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Abstract. We investigate to what extent the interaction dynamics of
a population of wild house mouse (Mus musculus domesticus) in their
environment can be explained by a simple stochastic model. We use a
Markov chain model to describe the transitions of mice in a discrete space
of nestboxes, and implement a multi-agent simulation of the model. We
find that some important features of our behavioural dataset can be re-
produced using this simplified stochastic representation, and discuss the
improvements that could be made to our model in order to increase the
accuracy of its predictions. Our findings have implications for the un-
derstanding of the complexity underlying social behaviour in the animal
kingdom and the cognitive requirements of such behaviour.
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1 Introduction

There is current debate as to what aspects of the social behaviour observed in an
animal species can be explained as a specific adaptation versus a side-effect of the
interaction of individuals with their environment. If some emerging properties of
a group’s social structure result from simple behavioural mechanisms, it may be
that what is often thought to be an explicitly social behaviour does not require
as much cognitive capacities as it is assumed.

A great many animal species present a high level of cognitive development
and a longly evolved complex social structure ([3]). Although it has been long
known that living in groups has an adaptive value ([5]), little is known of the
process by which social bonds form between individuals, and how tightly-knit
communities emerge and eventually dissolve from those social bonds. In wild
house mice (Mus musculus domesticus), cooperative breeding, short generation
time, polygynandry, high reproductive and life expectancy skew in both sexes
([6, 7]), lead to high flexibility in behaviour and social organisation. Therefore,
this is a choice species to study the dynamics of group formation and evolution.
Here we address the question of what aspects of the mice’s social structure can
be explained by the self-emergent properties of collective random behaviour, and
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especially which patterns may rather result from social adaptation produced by
individual selection.

2 Our study system

We study an established free-living population of wild house mice in a barn
outside of Zurich, where mice can freely emigrate and immigrate. In the barn,
the mice nest in 40 artificial nestboxes, and are provided with straw as nesting
material, and food and water outside the boxes. At four to six week intervals,
comprehensive trapping is conducted to monitor the population, and adult mice
are implanted with a transponder (RFID tag) so that they are individually iden-
tifiable. Transponder readers are installed in the tunnels that provide entrances
to the nestboxes; these readers connect to a computer and continuously track
movements into and out of nestboxes. This provides us with 24-hour informa-
tion on movements and social affiliations of adult mice. Data collection started
in May 2007 and totals around 14 million individual recordings as of February
2010. We study the period ranging from Jan. 1, 2008 to Dec. 31, 2009.

Our 2-year long dataset covers the 11’259’557 location records of 508 mice,
accounting for 1’376’720 stays in all 40 nestboxes, and leading to 1’064’695 one-
to-one encounters, whose frequency, context and duration we use as a proxy
for the characterisation of social interactions. Figure 1 shows the geographical
positioning of the nextboxes, as well as the heterogeneity of their occupation
pattern: indeed, the total occupation duration per box ranges from 264 to 22332
hours (the lowest figure can however be attributed to a malfunctioning RFID
antenna; the maximum value is longer than our study period because some stays
can overlap when several mice are together in a box). Hence, it is possible to
identify the “hotspots” of the barn and the busiest routes between nestboxes.

3 A proposed model of social interaction

Computer-based research in social science proceeds by building simplified rep-
resentations of social phenomena, often much too complex in the number of
factors involved and the non-linearity of the dependencies between those factors
to allow for a thorough and exact description ([4]). We make the assumption
that through the collective behaviour of agents whose complexity lies far below
that of real mice, we can reproduce some of the global behavioural patterns we
observe in the barn. We undertake a step-wise approach towards a better under-
standing of the mechanisms governing the mice’s social behaviour in the barn.
To begin with, we describe the system as a Markov chain and test the validity
of the approach. We then further the analysis by implementing our model in a
multi-agent simulation calibrated from the real data. We use the discrepancies
of the model’s output compared to the the observed patterns to point out the
system’s features which may not be due to complex social behaviour. We discuss
the accuracy of such a simple model in the reproduction of behavioural patterns
as well as its parametrisation using hypotheses from behavioural science.
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Fig. 1. Box occupation pattern and traffic between boxes: the colour of the boxes
represents their cumulated stay duration in seconds, while the darkness and thickness
of the interbox edges represent the intensity of the bidirectional traffic between the
boxes (for clarity purposes, all edges with a traffic < 50 trips were omitted).

