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Abstract. We develop an agent-based model of the motion and pattern formation of vesicles. These intra-
cellular particles can be found in four different modes of (undirected and directed) motion and can fuse
with other vesicles. While the size of vesicles follows a log-normal distribution that changes over time due
to fusion processes, their spatial distribution gives rise to distinct patterns. Their occurrence depends on
the concentration of proteins which are synthesized based on the transcriptional activities of some genes.
Hence, differences in these spatio-temporal vesicle patterns allow indirect conclusions about the (unknown)
impact of these genes. By means of agent-based computer simulations we are able to reproduce such pat-
terns on real temporal and spatial scales. Our modeling approach is based on Brownian agents with an
internal degree of freedom, θ, that represents the different modes of motion. Conditions inside the cell are
modeled by an effective potential that differs for agents dependent on their value θ. Agent’s motion in this
effective potential is modeled by an overdampted Langevin equation, changes of θ are modeled as stochas-
tic transitions with values obtained from experiments, and fusion events are modeled as space-dependent
stochastic transitions. Our results for the spatio-temporal vesicle patterns can be used for a statistical
comparison with experiments. We also derive hypotheses of how the silencing of some genes may affect the
intracellular transport, and point to generalizations of the model.

1 Introduction

Agent-based modeling has proven to be a versatile tool to
simulate processes of structure formation bottom up. By
assuming features and interaction rules of agents on the
“microscopic” level, one is able to observe the emergent
systems properties on the macroscopic level. This is of
particular importance in those areas where the systems
dynamics can hardly be captured top down, i.e. in living
systems, including biological, social or economic systems.

But the advantage of agent-based models in freely
defining agent properties and interactions soon turns out
to be a pitfall, because this way arbitrary patterns can be
generated and it is difficult to choose the right values in
a high dimensional parameter space. To minimize these
problems, there are basically two ways: (i) to closely link
the agent’s properties to experimentally observed data,
and (ii) to apply methods that allow to aggregate the
agent dynamics, to formally derive the systems dynam-
ics. The latter provides a firm relation between agent’s
features and systems feature’s and may reveal also the
role of certain (control) parameters.

The concept of Brownian agents [1] was developed to
facilitate the second way. The dynamics of agents is de-
scribed in a stochastic manner, similar to the Langevin ap-
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proach of Brownian motion. This allows to obtain on the
macroscopic level a closed-form partial differential equa-
tion for the density, that for the case of Brownian mo-
tion simply describes a diffusion process. The dynamics
in most real systems, however, is much more complicated.
Agents are not simple random walkers, they respond to
information in their environment, follow chemical gradi-
ents, and can at the same time also contribute to gener-
ating information, chemical gradients etc. Further, agents
do not behave the same all the time. Instead, they may
have different modes of activity each of which corresponds
to a particular behavior. To cope with these features,
Brownian agents are described by internal degrees of free-
dom and their environment is modeled as an adaptive
landscape, or effective potential, which can be modified by
the agents while responding to the information provided.
Further, transitions between the agent’s internal degrees
are possible, dependent on internal or external conditions.

On the formal level, the macroscopic dynamics is then
no longer described by a diffusion equation, but by a quite
advanced reaction-diffusion equation with a variable drift
term, which is coupled to another differential equation de-
scribing the dynamics of the adaptive landscape depen-
dent on the agent’s activity. This allows to tackle the dy-
namics of systems comprised of many interacting agents
on two levels: (i) the agent level, where computationally
efficient computer simulations can be performed, (ii) the
system’s level, where coupled differential equations may
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be obtained and investigated analytically. The application
discussed in this paper is unfortunately complex enough to
not provide closed form equations for an analytical treat-
ment. Nevertheless, the concept of Brownian agents al-
lows us to formally specify the agent dynamics in terms of
stochastic equations of motion in an adaptive landscape.

The aim of this paper is twofold: (i) to develop an
agent-based model of intracellular transport and pattern
formation, which is general enough to be applied to various
such phenomena involving free and directed motion and
fusion processes (Sect. 3), and (ii) to specify this agent-
based model for the case of vesicle movement and fusion,
in close relation to experimental findings (Sect. 4). Im-
portantly, the internal degrees of freedom of agents and
transitions between these are obtained from experiments.
This allows us to observe pattern formation on real time
and spatial scales (Sect. 5), the outcome of which can, at
least in a statistical manner, be compared with real exper-
iments. Hence, applying the concept of Brownian agents to
a real problem, i.e. the intracellular transport and pattern
formation of vesicles, demonstrates both the versatility
of the concept and its suitability to generate hypotheses
about real intracellular processes.

2 Vesicle formation and vesicle motion

In this paper, we are interested in the intracellular trans-
port and pattern formation of vesicles. These are quite
small intracellular particles (diameter approx. 0.1 μm)
(see [2–4]). They are formed at the cell membrane, to con-
tain some extracellular material engulfed by the cell mem-
brane. This import of material, called endocytic cargo,
may include macromolecules, but also viruses, which are
all encapsulated in vesicles – a process called endocytosis
(see [3,5,6]). In this paper, we do not consider endocyto-
sis explicitly, but assume that vesicles are formed at the
membrane and then released into the interior of the cell
at a constant rate (later called internalization rate). It
is known from experiments that the size distribution of
newly formed vesicles follows approximately a log-normal
distribution (see [7]).

