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The Structure of Financial Networks
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Abstract We present here an overview of the use of networks in Finance and Eco-
nomics. We show how this approach enables us to address important questions as,
for example, the structure of control chains in financial systems, the systemic risk
associated with them and the evolution of trade between nations. All these results
are new in the field and allow for a better understanding and modelling of different
economic systems.

7.1 Introduction

The use of network theory in financial systems is relatively recent, but it has ex-
ploded in the last few years, and since the financial crisis of 2008–2009 this topic
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has received even more interest. Many approaches have been attempted, and in this
chapter we try to summarise the most interesting and successful of them. This is
only one aspect of the increasing interest in real-world complex networks, indeed
some previous studies revealed unsuspected regularities such as scaling laws which
are robust across many domains, ranging from biology or computer systems to soci-
ety and economics [40, 63, 68]. This has suggested that universal, or at least generic,
mechanisms are at work in the formation of many such networks. Tools and con-
cepts from statistical physics have been crucial for the achievement of these findings
[13, 28]. From the initial activity, the research in the field of networks evolved so
that three levels of analysis are nowadays possible. The first level corresponds to a
purely topological approach (best epitomised by a binary adjacency matrix, where
links simply exist or not). Allowing the links to carry weights [5], or weights and
direction [66], defines a second level of complexity. Only recent studies have started
focusing on the third level of detail in which the nodes themselves are assigned a de-
gree of freedom, sometimes also called fitness. This is a non-topological state vari-
able which shapes the topology of the network [23, 41, 43]. In this chapter, we shall
try to cover these three aspects by mainly focussing on the methodological aspects,
i.e. which types of networks can be constructed for financial systems, and evaluat-
ing the empirical results on networks obtained by investigating large databases of
financial data ranging from individual transactions in a financial market to strategic
decisions at a bank level. Readers have to note that edges and vertices can assume
different meanings according to the system considered. In some situations, we can
have different details of data available, and cannot investigate the three levels of de-
tail in the same way. The cases of study we want to present here are those related
to

• Networks to extract information from Correlation Matrices
• Networks of control as, for example, the Ownership network and the Board of

Directors network
• Trading networks as the World Trade Web and the Banks’ Credit networks

Since these fields can be very different, it is important to divide and classify the
networks that we could encounter. An important classification of networks in gen-
eral, and that will be considered here, is the one that divides networks into similarity
based networks and direct interaction networks. To be specific, consider a network
whose nodes are financial agents: investors, banks, hedge funds, etc. They differ in
the meaning of the links. In similarity-based networks, we draw a link when the
two vertices share some feature: strategy, behaviour, income, etc. In this case, one
needs to assign a criterion to establish whether the similarity between two agents is
relevant enough that we can join the agents with a link. This means that the agents
do not interact with each other, but can be connected if they are similar. Conversely,
in direct interaction networks a link between two nodes signals the presence of an
interaction between the entities represented by the two nodes connected by the link.
In the financial case, the interaction can be a transaction between two agents, an
ownership relation of one node with respect to another, a credit relation, etc. All
these situations are present in real financial networks and we shall analyse various
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instances of them. The structure of this chapter reflects the above division of top-
ics so that, Sect. 7.2 overviews the studies of networks in a data mining framework
(mostly similarity-based networks). In Sect. 7.3, we analyse the social aspects of
the control networks where vertices are real agents or companies, and finally in
Sect. 7.4, we analyse some of the most important “trading” webs.

7.2 Similarity-Based Networks

In similarity based networks, a weighted link between two nodes represents a sim-
ilarity (but not necessarily a direct interaction) between the two nodes. Let us con-
sider a system composed of N elements. Each element is represented by T vari-
ables. These variables describe several different properties of the elements (or they
can represent values of the variables at different times as it is the case of time series).
Typically, one introduces a matrix C describing the various N × N similarity mea-
surements. We indicate with cij the generic element of the matrix C. In the language
of networks, the matrix C identifies a complete (all edges drawn) weighted network
where every of the N elements is represented by a node, and the link connecting
nodes i and j is associated to a weight related to cij . From a purely topological
point of view, this does not produce anything usable. In fact, if, for example, we
consider the similarities between 1000 different elements, one has to check almost
one million entries. The natural choice is then to exploit the extra information em-
bedded in the values of the weights. In other words, it is necessary to filter out the
most relevant links of the network. The different methods to perform this filtration
give rise to different similarity based networks.

The choice of the similarity measure is also arbitrary. A very common choice
is the use of the linear correlation as a measure of similarity. In this case, we have
the correlation based networks. The best example of similarity-based networks are
correlation based networks. In this case, the similarity between two elements (nodes)
of the system is quantified by the linear correlation. The matrix element cij is the
linear (or Pearson’s) cross-correlation between element i and j , i.e.

cij = 〈rirj 〉 − 〈ri〉〈rj 〉√
〈r2

i 〉 − 〈ri〉2
√

〈r2
j 〉 − 〈rj 〉2

(7.1)

where ri and rj are the investigated variables and the symbol 〈. . .〉 is a statistical
average defined as

〈ri〉 = 1

T

T∑
k=1

ri(k) (7.2)

where ri(k) is the kth variable of element i. The correlation coefficient has values
between −1 and +1, corresponding to perfectly anticorrelated and perfectly corre-
lated (i.e. identical) variables, respectively. When the coefficient is zero the variables
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are not correlated. The correlation coefficient can be associated to a Euclidean dis-
tance with the relation [48, 59]

dij =
√

2(1 − cij ). (7.3)

Finally, it is important to stress that correlation coefficients are statistical estimators
and therefore are subject to measurement noise. This means, for example, that two
variables could be uncorrelated, but their sample correlation coefficient measured
over a set of T variables is typically different from zero. Moreover, since one is
interested simultaneously in many variables, another common statistical problem,
named the curse of dimensionality, is common in correlation based networks. Com-
ing back to our previous example of the correlation matrix, we have N(N − 1)/2
distinct elements to be estimated. We remind that each element is represented by
T variables so that the number of data points for this estimation is NT . Therefore,
unless T � N , the statistical reliability of the similarity matrix is small because we
have a small number of independent measurements per estimated parameter. There-
fore, one has to devise a method to reduce the number of variables from the large
N2 value to a subset statistically more significant.

There are many different methods to construct correlation (or similarity) based
networks. In this paper, we shall consider two classes, namely threshold networks
and hierarchical networks, and we discuss the application of these methods to finan-
cial networks.

7.2.1 Threshold Methods

The simplest filtered network is a threshold network. Given the set of correlation
or even distances between the vertices, one keeps only those above a determined
level of confidence. A suitable choice, based on statistical consideration, could be
the following. If the N variables are described by independent Gaussian time series
of length T and we use the above defined correlation measure, it is known that for
large T the distribution of the sample correlation coefficient of two uncorrelated
Gaussian variable can be approximated by a Gaussian distribution with zero mean
and standard deviation equal 1/

√
T . In this case, a reasonable approach could be to

consider a threshold of three standard deviations and to keep the edge values whose
associated correlation coefficients are larger in absolute value than 3/

√
T . In this

way, only links associated with statistically significant correlation are preserved in
the filtered network.

Another method for choosing the threshold is to randomise the data by permuta-
tion experiments and preserve in the original networks only those links associated
to a correlation which is observed in the randomised data with a small probability.
In this way, no a priori hypothesis on the probability distribution of data is made,
and this approach is very useful especially when data distribution is very different
from a Gaussian.
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The networks generated with threshold methods are, in general, disconnected. If
the system presents a clear cluster organisation, threshold methods are typically able
to detect them. On the contrary, if the system has a hierarchical structure, threshold
methods are not optimal, and hierarchical methods described below should be pre-
ferred.

