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Fig. 5. Illustration for the proof of Theorem 3: Highlighting the basic topology
of the agent paths that define the AGV-RAS employed in the relevant reduction
from 3-SAT.

the context of some multi-vehicle traffic systems that are encountered
in modern technological applications. In the process of deriving these
results, we also developed a new proof for the NP-completeness of state
safety in the class of L-SU-RAS, which is more concise and more lucid
than the currently existing one. Two additional, similar problems that
remain open, concern the computational complexity of state safety in
(a) dynamically routed AGV and free-range vehicular systems, where
a vehicle can be routed dynamically to any zone/cells neighboring its
current location, and (b) in closed AGV and free-range vehicular sys-
tems where agents never retire from the domain of their motion, but
they remain in it between the assignment of two consecutive trips. Fur-
thermore, it is also interesting to identify any special structure under
which the FREE-RANGE-RAS and AGV-RAS state safety problems,
considered in this work, acquire polynomial complexity. Such a line
of research can leverage and expand results of similar type for the
L-SU-RAS state safety problem reported in [7, Ch.3].
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On Conditions for Convergence to Consensus

Jan Lorenz and Dirk A. Lorenz

Abstract—A new theorem on conditions for convergence to consensus
of a multiagent time-dependent time-discrete dynamical system is pre-
sented. The theorem is build up on the notion of averaging maps. We
compare this theorem to results by Moreau [6] (IEEE TRANSACTIONS ON

AUTOMATIC CONTROL, vol. 50, no. 2, 2005) about set-valued Lyapunov
theory and convergence under switching communication topologies. We
give examples that point out differences of approaches including examples
where Moreau’s theorem is not applicable but ours is. Further on, we give
examples that demonstrate that the theory of convergence to consensus is
still not complete.

Index Terms—Averaging map, consensus protocol, multiagent systems,
set-valued Lyapunov theory.

I. INTRODUCTION

In this technical note we analyze discrete dynamical systems of
consensus formation as presented in the context of distributed com-
puting [1], [2], flocking (e.g., of unmanned aerial vehicles) [3]–[5]
and general as multi-agent coordination problems [6]–[8] (to mention
just a few). The dynamical system may also be called ’agreement
algorithm’ or ’consensus protocol’. The convergence theorems of
Moreau [6] together with the extensions of Angeli and Bliman [9]
are the most general ones. The main theorem of Moreau states condi-
tions for convergence to consensus under switching communication
topologies. Convergence to consensus is there implied by ’global
asymptotic stability of the set of equilibrium solutions with consensus
as equilibrium points’. Conditions are on the one hand on the commu-
nication topologies in their time-evolution and on the other hand on the
updating maps. Moreau applied a set-valued Lyapunov theory, which
uses a set-valued function on the state space which is contractive with
respect to the updating map. This implies convergence of the set to a
singleton.

We contribute a similar but new approach based on the notion of
an averaging map. Moreau deals with communication topologies by
defining conditions on how many successive communication topolo-
gies must be regarded until the composition of these updating maps
fulfills the contraction properties used to apply the set-valued Lyapunov
theory. We skip the issue on changing communication topologies and
deal directly with maps which fulfill a contraction property which is
different from Moreau’s.

Our theorem generalizes a result of Krause [10] by allowing arbitrary
switching between different averaging maps but follow the same line
of compactness, continuity and convexity arguments.

Section II presents the convergence result and possible extensions.
Section III discusses the relations to two of Moreau’s theorems in more
detail. Section IV gives examples and counterexamples to show ex-
isting gaps in the theory of consensus algorithms. All proofs of lemmas
and theorems are collected in Appendix A.
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II. CONVERGENCE RESULT

We consider a dynamical system of the form

���� �� � �������� (1)

with discrete time � � . Dynamics take place in a ���-dimensional
space: We consider a set of agents � � ��� � � � � ��where each of them
has coordinates in a �-dimensional set � � �. Hence, the solutions
of (1) have the form � � � �� � ���. The individual coordinates
of agent � at time � � is labeled ����� � �, and ���� � �� is called
the profile at time � � . Finally, the mappings �� which govern the
dynamics are of the form �� � �� � ��. We denote the component
functions by � �� .