Released vesicles can diffuse inside the cell, but they
can also be reabsorbed by the membrane at a constant
rate, later called recycling rate [8]. Vesicles need to be
transported from the cell membrane to the endosomal
system located in different areas inside the cell – this
transport process is called membrane trafficking (see [3]).
To facilitate this process, in addition to the free diffu-
sion, vesicles can also perform a directed motion along
the cytoskeleton, which is an intracellular structure made
of two different kinds of polymer filaments: actin filaments
and microtubule filaments (see Fig. 1). Whereas actin
filaments are randomly distributed, microtubules (MT)
are directed toward the microtubule organization center
(MTOC), which is located close to the cell nucleus (see
Fig. 2). In order to perform a directed motion along actin
or MT filaments, vesicles have to bind to motor proteins
(kinesines, dyneins and myosins) which basically deter-
mine the type of motion. The interaction between motor

Fig. 1. Two-dimensional representation of a cell with cy-
toskeletal structure. Adapted from [11].

proteins and their related filaments depends on several
additional factors, most notably the presence of specific
proteins such as Rab GTPases, scaffolding proteins and
receptor proteins (see [9]). To which extent these proteins
are present depends on the other hand on the genes of
the cell, which have to be transcriptionally active in or-
der to synthesize these proteins – a process called gene
expression.

It is exactly this dependency, which motivates our in-
terest in the motion of vesicles. If a given gene, for exam-
ple cdk8, is transcriptionally active, it allows the synthesis
of the protein CDK8, which may affect intracellular pro-
cesses in various, mostly unknown ways. In this paper, we
precisely ask how such a gene – through the synthesis of
the specific protein – affects the motion and pattern for-
mation of vesicles. The latter process results from the fact
that vesicles can form larger ones by fusing with other
vesicles. The fusion process relies on energy provided by
the cell and can only take place on the MT if vesicles are
close enough and below a critical size. The two simultane-
ous dynamic processes, namely (free or directed) motion
and fusion result in a distinct spatio-temporal distribution
of vesicles of different sizes – which we want to predict
with our model.

The patterns produced by means of our agent-based
simulation can then be compared to experiments which
show such vesicle patterns depending on the transcrip-
tional activity of specific genes (see [7]). These genes can,
for example, be knocked out in RNAi or drug screens,
which in turn perturb the synthesis of proteins (see [10]).
Of course, such patterns can be only compared in a statis-
tical sense, a problem discussed in the Conclusions. How-
ever, if we are able to reproduce empirical patterns with
our model, we argue that the underlying dynamic pro-
cesses, motion and fusion, are covered sufficiently with
our modeling assumptions. This does not only hold for
the assumed interaction between vesicles and MT or other
vesicles, it shall also hold for particular parameter depen-
dencies, most notably the concentration of specific pro-
teins. Precisely, we want to end up with a testable pre-
diction of how these concentrations affect vesicle motion
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MTOC

MTOC

Fig. 2. (Color online) (top) (a) Circular geometry of a non-
treated (control) cell; (bottom) (b) elongated geometry of a
perturbed cell (treated with siRNA, which leads to the de-
pletion of CDK8). The scale bar corresponds to 5 μm. The
microtubule filaments are schematically sketched, pointing to-
ward the MTOC (microtubule organization center). Vesicle in
an internal state θ ∈ {1, 2, 3} move along microtubules in both
directions.

and fusion, which shall be confirmed by subsequent exper-
iments (see [7]). Some of the transition rates later used in
our model specifically depend on the experimental setup,
e.g. the endocytic cargo. Here we consider the case of
Transferrin, an iron-binding protein contained in the vesi-
cles to which fluorescently labelled proteins can be at-
tached, i.e., vesicles can be made visible in the experiment.
The aforementioned internalization rate and recycling rate
are thus taken for Transferrin.

Eventually, we note that our modeling approach (as
every modeling approach) is based on a number of simpli-
fications: (i) we neglect the motion of vesicles along actin
filaments, because it was shown [11] that such processes
do not affect the pattern formation (recall that fusion only
takes place on MT), (ii) we assume that the cytoskeleton
is described by the spatial structure of MT only (i.e. tha
actin filaments are neglected) and that MT are abundant
(i.e. there are always MT to move on) and do not change
in time. This allows to neglect the growth and shrinkage of

MT when modeling the motion and fusion of vesicles. (iii)
We neglect fission, i.e. the fragmentation of larger vesicles
into vesicles of smaller sizes.

3 A model of Brownian agents

Brownian agents

Our modeling approach is based on the concept of
Brownian agents [1] which found many interesting ap-
plications in biology [12–15] but also in modeling social
systems such as online communities [16]. It allows to for-
malize the agent dynamics using methods established in
statistical physics. A Brownian agent is described by a
set of state variables u

(k)
i , where the index i = 1, . . . , N

refers to the individual agent i, while k indicates the dif-
ferent variables. These could be either external variables
that can be observed from the outside, or internal degrees
of freedom that can only be indirectly concluded from ob-
servable actions. Noteworthy, the different (external or in-
ternal) state variables can change in the course of time,
either due to influences of the environment, or due to an
internal dynamics.

In the following, each agent represents an intracellular
vesicle which, in accordance with the previous description,
is able to change its state by spatial mobility, changes of
activity, and growth processes, as formalized subsequently.

Spatial mobility

For the agent’s spatial position ri(t), We assume that
changes in the course of time can be described by an over-
damped Langevin equation of a Brownian particle moving
in an effective potential [1]:

dri

dt
= vi[θi(t)] =

α[θi(t)]
γ0

∂he(r, t, θ)
∂r

+
√

2D ξi(t). (1)

The overdamped limit implies that the absolute value of
the agent’s velocity vi is approximately constant, but the
direction may change due to stochastic influences. Further,
vi implicitly depends on the agent’s mode of activity, θi(t).