7.2.2 Hierarchical Methods

A different class of filtering methods are the hierarchical methods. These are de-
vised to detect specifically the hierarchical structure of the data. A system has a
hierarchical structure when the elements of the system can be partitioned into clus-
ters which, in turn, can be partitioned into subclusters, and so on up to a certain level.
In multivariate statistics, there is a large literature on hierarchical clustering meth-
ods [2]. These methods produce dendrograms to describe the hierarchical structure
of the system. One interesting aspect for network theory is that hierarchical cluster-
ing methods are also often associated with networks which are different from the
dendrograms. Here we review the use of these networks as similarity based net-
works. For a review of the hierarchical methods and their application in finance, see
also [76].

One of the most common algorithms to detect a possible hierarchical structure
hidden in the data is given by the Minimum Spanning Tree (MST) procedure. The
MST is the spanning tree of shortest length. In our case, the length of a link is
inversely related to the similarity between the nodes connected by the link. Thus
one can either use a relation as the one in (7.3) to obtain a length measure of the
links and find the spanning tree of minimum length, or alternatively consider the
similarity (or correlation) as “length” and look for the spanning tree of maximum
length.

There are several algorithm to extract the MST. A very intuitive one is the fol-
lowing procedure.

• Assign distances between the vertices in such a way that the largest is the corre-
lation between two vertices, while the shortest is the distance.

• Rank these distances from the shortest to the longest.
• Start from the shortest distance and “draw” the edge between the vertices.
• Iterate this procedure until you find an edge that would form a loop. In this case,

jump to the next distance (if necessary repeat this operation).
• Stop when all the vertices have been considered.

The resulting graph is the MST of the system and the connected components pro-
gressively merging together during the construction of the graph are clusters pro-
gressively merging together. The MST is strongly related with a well known hier-
archical clustering algorithm, called Single Linkage Cluster Analysis. Recently it
has been shown that another network, termed Average Linkage Minimum Spanning
Tree, can be associated with the most common hierarchical clustering algorithm, the
Average Linkage Cluster Analysis [78].
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By using different constraints, it is possible to define other hierarchical networks.
The idea is that from the same correlation matrix one can also obtain correlation
based networks having a structure more complex than a tree. In the case of Pla-
nar Maximally Filtered Graph (PMFG) [3, 77], we can allow loops and cliques by
modifying the above algorithm. In particular, you can continue drawing edges, pro-
vided that the graph remains planar. That is to say, it should be possible to draw
the graph without having to cross two different edges. Since the maximum com-
plete subgraph one can draw with such a feature is K4, one cannot have cliques of
size larger than four in a PMFG. Authors of [3, 77] introduce a correlation based
graph obtained by connecting elements with largest correlation under the topologi-
cal constraint of fixed genus G = 0. The genus is a topologically invariant property
of a surface defined as the largest number of nonintersecting simple closed curves
that can be drawn on the surface without separating it. Roughly speaking, it is the
number of holes in a surface. A basic difference of the PMFG with respect to the
MST is the number of links which is N − 1 in the MST and 3(N − 2) in the PMFG.
Moreover, the PMFG is a network with loops, whereas the MST is a tree. It is worth
recalling that in [77] it has been proven that the PMFG always contains the MST.
Thus the PMFG contains a richer structure than the MST (which is constrained by
the tree requirement), but the number of links is still O(N) rather than O(N2) as
for the complete graph. Therefore, the PMFG is an intermediate stage between the
MST and the complete graph. In principle, this construction can be generalised to
a genus G > 0, i.e. one adds links only if the graph can be embedded in a surface
with genus G.

7.2.3 An Application to NYSE

The main application of similarity based networks to finance has been the charac-
terisation of the cross-correlation structure of price returns in a stocks portfolio. In
this case, the nodes represent different stocks or, in general, different assets. The
T variables characterising a node are the time series of price return of the associ-
ated stock computed over a given time horizon (typically one day, i.e. daily returns).
The cross-correlation between stock returns measures how much the price of the
two stocks move in a similar way. The characterisation and filtering of the stock
return correlation matrix is of paramount importance in financial engineering and
specifically in portfolio optimisation.

The threshold method selects the highest correlations and therefore considers the
links in the network that are individually more relevant from a statistical point of
view. An example of the analysis of the financial correlation matrix with a threshold
network was given in [64, 65]. Here the authors computed the price return corre-
lation matrix of a portfolio of N � 100 US stocks. The variable considered is the
daily price return and they constructed the correlation matrix of these N stocks. The
process starts from an empty graph with no edges where the N vertices correspond
to stocks. Then they introduced one edge after another between the vertices accord-
ing to the rank of their correlation strength (starting from the largest value). These
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“asset graphs” can be studied as the number of links grows when one lowers the
threshold. Typically, after a small number of edges (20 for this case study), several
cycles appear in the asset graph. As more edges are added, the existing clusters are
significantly reinforced and the graph remains disconnected. The graph becomes
completely connected, only after a large number of edges are added (typically 1000
for a network of 116 nodes). It is possible to check that even for moderate values of
the number of edges added, the connected components (clusters) are quite homoge-
neous in terms of the industrial sector of the stocks involved. It is also possible to
study how the mean clustering coefficient changes when the links are added. Inter-
estingly, three different regimes appear. In the first regime, we have a rapid growth of
the clustering coefficient corresponding to an addition of the top 10% of the edges.
In other words, the first 10% of the edges add substantial information to the system.
In the second regime, when the fraction of added edges is between 10% and 20%,
the rate of change of the clustering coefficient starts to slow down and reaches a sort
of plateau. Finally, the edges added in the last regime, i.e. having the correlation
coefficients with a rank below 30%, have relatively poor information content, and
are possibly just noise.

Concerning hierarchical methods, Rosario Mantegna [58, 59] was one of the first
to apply this procedure to the price return of a portfolio of stocks. Since this type
of analysis has been performed afterwards in many different markets, time periods,
and market conditions, the results described below are quite general. At a daily time
scale, the MST is able to identify quite clearly the economic sectors of the stocks
in the portfolio. Each company belongs to an economic sector (such as Basic Mate-
rials, Energy, Financial, Technology or Conglomerates) describing the core activity
of the company and assigned by some external company (such as Forbes). The MST
shows the presence of clusters of nodes (stocks) which are quite homogeneous in
the economic sector. Often the MST displays also a structure in subclusters where
nodes are stocks mostly belonging to the same subsector (for example, Communi-
cation services and Retail are subsectors of the sector of Services). In this ability
of identifying the economic sectors from the correlation matrix, the MST performs
typically pretty well when compared with other more traditional methods, such as
spectral methods [17]. In this latter procedure, one extracts the eigenvectors of the
correlation matrix and identifies sectors as groups of stocks which have a large com-
ponent (compared to the others) in an eigenvector. Despite the fact that this method
gives some useful information [47], the eigenvectors sometimes mix different eco-
nomic sectors (especially when the eigenvalues are close to each other). A second
feature typically found in the MST of daily returns of a portfolio of stocks is the
presence of few nodes (stocks) with a very large degree. A typical example is ob-
served in a portfolio of US stocks in the late 1990s. In this case, it has been found
that General Electric is a hub in the network, connecting different parts of the tree
associated with different economic sectors, but also connecting to leaves, i.e. stocks
that are connected to the tree only trough General Electric. General Electric is a
conglomerate company, and in the 1990s it was the most capitalised stock in the US
financial markets. A conglomerate company is a combination of more firms engag-
ing in entirely different businesses. These two aspects explain why General Electric
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was a hub of the network. The fact that hubs are often conglomerates is explained by
the fact that a conglomerate company tends to be less affected by industry specific
factors and more affected by global market behaviour.

