],

x∗ = (I − λA)−11.

The linking dynamics introduced above corresponds to a
game in which agents form links that maximize their Nash
equilibrium payoffs πi(x∗) in each period [17].

Further examples include degree centrality, closeness cen-
trality [10], betweenness centrality [8], PageRank [9], and
random walk centrality [24]. These measures have found
application in different areas including various information
and communication networks. One can also show that the links
created (removed) in our model are the ones which increase
the most (decrease the least) the largest eigenvalue λPF. These

links were shown to modify to the largest possible extent the
dynamical properties of the system [25].

The distinctive characteristic of our network formation pro-
cess that allows us to incorporate various centrality measures
is the fact that, at every time step t = 0,1,2, . . . , our dynamics
yield a network whose adjacency matrix A is stepwise: The
nodes can be ordered by their degree, such that the zero and one
entries in the adjacency matrix are separated by a monotonic
step-function h(x) (see Fig. 1, right), where x = 1 − r , and r is
the degree rank of a node. Networks with a stepwise adjacency
matrix are also known as threshold networks [26,27]. In such
a network, if two nodes i and j have degrees such that
di < dj , then their neighborhoods satisfy Ni ⊂ Nj . Thus,
these networks are characterized by nestedness. Moreover, the
nodes can be partitioned into a dominating set and independent
sets. In the dominating set S, every node not in S is linked to
at least one member of S. Conversely, an independent set is
one in which no two nodes are adjacent (see Fig. 1, left).

We now prove by induction that the adjacency matrix A
representing the state of the network at every time step is
stepwise for the case of eigenvector centrality. First, at time
t = 0, the first link added generates a (trivial) stepwise matrix.
Next, let us assume that this is true at time t � 0. Consider the
creation of a link ij . Then

vi = 1

λPF

n∑
k=1

aikvk = 1

λPF

∑
k∈Ni

vk.

Thus, the larger is the degree of a node i, the higher is
its eigenvector component vi . In this way, the eigenvector
centrality of the nodes is ranked in the same way as their
degree. Therefore, for the model studied, a node has to
establish a link to a node with the highest degree it is not
connected to. This preserves the stepwise property of A (see
Fig. II, right). Similarly, for the removal of links, the node
with the lowest degree among the neighbors is the least central
one, and removing a link to it preserves the stepwise property
of A.

The nested neighborhood structure allows us to use similar
arguments for other centrality measures. Consider two nodes i

and j in a nested graph with di > dj . All walks starting at node
j are contained in the set of all walks starting from node i (after
exchanging the starting node j with i). This implies that i has a
higher centrality than j for any centrality measure that is based
on walks or paths in the network. Hence, a proof by induction
shows that the ranking of nodes by degree is equivalent to the
ranking by centrality for this family of centrality measures.
In general, this dynamics leads to a self-reinforcement of the
nested structure.

III. RESULTS

Given the symmetry of the adjacency matrix A, in order to
solve the dynamic evolution of the network, it is enough to
solve the dynamics for the nodes belonging to the independent
sets (see Fig. II). Let us denote by n(d,t) the number of
nodes in the independent sets with degree d at time t . The
dynamic evolution of these populations can be written as a rate
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equation,

∂tn(d,t) = ω[d + 1 → d] n(d + 1,t)

+ω[d − 1 → d) n(d − 1,t

− (ω[d → d − 1] + ω[d → d + 1]) n(d,t), (1)

where the transition rates are simply ω[d → d + 1] = α/N ,
ω[d → d − 1] = (1 − α)/N . In Eq. (1) we have neglected the
contributions of the nodes in the corresponding dominating
set [which are selected with a probability ∼O(N−1)] in the
dynamics of the nodes in the independent sets. The dynamics
studied is restricted to the profile separating (non)existing
edges, and is thus related to surface-growth models, such
as those of polynuclear growth; because of this, it can also
be linked to the one-dimensional Ising model with Kawasaki
dynamics [28].

The dynamic evolution of the network can be written in
terms of its degree distribution P (k; t) = n(d,t)/N , where k =
d/N denotes the normalized degree. For a finite population,
the minimum increment possible in degree is δk = 1/N . At
leading order in δk, the dynamic evolution corresponding to
Eq. (1) is given by

∂tP (k; t) = (1 − 2α) ∂kP (k; t) + δk ∂2
kkP (k; t) + O(δk2),

∂tP (0; t) = (1 − 2α)[δk + ∂kP (0; t) − αδk P (0; t)]+O(δk2),

(2)

with the additional boundary condition P (1,t) = O(δk2) and
an initial condition P (k,0) = δ(k).

