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Models of continuous opinion dynamics under bounded confidence show a sharp transition between a consensus
and a polarization phase at a critical global bound of confidence. In this paper, heterogeneous bounds of confidence
are studied. The surprising result is that a society of agents with two different bounds of confidence (open- and
closed-minded agents) can find consensus even when both bounds of confidence are significantly below the critical
bound of confidence of a homogeneous society. The phenomenon is shown by examples of agent-based simulation
and by numerical computation of the time evolution of the agents density. The result holds for the bounded
confidence model of Deffuant,Weisbuch, and others (Weisbuch et al., Complexity 2002, 7, 55–63), as well as for the
model of Hegselmann and Krause (Hegselmann and Krause, Journal of Artificial Societies and Social Simulation
2002, 5, 2). Thus, given an average level of confidence, diversity of bounds of confidence enhances the chances
for consensus. The drawback of this enhancement is that opinion dynamics becomes suspect to severe drifts of
clusters, where open-minded agents can pull closed-minded agents towards another cluster of closed-minded
agents. A final consensus might thus not lie in the center of the opinion interval as it happens for uniform initial
opinion distributions under homogeneous bounds of confidence. It can be located at extremal locations. This is
demonstrated by example, which also show that the extension to heterogeneous bounds of confidence enriches the
complexity of the dynamics tremendously. © 2009 Wiley Periodicals, Inc. Complexity 15: 43–52, 2010
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1. INTRODUCTION

R eaching consensus about certain issues is often desired
in a society. In which society are the chances for consen-
sus better? A society with homogeneous agents which

are equally skeptical about the opinions of others or a
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heterogeneous society with open- and closed-minded peo-
ple? We study this question in the framework of continuous
opinion dynamics under bounded confidence. The surpris-
ing result is that very often a heterogeneous society can reach
consensus even when both open- and closed-minded agents
are more skeptical than in a homogeneous society.

Models of continuous opinion dynamics under bounded
confidence have been introduced independently by Hegsel-
mann and Krause [1–3] and Deffuant and co-workers [4, 5].
In the basic version of both models, agents adjust their
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continuous-value opinions toward the opinions of other
agents, but they only take opinions of others into account
if they are closer than a bound of confidence ε to their own
opinion. The Deffuant and Weisbuch (DW) and the Hegsel-
mann and Krause (HK) model differ in their communication
regime. In the DW model, agents meet in random pair-
wise encounters. In the HK model, update is synchronous
and each agent takes into account only other agents within
bounds of confidence around her current opinion. Both mod-
els extend naturally to heterogeneous bounds of confidence.
But, the case has only been briefly addressed in Ref. [5] and
in Ref. [6] under further extensions to the network of past
interactions.

Opinion dynamics starts with an ensemble of n agents
with initial opinions in the interval [0, 1]. Dynamics always
lead to a stable configuration where opinions form opinion
clusters (see Ref. [7] for a proof). If there is only one final clus-
ter the agents have reached consensus. There are also other
characteristic cluster configurations with respect to number,
sizes, and locations of opinion clusters. The configuration
reached is mostly determined by the bound of confidence ε.
Of course, the final configuration depends also on the spe-
cific initial opinions, and in the DW model on the specific
realization for the pairwise encounters. But, these parame-
ters are regarded as random and equally distributed in this
paper and in most of the existing literature (with an excep-
tion of Ref. [8]). Both models are invariant to joint shifts and
scales of the initial configuration and the bound of confi-
dence. Thus, the restriction to the opinion interval [0, 1] gives
still a full characterization of model dynamics on bounded
intervals.

The simulations of the models show a sharp transition
between a consensus phase and a polarization phase at a
critical bound of confidence. Polarization is meant to be a
final state with two equally sized big clusters while consensus
is meant to be a final state where one big cluster is dominant,
usually located in the center of the opinion space.

The behavioral rules of agent-based models can be taken
over to density-based models where dynamics are defined on
the density of agents in the opinion space. This reformulation
allows a better estimate of the critical values for the bound
of confidence [9–11]. The approach also extends naturally to
heterogeneous bounds of confidence.