It is interesting to note that when one considers price returns computed on intra-
day time horizons, the topological structure of the MST changes dramatically [9].
It has been observed that on very short time horizons the MST has roughly a star
like structure with the notable exception of the presence of a cluster of technological
stocks. As the time horizon used to compute returns is increased, the MST becomes
more structured and clusters of stocks belonging to the same economic sector pro-
gressively emerge. It is worth noting that the time horizon needed, because a given
sector is evident as a cluster in the MST, depends on the considered sector. This
has been interpreted as an indication that the market “learns” its cluster structure
progressively.

A direct comparison of the MST and an asset graph with N − 1 edges (like the
MST) shows that the two graphs share only 25% of the edges, i.e. that 75% of the
N − 1 strongest correlation are not represented in the MST. Therefore, while the
MST can inform about the taxonomy of a market, the graph asset built in this way
seems to better represent the strongest correlations.

7.2.4 Other Similarity Based Hierarchical Networks in Finance

Hierarchical networks (mainly the MST) have been applied to several other financial
variables. These, for example, include: (i) time series of price volatility, (ii) interest
rates, (iii) hedge funds’ net asset values, and (iv) trading activity of agents. In the
first case [60], the investigated variable is the stock price volatility which is a key
economic variable measuring the level of price fluctuations, and the MST resem-
bles most of the properties of the price return MST. The interest rates are important
economic variables, and the empirical analysis [26] shows that interest rates cluster
in the MST and in the PMFG according to their maturity dates. The application of
MST to hedge funds’ net asset value [61] allows identifying clusters of funds adopt-
ing similar strategies (which sometimes are different from the strategies declared
by the fund). Finally, the emerging study of networks of agents trading in the mar-
ket [30] shows that the correlation matrix of the inventory variation of the market
members trading a stock in the Spanish Stock Market contains information on the
community structure of the investors.

7.3 Control Networks: The Case of Directors and Ownerships

In this case of study, the networks are used to detect chains of control that could be
hidden in a traditional analysis. Here the vertices are mainly financial agents, both in
the case of Board of Directors where people investigate the relation between differ-
ent persons and in the case of ownership networks where people want to know about
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the chains of control behind a particular stock. The physics literature on complex
economic networks has previously focused on both of these topics (for the boards
of directors, see, for example, [6, 62], while for market investments, see [8, 41]). At
the same time, also in economics there is a vast body of literature on corporate con-
trol that focuses on corporations as individual units. The research topics this field
of study addresses can be grouped into three major categories: firstly, analysing the
dispersion or concentration of control [29, 73]; secondly, empirically investigating
how the patterns of control vary across countries and what determines them [55, 56];
and thirdly, studying the impact of frequently observed complex ownership patterns
[11, 15, 16, 34] such as the so-called pyramids [1] and cross-shareholdings (also
known as business groups) [49].

In addition, research in cooperative game theory analysing political voting games
has resulted in the development of the so-called power indices [4, 72]. These
ideas have been applied to coalitions of shareholders voting at Shareholders Meet-
ings [57].

7.3.1 Stock Ownership Network

It should be noted that most previous empirical studies did not build on the idea
that ownership and control define a vast complex network of dependencies. Instead,
they selected samples of specific companies and looked only at their local web of
interconnections. These approaches are unable to discern control at a global level.
This emphasises the fact that the bird’s-eye-view given by a network perspective is
important for unveiling overarching relationships. Remarkably, the investigation of
the financial architecture of corporations in national or global economies taken as
a whole is just at the beginning [18, 41, 54]. Here we present an analysis based on
[45] that allows us to show how control is distributed at the country level, based on
the knowledge of the ownership ties.

The dataset considered spans 48 countries and is compiled from Bureau van
Dijk’s ORBIS database.1 In this subset, there are a total of 24,877 stocks and
106,141 shareholding entities who cannot be owned themselves (individuals, fam-
ilies, cooperative societies, registered associations, foundations, public authorities,
etc.). Note that because the corporations can also appear as shareholders, the net-
work does not display a bipartite structure. The stocks are connected through
545,896 ownership ties to their shareholders. The database represents a snapshot
of the ownership relations at the beginning of 2007. The values for the market cap-
italisation, which is defined as the number of outstanding shares times the firm’s
market price, are also from early 2007. These values will be our proxy for the size
of corporations and hence serve as the non-topological state variables.

The network of ownership relations in a country is very intricate and a cross-
country analysis of some basic properties of these networks reveals a great level of

1http://www.bvdep.com/orbis.html.

http://www.bvdep.com/orbis.html
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Fig. 7.1 Schematic illustration of a bow-tie topology: the central area is the strongly connected
component (SCC) where there is a path from each node to every other node and the left (IN) and
right (OUT) sections contain the incoming and outgoing nodes, respectively

variability. For instance, at the topological level, the analysis of the number and sizes
of connected components. Many small components correspond to a fragmented cap-
ital market, while a giant and dense component corresponds to an integrated mar-
ket. It is, however, not very clear what such connected components reveal about the
structure and distribution of control. The same pattern of connected components can
feature many different configurations of control. Therefore, it makes sense to move
on to the next level of analysis by introducing the notion of direction. Now it is pos-
sible to identify strongly connected components. In terms of ownership networks,
these patterns correspond to sets of corporations where every firm is connected to
every other firm via a path of indirect ownership. In particular, these components
may form bow-tie structures, akin to the topology of the World Wide Web [12]. Fig-
ure 7.1 illustrates an idealised bow-tie topology. This structure is particularly useful
to illustrate the flow of control, as every shareholder in the IN section exerts control
and all corporations in the OUT section are controlled.

In the above dataset, roughly two thirds of the countries’ ownership networks
contain bow-tie structures (see also [79]). Indeed, already at this level of analy-
sis, previously observed patterns can be rediscovered. As an example, the countries
with the highest occurrence of (small) bow-tie structures are KR and TW, and to a
lesser degree JP (the countries are identified by their two letter ISO 3166-1 alpha-2
codes). A possible determinant is the well known existence of the so-called business
groups in these countries (e.g. the keiretsu in JP, and the chaebol in KR) forming a
tightly-knit web of cross-shareholdings (see the introduction and references in [49]
and [33]). For AU, CA, GB and US, one can observe very few bow-tie structures of
which the largest ones, however, contain hundreds to thousands of corporations. It
is an open question if the emergence of these mega-structures in the Anglo-Saxon
countries is due to their unique “type” of capitalism (the so-called Atlantic or stock
market capitalism, see the introduction and references in [27]), and whether this
finding contradicts the assumption that these markets are characterised by the ab-
sence of business groups [49].

Next to bow-tie structures, we can identify additional structures revealing the
chains of control. The simplest way is by considering the core structures of the
ownership networks and check the more important vertices in this subset.
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The question of the vertices’ importance in a network is central in graph the-
ory, and different possibilities have been considered. Traditionally, the most intu-
itive quantity is the degree k, that is, the number of edges per vertex. If the edges
are oriented, one has to distinguish between the in-degree and out-degree, kin and
kout, respectively. When the edges are weighted, the corresponding quantity is called
strength [5]:

kw
i :=

∑
j

Wij . (7.4)

Note that for weighted and oriented networks, one has to distinguish between the
in- and out-strengths, kin-w and kout-w, respectively.

However, the interpretation of kin/out-w is not always straightforward for real-
world networks. In the case of ownership networks, there is no useful meaning as-
sociated with these values. In order to provide a more refined and appropriate de-
scription of weighted ownership networks, we introduce two quantities that extend
the notions of degree and strength in a sensible way.