When the terms of order δk can be neglected, Eq. (2)
becomes a usual drift equation whose stationary solution is
either a complete network for α > 1/2 (when the link decay
is low), or empty for α < 1/2. The reason for this lays in the
change of sign in the drift coefficient in such an equation.
Thus, there is a discontinuous phase transition in terms of
the network density as a function of the decay rate α. If
α is small (and the link decay is high), the network rapidly
converges to a hierarchical structure, where only a few nodes
immediately become central, and they remain in this central
position during the network evolution. In this case it is the
competition driven dynamics for centrality which leads to the
spontaneous emergence of hubs [29].

There exists a first-order phase transition in the network
density that gives rise to nontrivial effects around the critical
point α = 1/2. If |1 − 2α|/δk ∼ O(1), then the diffusion term
in Eq. (2) is not negligible anymore. Time scales must be
rescaled to τ ≡ t δk, and we get the Fokker-Planck equations

∂τP (k; τ ) = (1 − 2α) ∂kP (k; τ ) + ∂2
kkP (k; τ ) (3)

∂τP (0; τ ) = 1 − 2α

δk
∂kP (0; τ ). (4)

This prescription allows us to relate the width of the transition
from sparse to dense networks: it must be that |1 − 2α| ∼
O(1), or conversely, 
α ∼ N−1.

We now study the stationary solutions for all values of
α ∈ [0,1]. First, notice that the network obtained for a value
of α > 1/2 is the complement of the network obtained for
1 − α < 1/2. Thus, in the following we consider only values of
α � 1/2. The step-function h(x) can be decomposed in a part
hu(x) below the diagonal and a part hl(x) above the diagonal of

d = 2K̄2

d = 3K̄2

d = 4K̄2

d = 9 K2

d = 7 K1

d = 5 K1

(a) (b)

FIG. 1. (Color online) Representation of a nested network and the
associated stepwise adjacency matrix with N = 10 nodes. A nested
network can be partitioned into subsets of nodes with the same degree
(each subset is represented by circle, next to which the degree d of
the nodes in the subset is indicated). A line connecting two subsets
indicates that there exists a link between each node in one set to all
nodes in the other set. The union of the sets represented by the circles
to the left of the dashed line induce a dominating set, while to the
right the circles indicate independent sets. In the matrix A to the right,
the zero-entries are separated from the one-entries by a step-function,
h(r), of the rank degree of the nodes.

A (see Fig. II, right panel). The point x∗ is implicitly defined
by hu(x∗) = hl(x∗), where the step-function h(x) intersects
with the diagonal. Let P (k) denote the stationary degree
distribution. We have that hu(x) = ∫ 1−x

0 P (k)dk. From the
stationary solution of Eq. (2) we find

hu(x) = N e−2(1−2α)x,

with

N = 2(1 − 2α)

1 − e−2(1−2α)N
.

This result for the functional form of the step-function is valid
for the elements below the diagonal, i.e., for the nodes with
low degree.

We now turn our attention to the high degree, central
nodes. From the symmetry of the adjacency matrix, one finds
that hl(x) for these nodes satisfies x = N e−2(1−2α)hl (x). Thus,
inverting this expression we get

hl(x) = ln(N ) − ln(x)

2(1 − 2α)
.

Conversely, the degree distribution is given by P (k) =
−h′(1 − k), from which the following stationary degree
distribution is found

P (k) =
{N e−2(1−2α)k, if k < 1 − x∗,

1
2(1−2α)k

−1, if k > 1 − x∗. (5)

In particular, for α = 1/2, it results in a uniform distribution
P (k) = 1/N . Degree distributions for different values of α in
the stationary state can be seen in Fig. 2.

In these nested structures, the adjacency matrix is com-
pletely determined by the corresponding degree distribution
from Eq. (5) or, conversely, from the profile function h(x).
Thus, it is possible to compute any network statistic of interest
when the degree distribution is known. In doing so, one
can show that the stationary networks emerging in the link
formation process are characterized by short path length,
high clustering, negative degree-clustering correlations, and
dissortativity.
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FIG. 2. (Color online) (a) Eigenvector centralization Cv in sta-
tionary networks as a function of the link formation probability α for
different system sizes N = 100 (◦), N = 1000 (�), and N = 5000
(♦). Results of numerical simulations are superimposed with lines
representing the analytical prediction. (b) Degree distributions of
stationary networks for different values of α = 0.45 (◦), 0.48 (�),
0.49 (♦), 0.495 (
), and system size N = 5000. The figure reveals
that the leading part of the distribution is exponential, while a
logarithmic binning shows a power-law tail with exponent −1.

The emerging networks also show a clear core-periphery
structure, which can be measured by their centralization. To
quantify this, we compute the degree of centralization of the
network Cv , as [8]

Cv =
∑

i[Cv(i∗) − Cv(i)]∑
j [C∗

v (j ∗) − C∗
v (j )]

, (6)

where Cv(i) if the eigenvector centrality of node i, i∗ is the node
with the largest centrality in the network. The denominator
normalizes the value between zero and one, by the computation
of the centralization

∑
j [C∗

v (j ∗) − C∗
v (j )] of a star network

with the same maximum degree as the considered one. In
Fig. 2 (upper panel), we show the transition from hierarchical
to decentralized networks measured in terms of the degree of
centralization of the network, as a function of the parameter
α. In the same plot, also exemplary stationary networks
are depicted. It can be seen that there exists a transition
at α = 1/2 from highly centralized to highly decentralized
networks. This means that for low arrival rates of linking
opportunities α (and a strong link decay) the stationary
network is strongly centralized, while for high arrival rates
of linking opportunities, stationary networks are dense and
largely homogeneous.