In Section 2, the formal definition of the agent-based DW
and HK model with heterogeneous bounds of confidence is
given and the phenomenon of consensus for low bounds of
confidence is demonstrated by examples. In this paper, we
only treat two different bounds of confidence, because this
already improves the complexity of the dynamical behav-
ior significantly. Further on, the density-based approach is
introduced and demonstrated by examples. In Section 3, the
density-based approach is used to study systematically the
evolving cluster patterns under uniform initial conditions.
Section 4 demonstrates the phenomenon of drifting towards

extremes by example. Drifting appear even for slight unstruc-
tured perturbations of the uniform distribution. It is shown
by agent-based as well as density-based examples. Section 5
gives conclusions.

2. DW AND HK MODEL EXTENDED TO HETEROGENEOUS
BOUNDS OF CONFIDENCE

In the following, we give the definition of both bounded
confidence models including their natural extension to
heterogeneous bounds of confidence.

Let us consider n agents which hold real numbers between
zero and one as opinions. The opinion of agent i at time t is
represented by xi(t) and x(t) is the vector of opinions of all
agents at time t called the opinion profile. Suppose further on,
that agent i has a bound of confidence εi which determines
that she takes all agents as serious which differ not more than
εi from her opinion. Given an opinion profile x(t) agent i has
the following confidence set Iεi (i, x(t)) = {j | ||xi(t) − xj(t)|| ≤
εi}. The confidence set of agent i contains all agents whose
opinions lie in the 2ε-interval centered on xi(t). Naturally,
this includes the agent herself. Agent i with opinion xi(t) is
willing to adjust her opinion towards the opinions of others
in her confidence set by building an arithmetic mean.

These definitions hold for both models. The differences of
the DW and the HK model comes with the definition of who
communicated with whom at what time.

In the DW model two agents i, j are chosen randomly. Each
agent changes her opinion to the average of both opinions if
the other agent is in her confidence set. So,

xi(t + 1) =



xi(t)+xj (t)
2 if j ∈ Iεi (i, t)

xi(t) otherwise.

The same for xj(t + 1) with i and j interchanged.
It is important to notice that it is possible that one agent

with high bound of confidence changes her opinion, while
the other with low bound of confidence does not. The con-
vergence parameter µ of the original model [4, 5] is neglected
to not further increase the complexity. In Refs. [4, 5], it has
been argued that the effect of µ is only on convergence time.
Later, it has been shown that the parameter also impacts the
sizes of minority clusters [12] or might get very important
under other extensions [8].

Figure 1 shows an example for the DW model in which 500
of 1000 agents are closed-minded (ε1 = 0.11), the other half
open-minded (ε2 = 0.22). Both bounds are far less than εcrit ≈
0.27 which is the critical bound for the consensus transition
in the homogeneous DW model (see Ref. [11]). The figure
shows the characteristic patterns with four, respectively, two
big final clusters evolving in the cases with homogeneous ε1

and ε2. The main plot shows how consensus (neglecting small
extremal clusters) is achieved when bounds of confidence are
mixed. This is the central phenomenon which is explained in
the latter section.
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FIGURE 1

DW processes with 1000 agents. Closed-minded agents are black,
open-minded are red. Initial conditions in all runs are equal. It is possible
for the agents to reach consensus under heterogeneous bounds of
confidence (bottom) but not in the corresponding homogeneous cases
(top). [Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]

In the HK model, all agents act at the same time, and
each changes her opinion to the average of the opinions of all
agents in her confidence set. So,

xi(t + 1) = 1
#Iεi (i, x(t))

∑
j∈Iεi (i,x(t))

xj(t)

for all i. (# is the number of elements of a set.) Figure 2
shows an example for the HK model. Because of the higher
computational effort a small system of 150 closed-minded
(ε1 = 0.11) and 150 open-minded (ε2 = 0.19) is chosen. For
the HK model, the critical bound of confidence for the con-
sensus transition lies at about ε = 0.19 (see Ref. [11]), but
this result is achieved using the density-based approach, and
it turns out by simulation that consensus in the region of
0.19 is achieved only for very large and uniformly distributed
initial conditions. Thus, Figure 2 is another example where
consensus is never achieved in the homogeneous models

(with system sizes of n = 300), while mixing can lead to
consensus.