Equation (1) assumes that the agent’s motion is influ-
enced by two different forces, a deterministic one which
results from the gradient of the effective potential, and
a stochastic one, which is assumed to be Gaussian white
noise, 〈ξi(t)〉 = 0, 〈ξi(t)ξj(t′)〉 = δijδ(t− t′). The strength
of the stochastic force D = kBT/γ0 determines, in the
spatial case, the diffusion coefficient, with γ0 being the
friction coefficient.

The deterministic part contains two important
ingredients: the effective potential he(r, t, θ) describes the
conditions inside the cell. The response function α[θi(t)]
depends on the internal state of the agent, θi(t) and deter-
mines what component of the effective potential actually
influences the agent. Both are specified later after we made
clear the notion of the internal state θ.
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Table 1. Different modes of activities, MT stands for
microtubuli.

θ = 0 Free diffusion in the cytosol
θ = 1 Kinesin-driven transport towards MT plus-ends
θ = 2 Dynein-driven transport towards MT minus-ends
θ = 3 Kinesin/Dynein-driven transport on MT with

tendency to fusion with other vesicles
θ = 4 Bound to the cell membrane

Changes of activity

We assume that the agent’s mode of activity θi(t) can be
changed, ω(θ′|θ) being the transition rate from state θ into
any other state θ′. In accordance with the literature [11],
we distinguish five different modes of activity of a vesi-
cle as shown in Table 1, each of which is expressed by a
different value of the internal degree of freedom θ.

While in principle transitions between all states could
be assumed, only a subset of them is biologically relevant.
Table 3 in Section 4.1 will list those together with their
respective value, i.e. the expected number of transitions
per time unit.

Growth and decay

We assume that fusion, i.e. the coalescence of two vesicles
with sizes si and sj , can be described by a transition rate
ω(si+j |si, sj) that depends on the internal states θj , θi of
the agents, i.e. their ability to fuse, and their effective dis-
tance |ri − rj |. As described above, fusion is only possible
for agents with the internal state θ = 4 which is expressed
by the Kronecker delta, δθi,4. Further, due to the volume
exclusion, agents can effectively approach each other only
up to a distance d (which represents an average spatial
extension of vesicles). The ability to fuse also depends on
the vesicle size because of the energy required for this
process. Because the available fusion energy is limited, it
was observed experimentally that vesicles of a size larger
than smax do not fuse. This is considered in the transition
rates by an additional exponential cut-off term which be-
comes effectively zero if one of the fusing vesicles reaches
the maximum size. This leads us to the transition rate for
fusion:

ω(si + sj |si, sj) =
ωsδθi,4δθj,4

d + |ri − rj |

× eε(2smax−si−sj)

[
1 + eε(smax−si)

] [
1 + eε(smax−sj)

] . (2)

Here ωs denotes the fusion affinity which depends on the
protein concentration, and ε = 0.05 is chosen as a small
number, to increase the cutoff effect.

Little is known regarding the fission process, i.e. the
fragmentation of a vesicle of size sl into two vesicles of
sizes si, sj (with sl = si + sj) . Therefore, we assume that
the respective transition rate ω(si, sj |si +sj) is a constant
w equal for all possible fragmentation processes, which de-
scribes spontaneous fragmentation. If w is small compared

to other transition rates, fission can be neglected in first
approximation.

We note that, because of the fusion process, the total
number of vesicles, is no longer constant. While a con-
servation of the total mass M of all vesicles can still be
assumed, both the number of vesicles and their size distri-
bution P (N1, N2, . . . , Ns . . . , t) changes over time. There-
fore, we have

M =
N∑

l=1

s Ns(t) = const.;
N∑

l=1

Ns(t) �= const. (3)

Effective potential

After the above distinction between the different values
for the internal degree of freedom θ, we can now spec-
ify the effective potential which depends on these states.
he(r, t, θ) denotes a scalar potential field that results from
the influence of different field components hθ(r, t). Each
of these components refers to specific conditions inside the
cell. Compared to the time scale involved in the motion of
the vesicles, some of these conditions can be assumed as
constant in time, but varying across space.

With reference to Table 1, h4(r) describes the influence
of the cell membrane on the motion of agents in state θ = 4
as they can bind to the membrane. h1(r) and h2(r) deter-
mine the agent’s motion along the microtubule filaments.
h0(r) on the other hand represents the cell topology, i.e.
it generates a repelling force close to the cell membrane
and to the nucleus, but is is simply a constant inside the
cell, because free diffusion inside the cell should not be
affected.

The only time-dependent component of the effective
field is h3(Δr, t), which affects the fusion processes be-
tween vesicles (fission neglected). In fact, this is a short
range attraction potential which increases with decreasing
distance Δr = |ri − rj |. Since agents move, h3 changes in
time depending on their actual positions ri(t) and internal
states θi(t).

In order to describe how the effective potential results
from the different field components, we have to consider
the response function α[θi(t)] that determines which of
the field components are actually “seen” by the agents
conditional on their internal states. In accordance with
the above distinction, we specify:

α[θi(t)] he(r, θ, t) = α0h0(r) + δθi,1α1h1(r) + δθi,2α2h2(r)
+ δθi,4α4h4(r) + δθi,3α3h3(Δr, t)

(4)

The different αk are dimensional constants. With equa-
tion (4) the motion of every agent is specified according
to equation (1). We point out that agents with θi = 0 be-
have like simple Brownian particles which are not affected
by any conditions inside the cell, except for the boundary
conditions.