The first quantity to be considered reflects the relative importance of the neigh-
bours of a vertex. More specifically, given a vertex j and its incoming edges, we
focus on the originating vertices of such edges. The idea is to define a quantity that
captures the relative importance of incoming edges. When no weights are associated
to the edges, we expect all edges to count the same. If weights have a large variance,
some edges will be more important than others. A way of measuring the number of
prominent incoming edges is to define the concentration index as follows:

sj := (
∑kin

j

i=1 Wij )
2

∑kin
j

i=1 W 2
ij

. (7.5)

Note that this quantity is akin to the inverse of the Herfindahl index extensively used
in economics as a standard indicator of market concentration [50]. Indeed, already
in the 1980s the Herfindahl index was also introduced to measure ownership con-
centration [19]. Notably, a similar measure has also been used in statistical physics
as an order parameter [25]. In the context of ownership networks, sj is interpreted
as the effective number of shareholders of the stock j . Thus it can be interpreted as
a measure of control from the point of view of a stock.

The second quantity to be introduced measures the number of important outgoing
edges of the vertices. For a given vertex i with a destination vertex j , we first define
a measure which reflects the importance of i with respect to all vertices connecting
to j :

Hij := W 2
ij

∑kin
j

l=1 W 2
lj

. (7.6)

This quantity has values in the interval (0,1]. For instance, if Hij ≈ 1 then i is by far
the most important destination vertex for the vertex j . For our ownership network,
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Fig. 7.2 Probability distributions of sj for selected countries; PDF in log–log scale

Hij represents the fraction of control shareholder i has on the company j . In a next
step, we then define the control index:

hi :=
kout
i∑

j=1

Hij . (7.7)

This quantity is a way of measuring how important the outgoing edges of a node i

are with respect to its neighbours’ neighbours. Within the ownership network set-
ting, hi is interpreted as the effective number of stocks controlled by shareholder i.

7.3.1.1 Distributions of s and h

The above defined measures can provide insights into the patterns of how ownership
and control are distributed at a local level. In particular, Fig. 7.2 shows the probabil-
ity density function (PDF) of sj for a selection of nine countries. There is a diversity
in the shapes and ranges of the distributions to be seen. For instance, the distribu-
tion of GB reveals that many companies have more than 20 leading shareholders,
whereas in IT few companies are held by more than five significant shareholders.
Such country-specific signatures were expected to appear due to the differences in
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Fig. 7.3 Various probability distributions for selected countries: (top panel) CDF plot of kout
i ;

(middle panel) CDF plot of hi ; (bottom panel) PDF plot of hi ; all plots are in log–log scale

legal and institutional settings (e.g. law enforcement, protection of minority share-
holders [55], etc.).

On the other hand, looking at the cumulative distribution function (CDF) of kout
i

(shown for three selected countries in the top panel of Fig. 7.3) a more uniform shape
is revealed. The distributions range between two to three orders of magnitude. In-
deed, some shareholders can hold up to a couple of thousand stocks, whereas the
majority have ownership in less than ten. Considering the CDF of hi , seen in the
middle panel of Fig. 7.3, one can observe that the curves of hi display two regimes.
This is true for nearly all analysed countries, with a slight country-dependent vari-
ability. Notable exceptions are FI, IS, LU, PT, TN, TW, VG. In order to understand
this behaviour, it is useful to look at the PDF of hi , shown in the bottom panel of
Fig. 7.3. This uncovers a new systematic feature: the peak at the value of hi = 1
indicates that there are many shareholders in the markets whose only intention is to
control one single stock.

The quantities defined in (7.5) and (7.7) rely on the direction and weight of the
links. However, they do not consider non-topological state variables assigned to the
nodes themselves. In our case of ownership networks, a natural choice is to use the
market capitalisation value of firms in thousand USD, vj , as a proxy for their sizes.
Hence vj will be utilised as the state variable in the subsequent analysis. In a first
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step, we address the question of how much wealth the shareholders own, i.e. the
value in their portfolios. As the percentage of ownership given by Wij is a measure
of the fraction of outstanding shares i holds in j , and the market capitalisation of j

is defined by the number of outstanding shares times the market price, the following
quantity reflects i’s portfolio value:

pi :=
kout
i∑

j=1

Wijvj . (7.8)

Extending this measure to incorporate the notions of control, we replace Wij in the
previous equation with the fraction of control Hij , defined in (7.6), yielding the
control value:

ci :=
kout
i∑

j=1

Hijvj . (7.9)

A high ci value is indicative of the possibility to control a portfolio with a big market
capitalisation value.

Ownership networks are prime examples of real-world networks, where all three
levels of complexity play a role. By incorporating all this information in their em-
pirical analysis, it is possible to discover a rich structure in their organisation and
unveil novel features. Moreover, the new network measures introduced above can
be applied to any directed and weighted network, where the nodes can be assigned
an intrinsic value.

7.3.2 Board of Directors

Another class of financial networks tracks the structure of the control of the compa-
nies by considering the people sitting on the board of directors. This is an example
of a bipartite graph, that is to say, a graph that can be divided in two nontrivial sub-
sets such that the edges connect one element of the first set with an element in the
second one. The first set of nodes is composed of the companies, while the other set
is composed of the people who sit in at least one board of directors. A link between
a person and a company exists if that person sits on the board of directors of that
company. As in all bipartite networks, it is possible to extract two graphs. In the
first case, the nodes are the companies and a link exists if two companies share at
least one common director (boards network). In the second case, the nodes are the
directors, and a link exists if two directors sit together on at least one board (direc-
tors network). The empirical analysis of real data (see [20] for US companies and
[7] for US and Italian companies) revealed that the networks display small world
properties, are assortative and clustered. Table 7.1 shows some summary statistics
from the empirical analysis of these networks. These empirical results strongly in-
dicate the presence of lobbies of directors sitting on the same boards. Moreover, the
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Table 7.1 The first three
columns report data for the
Boards (B) network in Italy in
1986 (B 86), in Italy in 2002
(B 02), and in USA in 1999
(B US). The last three
columns report the data for
the Directors (D) network in
the same cases (1986, 2002 in
Italy and USA in 1999)

B 86 B 02 B US D 86 D 02 D US

N 221 240 916 2,378 1,906 7,680

M 1,295 636 3,321 23,603 12,815 55,437

Nc/N 0.97 0.82 0.87 0.92 0.84 0.89

k/kc (%) 5.29 2.22 1.57 0.84 0.71 0.79

b/N 0.736 0.875 1.08 1.116 1.206 1.304

〈C〉 0.356 0.318 0.376 0.899 0.915 0.884

〈d〉 3.6 4.4 4.6 2.7 3.6 3.7

r 0.12 0.32 0.27 0.13 0.25 0.27

assortative character of the network indicates that directors that sit on many boards
(and are therefore very influential) tend to sit on the same boards (more than what
is expected from a random null model).