A great success in understanding dynamics of these mod-
els was possible through the introduction of density-based
reformulations [9] of the DW model.The basic idea is to define
dynamics on the space of density functions with the opin-
ion interval as the domain, and use the same heuristics as in
the agent-based models. So, the scope changes from a finite
number of agents to an idealized infinite number of agents,
which are distributed in the opinion interval as defined by the
density function. (In Ref. [13], another model with an infinite
number of agents is introduced, which allows to transform
agent-based dynamics more straight forward. The density-
based approach can be derived from that.) This way, the
evolution of the agent density in the opinion interval can
be computed numerically for any initial opinion density. This

FIGURE 2

HK processes with 300 agents. Closed-minded agents are black, open-
minded are red. Initial conditions in all runs are equal. It is possible
for the agents to reach consensus under heterogeneous bounds of
confidence (bottom) but not in the corresponding homogeneous cases
(top). [Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]
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allows to get an overview about the average behavior of agent-
based dynamics by computing numerically just one evolution
of the agent density in the opinion interval.The density-based
computation matches agent-based fairly well when the num-
ber of agents is sufficiently large, and the initial agent-based
opinion profile is a proper draw from the initial agent distrib-
ution in the density-based model. Thus, this approach avoids
noisy Monte Carlo simulations and gives a good overview on
attractive states. The density-based approach has been used
to derive bifurcation diagrams for the evolving cluster pat-
terns with respect to a homogeneous bound of confidence for
the initial opinion distributions to be uniform in the opinion
space.

For the HK model, the same approach was first applied
independently in Ref. [10] and Ref. [14], for an overview and
discussion of different methods (see Ref. [11]).

The Density-based models have been proposed in con-
tinuous time and opinion space [9, 10] as well as in discrete
time and opinion space [14–16].The discrete version takes the
form of an interactive Markov chain, where transition proba-
bilities depend on the current state of the system. For numer-
ical computation, the continuous opinion interval as well as
time has to be discretized anyway. Therefore, we take the
discrete approach directly in this paper.

The density-based models with homogeneous bounds of
confidence can be extended for heterogeneous bounds of
confidence straight forward by introducing a density func-
tion for each bound of confidence. The precise definition
follows for simplicity for just two bounds of confidence ε1

and ε2. This setting is what we simulate systematically in the
next section. The definition can be easily extended to more
bounds of confidence and even a continuum of bounds of
confidence.

Instead of agents and their opinions, we define the state
of the system as a density function on the opinion interval
which evolves in time. We discretize the opinion space [0, 1]
into n subintervals [0, 1

n [, [ 1
n , 2

n [, . . . , [ n−1
n , 1] which serve as

opinion classes. So, we switch from n agents with opinions in
the opinion interval to an idealized infinite population, which
is divided into n opinion classes. We label opinion classes
with {1, . . . , n}, such that class 1 ≤ i ≤ n stands for opinions
in the interval [ i−1

n , i
n [. The two bounds of confidence ε1 and

ε2 naturally transform with respect to the n opinion classes
to their discrete counterparts, ε1 = nε1 and ε2 = nε2.

The state of the system is quantified by two row vectors
p1(t), p2(t) ∈ R

n≥0, where pk
i (t) is the fraction of the total

population which holds opinions in class i, have a bound
of confidence εk at time t . The pair (p1(t), p2(t)) is called the
opinion distribution at time t . One can see each vector pk as
the histogram of the agents with bound of confidence εk over
the opinion classes. Naturally, it should hold that the frac-
tions sum up to one

∑
i,k pk

i (t) = 1. Further on, we define
p(t) = p1(t) + p2(t) to be the opinion distribution of the full
population regardless of the bounds of confidence.We choose

row vectors pk because this is a convention in defining dis-
crete Markov chains. A discrete Markov chain is given by its
transition matrix T where Tij is the probability that an agent
switches from state i to j. Given a distribution p(t) the next
time step’s distribution is thus computed by p(t + 1) = p(t)T .
In our case, the transition matrices will be a function of the
current state. This is called an interactive Markov chain.