Master equation

The state of each individual agent is now described by a
triple of three different state variables {ri(t), θi(t), si(t)}
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that can change in time according to the processes spec-
ified above. The multi-agent system is thus described by
the grand-canonical N -particle distribution function

PN = PN (r, θ, s, t) = PN (r1, θ1, s1, . . . , rN , θN , sN , t)
(5)

which describes the probability density of finding N
Brownian agents with the distribution of internal param-
eters θ, positions r and sizes s at time t. Note that N is
not constant but can change over time due to fusion (and
fission) events. The complete dynamics for the ensemble of
agents can be formulated in terms of a multivariate master
equation:

∂

∂t
PN (r, θ, s, t) =

−
N∑

i=1

{
∇i

[
α[θi(t)]

γ0
∇ih

e(r, t, θ)PN (r, θ, s, t)
]

−DΔiPN (r, θ, s, t)} (6a)

+
N∑

i=1

∑

θ′
i �=θi

[ω(θi|θ′i) PN (r, θ′i, θ
∗, s, t)

−ω(θ′i|θi)PN (r, θ, s, t)] (6b)

+
N∑

i=1

∑

i<j

[ω(si + sj |si, sj)

×PN+1(r∗, θi = 3, θj = 3, θ∗, s∗, t)
−ω(si, sj |si + sj)PN (r, θi = 3, θj = 3, θ, s, t)] . (6c)

The first part of the multivariate master equation (6a),
describes changes of the probability distribution due to
movements of agents either by diffusion or following some
gradients of the effective field. The second part, (6b), con-
siders all possible changes of the distribution of internal
states, θ, where θ∗ denotes “neighboring” states that dif-
fer from θ only by the element explicitly given. The third
part, (6c), eventually describes the fusion process by any
two agents. This leads to a “gain” if the total number
of vesicles is decreased by N + 1 → N and distribution
changes result in r∗ → r, s∗ → s, or to a “loss” for any
other process with N → N − 1.

The multivariate master equation has the advantage
of considering all possible processes on the agent level in
a stochastic framework. After completely specifying the
transition rates involved, we are able to solve this equa-
tion by means of stochastic computer simulations (see
Sect. 4.4).

We note that from equation (6), one can in principle
derive a macroscopic density equation by introducing the
agent density of the grand-canonical ensemble:

n(r, t) =
∞∑

N=1

N

∫
dr1 . . . drN−1PN (r1, . . . , rN−1, r, t).

(7)
The resulting equation would have the known structure
of a reaction-diffusion equation for n(r, t). While this may
be the “classical” way of investigation, we point out that

for the agent-based approach proposed here the stochastic
framework is the more appropriate one because it refers
to the individual processes on the agent level. We em-
phasize that the agent-based approach is better suited for
computer simulations of spatiotemporal patterns because
it provides a stable and fast numerical algorithm. This
becomes especially important in the case of large density
gradients, which may considerably decrease the time step
allowed to integrate the related dynamics.

4 Setup for stochastic simulations

4.1 Velocities and transition rates

According to the distinction between the activity modes
given in Table 1, the movement of the agents can be of two
types: free motion by diffusion processes, described by the
diffusion coefficient D, and bound motion along the micro-
tubuli. Both types are described by equation (1). In order
to calculate the different vi(θ), we would need to specify
explicitly the related components of the effective poten-
tial, hθ(r, t) that result in the directed motion along the
microtubuli. To simplify the procedure and match it with
experimental findings, we may instead consider the value
of vi(θ) as given by experiments. Then, the role of the
field component is reduced to simply keep the agents on
the microtubuli as long as they are in the respective inter-
nal states θ. I.e. both ∇ih1(r) and ∇ih2(r) just determine
the direction of motion along the microtubulus to which
agent i is attached, whereas h0(r) specifies the boundary
condition given by the location of the cell nucleus and
the cell membrane (see also Fig. 2). Table 2 provides the
values for the velocities which are assumed to be constant
and the same for all agents in the respective internal state.

As a next step, we need to specify the transition rates
ω(θ′|θ) between different modes of activity. Again, instead
of providing explicit expressions, we may simply take val-
ues obtained from experiments. These values are available
to us only for the unperturbed state of the cell, i.e. for a
baseline or reference case in which conditions inside the
cell are not changed on purpose. In the following, baseline
values are indicated by the superscript b. Table 3 lists all
biologically relevant transition rates for the unperturbed
scenario, as obtained either from the literature or from
own experiments.

4.2 Reduced transition rates

The given set of transition rates leaves us with a large
degree of freedom which however turns out to be a pitfall:
if we wanted to compare the simulations with patterns
observed in the experiment, we would need to raster the
full parameter space to find appropriate combinations of
transition rates which lead to a realistic outcome. There
are basically two ways to reduce this parameter space: (i)
we use known values of the transition rates as e.g. reported
in the literature, (ii) we introduce reduced transition rates,
assuming that not all processes are really independent.
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Table 2. Parameters describing the free (θ = 0) or bound
(θ = 1, 2) motion of agents. MT means ‘microtubulus’. Note
that the diffusion coefficient is related to the friction coefficient
via γ0 = kBT/D, which results in γ0 = 4 × 10−6kg/s. Values
according to [17].

State Parameter value Description

θ = 0 D = 10−15 m2/s Diffusion coefficient
in cytoplasma

θ = 1 v1 = 0.33 μm/s Velocity of vesicle on MT
towards plus-ends

θ = 2 v2 = 0.33 μm/s Velocity of vesicle on MT
towards minus-ends

Table 3. Biologically relevant transition rates ωb(θ′|θ) for the
baseline case (unperturbed concentrations of proteins). Values
according to [17], values with � are from own experiments,
see [7].