3.1 Markov chain model

In this first step, we focus on a coarse-grained description of the problem: rather
than following the individual trajectories of all mice, we concentrate on the oc-
cupation of each nestbox. This has the advantage of reducing the complexity
of the approach by not having to describe all individual movement equations.
Moreover, the number of simulation variables thus stays constant (it depends
solely on the number of nestboxes), whatever the number of agents in the sim-
ulation is. In other terms, we simulate the behaviour of the agents (mice) but
observe only the result of their collective behaviour on the occupation density
per box in the barn.

We describe the transitions from state to state (or here, from nestbox to
nestbox) by a Markov chain (see Fig. 2). The transition rate of a Markov process
in the chain is the probability for an agent of leaving its nestbox multiplied by
the transit frequency from this nestbox to any nestbox, i.e. the joint probability
of a mouse leaving its nestbox for any nestbox, including a return to the same
nestbox. The Markov property of the processes can be expressed at the agent
level as follows: the conditional probability of an agent’s future state depends
only on its current state, or in other words the mice keep no memory of the
boxes they visited prior to the one they currently stay in.

When going from a box to another, an agent needs a finite time. Moreover, we
observe that for any 3 nestboxes i, j, k, the transit times from i to j and from i to
k are different (χ2 test, normality hypothesis on the distribution of transit times
rejected at a 0.05 confidence level for 23 boxes out of 40). To cover this specificity
of our system, we need to introduce the concept of transit box (see Fig. 2):
whenever an agent is not in a nestbox, we define that it is in an intermediary
(transit) state between its origin and destination nestboxes, whose leaving rate
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depends the particular origin and destination boxes. We regroup hereinafter the
terms “nestbox” and “transit box” under the common denomination “box”.

b1 b2
b{1,1}

Π1,1 · λ1

Θ1,1

b{1,2}
Π1,2 · λ1 Θ1,2

b{2,1} Π2,1 · λ2Θ2,1

b{2,2}

Π2,2 · λ2

Θ2,2

Fig. 2. Diagram of the states an agent can occupy in the case where the number of
nestboxes B = 2. b1 and b2 are the 2 nestboxes, to which are associated B2 = 4 transit
boxes corresponding to the intermediary states between any box and any other box
(including itself). Edges are labeled with the transition rates from state to state.

Model description The N agents (the mice) are assumed to move within
the discrete state-space formed by the B nestboxes and B2 transit nestboxes
according to stochastic processes. Therefore, each agent has only one parameter,
its current box b. All processes are assumed to have the Markov property. We
can thereby describe the agents’ behaviour by a Markov chain, as illustrated in
Fig. 2. λ, Θ and Π are fixed parameters of the system.

– λ is the leaving rate, a vector of length B. This is the rate at which an
agent leaves a nestbox aiming for another nestbox, consequently entering
the corresponding transit box. It is constructed from the data as the inverse
of the mean leaving time per box.

– Θ is the transition rate, a square matrix of length B. This is the rate at
which an agent leaves a transit box to enter in the corresponding destination
nestbox. Is is constructed as the inverse of the mean transit time from any
box to any other box, including itself.

– Π is the transition frequency, a square matrix of length B. This decides
of which transition actually occurs when an agent is leaving a nestbox for
another one, and accounts for the fact that transition probabilities between
boxes are not equal. Π is row-stochastic, i.e. its row sum is always 1.