We consider that agents never change their bound of con-
fidence. Therefore, we can define a transition matrix for the
agents with discrete bound of confidence εk as T (p(t), εk).
Notice that the transition matrix depends on the opinion
vector for the full population p(t) = p1(t) + p2(t) only.
This reflects that the change of opinion of an agent with
bound of confidence εk does not depend on the bounds
of confidence of the other agents, only on the distribu-
tion of opinions in total and its own bound of confidence.
The density-based dynamics is then defined for the initial
distributions (p1(0), p2(0)) as,

p1(t + 1) = p1(t)T (p(t), ε1) (1)

p2(t + 1) = p2(t)T (p(t), ε2). (2)

This framework is applied for both models. So, we have to
specify the transition matrices for the two models now.

The Deffuant-Weisbuch transition matrix is defined by

T DW
ij (p, ε) =




π i
2j−i−1

2
+ π i

2j−i +
π i

2j−i+1

2
, if i �= j,

qi , if i = j.

with qi = 1 − ∑n
j �=i,j=1 T DW

ij (p, ε)ij and

π i
m =

{
pm, if |i − m| ≤ ε

0, otherwise.

For i < 1 and i > n, it is defined pk
i = 0 for convenience. The

probability of an agent to change from opinion i to opinion
j depends on the fractions of agents in the opinion classes
2j − i − 1, 2j − i, and 2ji + 1, but only when these classes are
not farther than εi from i. The average of i and 2j − i is indeed
j. The average of i and 2j − i − 1 is j − 1

2 , thus, only half of
the agents is expected to switch to state j (the other half will
switch to state j − 1). Analog for averaging i and 2j − i + 1.

Figure 3 shows an example computation for the evolution
of an opinion distribution in the DW model. The distributions
of the open-minded population (red) and the closed-minded
(black) population are stacked to give an impression of the
evolution of the whole population. The computations were
carried out with 100 opinion classes, but runs would look
essentially identical for a higher number of classes and an
appropriate scaling of the discrete bounds of confidence.
The example is with the same parameters as the agent-based
example in Figure 1, and indeed shows the same phenom-
enon of convergence to a big central consensual cluster
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FIGURE 3

A density-based DW process with closed minded (black) and open-
minded (red) agents. Time proceeds downwards. Notice that the time
steps are not equidistant, but selected to show important changes.
The right-hand side is just another scale of the y -axis which makes
small classes visible.Values of bounds of confidence coincide (Figure 1).
Also, a consensus is found (neglecting a small proportion of extremists).
[Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

due to the interplay of closed- and open-minded agents.
Both groups play its role in reaching consensus. The closed-
minded ensure that intermediately (t = 50) there is a small
cluster in the center of the opinion space. Open-minded
agents at the same location would already been absorbed
by the two big intermediate clusters on the right and on the
left. Finally, the open-minded play their role in pulling the
closed-minded from both sides slowly towards the center.

The HK transition matrix is defined by

T HK
ij (p, ε) =




1 if j = Mi ,
�Mi� − Mi if j = �Mi	, j �= Mi ,
Mi − �Mi	 if j = �Mi�, j �= Mi ,
0 otherwise.

with

Mi(p, ε) =
∑i+ε

k=i−ε
kpk∑i+ε

k=i−ε
pk

,

being the ε-local mean at opinion class i. The brackets �·	
represents rounding to the upper integer, �·	 rounding to the
lower integer. The ε-local mean is the barycenter of distribu-
tion p on the discrete interval of length 2ε centered on opinion
i. So, an agent switches from opinion i to j when j is the ε-local
mean of i. If the ε-local mean is not an integer, it switches to
the class above or below with probabilities depending on the
distance of the ε-local mean to these classes.