Parameter value Description

ωb(1|0) = 0.05 s−1 Transition from diffusive
to MT (plus-end)
bound state

ωb(0|1) = 0.33 s−1 Transition from
MT-bound (plus-end)
to diffusive state

ωb(2|0) = 0.05 s−1 Transition from diffusive
to MT (minus-end)
bound state

ωb(0|2) = 0.33 s−1 Transition from MT
(minus-end) bound
to diffusive state

ωb(3|1) = 0.01 s−1 � Transition from MT-
bound to MT-bound
state with fusion

ωb(1|3) = 0.02 s−1 � Transition from
MT-bound state with
fusion to MT-binding

ωb(3|2) = 0.01 s−1 � Transition from MT-
bound to MT-bound
state with fusion

ωb(2|3) = 0.02 s−1 � Transition from
MT-bound state with
fusion to MT-binding

ωb(0|4) = 0.0025 − 0.0033 s−1 Internalization rate
of vesicles

ωb(4|0) = 0.00083 − 0.0012 s−1 Recycling rate of vesicles

We follow a combination of the two, defining the reduced
transition rates as given in Table 4.

In the following we assume that Ω3 = Ω4 ≡ ΩF which
denotes the fusion tendency that is supposed to be inde-
pendent of the kind of motor protein involved (this was
kinesin for Ω3 and dynein for Ω4). With this, we finally
have reduced the transition rates to 4 parameters given
by Ω1, Ω2, ΩF and Ω5.

Table 4. Reduced transition rates Ωi, to combine two transi-
tion rates ω which refer to the same intracellular (transport)
mechanism but describe inverse processes.

Ω1 =
ω(1|0)
ω(0|1) Affinity for microbule plus-ends

Ω2 =
ω(2|0)
ω(0|2) Affinity for microbule minus-ends

Ω3 =
ω(3|1)
ω(1|3) Fusion tendency on microbule plus-ends

Ω4 =
ω(3|2)
ω(2|3) Fusion tendency on microbule minus-ends

Ω5 =
ω(0|4)
ω(4|0) Internalization versus recycling rate

These reduced parameters of course do not fully de-
termine the individual transition rates which are needed
to recover the correct dynamics. Therefore, for one of the
transition rates we use the baseline value from the lit-
erature, as given by Table 3. So, we define e.g. Ω1 =
ω(1|0)/ωb(0|1) or Ω1 = ωb(1|0)/ω(0|1).

Eventually, we want to emphasize the distinction be-
tween the reduced transtion rates Ωu

i for the unperturbed
case (control cell) and Ωk

i for the perturbed case, where
the protein k was manipulated. Similar to the discussion
in Section 4.1, they refer to the same transition rates ω,
but with different concentrations ck.

4.3 Boundary and initial conditions

In order to complete the setup for the stochastic com-
puter simulations, we still need to specify the boundary
conditions which refer to the cell geometry. Figures 2a, 2b
shows the two different cell geometries chosen, a rather
circular cell and an elongated one. The outer boundary of
the cell membrane and the inner boundary of the nucleus
are both assumed to be impermeable walls, described by
a hard sphere potential h0(r).

The interior of the cell contains the cytoskeleton, i.e.
both actin filaments and microtubuli (MT) which provide
boundary conditions for the motion of vesicles (see also
Fig. 1). As already discussed, we do not consider motion
along actin filaments because the related processes do not
contribute to vesicle pattern formation. MT, on the other
hand, are abundant and always point to the microtubule
organization center (MTOC) which is assumed to be in
the perinuclear area on the side with the largest part of
the cytosol (see Figs. 2a, 2b).

Regarding the initial conditions, we need to specify the
number, the position, the internal state and the size of the
agents at t = 0. For our model, we assume that initially
all vesicles are bound to the cell membrane, i.e. at t = 0
agents start with θi(0) = 4 at a position ri(0) randomly
chosen from the cell boundary. In order to determine the
initial number of agents, we start from the experimen-
tal observation that an average cell (of the type consid-
ered) contains about 200 internalized vesicles at steady
state. This number excludes vesicles still bound to the
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cell membrane. We further know from experiments that
internalization rates, i.e., transition rates from the initial
bound into the free moving state (and vice versa), i.e.
ω(0|4) = 3.3× 10−3 s−1 and ω(4|0) = 8.3× 10−4 s−1 (see
Tab. 3). If N(0) = N4(0) denotes the (unknown) number
of agents at t = 0 (all assumed to be in the bound state)
and N(0) − Nst

4 = 200 the (known) number of agents
no longer in the bound state at steady state (st: steady
state), then we can postulate for the dynamics for N4(t)
the following rate equation:

dN4(t)
dt

= −ω(0|4) N4(t) + ω(4|0) [N4(0) − N4(t)] . (8)

After a time t ∼ 1/[ω(0|4)+ω(4|0)], this dynamics reaches
a steady-state solution

Nst
4 =

ω(4|0)
ω(0|4) + ω(4|0)

N4(0) (9)

from which we can calculate N4(0) assuming that N(0)−
N st

4 = 200. This approximation neglects the fact that the
total number of vesicles have decreased at time t because
of the fusion between vesicles. Thus, we may slightly in-
crease the initial number of agents and have eventually
chosen N4(0) = 350.