Master equation In the mean field approximation, this B-body system can
be considered as a 1-body occupation density field and thus studied analytically
by means of a system of master equations. For each state k, the probability of
being in such a state after a time t depends on the transition rates to and from
this state and the occupation density of all the other states, in other words the
variation of the density of agents in a particular state is the density of agents
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coming from other states to which is subtracted the density of agents leaving for
other states:

∀k ∈ {1, . . . , B}, ∂Pk

∂t
=

B∑
b=1

(TkbPk − TbkPb) , (1)

where T is a (B + B2)-square matrix of transition rates from any state to
any other state. In our case, T is a composite of λ, Θ and Π, so that:

∀{i, j} ∈ {1, . . . , B + B2}2, ∀n ∈ {1, ..., B},

Tij =

Πi,j−B·i · λi, j ∈ {B · i + 1, . . . , B · (i + 1)}
Θi,j , i = B · n + j
0, otherwise

(2)

As there is only a restricted set of states reachable from any state (in fact,
exactly B from the states corresponding to nestboxes and exactly 1 from those
corresponding to transit boxes), T is mostly sparse.

Analytical approach to the stationary distribution T does not formally
describe a Markov chain, since it is not row-stochastic. We have to construct
a row-stochastic transition matrix from T , in order to set a fixed timescale for
our system: at each time step, a transition occurs. For all i and j ∈ N2, Ti,j is
the joint probability for an agent of leaving box i and entering box j thereafter.
∀i,

∑
i Ti,j is the joint probability of leaving box i and entering any box, that

is simply the probability of leaving box i. We need to include in the matrix T
the possibility that an agent does not leave the box it is in after one timestep.
If no leaving event has a rate (any of T row-sums) higher than 1s−1, there is
a straightforward manner to convert the known transition rates to transition
probabilities. We set our timestep to 1s and copy all elements of T into a new
matrix S. Since the rows of S do not sum up to 1, we define the probability for
an agent of staying in the same state as one minus the sum of all probabilities
of leaving to any other state, i.e. we obtain the stochastic matrix S as follows:

Sij =
{

Tij , i 6= j
1 −

∑
k Tik, i = k .

(3)

We observe that in our case, since the mice stay a rather long time in a box,
the leaving rate from each box is well below 1, so the abovementioned condition
applies. In the case where some events have a rate higher than 1s−1, we would
have to normalise all rates to the highest and follow the same process. In the
end, if i is the box with the fastest leaving rate, Si,i = 0: the system’s timescale
has been adjusted to the fastest-happening event.

S now describes a Markov chain that is slightly different from that of Fig. 2,
as shown in Fig. 3. The probability of moving from any state i to any state j
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b1 b2b{1,1}

Π1,1 · λ1

Θ1,1

b{1,2}
Π1,2 · λ1 Θ1,2

b{2,1} Π2,1 · λ2Θ2,1

b{2,2}

Π2,2 · λ2

Θ2,2

Pr(1|1)

Pr(2|2)

Pr({1,2}|{1,2})

Pr({2,1}|{2,1})

Pr({1,1}|{1,1})

Pr({2,2}|{2,2})

Fig. 3. State diagram of our modified Markov chain, so that for any two states i and j,
Si,j = Pr(j|i) is the transition probability from i to j. Note the additional transitions
from any state k back to the same state, Pr(k|k) = Sk,k = 1−

P

j Πi,j ·λi,∀k ≤ B and
Pr(k|k) = Sk,k = 1 − Θi,j , k = B · i + j, ∀k > B.

during one time step is Pr(j|i) = Si,j . Let d be the row vector of occupation
density in all B + B2 states. For any time t, we can write:

d(t + 1) = d(t) × S , (4)

where d(t + 1) is the occupation density vector after one arbitrary timestep. By
recurrence, we can generalise Eq. 4 to express the occupation density after n
timesteps:

d(tn) = d0 × Sn . (5)