Figure 4 shows an example computation for the evolution
of an opinion distribution in the HK model, which is in the
same style of presentation as in Figure 3 and matches the
parameters of Figure 4. Again, consensus is found only due to

FIGURE 4

A density-based HK process with closed-minded (black) and open-
minded (red) agents.Time proceeds downwards. Notice that time steps
are not equidistant, but selected to show important changes. The right-
hand side is just another scale of the y -axis which makes small classes
visible. Values of bounds of confidence coincide (Figure 2). Also a con-
sensus is found. [Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com.]
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FIGURE 5

Mass of the biggest cluster with precision 10−4 after stabilization for
the DW model (top). Mass of the largest class at time step t = 200
(bottom left), and the time step t when the mass of the central cluster
exceeds 50% (blue stands for “never”).

the interplay of the closed- and the open-minded. A remark
on the comparison with the bifurcation diagram for the HK
model reported in Ref. [11] gives 0.19 as the critical value
of the consensus transition. But consensus in this region is
only achieved under very long convergence time and only
for a large number of classes, i.e., 1000, which corresponds
to a very large number of agents in the agent-based version.
So, consensus is possible in very large homogeneous groups
under ε = 0.19 by very long convergence times. In Figure
4, consensus is achieved very fast under the heterogeneous
bounds of confidence.

The discrete time and opinion space approach for density-
based models is presented here. The continuous approaches
(DW [9], HK [10]) for density-based models have been shown
to lead the same results for the DW model [16]. This does
not hold for the HK model (see Ref. [11] for a discussion).
Further on, it matters for the HK model if the discretization
of the opinion interval is into an even or odd number of bins
(see Ref. [14] for evidence). In the following section, we focus
on odd numbers. Thus, on distributions where a central bin
exists, which is the natural candidate for a consensus under
a symmetric initial distribution. In the following section, we
will show by systematic simulations that the phenomenon of

reaching consensus with lower but heterogeneous bounds of
confidence is generic in the both models.

3. SYSTEMATIC SIMULATION
In this section, a complete picture is given about the final
“degree of consensus” for the societies of closed- and open-
minded agents whose initial opinions are uniformly distrib-
uted in the opinion interval. Only the case of equally sized
groups of closed- and open-minded agents is treated.

For a systematic simulation setup, the opinion space [0,1]
is divided into n = 201 opinion classes. The initial opin-
ion distribution is pk

i = 1
402 for k = 1, 2 and i = 1, . . . , n.

Then, the final opinion distribution is computed for ε1, ε2 =
10, 11, . . . , 70, which corresponds to ε1, ε2 = 10

201 , . . . , 70
201 ≈

0.05, . . . , 0.35. Notice that a formal proof for convergence
to a stable opinion distribution is still lacking (see Ref. [11]
for discussion). For our setting convergence is evident by
observation, but stopping criteria for simulation runs are
difficult to define, especially for the DW model. For the HK
model new time steps were computed until the difference
to the former time steps got zero (due to computer preci-
sion limits). Convergence was achieved in reasonable time.
Numerical problems evolved when distributions got asym-
metric around the central class 101 for the reason of floating
point errors. These problems were circumvented by making
the opinion distributions symmetric again after each itera-
tion. For the heterogeneous DW model stopping criteria are
more complicated because it has a rich variety of types of
convergence, which are not fully classified and understood
until now. Further on, convergence can last very long and it is
difficult to decide whether convergence will lead to another

FIGURE 6

Mass of the biggest cluster after stabilization for HK model.
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FIGURE 7

Two DW processes with 1000 agents. The top plot is another realization
of Figure 1 with a different realization of the random pairwise encoun-
ters. The bottom plot is an example for an extremal consensus under
other parameters. [Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com.]

drastic change once or not. Therefore, three different ways to
visualize the results are chosen in Figure 5.