7.4 Transaction Networks: Interbank Networks and Bank–Firm
Networks

The most immediate application of networks to finance and economics is given
whenever we have a transaction between two agents. The latter are the vertices and
the transaction is the edge between them. In particular, many theoretical and em-
pirical studies have considered the networks where the nodes are the banks and a
link represents a possible (directed and weighted) relation between banks. For this
system, two types of networks have been considered, the interbank market and the
payment system. Boss et al. [10] were among the first to study the interbank mar-
ket with concepts and tools of modern network theory. They empirically studied
the complete Austrian interbank market composed of around 900 banks in the years
2000–2003. The interbank market is described as a network where the vertices given
by the banks are nodes and the claims and liabilities between them are described as
links. The interbank market is therefore a weighted and directed network. Following
a rule similar to that of food webs, the direction of the link goes from the bank hav-
ing a liability to the bank claiming the liability. The weight is the amount (in money)
of the liability. Authors investigated the community structure of this network by ap-
plying the Girvan–Newman algorithm based on link betweenness [44]. They found
that the sectoral organisation of the banking industry (in terms of saving banks, agri-
cultural banks, joint stock banks, etc.) is rediscovered by the community detection
algorithm with a 97% precision, showing that the network structure brings informa-
tion on the real sectoral organisation of the banking sector. The study of the topology
of the network shows that it can be modelled as a scale-free network. In fact, both
the in-degree and the out-degree probability density functions display a clear power-
law behaviour with a tail exponent equal to 1.7 and 3.1, respectively. The clustering



146 S. Battiston et al.

coefficient of the undirected graph is equal to 0.12 and this low value has been asso-
ciated to the community organisation of the network. On the other hand, the average
path length is 2.59, showing a clear small-world effect. The analysis of the interbank
market is important in the framework of the quantification of systemic risk [21], the
risk of collapse of an entire financial system. In fact, scale-free networks are typi-
cally robust with respect to the random breakdown of nodes and fragile with respect
to intentional attack against the hubs. A proper characterisation of the interbank net-
work topology is potentially useful in determining the criticality of the financial sys-
tem. Sorämaki et al. [74] have investigated the daily network of the Fedwire R Funds
Service, which is a gross settlement system operated by the Federal Reserve System
(USA). Today almost 10,000 participants initiate funds transfer through Fedwire for
the settlement of different operations, such as the trading of federal funds, securities
transactions, real estate transactions, etc. The daily value exchanged is close to $
3 trillion. The network describing the fund transfers in a day is clearly a directed
and weighted (either in terms of value or in terms of number of transfers) network.
There is typically a giant undirected connected component which accounts for al-
most all the nodes. Inside this component, authors studied the giant strongly con-
nected component, which comprises all the nodes that can reach each other through
a directed path. This component has typically 5,000 nodes (in the investigated year
2004) and contains roughly 80% of all the nodes in the giant undirected component.
The connectivity, i.e. the probability that two nodes share a link, is very low and
close to 0.3%, indicating that the network is extremely sparse. The reciprocity, i.e.
the fraction of links for which there is a link in the opposite direction, is 22%, even
if large links (either in terms of value or in term of volume) are typically reciprocal,
probably as a result of complementary business activity or the risk management of
bilateral exposure. Authors also studied the dynamics of the network and found that
during days of high activity in the system, the number of nodes, links, and connec-
tivity increases, while the reciprocity is not affected. The in-degree and out-degree
of the network is power law distributed with an exponent close to two, indicating
a scale-free behaviour. The network is disassortative. As in the Austrian interbank
market, the average path length is between two and three, suggesting a small-world
behaviour. However, differently from the previous case, the mean clustering coef-
ficient is quite large (0.53), even if the distribution of clustering coefficients across
nodes is very broad, and for one fifth of the nodes the clustering coefficient is equal
to zero. There is a nice scaling relation between the out-degree of a node and its
strength (defined as the total volume or value exchanged transferred by the node)
with an exponent 1.2–1.9. This means that more connected nodes transact a higher
volume or value than would be suggested by the degree. Finally, they consider as
an important case study the change in the payment network topology due to the
terrorist attack of September 11th, 2001, when some infrastructure of the system
was destroyed with a clear occurrence of a liquidity crisis. They found that the net-
work became smaller, less connected, and with a larger average path length than in
a typical trading day. Another type of interbank market recently investigated in the
framework of network theory is the Italian interbank money market [23, 52, 53].
In order to buffer liquidity shocks, the European Central Bank requires that on av-
erage 2% of all deposits and debts owned by banks are stored at national central
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banks. Given this constraint, banks can exchange excess reserves on the interbank
market with the objective to satisfy the reserve requirement and in order to minimise
the reserve implicit costs. Authors investigated the Italian electronic broker market
for interbank deposits e-MID in the period 1999–2002. They constructed a network
where the nodes are the banks. For every pair of banks i and j , there is an oriented
edge from i to j , if bank j borrows liquidity from bank i. The mean number of
banks (nodes) active in a day is 140 and the mean number of links is 200. As in the
previous bank networks, authors found that the in- and out-degree are described by
a distribution with a power law tail with an exponent between two and three. They
also found that the network is disassortative and that the clustering coefficient of
a node decreases with its degree as a power law. The various banks operating in a
market can be divided into different groups roughly related to their size, i.e. the vol-
ume of their transaction. Smaller banks make few operations and on average lend or
borrow money from larger banks. The latter ones have many connections with each
other, making many transactions, while the small banks do not. A visualisation of
the network in a typical day shows that the core of the structure is composed of the
big banks. There is also a tendency for small banks to be mostly lenders, while large
banks are more likely to be borrowers. All the above quantities can be reproduced
by means of a suitable model of network growth [14]. The idea is that the vertices
representing the banks are defined by means of an intrinsic character that could, for
example, be their size. Edges are then drawn with a probability proportional to the
sizes of the vertices involved. The community analysis of the network based on the
cross-correlation of the signed traded volume confirms the presence of two main
communities, one mainly composed by large banks and the other composed mainly
by small banks [23]. By looking at the network dynamics, the authors of this set of
studies found a clear pattern where the network degree increases and the strength
decreases close to the critical days when the reserves are computed. All the above
studies found that the banking system is highly heterogeneous with large banks bor-
rowing from a high number of small creditors. Iori et al. [51] showed in an artificial
market model that when banks are heterogeneous high connectivity increases the
risk of contagion and systemic failure.

7.4.1 Credit Networks

A different and interesting type of financial networks describes the complex credit
relation between firms and banks. The reasons for a credit relation between a bank
and a firm are the following. The bank supplies credit to the firm in anticipation of
interest margin, while the firm borrows money form the bank in order to financing
the growth of its business. A credit relation, thus, creates a strong dependence be-
tween a firm and a bank. The credit network between firms and banks is important
for the understanding and quantification of systemic risk of the economic and finan-
cial system [21]. In fact, the failure of a big firm may have a strong effect on the
balance sheet of a bank and the insolvency of a firm may lead many banks to fail
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or to change their credit policy, by increasing the interest rates or by reducing the
supply of loans. This, in turn, may lead other firms to failure, which creates more
financial distress among banks and so on, in a sort of domino effect affecting the
whole system. An example of such scenario happened in Japan during the 1990s.
A way of studying the mutual interdependency between banks and firms is through
the investigation of the credit network [22, 24, 35]. In an empirical study of the
Japan credit network [24, 35], roughly 200 banks and 2,700 publicly quoted firms
were considered. The credit network is a typical case of bipartite network where the
two types of nodes correspond to banks and firms and a weighted link exists between
bank i and firm j if, at the considered time, there is a credit relation between i and j .
The weight of the link is the amount of money firm j borrows from bank i. The av-
erage degree of firms is 8, while the average degree of banks is 120. Both the degree
distributions of firms and banks are fat tailed, possibly consistent with a scale-free
network, and the fitted tail exponent for the cumulative distribution is around 1 for
banks and 2.5 for firms. The weights in the network are highly heterogeneous, and
there is a scaling relation between the degree of a node and its strength (i.e. the total
amount of money borrowed or lent by the node), indicating that the average loan
is larger for a larger degree (typically, larger banks). A widely discussed topic in
the economics of credit is the existence of two models of credit. In Anglo-Saxon
countries, firms typical establish credit relationship with few banks, while in coun-
tries such as Japan, Germany, and Italy a firm borrows moneys from more banks.
The theory of optimal number of bank relationships is quite complicated because
different choices have different advantages and disadvantages. The question can be
investigated empirically by measuring the participation ratio of node i