We want to find the stationary probability vector δ, i.e. the occupation den-
sity vector that does not change under application of the transition matrix. As
stated by the Perron-Frobenius theorem ([10]), as our matrix is not strictly pos-
itive, there are several corresponding vectors (the eigenvectors corresponding to
the dominant eigenvalue). We can however obtain a suitable δ as the limit of the
application of S many times on any non-zero initial distribution. Let d0 ∈ RB

characterise the initial distribution where all the occupation density is concen-
trated in box 1 and then slowly diffuses into all other boxes, d0 = [1, 0, . . . , 0].
We can numerically calculate δ:

δ = lim
k→∞

d0 × Sk , (6)

Each of the first B coefficients of δ is the stationary occupation density of a
nestbox, normalised to 1. To relate it to our observed occupation times, we
would have to multiply each coefficient of the vector by the number of timesteps
(in our case the number of seconds) the simulation covers, and the mean number
of agents in the system (see 4.1).

We compare the computed δ to our observed average occupation density after
1 hour (in which case the occupation densities are given by δ3600 = d0 × S3600),
1 day, 1 week, 6 months and 1 year to observe the progressive establishment of
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a stationary regime, in which all boxes have gotten a stable occupation density.
Table 1 shows the corresponding Pearson’s correlation coefficients and their as-
sociated p-values. We observe that the asymptotic regime is reached in about 1
month.

t ρ p

1 hour −0.0428 0.793

1 day 0.1778 0.272

1 week 0.7248 1.2 · 10−7

1 month 0.9972 2 · 10−44

6 months 0.9995 < 10−50

1 year 0.9995 < 10−50

Table 1. Comparison of the experimental average occupation density in the 40 nest-
boxes with the corresponding computed values from an initial distribution where all
the density is concentrated in box 1, after a time t.

These results confirm that the Markov assumption holds well in our prob-
lem with regard to the average box occupation densities over time. However,
this analytical approach solely describes the “diffusion” of occupation densities,
without characterising the actual encounters that happen inside the nestboxes
visited. For this reason, we use a multi-agent simulation to render the social
aspects of the system. Based on the results from the analytical approach, we
can expect the simulation to yield (at least for the box occupation frequencies)
results similar to our experimental data.

4 Stochastic simulation technique

We use a stochastic simulation technique ([9]) by defining the simulation time
∆t as a random variable, depending on the current state of all agents: given N
agents, each having their own transition time ti and transition rate fi = 1/ti,

we define the system’s mean transition rate as fm =
PN

i=1 fi

N , and transition
time tm = 1/fm. This is the mean frequency at which the system is expected to
change. For each iteration, we sample the actual time step from an exponential
distribution with parameter (mean value) tm, so that ∆t ∼ exp(tm). We then
sample the agent k whose state is changing (the Markov process that occurs)
from a uniform distribution with regard to the transition frequencies, in such a
way:

∀p ∼ U(0, 1), ∃k ∈ {1, . . . , B}, p ∈

[
k−1∑
i=1

Pi,
k∑

i=1

Pi

[
, (7)

where Pi is the probability that process i occurs (
∑B

i=1 Pi = 1). In other terms,
∆t indicates when a change in the system is happening and k indicates what
this change is, according to each process’s transition probability matrix.
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We define a constant number of agents in the system, equal to the average
number of mice detected per day at the barn. We obtain the leaving and tran-
sition rates as the inverse of the average leaving and transition times (extracted
from the data) from each box to each other box. For sampling reasons (see Eq. 7),
we normalise those matrices so that their sum is 1. We initially distribute the
agents according to the occupation rate (in or out of a box) and the occupation
preferencies. The simulation timerange is set to the same period as that covered
by the final dataset covers: Jan. 1, 2008 to Dec. 31, 2009.

4.1 Results

We compare the occupation and movement pattern from the simulation (Fig. 4)
to that of the experimental data (Fig. 1). The simulation output resembles what
we observed in the data: the comparison between occupation rates and transit
counts yield high Pearson’s correlation coefficients, ρ = 0.975 (P = 2.4 · 10−26)
and ρ = 0.993 (P < 10−50), respectively.
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Fig. 4. Box occupation pattern and traffic between boxes, closely matching the pattern
observed in Fig. 1 (same legend applies).