To state our main result on convergence of such systems to consensus
we introduce the following notations. An element � � �� is called
consensus if all �-dimensional coordinates �� have the same value, i.e.,
there exists a vector 	 � � such that �� � 	 for � � �. By �	
�����

�

we define the convex hull of the vectors ��� � � � � ��.
The core notion in this note is an ’averaging map’. We build the def-

inition of an averaging map on a generalized convex hull. Consider a
continuous function 
 � �� � �� which maps a profile to a certain
set of � vectors 
��� � �
����� � � � � 
����� such that for all � � ��

and all � � � it holds �� � �	
����

����. We call such a function 


a generalized barycentric coordinate map and we call �	
����
����
the 
 -convex hull of the vectors ��� � � � � ��. (We call 
 ’generalized’
because it needs not be a bijective transformation.) So, a 
-convex hull
is a set-valued function from �� to the compact and convex subsets of
�. We call a set 
-convex, if it is the union of the 
-convex hulls of all
� of its points. Examples for 
-convex hulls include the convex hull it-
self, and the multidimensional interval ��
��� �

�� ����� �
�� (with

�
 and �� applied componentwise). For the first it holds � � �

for the second � � ��. Many other examples fit into this setting: the
smallest interval for any basis of � [9, Example 2], or smallest poly-
tope with faces parallel to a set of � � �� � hyperplanes [9, Example
3] containing ��� � � � � �� (the generalized barycentric coordinates are
then the extreme points of the polytope, perhaps with multiples to have
a constant �). Now, we define the central notion of this technical note.

Definition 2.1: Let � � �, 
 � �� � �� be a generalized
barycentric coordinate map such that � is 
-convex. A mapping � �

�� � �� is called a 
-averaging map, if for every � � �� it holds

�	
�
���



������� � �	
�

���


���� (2)

Furthermore, a proper 
-averaging map is a 
-averaging map, such
that for every � � �� which is not a consensus, the above inclusion is
strict.

A 
-averaging map maps a profile � into its 
-convex hull. Further-
more, the 
-convex hull of the new profile ���� lies in the 
-convex hull
of the vectors ��� � � � � ��. Hence, we may also work with the 
-convex
hull of the initial profile ���� instead of the set�. Sometimes it is useful
to look at the contraposition of the definition of proper: If equality holds
in (2) this implies that � is a consensus. In the following we may omit
’
’ when we mention an averaging map, but for an averaging map the
definition of 
 is a prerequisite. The best proxy for the mind is 
 � ��.

Since we are going to consider families of averaging maps we intro-
duce the concept of equiproper averaging maps. To this end, we need
the Hausdorff distance on the set of compact subsets of a metric space
��� ��. The distance of a point � � � and a nonempty compact set
� � � is defined as ������ �� �
��� ���� ��. Let ��� � � be
nonempty and compact, then the Hausdorff distance is defined as

�	����� �� �� ��

��

���� �����
���

������ 

Equivalently, one can say that the Hausdorff distance is the smallest �
such that the �-neighborhood of � contains � and the �-neighborhood
of � contains �. It is easy to see that �	����� � � holds if and only
if � � � . In the special case � � � � � � � it holds

�	����� � ��

��

������ � ��

��

�

���

��	 ��  (3)

Definition 2.2: Let 
 be a generalized barycentric coordinate
map and let � be a family of proper 
-averaging maps. � is called
equiproper, if for every � � �� which is not a consensus, there is
���� � � such that for all � � �

�	 �	
�
���



�������� �	
�

���


���� � ���� (4)

Now we state a lemma which says that the family of equiproper 
-av-
eraging maps is closed under pointwise limits.

Lemma 2.3: Let �� be a sequence of 
-averaging maps forming an
equiproper family of 
-averaging maps such that �� � � pointwise.
Then � is a proper 
-averaging map.

Now we are able to state our main theorem.

Theorem 2.4: Let � � �, 
 be a generalized barycentric coordi-
nate map such that � is 
-convex, and � be an equicontinuous family
of equiproper 
-averaging maps on ��. Then it holds for any sequence
������ with �� � � and any ���� � �� that the solution of (1) con-
verges to a consensus, i.e., there exists 	 � � such that for all � � � it
holds ����� ����� � 	.