It remains to determine the initial distribution of vesi-
cle sizes. We want to start from a most realistic one be-
cause (a) later we want to compare the time scale of struc-
ture formation with the experimental observation, and (b)
because our modeling setup has neglected the fragmen-
tation rate of vesicles (which would be needed if an ar-
bitrary initial distribution needs to relax into a realistic
one). Again, we rely on experimental observations [7] that
have found a log-normal distribution of vesicle sizes:

P (s; μ, σ) =
1

sσ
√

2π
exp

{
− (ln s − μ)2

2σ2

}
, (10)

where μ and σ are the mean and standard deviation of
the variable’s natural logarithm.

4.4 Stochastic simulation technique

We now have determined all ingredients for stochastic
computer simulations which include the following dynamic
processes (specified on the agent level):

Initialization. At t = t0, 350 agents with θi(0) = 4 are
randomly placed at the cell boundary. Their initial size
si(0) is drawn from the log-normal distribution, (10).

Movement. Agents can change from the bound state
into the free moving state at a rate ω(0|4) and from the
free moving state into directed motion at rates ω(1|0),
ω(2|0). They all move according to the equation of mo-
tion, (1).
In our modeling approach, only agents with the inter-
nal states θ ∈ {1, 2, 3} move along the MT. We assume
that, whenever an agent switches from θ = 0 into ei-
ther θ = 1 or θ = 2, i.e. from a free motion into a

bound motion, a MT is “always at hand”. If the agent
switches from θ ∈ {1, 2} into θ = 3 where it is ready
to fuse, it continues to move into the same direction as
before, until it collides with another agent.

Fusion. Precisely, fusion occurs only on MT. Agents need
to be in state θ = 3 and in a sufficiently close distance.
After fusion, the smaller agent “disappears”, whereas
the larger one has increased its size, but keeps the in-
ternal state θ = 3 until one of the transitions ω(2|3)
or ω(1|3) happen.

Inversion. Agents bound to the MT can become freely
moving at the rates ω(0|2), ω(0|1), whereas free moving
agents can be bound again to the cell membrane at the
rate ω(4|0).

Concurrency. We assume that agents can move and
transit into different internal states at the same time.
This allows us to decouple the motion of agents from
the various reactions (change of internal states and
fusion).

The state of the multi-agent system is at any time com-
pletely described by the N -particle distribution function
PN (r, θ, s, t). However, because of the dynamical pro-
cesses, the system state always changes and its aver-
age “life time” Tm is just the inverse of the sum over
all possible transition rates that can change the given
state (including changes of position, internal states, and
sizes).

Because we have to deal with movement and reactions
at the same time, we have chosen a sufficiently small fixed
time interval Δt = 0.02 s to solve the equations of motion
of each individual agent. To answer the question if in the
respective time interval also a change of the internal states
or a fusion process occurs, we proceed as follows:

Each of the possible reactions has a different probabil-
ity to occur, which is determined by the respective transi-
tion rate and the available time, Δt. In order to pick one
of the possible reactions, we draw a uniformly distributed
random number U ∈ RND[0, 1] and choose the process z
that satisfies the condition

z∑

j=0

ωz(·)Δt < U <

z+1∑

j=0

ωz(·)Δt. (11)

Because Δt was chosen such that
∑N

n = 1 ωn(·)Δt ≤ 1,
none of the possible processes is excluded from being
picked. On the other hand, it may occur that none of the
processes is being chosen if the sum is much smaller than
1 and U close to 1. Then no reaction occurs during the
respective time interval, but movements take place.

5 Results

5.1 Spatio-temporal vesicle patterns

Figure 3 presents computer simulations of the vesicle pat-
ters for both the unperturbed (control) cell and the per-
turbed cell (cf. also Fig. 2). We emphasise that these
simulations refer to real spatial and time scales, so they
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Fig. 3. (Color online) Computer simulations of vesicle patterns on real time scale (in min) and spatial scale (scale bar:
5 μm ). (top) Unperturbed cell: {Ω1, Ω2, ΩF , Ω5} = {0.925, 1.1, 1.0, 0.85}, (bottom) perturbed cell: {Ω1, Ω2, ΩF , Ω5} =
{1.3, 1.2, 1.2, 0.55}. The histograms show the evolution of the vesicle size distribution together with the fitted log-normal distri-
bution (red line). Values for μ and σ are given in Table 5.

should be comparable, at least in a statistical sense, to
patterns observed from experiments. These experiments
are reported in [7] and have motivated the choice of the
reduced transition rates, Ωi, which are treated in this pa-
per as free parameters.

Comparing the pattern formation in the perturbed cell
with the one in the control cell, we note a number of differ-
ences: we observe a localization of large vesicles on the one
hand at the tips of the elongated branched-out perturbed
cell, on the other hand large vesicles are as well localized
in the perinuclear area of this cell. In the unperturbed
cell, the majority of large vesicles are located around the

nucleus and vesicles are spread over the entire cell surface
getting more sparse towards the cell periphery.