Yi =
∑
j

wij

si
(7.10)

where wij is the weight of the link between i and j and si is the strength of node i.
In the case of full homogeneity, the participation ratio is the inverse of the degree of
node i. In a multiple bank scenario, the participation ratio is much higher, since one
bank dominates the credit of firm i. The analysis of the Japan dataset confirms that
large firms tend to have a participation ratio different from the inverse of the degree,
i.e. large firms tend to establish credit relations with many banks. From any bipartite
network, it is possible to extract two projected networks. In the bank network, two
banks are linked if they share at least one borrower, while in the firm network, two
firms are linked if they have at least one common lender. The weight of the links is
the number of common borrowers/lenders. The authors of [24] extracted the MST
from these projected networks. They found that the bank network is characterised
by large hubs, and the cluster structure of this network is largely explained by the
geographic region where the banks operate. In other words, banks in the same geo-
graphic region tend to lend money to the same firms, probably from the same region.
The analysis of the MST of the firms in the same economic sector shows that each
firm is connected to many others and that there are no communities. This is probably
due to the fact that lending is not sectoral. Moreover, in almost all the investigated
sectoral networks, a large hub is observed. Finally, in [35], a linear analysis of the
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same dataset was performed in order to measure a set of scores related to the finan-
cial fragility. It was found that these scores were statistically significant with respect
to a random network and that there were periods when the structure was stable or
unstable. Drastic changes were observed in the late 1980s when the bubble started
in Japan. Moreover, the set of regional banks had large values of the fragility score.

7.5 The World Trade Web

The world economy is a tightly interconnected system of mutually dependent coun-
tries, and one of the dominant channels mediating international interactions is trade.
When countries are represented as vertices, and their trade relations as connections,
the world trade system appears as an intricate network, known in the literature as
the International Trade Network or World Trade Web (WTW). The recent advances
in network theory have renewed the analysis of the trade system from a perspec-
tive that fully takes into account its global topology [31, 32, 37, 42, 43, 69–71].
Indeed, traditional macroeconomic approaches have extensively addressed the em-
pirical patterns of trade by considering the pairwise interactions involved locally
between countries, but have placed much less emphasis on the analysis of higher-
order properties obtained considering indirect interactions embedded in the whole
international network. On the other hand, the globalisation process of the economy
highlights the importance of understanding the large-scale organisation of the WTW
and its evolution.

In what follows, we present some of the recent research results obtained in the
analysis of the global trade network. The WTW has many possible network repre-
sentations. In particular, it can be either directed or undirected, and either weighted
(by taking into account the magnitude of trade flows) or unweighted. The properties
of the WTW as a weighted network (where trade volumes are explicitly taken into
account) are of great importance, as link intensities are extremely heterogeneous and
are found to change significantly the picture obtained in the binary case [31, 32, 69,
71]. On the other hand, if regarded as a binary network (thus ignoring the magnitude
of trade links), the WTW is found to be one of the few real networks whose topology
can be modelled in detail using simple ideas that have been developed recently [37,
42, 43]. This implies that, besides its importance for understanding the global eco-
nomic system, the WTW is particularly interesting for network theory. By contrast,
unfortunately no complete model of the weighted WTW has been proposed, at least
not reaching the same level of detail as its binary counterpart. At present, the only
available weighted models of trade are the so-called gravity models which aim at
predicting the observed magnitude of trade fluxes in terms of a few explanatory fac-
tors, but fail to explain their topology. So it appears that our current understanding
of the trade system requires a combination of both approaches, and that the defini-
tion of a complete and satisfactory model of the WTW is still an open problem. For
this reason, since here we are particularly interested in the data-driven problem of
modelling the international trade network, we briefly present gravity models first,
and then report in more detail various empirical properties and models of the WTW
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only at a purely topological level. For weighted analyses, the reader is referred to
the relevant literature [31, 32, 69, 71].

7.5.1 Gravity Models

The so-called ‘gravity models’, first introduced by Tinbergen [75] and then
rephrased in various extended or alternative forms, are the earliest econometric
models of trade. Their name originates from a loose analogy with Newton’s law of
gravitation, where the magnitude of the force attracting two objects carrying mass
is completely determined by the two masses involved and the distance separating
them. Similarly, gravity models assume that the volume of trade between any two
countries can be traced back to a suitable measure of the ‘mass’ of the two countries
(representing their intrinsic economic size) and to some ‘distance’ between them
(representing a combination of factors determining the overall resistance to trade).
The economic ‘mass’ of a country is customarily identified with its total Gross Do-
mestic Product (GDP in the following). Also, geographic distance is the main factor
expected to determine trade resistance. However, additional factors may be incor-
porated in the models, having either a positive or negative effect on the volume of
trade. In the simple case where one additional factor coexists with geographical dis-
tance as an explanator of trade, the gravity model predicts that the volume of trade
from country i to country j in a given year is

wij = β0w
β1
i w

β2
j d

β3
ij f

β4
ij (7.11)

where wi is the total GDP of country i in the year considered, dij is the geographic
distance between countries i and j , and fij is an additional factor either favouring
or suppressing trade between i and j . The various factors expected to determine wij

are controlled by the associated parameters {β0, . . . , β4}, which are global and do
not depend on the two countries involved. Usually, a Gaussian error term is added
to the above equation, allowing to employ standard statistical techniques to fit the
model to the empirical (nonzero) trade flows and obtain the corresponding values
of {β0, . . . , β4}. These analyses have been applied extensively on different datasets,
and the general result is that β1 and β2 are positive and of the same order (both close
to one), confirming the expectation that larger GDPs imply more trade. Similarly,
empirical analyses provide evidence for a negative value of β3, confirming a nega-
tive effect of geographic distance on trade. Depending on the nature of the additional
factor fij , the parameter β4 can be either positive or negative. Positive effects are
found to be associated to two countries being members of the same economic group,
having signed a trade agreement, or sharing geographic borders. By contrast, nega-
tive effects are found in presence of embargo, trade restrictions or other conditions
representing a trade friction.

Gravity models have been tested extensively on many case studies reporting trade
volumes, either at a global or regional level. In general, they make very good pre-
dictions of the magnitude of nonzero trade flows. However, they do not predict zero
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Fig. 7.4 Time evolution of
the connectance c in the
undirected WTW

volumes, which means that they always generate a complete weighted graph where
all pairs of countries exchange goods in both directions. As we now show, this is
in sharp contrast with what is empirically observed. Indeed, recent analyses of the
WTW have revealed that its topology is highly structured, and have thus highlighted
a previously unrecognised drawback of gravity models.

7.5.2 The Heterogeneous Topology of Trade Neighbourhoods

In what follows, we show some empirical properties of the WTW topology and
discuss a modelling framework that has been proposed to reproduce them. Data on
the WTW topology can be obtained from the dataset [46], where annual snapshots
of the network are available for all years from 1950 to 2000. We first report the
properties of the WTW as an undirected network, and address its directed structure
later on.