Notice that the limit 	 depends not only on the initial value ���� but
also on the realization of the sequence ������ , however, 	 depends
continuously on the intial value if the sequence ���� is fixed as the
following lemma and corollary show.

Lemma 2.5: Let ����� be a metric space and �� � � � � be such
that the solution of ��� � �� � �������� converge to some limit for
every initial value ���� � � . Then the limit depends continuously on
the initial value if ���� is an equicontinuous family.

The following corollary is a direct consequence.

Corollary 2.6: Let the sequence ���� in the situation of Theorem
2.4 be fixed. Then the consensus value 	 (which exists due to Theorem
2.4) depends continuously on the initial value.

Theorem 2.4 is a generalization of a theorem of Krause [10].
Krause’s theorem is the special case when 
 is the identity and
� contains only one proper averaging map. Notice that ’equi’ in
equiproper and equicontinuous can be omitted if � is a finite set. An
easy extension is to allow � to contain also non-proper averaging
maps (but at least one proper averaging map). Then the sequence
������ has to contain a subsequence ��� ��� of equiproper aver-
aging maps to ensure convergence to consensus. This holds because
then ��� 
 �� � �� � � � � � �� � is an equiproper set of averaging
maps for � � . Notice that it is possible that a sequence of averaging
maps contains a subsequence as above such that subcompositions
�� form an equiproper set, even when no �� is proper. The easiest
example is when � contains only one linear map which is determined
by a row-stochastic square matrix which is regular but not scrambling
(see Seneta [11]). For linear systems “row-stochastic” is equivalent to
“being an averaging map” (with 
 the identity) and “scrambling” is
equivalent to “proper.” From the theory of nonnegative matrices we
know that for each regular matrix there is an integer such that higher
powers are scrambling.
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In the spirit of [9] we state another generalization of Theorem 2.4
which deals with deformations of the hull. To this end, let �� � � �

be compact and � � � � � be a homeomorphism. For a generalized
barycentric coordinate map � � �� � �� we define the �� �-hull
as ��������������������. Now, a �� �-averaging map � is defined
analogous to Definition 2.1

��� ����
���

����������� � ��� ����
���

�������� �

Note, that the �� �-hull is not necessarily convex, see [9, Example 6].
The extension of the notions “proper” and “equiproper” is straightfor-
ward.

Theorem 2.7: Let � � � � � be continuous with Lipschitz contin-
uous inverse and let � be a generalized barycentric coordinate map such
that � is �-convex. Let 	 be a family of equicontinuous, equiproper
�� �-averaging maps on ��. Then it holds for any sequence ������
with �� � 	 and any ���� � �� that the solution of ��
 	 
� �

�����
�� converges to a consensus.

III. COMPARISON WITH MOREAU’S SET-VALUED LYAPUNOV

THEORY AND MAIN THEOREM

Theorem 2.4 has similarities to Moreau’s set-valued Lyapunov The-
orem [6, Theorem 4]. This theorem implies global asymptotic stability
of the set of equilibrium solutions when there exists a set-valued func-
tion � on the state space, a measure for these sets �, and a posi-
tive definite function  on the state space. Essentially it has to hold
� ������� � � ��� and ��� ��������� ��� ���� � ����. The best
example to imagine is � � ����, and � is the diameter of a set.

The set of equilibrium solutions for the dynamical system (1) under
the conditions of Theorem 2.4 contains only all constant solutions on
consensus vectors, due to the equiproperness of � . Given this set of
equilibrium solutions, “global asymptotic stability of the set of equi-
librium solutions” implies convergence to consensus. Convergence to
consensus is thus a special case of the set-valued Lyapunov Theorem
in [6]. To the best of our knowledge, it is the only case in which the
theorem has been used so far.

Compared with our Theorem 2.4 the role of the set-valued map �

is taken by the �-convex hull. So, we also deal with a general class
of functions due to the various possible coordinate maps � � �� �

��—we only assume that � is finite. However, we do not need a
general measure � on these maps. The assumption ��� �������� �

��� ���� � ��� corresponds to ���� �������� � ���� � ����. This
is a different condition and often weaker, as for example in the case
where Moreau specifies it to proof his main Theorem [6, Theorem 2].
There � is the diameter of � ��� (which he specifies as the �������).