IV. GENERALIZED ATTACHMENT

The symmetry condition for the step-function h(x) implies
an important result when part of the degree distribution (for
example around the head, i.e., k → 0) shows a power-law
decay: The tail of the distribution (i.e., k → ∞) also follows
a power-law distribution, but with a different exponent. To see
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FIG. 3. (Color online) (a) Degree distribution for different ex-
ponents in the head of the distribution η = 1.2 (∇), 1.5 (
), 2 (♦),
2.5 (�), 3 (◦). If a nested network exhibits a power-law in the head
(tail) of the degree distribution then the distribution will also exhibit
a power-law behavior in the tail (head), with an exponent that can be
completely determined by the head (tail). (b) Power-law exponents for
the tail of the degree distribution, i.e. k → ∞ (�), and the head of the
distribution, i.e. k → 0 (◦), as a function of the power-law exponent
of the head. The symbols correspond to networks of N = 105 nodes,
and the lines represent the numerical simulations.

this, let us assume that the head of the distribution has the
functional dependence P (k) = βk−η. If η > 0, this implies
that the step-function hl(x) for low degree nodes is given by
hl(x) = βk−η−1/1 − η. By inverting this function, we get

x = β

1 − η
hu(x)−

1
η−1 ,

and the distribution in the tail yields

Pu(k) = 1

1 + η

(
β

1 − η

) 1
η+1

k−ηu ,

where ηu = η/(η − 1). In the limit η → ∞, (there is an
exponential distribution for the head), it implies ηu → 1, i.e.,
we recover the previous result of Eq. (5). The power-law
distribution in the head and in the tail have the same exponent
when η = 2. This is illustrated in Fig. 3 (top panel).

So far we have assumed that all nodes are selected at the
same rate, regardless of their position in the network. Depend-
ing on the context, this assumption may not apply. In order to
overcome this limitation, we assume that nodes are selected at
a rate which depends on their position in the network. Note that
the rate at which nodes are selected affects only the frequency
but not the way in which they create or remove links. Therefore,
the nestedness of the network is preserved. Moreover, in
these nested structures, the nodes with the same degree are
indistinguishable, as only their degree rank in the network is
important. We therefore assume that the node selection rate F
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is a function of the degree of the node. As a simple example,
we set F (k) = kη + A, where A > 0 denotes the idiosyncratic
activity of every node, and η > 0 a parameter governing
nonlinearly the preferential selection of nodes with higher
degree. Using similar arguments as in the derivation of Eq. (2),
we can write the evolution of the degree distribution as follows,

∂tP (k; t) = (1 − 2α)η

N kη−1P (k; t)

+1 − 2α

2N [kη + A]∂kP (k; t)δk + O(δk2).

In the continuous limit, the stationary solution is given by

P (k) = D

A + kη
,

where D is a normalization constant such that
∫ 1

0 P (k) dk = 1.
The solution reduces to the exponential one when η → ∞ and
A  N . In the general case, the degree distribution exhibits
two different power-law behaviors and an inflection point.
These two power-laws have the functional form P (k) ∼ k−η

for the head of the distribution, and consequently

P (k) ∼ k
− η

η−1

for the tail. The degree distributions for different values of η

are shown in Fig. 3 (bottom panel).

V. CONCLUSIONS

In this paper we have introduced a network formation pro-
cess in which link creation and removal is based on the position
of the nodes in the network measured by their centrality. We
have shown that the network evolution is independent of the

exact measure of centrality, and our results hold irrespective
of whether degree centrality or any more general centrality
measure that is based on walks or paths in the network is used.
Thus, our model provides a general framework to study the
evolution of networks under various measures of centrality.
Moreover, we can show that the link formation decision of
nodes does not require global information of the complete
network structure. A further characteristic property of our
model is that the emerging network structures are nested with
a tunable degree of centralization, depending on the likelihood
with which links are formed. This illustrates that both a
hierarchical organization as well as network nestedness can be
the outcomes of a centrality-based network formation process.
Finally, we extend the model to allow for heterogeneous
activity levels in the linking process of the nodes. We show
that this generalization keeps the basic properties of the model
unaltered, although the degree distribution is modified, and
a restricted set of double power-law degree distributions is
found.

We have also discussed the broad range of applications of
this kind of dynamics. In this context, it is worth mentioning the
recent empirical analysis of the European interbank payment
network, which shows that our dynamic model matches closely
the observed network pattern [30].
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