However, when one looks at a more detailed description level, these similari-
ties disappear: as shown in Table 2, the model produces a slight overestimation
of the agents’ activity (this may come from an overestimation of the number
of agents in the barn by the daily mean) and more importantly a larger un-
derestimation of the agents’ social behaviour (expressed here through the mean
duration of a social contact, defined as an overlapping stay in the same box with
any other agent). Likewise, and although the mean leaving times from nestboxes
are largely similar (Pearson’s ρ = 0.999 over the 40 nestboxes), their respective
distributions differ: compared using a Kolmogorov-Smirnov test, the test yields
a p-value < 0.05 (continuous distributions significantly different) for 39 out of
the 40 nestboxes. This is illustrated in Fig. 5 for nestbox 1, which compares the
real and simulated data. It is also interesting to note that although the mean
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number of meetings occurring during one stay in a box is slightly less in the
simulation output than in the data, the comparison of the distribution of this
ratio accross all boxes does not yield a significant difference (two-sample K-S
test, P = 0.967).

Metric Data Model

Total number of agents 76 508

Mean number of agents observed per day 76.05 76

Number of stays in a box per day* 21.88 35.44

Number of social contacts per day* 38.29 50.88

Duration of a stay (s)* 803.2 700.0

Duration of a social contact (s)* 1085.7 368.4

Mean number of meetings per stay 0.738 0.683

Number of nestboxes visited per day* 2.61 6.58

*average value per agent
Table 2. Comparison of some metrics between the experimental data and the simula-
tion output

10
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≥
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Fig. 5. Comparison of the cumulative probability distribution of leaving times from
nestbox 1 in the real data (curve with the red dot) and the simulation output (curve
with the blue dot), with the leaving times given in seconds. Although the means of
both distributions (the coloured dots) are almost identical, their shapes are largely
dissimilar (two-sample K-S test, P < 10−50).

4.2 Interpretation

Stochastic dimension of the system We observed in 4.1 that some global
properties of the system can be reproduced using our Markov chain model. These
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include box occupation density, intensity of interbox transit, and propensity of
the agents to move to a box regardless of its current occupation (number and
identity of other agents), as shown by the lack of significant difference in the
ratio meetings/stays between the real and simulated data.

The similarity in the occupation and transit patterns is only little surpris-
ing since the simulation’s leaving and transition rates were obtained from the
data, but it validates our assumption on the Markovian nature of the system.
Moreover, it indicates that the collective dynamics of purely stochastic processes
are sufficient to reproduce macro-level properties of a social system, i.e. that no
special cognitive ability is required in order to reproduce the observed spatial
dynamics of box occupation and interbox transit. Furthermore, from the sim-
ilarity in the observed and simulated number of encounters per stay in a box
it appears that, in order to reproduce the meeting frequency of the agents it is
sufficient to consider that an agent’s motivation as to which box to visit next
depends solely on stochastic factors.

Influence of social parameters However, a detailed insight into the simula-
tion data reveals discrepancies with regard to the social dimension of the system:
it seems that although agents do not deliberately decide of their encounters with
other agents, the output (expressed through the duration) of those encounters
depends largely on non-stochastic factors, such as presumably the common social
past of the agents and their current degree of social preference for each other.
Likewise, the number of nestboxes visited daily differs largely in the experi-
mental and simulated data (two-sample K-S test, P < 10−50). We argue that
the discrepancies observed come from so-called social agent-level interactions,
mitigating the macro-level pattern observed earlier. This is to be corrected by
introducing in the model further assumptions derived from behavioural science.

5 Discussion

We have shown in this paper that it is possible to reproduce some of the collective
dynamics of an animal society by using stochastic processes that make no call
whatsoever to social behaviour. We used a top down approach and defined a
very simple rule of movement in the barn, governed by only one parameter (the
time to next move). We chose not to fully describe the system by using in our
model design several simplifications, namely:

– we ignored all the individual characteristics of the agents (e.g., sex differ-
ences).