Theorem 2.4 has also similarities to Moreau’s main theorem [6, The-
orem 2]. This theorem is more specific than Theorem 2.4 by incorpo-
rating switching communication topologies. Its main drawback is that
it relies very much on convex hulls (see [9] for a method to overcome
this drawback). Our result generalizes to convex hulls of generalized
coordinate maps. Further on, in Moreau’s theorem agents are forced
to move into the relative interior of the convex hull (respecting the
communication topology). Specifically, this implies that agents have
to leave all extreme points of the convex hull (of agents in its neighbor-
hood) after one iteration. Our theorem needs only agents at one arbi-
trary extreme point (of the global �-convex hull) to leave it towards the
interior after one iteration. This is implied by properness of averaging
maps. The assumption ’equiproper’ in our theorem finds its analog in

Moreau’s theorem by assuming that the sets �����
����� are chosen
independently of 
.1

Summarizing the above one can say that both Moreau’s theorem
and Theorem 2.4 are similar. However, the assumptions as well as the
methods of proof are different. On the one hand we do not incorporate
switching communication topologies explicitly, but on the other hand
we need weaker conditions for the updating maps ��. Further on, we
generalized to �-convex hulls and are also able to incorporate the ex-
tensions of Moreau’s theorem by Angeli and Bliman [9] to overcome
the restriction to convex sets. Moreover, the notion of a (equi-)proper
�-averaging map allows a systematic and structured treatment of con-
sensus algorithms (see e.g., the results in Lemma 2.3 and Lemma 2.5).
Hence, Theorem 2.4 together with 2.7 give an alternative approach to
the analysis of consensus protocols whose applicability is illustrated by
examples in the next section.

IV. EXAMPLES AND COUNTEREXAMPLES

In this section we present counterexamples (Examples 4.1–4.3) to
point that the existing theory, including our Theorem 2.4, delivers no
sharp results on convergence to consensus. We also give examples
which show cases, where our theorem is applicable but Theorem 2 of
Moreau is not (Examples 4.4–4.6).

Continuity, for instance, is not necessary for convergence to con-
sensus since there are discontinuous proper averaging maps which con-
verge to consensus (one may take different averaging maps on different
subdomains of�). On the other hand discontinuity may destroy conver-
gence to consensus even for proper averaging maps (see [12, Section
3.1] for examples for this phenomenon).

The next two examples illustrate the role of equiproperness.
Example 4.1 (Non-Equiproper not Leading to Consensus): Let

����
�� ��� �� 
�




��
�� 	




��
���




��
�� 	 
�




��
�� �

It is easy to see that for 
 � 
 and ��
� � ��� 
� it holds that ���
� �

� and ���
� � ��. Obviously, ��� 	 
 � 
 is not equiproper be-
cause �� converges to the identity as 
 � �.

Example 4.2 (Non-Equiproper Leading to Consensus): Let

����
�� ��� �� 
�






�� 	






��� �� �

This example is not equiproper, because �� converges to the identity
for 
 � �. Thus, Theorem 2.4 does not apply, but for 
 � � and
any ���� � � �� the system ��
 	 
� � �����
�� has the solution
��
� � �
�
� 
�����	
� ��
� 
������ ������ and thus converges
to consensus at �����. Note that the convergence is not at an exponen-
tial rate. Convergence to consensus in the last example can also not be
ensured by Moreau’s theorems.

The next example illustrates the role of equicontinuity and is inspired
by bounded confidence [13].