A key observation regards the heterogeneity of the number of trade partners (the
degree ki ) of world countries. If only the average degree k of the WTW is consid-
ered, or equivalently the connectance c ≡ k/(N − 1), then the WTW is found to
display an almost constant temporal behaviour [37] (see Fig. 7.4). However, this
regularity hides an intrinsic variability in the degrees. Indeed, it is found that the
degree ki of a country is positively correlated with both the total GDP and the per
capita GDP of that country [43, 70]. If the total GDP wi is considered, the relation
is particularly strong [43], as shown in Fig. 7.5 for both raw and logarithmically
binned data. For brevity, here and in what follows we only show the results ob-
tained for a particular snapshot (the year 1995). These results have been shown to
be robust in time through the entire period covered by the database [37]. The above
result means that, on average, higher-income countries have a larger number of trade
partners. And, since the total GDP is broadly distributed across world countries, this
also means that one expects the number of trade partners to be broadly distributed as
well. Similarly, one expects many other topological quantities, especially those in-
volving the degree explicitly, to be strongly dependent on the GDP. As we show later
on, empirical analyses have shown that this is exactly the case. These considerations
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Fig. 7.5 Degree ki as a
function of the rescaled GDP
xi ≡ wi/w in the undirected
version of the WTW (year
1995): (isolated points) raw
data; (joined points)
logarithmically binned data

immediately imply that gravity models, which trivially produce a complete network
of trade irrespective of the GDP values, are bad models of the WTW topology. This
motivates the introduction of models that explicitly address the heterogeneity of
trade neighbourhoods, i.e. who trades with whom in the world. We first describe
one such class of models that has been proposed, before comparing its predictions
to real trade data.

7.5.3 The Fitness Network Model

In the popular random graph model by Erdős and Rényi, all pairs of vertices are
independently connected with probability p with an undirected edge. This is known
to generate an ensemble of graphs where all vertices are statistically equivalent. For
instance, the degree distribution is sharply peaked about the expected value 〈k〉 =
p(N − 1), where N is the number of vertices. More recently, a generalised class
of random graphs, known as the hidden variable or fitness model, has been defined
[14]. This model can incorporate a high degree of heterogeneity in the statistical
properties of vertices. To this end, an arbitrary distribution ρ(x) is specified, from
which a value xi is assigned to each vertex i. This value, interpreted as a fitness
affecting the connectivity patterns of vertices differentially, is treated as a hidden
variable responsible for the topological properties of the network. In particular, a
link between any two vertices i and j is drawn with probability pij = p(xi, xj ).
Thus p(xi, xj ) and ρ(x) determine the topology of the network in a way that is
simple enough to be controlled analytically, and yet allows very complex structural
properties to be generated [14].

When applied to the WTW, the fitness model is a minimal model that allows to
retain the basic ingredient of gravity models, i.e. that the GDP is the main factor
determining trade, to the different purpose of modelling the topology, rather than
the magnitude, of trade flows. Indeed, as we discussed, the degree of a vertex in
the WTW is empirically found to be dependent on the GDP of the corresponding
country. This finding can be exploited by defining a fitness model where the hidden
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variable xi is taken to be a function of the total GDP of country i, that we denoted as
wi [43]. This means xi = f (wi), and implies that the distribution ρ(x) is no longer
arbitrary, but empirically accessible. Still, one needs to specify the connection prob-
ability p(xi, xj ). The simplest nontrivial choice is one where xi controls the degree
ki , but not other properties directly. This does not mean that other topological prop-
erties (besides ki ) will not depend on xi , but rather that they will depend on xi

as a result of their being dependent on ki , which is constrained directly by xi . In
more formal words, this scenario in one where the network generated by p(xi, xj )

has a specified degree sequence {ki} (determined by {xi}), and is maximally ran-
dom otherwise. It is known [67] that this scenario corresponds to the particular
choice

p(xi, xj ) = δxixj

1 + δxixj

(7.12)

where δ is a global parameter controlling the expected total number of links, and
the {xi} distribute these links among vertices heterogeneously. The above consider-
ations result in a model for each yearly snapshot of the WTW, where two countries
are connected with probability given by (7.12), where xi = f (wi) [43]. By as-
suming the simplest form of dependence, i.e. a linear relation, and reabsorbing the
coefficient of proportionality in δ, then for a given year one can define xi as an
adimensional rescaled variable representing the GDP relative to the average GDP in
the same year:

xi ≡ wi∑N
j=1 wj/N

(7.13)

(note that the number of independent world countries N depends on the particular
year considered). This specifies the model completely, and leaves δ as the only free
parameter to be tuned in each snapshot of the network. By applying the maximum
likelihood principle to the model [39], one can show that the optimal choice is the
value δ∗ such that

L =
∑

i

∑
j<i

δ∗xixj

1 + δ∗xixj

(7.14)

where L is the observed number of links in that particular snapshot of the net-
work.

After this simple parameter choice is made, one can check the predictions of the
model against real data [43]. In particular, one can obtain the explicit dependence
of the degrees on the GDP predicted by the model. The average degree of a vertex
having fitness xi is simply

〈ki〉 =
∑
j 
=i

pij (7.15)

which is an increasing function of xi , since pij is an increasing function of both xi

and xj . The resulting predicted curve [43] is shown in Fig. 7.6, where the empir-
ical (logarithmically binned) trend shown previously in Fig. 7.5 is reported again.
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Fig. 7.6 Degree ki as a
function of the rescaled GDP
xi ≡ wi/w in the undirected
version of the WTW (year
1995): (points) real data
(logarithmically binned);
(solid line) theoretical
prediction of the fitness
model

Fig. 7.7 Degree distribution
in the undirected WTW (year
1995): (points) real data;
(solid line) theoretical
prediction of the fitness
model

The agreement between empirical data and the model is very good. One can thus
proceed in testing the prediction of the model against other empirical topological
properties. As mentioned, the degree distribution of the WTW is found to be highly
heterogeneous [43, 70]. We now describe it in more detail and show it in Fig. 7.7.
One can see that there is indeed a huge variability in the number of trade partners of
world countries. However, unlike other real-world networks, this variability is not
captured by a scale-free distribution, as one observes an accumulation of degrees
close to the maximum possible value N − 1, which results in a strong cut-off in the
right tail of the distribution [43]. The reason for this cut-off is the saturation effect
shown in Fig. 7.6, i.e. the convergence of ki to values close to N − 1 when xi in-
creases. This behaviour is well reproduced by the model, and indeed the predicted
degree distribution (which is shown in Fig. 7.7 superimposed to the empirical one)
is in very good accordance with the data.

Additional properties of the WTW include higher-order patterns. An important
one is the correlation between the average degree knn

i of the neighbours of vertex
i and the degree ki . This property is shown in Fig. 7.8. The observed decreasing
trend means that, on average, highly connected countries trade with poorly con-
nected countries, and that trade between countries of the same level of connectivity
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Fig. 7.8 Average nearest
neighbour degree knn

i versus
degree ki in the undirected
WTW (year 1995): (points)
real data; (solid line)
theoretical prediction of the
fitness model

Fig. 7.9 Clustering
coefficient ci versus degree ki

in the undirected WTW (year
1995): (points) real data;
(solid line) theoretical
prediction of the fitness
model

is suppressed. One can test the model prediction by calculating the expected average
nearest neighbour degree as

〈
knn
i

〉 =
∑

j 
=i

∑
k 
=j pijpjk∑

j 
=i pij

. (7.16)

As Fig. 7.8 shows, the resulting curve represents again a very good prediction [43].
Finally, we report the behaviour of the clustering coefficient ci , defined as the

fraction of realised triangles originating at vertex i. This is shown in Fig. 7.9. Again,
one finds a decreasing trend signalling that highly connected countries have on av-
erage poorly interconnected neighbours, while poorly connected countries have on
average tightly interconnected neighbours. The model prediction can in this case be
derived using the formula

〈ci〉 =
∑

j 
=i

∑
k 
=j,i pijpjkpki∑

j 
=i

∑
k 
=j,i pijpki

(7.17)

which, as shown in Fig. 7.9, is once again found to be in remarkable agreement with
real data [43].