– we assumed that the lifespan of an agent was infinite (although the lifespan
of a wild house mouse averages well below 2 years, see [7]).

– we considered that an agent’s behaviour was not affected by its age nor its
past experience.

– we finally included no consideration for the social interactions that can occur
each time two mice encounter within or without a box, although house mice
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are a cooperative breeding species and it has been long known that social
aspects play a crucial role in their behaviour ([2], [1]).

Notwithstanding, we observed that the result of our stochastic simulation mat-
ches closely the macro-level properties of the real dataset. This is clearly encour-
aging in the search for a more advanced cross-species model that could lead to
a better and wider understanding of animal sociality.

However, we also identified drawbacks in our approach, as illustrated in the
fact that the distribution of leaving and transit times we assume is not the same
as the one we observe in reality, or that the average meeting time that comes out
of our model is well below the observed average meeting time. We also observe
that the traffic per agent is concentrated among a smaller subset of boxes than
it is expected in our model, which is a strong hint to territoriality. If the laws
of social behaviour in wild house mice were as simple as we assumed here in a
first step, they would lead to easily identifiable regular patterns, as it is often
the case in natural phenomena ([8]). But we obviously have to dig a bit deeper
in the assumptions we make on the social nature of the mice’s behaviour. For
a start, we could propose a refinement of our model where the likelihood of
an agent travelling to a certain box depends on whether this box belong to its
territory or not. Furthermore, we could assume that the leaving time of an agent
once its has entered a box is a function of the number of the box’s occupation
density, i.e. there is a preferred number of partners that fosters cooperation (for
example: zero is not enough, but three is too much). Furthermore, the identity
of the agents encountered is certainly a factor of primary importance for the
duration and the outcome of the meeting, as hinted at in recent experimental
studies ([11]) on the same species. Therefore, introducing notions of rational
choice theory with regard to past social experience and expected fitness benefits
in our model would likely be a great step forward in the reproduction of the
diversity of behavioural patterns we observe.

This contribution presents an application of a stochastic multi-agent model
to the field of animal behaviour. It is considered a first step towards more com-
prehensive research aiming to bring new insights to the field of behavioural
sciences. Forthcoming studies are certainly promising in what they can bring to
the general understanding of how and why animals think, and behave, socially.

References

1. P.F. Brain, D. Mainardi, and S. Parmigiani. House mouse aggression: a model for
understanding the evolution of social behaviour. Harwood Academic, 1989.

2. R.Z. Brown. Social behavior, reproduction, and population changes in the house
mouse (Mus musculus L.). Ecological Monographs, pages 218–240, 1953.

3. F.B.M. De Waal and P.L. Tyack, editors. Animal social complexity: Intelligence,
culture, and individualized societies. Harvard University Press Cambridge, MA:,
2003.

4. N. Gilbert and P. Terna. How to build and use agent-based models in social science.
Mind & Society, 1(1):57–72, 2000.



12 Nicolas Perony et al.

5. J. Krause and G.D. Ruxton. Living in groups. Oxford University Press, USA,
2002.

6. A. Lindholm. Unpublished data.
7. A. Manser. The Influence of a Selfish Genetic Element (t Haplotype) on a Wild

House Mouse Population. Master’s thesis, University of Zurich, Institute of Zool-
ogy, 2009.

8. J.D. Murray. Mathematical biology. Springer Verlag, 2003.
9. F. Schweitzer. Brownian agents and active particles: collective dynamics in the

natural and social sciences. Springer Verlag, 2007.
10. E. Seneta. Non-negative matrices and Markov chains. Springer Verlag, 2006.
11. A. Weidt, S.E. Hofmann, and B. König. Not only mate choice matters: fitness

consequences of social partner choice in female house mice. Animal Behaviour,
75(3):801–808, 2008.