Comparing the vesicle size distribution of both the
perturbed and the unperturbed cell, we find that they
preserve the form of the log-normal distribution, but the
mean value μ, in the course of time, shifts to significant
larger values in the perturbed cell (see also Tab. 5). The
perturbed cell displays a geometry that may have facili-
tated fusion of vesicles in its branches within which they
accumulate. The transport of vesicles from these branches
to the nucleus of the perturbed cell seems to be sup-
pressed.
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Table 5. Mean μ(t) and standard deviation σ(t) of the log-
normal distribution at different times t (min) for the unper-
turbed (superscript u) and the perturbed cell.

t 1 min 5 min 10 min 15 min
μu 2.69 2.82 2.94 2.96
σu 0.89 0.94 0.94 0.96
μ 2.87 2.99 3.00 3.04
σ 0.90 0.90 0.94 0.86

5.2 Estimating concentration dependence

As pointed out above, we found very realistic vesicle pat-
terns both for the perturbed and the control cell for the
given set of reduced transition rates Ωi (see Fig. 3). These
transition rates are treated as free parameters in our
model – but provided they are correct (which can only be
confirmed by comparing the patterns with experiments,
statistically) they allow an indirect estimation of the con-
centration dependence of the transition rates ω(θ′|θ).

As already stated, the transition rates are given to us
only for the unperturbed state of the cell. Table 3 presents
the values for the baseline case. One should note, however,
that the baseline value not necessarily describes the exper-
imental situation because it was obtained under conditions
which are hardly reproducible completely. If we for exam-
ple change the concentration ck of some protein k inside
the cell which is involved in processes of fusion or directed
motion, this will certainly change the value of the respec-
tive transition rates, i.e. ω = ω(ck, cl, . . .). Hence, it is not
only sufficient to know the values of the baseline case, we
should also know how these values of the transition rates
change with the concentrations ck. If we denote the tran-
sition rates in the unperturbed case by ωu (omitting the
θ dependence at the moment) and the respective protein
concentrations by cu we may assume in first-order approx-
imation the following expansion:

ω(ck, cl�=k = cu
l�=k) = ωu(cu

k , cu
l�=k)+

∂ω

∂ck

∣∣
∣
∣
cu

k

(ck−cu
k). (12)

To further specify the functional dependency ω(ck) we
make the following ansatz:

ω(ck, cl�=k = cu
l�=k) = ωu exp

(
κk

ck − cu
k

cu
k

)
. (13)

which satisfies ω(ck, cl�=k = cu
l�=k) = ωu for ck = cu

k . The
important parameter κk denotes the impact that a change
of concentration ck has on the respective transition rate,
i.e. it is a measure of sensitivity toward that particular
protein. Of course, κk = κk(θ′|θ) in full notation, i.e. the
value does not only change across proteins, but the im-
pact also changes for different transitions. Putting equa-
tions (12), (13) together, we arrive at:

Δωk = ω(ck, cl�=k = cu
l�=k) − ωu = ωu κk

cu
k

(ck − cu
k). (14)

In many experimental cases, as e.g. in RNAi screens, the
perturbation of a protein concentration leads to ck → 0,

i.e. we are interested in the dynamics in the absence of a
given protein. With this assumption we finally have:

Δωk(θ|θ′) = −κk(θ|θ′) ωu(θ|θ′). (15)

This allows us to relate two different dynamical scenar-
ios and their respective outcome in terms of the vesicle
patterns: (i) the unperturbed scenario with experimentally
known concentrations and known transition rates, and (ii)
the perturbed scenario, where different proteins may be
absent.

As an example, let us investigate how changes in the
concentration ck of the protein k = CDK8 affect the tran-
sition rates ωCDK8(1|0) and ωCDK8(0|1). Given the pa-
rameters in Figure 3, the reduced transition rates return
ΩCDK8

1 − Ωu
1 = 0.375, where ΩCDK8

i refers to the case
where the protein concentration ck = cCDK8 = 0, whereas
Ωu

i refer to the unperturbed case. Dividing equation (15)
by ωb(0|1), we find

ΔΩCDK8
1 = ΩCDK8

1 − Ωu
1 = 0.375

= −ωu(1|0)
ωb(0|1)

κCDK8(1|0) = −Ωu
1 κCDK8(1|0)

(16)

from where it follows that κCDK8(1|0) ≈ −0.41, which de-
scribes the sensitivity toward changes in the concentration
of CDK8.

Knowing the difference ΔΩCDK8
1 , the transition

rates ωk are not fully determined because of Ωu
1 =

ωu(1|0)/ωb(0|1), ΩCDK8
1 = ωCDK8(1|0)/ωb(0|1). Hence,

we can now discuss two different cases which refer to two
hypotheses about the transport of vesicles towards micro-
tubule minus-ends.

The first hypothesis of our model states that the tran-
sition rate ωCDK8(1|0) in cells that are silenced for CDK8
reads:

ωCDK8(1|0) = ωu(1|0) exp
(
−0.41

cCDK8 − cu
CDK8

cu
CDK8

)
.

(17)
Assuming cCDK8 ≈ 0, it follows, that ωCDK8(1|0) is in-
creased by a factor of approximately 1.5 with respect to
ωu(1|0). This means that silencing the protein CDK8 in-
creases the transition of vesicles freely diffusing in the
cytosol to vesicles being transported towards the MT-
plusends. We thus hypothesize that CDK8 is either di-
rectly or indirectly involved in the docking of vesicles on
microtubule filaments via kinesins.

On the other hand, κCDK8(0|1) can be obtained by the
following relation:

ΩCDK8
1 − Ωu

1 = 0.375 =
ωb(1|0)

ωCDK8(0|1)
κCDK8(0|1)

= ΩCDK8
1 κCDK8(0|1) (18)

from where it follows that κCDK8(0|1) ≈ 0.29. The second
hypothesis of our model states that the transition rate
ωCDK8(0|1) in cells that are silenced for CDK8 reads:

ωCDK8(0|1) = ωu(0|1) exp
(

0.29
cCDK8 − cu

CDK8

cu
CDK8

)
. (19)



254 The European Physical Journal B

Setting cCDK8 ≈ 0, we find that ωCDK8(0|1) is decreased
by a factor of approximately 0.75 with respect to ωu(0|1).
This means that silencing the protein CDK8 leads to a
decrease in transition of vesicles transported towards the
MT-plusends to vesicles freely diffusing vesicles. We thus
hypothesize that CDK8 may as well be involved in the
undocking of vesicles bound to MT filaments via kinesins.