1) Example 4.3 (Vanishing Confidence): Let �� � � � � with

� �� ��� ��

�

���

���	�
� � �� 	���

�

���

���	�� � �� 	�

1Here the matrix ���� is the arbitrarily chosen communication topology at
time � and � is a given state. The set � ��������� is a subset of the relative
interior of the convex hull of the neighbors of � (including �) in the current
communication topology, and it determines the set where the state of node �

has to remain in after one iteration. So, � has to be fixed for a given com-
munication topology and a certain state regardless of the chosen updating map
���� � � ��. This is in analogy to equiproper which implies the existence of a min-
imal Hausdorff distance ���� after one iteration for a given state but all possible
averaging maps.
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and �� � �� � ��. Now, �� is an averaging map for any choice
of ��. Further on, �� is continuous if �� is, and �� is proper if ��

is strictly positive. We chose ����� �� ������� as a sequence of
functions which has the cutoff function as pointwise limit function.
Hence, �� is continuous but ��� � � � � is not equicontinuous. For
���� � ��� ��� � � � the process ���� � �������� does not converge
to consensus although only proper averaging maps are involved. Rough
estimates show that ������ ����� � �.

For other settings convergence under vanishing confidence is pos-
sible, as numerical examples in [12] show.

The following examples are to show limitations of Moreau’s The-
orem 2 and how Theorem 2.4 can be applied to show convergence to
consensus.

Example 4.4 (Rendezvous Problem With Watergun Sensors): We
consider a version of the Rendezvous Problem [14] where 	 agents are
to locate themselves decentralized at the same position in twodimen-
sional space. Each agent has three waterguns, an activation gun and two
search guns. Agents can perceive from which kind of gun they were hit
and can respond (e.g., acoustically). The search gun is used as a sensor
to check if there is at least one other agent in direction 
 � 	�� 
�	.
The activation gun is used to activate other agents. When another agent
responds to a shot by the activation gun, the shooting agent switches
to standby (only responding if hit). With two search guns an agent can
particularily perform a move into direction � � 	�� 
�	 under

Rule ���: Move until either the position of an other agent is reached
or until there is an agent in the directions � � �
 or � � �
. (Move
while constantly shooting left and right with search gun until someone
is hit.)

Initially the 	 agents are located at different positions in space
and the multi-agent protocol is started form the outside by activating
one agent. Whenever an agent is activated it executes the following
program:

search gun all around shot, detect � as set of all directions where
agents are

select 
� � such that for all�� 	 � 	 � it holds �
� �����
� � �
and � maximal

if � � �
 � �	 then

tie agents at same position to move together

move direction � � 
 � 
���
� with rule ���
end if

activation gun all around shot (random start) until someone hit

if no one hit then

give signal ’consensus found!’

end if

The protocol ensures that always only one agent is activated when
an agent finishes its action unless consensus is found. It also always
leads to the movement of an agent after some time unless consensus
is found, because for every configuration there is always at least one
agent whose position is an extreme point of the convex hull such that
the exterior angle of the convex hull is larger than � � 
�	 and thus
� � �
 � �	. This is because � � 
�	 is the exterior angle of
a regular polygon with 	 edges, which is the ’worst case’-polygon.
It is ’worst case’, because it has from all polygons with 	 edges the
largest minimal exterior angle. Thus, the random search for an agent
which finds a direction 
 always ends successfully unless consensus

is reached. So, the protocol leads to a series of actions which either
continues forever including movements forever or finishing when con-
sensus is reached. We group actions to form a series of updating maps
��. We group by the following rule: Starting with the first action we
collect actions in the same group until an agent is found which moves.
The next updating map �� is formed analog starting with the next ac-
tion, and so on. Thus we have a series of update maps.

It is simple to see that the series of updating maps ��� ��� � � � fulfills
the conditions of Theorem 2.4 with � the identity. Every �� is an av-
eraging map because by definition the movement of agents goes into
the convex hull or along its border and stops before the convex hull is
left. It is equiproper, because for each � there are only as many possible
updating maps as their convex hull has extreme points. Thus, there is
a ���� � � by taking the minimum over this finite set of possible up-
dating maps. Every �� is continuous in � when we regard all agents
which have the same position as one agent. Equicontinuity at � again
follows from finiteness of the possible updating maps.

Thus, the protocol in Example 4.4 leads to convergence to consensus.
This can not be shown by applying Moreaus’s Theorem 2 because
the movements cannot be easily encoded in terms of communication
topologies. One could try to specify it in terms of communication
topologies by stating that the moving agent has agents at the detected
directions in � as its set of neighbors. But even then the conditions
of Moreau’s Assumption 1 (especialy number 3) need not be fulfilled
and a node connected to all other nodes across time intervals of length
� need not exist as necessary for Moreau’s Theorem 2.