To quantify the “degree of consensus” the mass of the
biggest cluster is an appropriate measure. In a stabilized final
opinion distribution, a cluster is a set of at most two adjacent
classes with positive mass surrounded by classes with zero
mass (see Refs. [16,17]). Due to the odd number of classes and
symmetry, a cluster including the central class i = 101 can
finally only be a one-class cluster. The central class i = 101
is also the only candidate where p1

i + p2
i > 0.5 is possible

due to conservation of symmetry. Convergence in the DW
model is slow. This concerns, especially the final condensing
to clusters, even when the broad separation into clusters has
settled. Further on, masses remain always positive (though
small). Thus, we have to come up with a cluster definition
which we can apply in not fully converged situations. So, we
define an opinion cluster with precision 10−4 to be a set of
adjacent opinion classes, which contain all classes of mass
larger than 10−4 and neighbor classes of mass <10−4.

The masses of the biggest cluster are documented in
Figure 5 for the DW model and in Figure 6 for the HK model.
We color the plane of all (ε1, ε2) points with the values of the
mass of the biggest cluster after stabilization. So, regions of
certain degrees of consensus are dark red, while regions of
almost consensual clusters are orange and red. Several abrupt
and continuous transitions in changes of ε1, ε2 are visible.

Let us first take a look on the diagonal of the plots which
represents the homogeneous situation ε1 = ε2. We see the
points of the consensus transition as about 0.27 for the
DW model and about 0.19 for the HK model. (It can also

FIGURE 8

Two HK processes with 50 agents, where only few are open-minded
(red) and the majority are closed-minded (black). The top plot is an
example of extremal consensus, the bottom plot evolves the sitting
between the chairs situation. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]
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FIGURE 9

The situation of Figure 7 (top) in the density-based model. Also com-
parable to Figure 3 with a perturbed initial distribution. M bary indi-
cates the overall average opinion, which quantifies the overall drift.
[Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

be observed that consensus strikes back for 0.17 in the HK
model. See Ref. [15] for details about this phenomenon.) It
is interesting to see the heterogeneous situations besides the
diagonal. Consensus is in many cases possible even when
ε1 and ε2 are both below the critical ε for the consensus
transition in the homogeneous case.

The evolution of consensus under heterogeneous bounds
of confidence in the DW model looks quite ubiquitous. But,
it is important to notice that the plot for the DW model
might look very different for different levels of precision. Fur-
ther on, convergence time to consensus could be very slow.
To clarify the picture about the DW model the two smaller
plots are included in Figure 5. The bottom left plot shows
the situation after a time t = 200. Because clusters cannot
be determined at this level, we simply plot the maximum
of pi(200) all opinion classes i ∈ {1, . . . , n}. One can see that,
especially in the region around (ε1, ε2) = (0.11, 0.22) the max-
imum has already exceeded 50%. So, in this region consensus

will appear after a reasonable amount of time. The bottom
right plot shows the time steps when the central class con-
tains more than 50% of the mass (if this happens at all). So,
this is another measure for convergence to consensus in a
reasonable time. The color axis has been adjusted from 0 to
1000. For the blue area, the central cluster has not exceeded
50% either because of convergence to polarization or plural-
ity (in the region around the diagonal) or because of too slow
convergence (in the region at the corners). So, black stands for
a huge time interval. The nonconverged states in the upper
left and the bottom right corner did not converge after 45,000
time steps. Further on, there is one interesting example for
long convergence time on the diagonal (the homogeneous
case). This is an example for a very short ε-phase where con-
vergence to consensus in the DW model is via a metastable
polarized state, which has not been observed before. This
slow convergence ε-phase close to the transition is really huge
for the HK model (see Ref. [15]).

We can conclude that the enhancement of the chances for
consensus due to heterogeneity is generic. It appears due to

FIGURE 10

The situation of Figure 7 (bottom) in the density-based model. M bary

indicates the overall average opinion, which quantifies the overall drift.
[Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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FIGURE 11

The situation of Figure 8 (top) in the density-based model. M bary indi-
cates the overall average opinion, which quantifies the overall drift.
[Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

a subtle interplay between closed- and open-minded agents.
The results presented were all produced for initial opinion
distributions which were perfectly uniform. In the following
section, we will study perturbations of this situation.