In a similar manner, we could estimate the con-
centration dependence of other transition rates, using
the scaled transition rates (ΩCDK8

2 , ΩCDK8
F , ΩCDK8

5 ) and
(Ωu

2 , Ωu
F , Ωu

5 ). This enables us to further develop a number
of hypotheses regarding the effect of silencing the protein
CDK8 on the intracellular transport.

6 Discussion

6.1 Motivation of the model

Genomic and pharmaceutical research nowadays heavily
relies on systematic screens in which the perturbation or
silencing of specific proteins affects the abundance of vesi-
cle patterns observed in a population of cells. The study
of vesicle pattern formation thus is important to improve
our understanding of the function of genes. To learn how
vesicle patterns are formed, we have set up an agent-based
model of intracellular transport inside a single cell. Agents
represent vesicles which move either by diffusion in the cy-
tosol or are transported along the cytoskeletal filaments
through molecular motors. Vesicles further interact with
other vesicles by fusion or fission, or they interact with
the cytoskeletal filaments, the cell membrane and the nu-
cleus. This interaction is controlled and regulated by spe-
cific proteins which are synthesised inside the cell by tran-
scriptionally active genes. The activity of these genes thus
represents the control parameters of our system.

Treating vesicles as Brownian agents with an internal
degree of freedom allows to formally derive a model that
captures all relevant processes in the formation of vesi-
cle patterns. Five different values of the internal degree
of freedom define the vesicle’s different modes of activ-
ity. Transitions between these modes occur as stochastic
events related to the binding of proteins to the vesicle’s
coat, or to signalling events. Proteins involved in those
processes can control the vesicle’s activity which in turn
determines the process of pattern formation. We therefore
assume that the transition rates between different value of
the internal degree of freedom depend on the concentra-
tion of a cell’s proteins. To determine the precise transition
rates as functions of protein concentrations would require
the full knowledge about the regulatory structure of gene
networks. We simplified this situation by assuming that
the transition rates can be decomposed into a product of
the unperturbed transition rates and an exponential func-
tion depending on the concentration of single proteins.
We further simplified our model by assuming that the
cell membrane, the cytoskeletal filaments and the nucleus
are static and that the diffusion coefficient and velocities
along cytoskeletal filaments are constant parameters of the
model. In contrast, the transition rates represent the free

parameters of our model and have been varied. We have re-
duced the number of 10 original transition rates to 4 scaled
transition rates. This introduced an ambiguity in the in-
terpretation of the simulation results with respect to the
original transition rates. We could cope with this situa-
tion by deriving two complementary hypothesis about the
influence of the proteins involved, which could be tested
experimentally.

6.2 Possible comparison with experiments

In order to relate our computer simulations to reality, ex-
perimental data are needed to calibrate the simulations.
Whenever available, baseline values for the transition rates
obtained from experiments have been included. This al-
lowed us to generate patterns on real time and spatial
scales. From every simulated pattern, four features can
be obtained: size, relative distance to nucleus, number
of vesicles within a fixed radius around each vesicle and
number of vesicles per cell area. To measure the dissimi-
larity between the simulated pattern and the experimen-
tally observed one, it is useful to compute the symmetrized
Kullback-Leibler divergence of the two corresponding vesi-
cle feature distributions [7], to find out for which parame-
ters the simulated pattern provides a minimum divergence
to the experimentally observed vesicle patterns. An inter-
pretation of these findings in comparison with hypotheses
generated from the computer simulations allows to draw
conclusions about the underlying processes, in particular
about the role of the genes involved.

A comparison of simulated and experimentally mea-
sured vesicle patterns also involves a dimensional problem:
our simulations are performed in 2d, whereas experimen-
tal patterns result from vesicle motion in 3d. In principle,
this would require to correct for the distances as conse-
quence of the projection from 3d to 2d. Since mammalian
cells are relatively flat with the exception of the nucleus
area, we have omitted this correction. But we considered
the fact that vesicles could pass below/above each other
by not assuming mutual exclusion in our 2d simulations.

6.3 Future directions

We emphasize again that our computer simulations lead to
testable hypotheses about the influence of specific genes,
such as CDK8, on the formation of vesicle patterns. One
future application of our model of intracellular transport
concerns the silencing of multiple genes. Let us denote
with i and l two genes which are silenced, then according
to ansatz in equation (13) we find for the transition rates

ωi;l(θ′j |θj) = ω(θ′j|θj)

× exp
(

κi(θ′j |θj)
ci − cu

i

cu
i

+κl(θ′j |θj)
cl − cu

l

cu
l

)
.

(20)

Once we have determined κi(θ′j |θj) and κl(θ′j |θj) from
single gene silencing experiments and their related



M. Birbaumer and F. Schweitzer: Agent-based modeling of intracellular transport 255

simulations of our model of intracellular transport, we can
predict the resulting pattern and dynamics of the com-
bined silencing of these two genes. However, (Eq. (20))
is only valid, if genes i and l are not in the same (regu-
latory) pathway. Such a prediction represents an in-silico
experiment and can be tested experimentally.

M.B. could benefit from numerous stimulating discussions with
Lucas Pelkmans.
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