Example 4.5 (Nonlinear Proper Averaging Map): Let

����� ���� ����� � ������ � ��� ��������

����� �
�

�
�� �

�

�
��

where � � �������� ���� ������� ������ �� ��� ��� and � is contin-
uous and decreasing from �
 to 0 in 	�� �� and zero otherwise. In this
example agent 3 moves towards agent 2 while agent 2 moves towards
agent 1 only if agent 3 is close to a stripe around the line through agent
2 and agent 1.

Examples of this kind can be formulated in terms of communication
topologies as Moreau’s Theorem 2 needs them, but the existance of a
uniform bound for the length of intercommunication intervals � is not
easily at hand.

Example 4.6 (Non-Arithmetic Means): We define ��� ��� ��� �� �
� ��� � � by ����� �� ������� ��� ���, ����� �� ����� �
�� � ���, ����� ��



������ and ����� �� ������� ��� ��� with

all computations componentwise. Further on let �� � � � � ��� �
� ��� with �� � � �� ��� � �� � �� �� It is easy to verify, that the
family of all �� � � where 1 and 4 are not both in ���� ��� ��� �
��� 
� �� ��� is an equicontinuous set of �-averaging maps, when the
�-convex hull is the interval 	������ �

�������� �
��. Equiproper is

implied by finiteness. Thus convergence to consensus is ensured by
Theorem 2.4. Moreau’s theorem is not applicable because �� � � is
not a convex hull averaging map if some �� is 1, 3 or 4 (since the com-
ponentwise ��� or ��� and the geometric mean are in general not
contained in the convex hull).

Krause [10] shows another example where Moreau’s theorem does
not imply convergence: Assume three agents in two dimensional space.
In each iteration every agent takes the mean value of the two other
agents. Hence, no agent moves into the relative interior of the convex
hull but these maps are still proper averaging maps and Theorem 2.4
applies.
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APPENDIX

PROOFS

Proof of Lemma 2.3: First we show that � is an averaging map.
Take � � �� and let � � �. Due to the pointwise convergence of
����� to �� and uniform continuity of � there is �� such that for all
� � �� it holds ���������� � ��������� 	 �. Due to ��������� �
��������

���� it follows that the maximal distance of �������� to
��������

���� is less than �, and thus �������� � ��������
���� be-

cause ��������
���� is closed.

We show that � is proper. To this end, let � � �� be not a con-
sensus. We have to show that there is 
� � ��������

���� but 
� ��
��������

�������. (Note that 
� � �, while � � �� and ���� � ��.)
We know that there is for each � � an 
��� � ��������

���� with

��� �� ��������

��������. According to the equiproper property it
can be chosen such that the distance of 
��� to ��������

�������� is
bigger than ������ � � for all � � . Further on, we know that
the set difference ����������������������������� is non empty and
bounded, thus there is a subsequence �� such that 
���� converges to a

� � ��������

����. Because of the construction it also holds 
� ��
��������

�������.
Proof of Theorem 2.4: The idea of the proof is the following:

We define ��� 	
 ��������
������� which is convex and compact.

It holds �� � �� � ��� because of the averaging property and
 	
 �

���
��� �
 � because of compactness. In the following we

will show that  is a singleton, and that for all � � � the sequences
����� converge to it. This will be done in three main steps, but first we
note that because of compactness of ���� there is a subsequence ��
and � 	
 ����    � ��� � ���� such that ������ ����� 
 �.

1) We show that  
 ��������
����. To accept “�” see that for all

�� 	 � there is ������ � ��� and thus �� � ���. This implies
�� �  because all the ��� are closed.
To show “�” let � �  and � � �. Because of uniform continuity
of � there is � � � such that for every �� � � with ��� ��� 	 �
it holds ������ ������ 	 �. Further on, there is �� such that for
all � 	 �� it holds ������� �� 	 �. This implies for every � � �
that ���������� ����� 	 �.
Obviously, � � ��� �. Thus, there exist convex coefficients
���    � �� � �

�� such that � 
 �

���
���

������ ��. Now we
can conclude

��
�

���

���
���� 


�

���

����
������ ��� ������



�

���

�������� ��� ������ 
 ���

It follows that � � ��������
���� because ��������

���� is
closed.