4. INHERENT DRIFTING TOWARDS THE EXTREMES
In the following, it is demonstrated by example that even
unstructured deviations from the perfect symmetry in the ini-
tial opinion distribution can have important consequences.
Let us start by looking on some other agent-based examples.
Figure 7 shows two different runs.The upper plot shows a sim-
ulation run for the same initial conditions as Figure 1 but with
a different realization of the pairwise encounters. Consensus
is not achieved but a polarization into two big clusters. More-
over, both cluster drift towards zero. This happens in both big
clusters due to their contact to a very small group of closed-
minded agents which lies below each of them. This situation
was achieved in the first 10,000 time steps by the upper group
moving slightly faster towards the center and thus attracting

more of the closed-minded agents in the center. This brought
the emerging big lower cluster to be more oriented to the even
lower small cluster of the closed-minded agents. This estab-
lished the situation of the overall drift to one side. Notice that
this situation was not put a priori in, but emerged from a uni-
form distribution of open-minded as well as closed-minded
agents. The bottom plot in Figure 7 shows an example with
different parameters, which leads to an extremal consensus
close to one. Again the initial configuration is unstructured.
This shows that the system becomes suspect to extremism
even when this susceptibility is not visible a priori. Extrem-
ism in bounded confidence models has already been studied
[18–20], but in all of these studies the susceptibility to extrem-
ism was put in a priori by populating the extremes with very
closed-minded agents, such that they form natural attrac-
tors for the open-minded central agents. The question in
these studies was then just: under what conditions do cen-
tral agents convergence in the center, split towards the two
extremes or convergence together to one extreme. In this

FIGURE 12

The situation of Figure 8 (bottom) in the density-based model. M bary

indicates the overall average opinion, which quantifies the overall drift.
[Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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study, we see that also the situation which is susceptible to
extremal convergence can emerge dynamically.

Figure 8 shows two example runs for the HK model. In
these examples, 90% of the population is closed-minded and
10% is open-minded. This is chosen because the 50%/50%
situation does not show many variations, as should be shown
in this section. The upper plot shows an impressive example
of convergence to consensus caused by only 10% of open-
minded agents but for the cost that the consensus is a very
extreme opinion. Moreover, it is the opposite of the opinion
the open-minded agents started with. The lower plot starts
with the same initial profile of opinions but with a different
choice of the five open-minded agents. The system converged
to a frozen situation, where the open-minded agents finally
sit between the chair. They take the opinions of both closed-
minded clusters into account, but are not able to pull them
together.

Figures 9 and 10 show density-based dynamics for the DW
model with an essentially uniform but perturbed initial dis-
tribution which correspond to the examples in Figure 7. The
same effects are visual. Finally, in Figures 11 and 12 similar
examples as in Figure 8 are reproduced in the density-based
HK model.

5. CONCLUSIONS
It was demonstrated that societies with open- and closed-
minded agents can find consensus even when both bounds

of confidence are surprisingly low. This adds a new phenom-
enon where diversity of agents has drastic effects.

The systematic simulations in Section 3 also shows that
the example runs shown in Section 2 are generic. Effects of
heterogeneity are more drastic as stated by Weisbuch et al. [5]
for the DW model, where it is only claimed that the dynamics
of the higher ε will govern the evolution of clusters in the long
run. Here, we see that the effects are much larger, allowing
convergence to consensus when both bounds are low but
different due to a subtle interplay.

The effect is to a large extent due to the symmetric ini-
tial situation around the mean opinion. The symmetry is
conserved during dynamics therefore no overall drifts can
occur. The examples in Section 4 show that severe drifts of
the whole opinion profile may occur even if the initial dis-
tribution is random and essentially uniformly distributed.
This gives rise to the speculation that severe drifting phe-
nomena are also ubiquitous under heterogeneous bounds
of confidence. So, they need not only happen in stylized
situation as in Refs. [18–20]. Drifting of the mean opinion
also happens in opinion dynamics in the real world. The
interplay of clustering and drifting (pulled by open-minded
agents towards closed-minded agents) is also quite realistic
in the political realm. So, these theoretical results might help
to uncover hidden dynamics in real-world opinion dynam-
ics, which in turn can help to design better communication
systems.
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