2) The next step is to show that � is a consensus, i.e., �� 
 � � � 
 ��.
The family � is uniformly equicontinuous and for all � � � it
holds that �����  � � �� is bounded (and thus relatively com-
pact) because all the � are averaging maps. So, due to the the-
orem of Arzelà-Ascoli, � is relatively compact. Thus, there is a
subsequence �� such that �� converges uniformly to a contin-
uous limit function � for � � �. Due to Lemma 2.3 we also
know that � is a proper averaging map. In two substeps we show
that ��������������� 
 ��������

���� which implies that � is a
consensus:

a) We show that for all � � � it holds ������ �� ��� � 

����. We know that �� � � uniformly and that ����� ��
�. Now we estimate

��� ����� ��� ����� 
��� ����� ��� �� ����

� ��� ���� ������

Both terms on the right hand side can be smaller than ��� for
any � for large enough � because of the continuity of �� and
the uniform convergence �� � �.

b) We show ��������
������� 
 ��������

����. “�”
holds because � is an averaging map (see 2a). To show
“�” let � � ��������

����. Thus, for all � it holds
� �  � ��� ��� and thus there exist convex coefficients
with convex combination � 
 �

���
������

������ � ���.
Now, �������    � �������� is a sequence in the compact
set of convex coefficients and thus there is a subsequence
�� such that ��������������    � ������� 
 ����    �

�
��.

Now due to 2c and continuity of � it holds

� 


�

���

���
���

������ ���
���

������� � ���




�

���

��� �
��������

Thus, � � ��������
�������.

This implies that � is a consensus, because � is a proper av-
eraging map.

3) Finally, we show that for each � � � the sequence ���������
(and not only subsequences) converges to � 	
 �� 
 � � � 
 ��

for ���. We know that for � � � there is a �� such that for each
� � � it holds �������� ��� �� 	 �. Further on, for � 	 ��
it holds ���� � ��� � ��� �. Thus, for each � � � there
are convex combinations ����� 
 �

	��
�	�	����� ��. Now, we

conclude for all � � ��

������� �� 


�

	��

�	�	����� ��� ��



�

	��

��	��� �� �� 
 ���

This proves the theorem.
Proof of Lemma 2.5: Let � � � and consider two initial values

����� ����� � �� with corresponding limits �, �� respectively. We have
to show that there exists � � � such that ������� ������ 
 � implies
���� ��� 
 �.

We note that for every � it holds that

���� ��� 
 ���� ����� � ������� ������ � ����� �������

We choose �� large enough, that

���� ������ 

�

�
����� ������ 


�

�
�

Since ���� is an equicontinuous family there exists � � � such that for
every � � it holds that

������� ������ 
 � � ����������� ���������� 
 ��

Since ���� and ����� solve ��� � �� 
 �������� we have recursively
that for every �� there exists � � � such that

������� ������ 
 � � �������� ������� 

�

�

which implies the claim.
Proof of Theorem 2.7: We define �� 
 � � �� ��

�� 	 �� � ��.
We show that ���  � � � is a family of equicontinuous, equiproper
�-averaging maps on ��. Equicontinuity and the fact that the ��’s are
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�-averaging maps are clear. To see equiproperness of �� we note first
that from equiproperness of �� it follows:

�� �
�� ����

���
�
����������� � �

�� ����
���

�
������� � ����

� �� �
�� ����

���
�
�����	�� � �

�� ����
���

�
��	� � ������	��

while the second line holds for all 	 � ���� � 
� and � � �. Due to
(3) we can express the Hausdorff distance as

�� �
�� ����

���
�
�����	�� � �

�� ����
���

�
��	�

� 	
�
��� ����� � �	 �
���

	��
��� ����� � �
��

�� � �

� 	
�
��������� � �	 �
��

	��
��������� � �
�

�� � � �

With this preparation we show equiproperness of the ��’s

�� ����
���

�
�����	��� ����

���
�
��	�

� 	
�
������ � �	 �
��

	��
����� � �
�

�� � ��

� 	
�
��������� � �	 �
��

	��
��������� � �
�

������ ����

� � 	
�
��������� � �	 �
��

	��
��������� � �
�

�� � �

� �������	��

where � is the Lipschitz constant of ���. Now for 	��� � ������� it
follows 	��  �� � ���������� � ������

���	������ � ���	����. By
virtue of Theorem 2.4, 	��� � � where � � 
� is a consensus and
hence, ����� ������ � �� which is also a consensus.
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Exponential Stabilization of a Class of Stochastic System
With Markovian Jump Parameters and Mode-Dependent

Mixed Time-Delays

Zidong Wang, Yurong Liu, and Xiaohui Liu

Abstract—In this technical note, the globally exponential stabilization
problem is investigated for a general class of stochastic systems with both
Markovian jumping parameters and mixed time-delays. The mixed mode-
dependent time-delays consist of both discrete and distributed delays. We
aim to design a memoryless state feedback controller such that the closed-
loop system is stochastically exponentially stable in the mean square sense.
First, by introducing a new Lyapunov-Krasovskii functional that accounts
for the mode-dependent mixed delays, stochastic analysis is conducted in
order to derive a criterion for the exponential stabilizability problem. Then,
a variation of such a criterion is developed to facilitate the controller design
by using the linear matrix inequality (LMI) approach. Finally, it is shown
that the desired state feedback controller can be characterized explicitly in
terms of the solution to a set of LMIs. Numerical simulation is carried out
to demonstrate the effectiveness of the proposed methods.

Index Terms—Discrete time-delays, distributed time-delays, Markovian
jumping parameters, mixed mode-dependent (MDD) time-delays, sto-
chastic systems.

I. INTRODUCTION

It is now well known that time-delays are frequently encountered in
practical systems such as engineering and biological systems, and their
existence may induce instability, oscillation, and poor performances
[1], [4], [5]. Time delays may also arise in several signal processing
areas such as multipath propagation, telemanipulation systems, data
communication in high-speed internet and network control systems [2].
According to the way time-delays occur, they can be classified as dis-
crete (point) delays [16] and distributed delays [10]. In the past few
years, considerable attention has been devoted to the robust stabiliza-
tion and �� control problem for linear and nonlinear time-delay sys-
tems, and a great number of papers have appeared on this general topic,
see [2] for a survey.

Markovian jump systems (MJSs) involve both time-evolving and
event-driven mechanisms, which can be employed to model the abrupt
phenomena such as random failures and repairs of the components,
changes in the interconnections of subsystems, sudden environment
changes, etc. The issues of stability, stabilization, control and filtering
have been well investigated, see e.g. [1], [3], [7], [9], [13], [15], [16],
[19]. On another research forefront, since stochastic phenomenon typ-
ically exhibits in many branches of science and engineering applica-

Manuscript received July 17, 2009; revised November 08, 2009, February 09,
2010, March 06, 2010, and March 10, 2010. First published March 22, 2010;
current version published July 08, 2010. This work was supported in part by
the Engineering and Physical Sciences Research Council (EPSRC) of the U.K.
under Grant GR/S27658/01, the Royal Society of the U.K., the National 973
Program of China under Grant 2009CB320600, and the Alexander von Hum-
boldt Foundation of Germany. Recommended by Associate Editor G. Chesi.

Z. Wang is with the School of Information Science and Technology, Donghua
University, Shanghai 200051, China. He is also with the Department of Infor-
mation Systems and Computing, Brunel University, Uxbridge, Middlesex UB8
3PH, U.K. (e-mail: Zidong.Wang@brunel.ac.uk).

Y. Liu is with the Department of Mathematics, Yangzhou University,
Yangzhou 225002, China.

X. Liu is with the Department of Information Systems and Computing, Brunel
University, Uxbridge, Middlesex, UB8 3PH, U.K.

Color versions of one or more of the figures in this technical note are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2010.2046114

0018-9286/$26.00 © 2010 IEEE

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 12,2021 at 08:26:49 UTC from IEEE Xplore.  Restrictions apply. 