The above results suggest that the model reproduces the basic properties of the
WTW, and traces them back to the heterogeneity in the GDPs of world countries.
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Moreover, the simple assumptions at the basis of the model offer an interpretation
for the observed properties of the WTW topology. In particular, the accordance be-
tween real data and the particular form of the model suggest that, once the het-
erogeneity at the level of individual countries is taken into account and assumed
to directly affect the degrees {ki} alone, then most of the other network properties
are indirectly and automatically explained [43]. An independent finding confirming
this result comes from studies showing that the observed topology of the WTW is
not significantly different from randomised variants obtained by keeping the orig-
inal degree sequence fixed. Yet, the behaviour of higher-order properties such as
knn
i and ci , even if directly explained by that of the degrees, could not be simply

predicted a priori without a quantitative model. This adds value to the modelling
strategy presented here.

7.5.4 The Maximum Likelihood Principle

The results of the previous section are supported and refined by an inverse approach
to the extraction of information from the WTW [39]. On a general ground, rather
than assuming an empirical quantity as a candidate for the hidden variables {xi} and
testing whether the networks generated with this choice are indeed similar to the
real-world network considered, one can reverse the strategy and extract the values of
the hidden variables {xi} directly from the real network. Then one can compare these
unique values with candidate empirical quantities, to check whether a relation really
exists. This comparison would automatically provide the form of the dependence
between {xi} and the empirical quantities.

A way to realise this approach is provided by the Maximum Likelihood (ML)
principle, a procedure commonly used in statistics whose use can be easily extended
to networks [39]. Rather than requiring the values of model parameters as the input
and generating an ensemble of possible networks as the output, the ML principle re-
quires one particular real-world network as the input and provides the corresponding
optimal parameter values {x∗

i } as the output. Optimal stands for the parameter values
that maximise the likelihood (or equivalently its logarithm) to obtain the particular
real-world network under the model considered.

In the hidden variable model, the empirical input quantities are the rescaled GDP
values {xi}, which are fixed by observation, while the output values are the expected
degrees {〈ki〉}. These expected values, and any other expected topological property,
can then be compared with (but not fitted to) the empirical values {ki}. By contrast,
in the maximum likelihood approach the empirical input quantities are the degrees
{ki}, while the {x∗

i } are output values depending uniquely on the observed degree se-
quence. In this case too, these output values can be compared with (but not fitted to)
the empirical rescaled GDPs {xi} [39]. This comparison is shown in Fig. 7.10 where
for consistency the parameter δ∗ used in the hidden variable model and the same pa-
rameter used in the maximum likelihood approach have been both reabsorbed in the
variables {xi} by redefining the latter as xi → xi

√
δ. One finds that the fitness values

determined using only topological information are indeed proportional to the empir-
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Fig. 7.10 Scatter plot of the
likelihood-maximising values
{x∗

i } versus the rescaled GDP
values {xi} (isolated points)
and linear fit (solid line) for
the undirected WTW in the
year 2000

ical GDPs of world countries, and therefore that the maximum likelihood approach
successfully identifies the GDP as the hidden variable shaping the topology of the
WTW. Note that the two sets of values are, in principle, completely independent.

7.5.5 The WTW as a Directed Network

We now consider the topological properties of the WTW as a directed network.
In any directed graph, the following relation exists between the entries {aij } of its
adjacency matrix and the entries {bij } of the adjacency matrix of the same graph if
regarded as undirected:

bij = aij + aji − aij aji . (7.18)

Consequently, a relation is implied between the directed in- and out-degrees (kin
i =∑

j 
=i aji and kout
i = ∑

j 
=i aij ) and the undirected degrees ki observed on the two

different representations of the same network:

ki = kin
i + kout

i − k↔
i (7.19)

where k↔
i = ∑

j 
=i aij aji is the number of reciprocated connections incident at ver-
tex i (the number of neighbours connected to i by incoming and outgoing links
simultaneously), i.e. the reciprocated degree of vertex i.

The above relations indicate that, in principle, many different directed graphs
can have the same undirected projection, making the latter not completely represen-
tative of an intrinsically directed network. However, the WTW has been found to
display a peculiar structure that allows recovering significant information about its
directed properties from the knowledge of the undirected ones [36, 37]. In partic-
ular, this is possible due to two empirically observed patterns. The first one is that
on average kin

i ≈ kout
i , i.e. a country generally has similar numbers of exporters and

importers. The second one, shown in Fig. 7.11, is that the reciprocated degree k↔
i is

proportional to the total degree kT
i ≡ kin

i + kout
i

k↔
i ≈ r

2
kT
i (7.20)
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Fig. 7.11 Reciprocated
degree k↔

i as a function of
the total degree kT

i in various
directed snapshots of the
WTW (from bottom to top:
1975, 1980, 1985, 1990,
1995, 2000)

where r is the reciprocity defined as the ratio between the number L↔ of recipro-
cated links and the number L of directed links,

r ≡ L↔

L
=

∑
i

∑
j 
=i aij aji∑

i

∑
j 
=i aij

. (7.21)

The latter relation means that the number of simultaneous exporters and importers
of a country is an approximately constant fraction of the total number of importers
and exporters of the same country.

Combining the two observations mentioned above, it is possible to simply relate
many directed properties of the WTW to its undirected ones [37]. For instance, the
directed degrees can be expressed in terms of the undirected ones as

kin
i ≈ kout

i ≈ kT
i

2
≈ ki

2 − r
. (7.22)

Similarly, the number L of directed links can be related to the number Lu of undi-
rected links as follows:

L =
∑

i

kin
i =

∑
i

kout
i ≈

∑
i ki

2 − r
= 2Lu

2 − r
. (7.23)

Thus, the knowledge of the reciprocity r alone allows in many cases recovering the
directed structure of the WTW from the undirected one. Note that this is a peculiar
property of the WTW, as for a generic network no clear relation exists between the
two representations, and a substantial loss of information may be associated with
the undirected projection. Importantly, the above results hold for every analysed
snaphot of the WTW [36] (see, for instance, Fig. 7.11). Therefore, the directedness
of the network is easily monitored in terms of the time evolution of the reciprocity
r(t) [37]. The latter is shown in Fig. 7.12 together with a different measure of the
reciprocity [36], i.e. the quantity

ρ ≡ r − c

1 − c
. (7.24)

The index ρ is an alternative and more refined definition that allows consistent com-
parisons of the reciprocity across networks of different sizes and connectances [36].
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Fig. 7.12 Evolution of the
reciprocity indices r (top
curve) and ρ (bottom curve)
in the directed WTW

Indeed, since the null value of r expected in the uncorrelated case (where there is no
tendency towards either favouring or avoiding the formation of reciprocated links)
is c itself, then r alone cannot be used to compare networks with different values
of c. Thus, even if c displays small variations in time (as we showed in Fig. 7.4),
these variations does not allow to assess the evolution of the reciprocity of the WTW
on the basis of r alone. As Fig. 7.12 shows, both r and ρ display small fluctuations
up to the early 1980s, and then increase rather steadily. However, the increase of
ρ is steeper than that of r , signalling that (once density effects are taken into ac-
count) a rapid reciprocation process occurred in the WTW starting from the 1980s.
It is instructive to combine this result with the approximately constant trend of the
connectance in the undirected version of the WTW. As at the undirected level, there
is no increase of link density, the rapid increase of reciprocity signals many new
directed links being placed between countries that had already been trading in the
opposite direction, rather than new pairs of reciprocal links being placed between
previously non-interacting countries. In other words, many pairs of countries that
had previously been trading only in a single direction have been establishing also
a reverse trade channel, and this effect dominates on the formation of new bidirec-
tional relationships between previously non-trading countries.

Since the directedness of the WTW can be significantly recovered from its undi-
rected description in terms of the reciprocity parameter, and since the undirected
network is excellently reproduced by the fitness model, a natural question is whether
the model can be simply extended in order to reproduce the directed structure of the
WTW. In the simplest case, the fitness model can be generalised to the directed case
by introducing two fitness values {xi, yi}, separately controlling the out-degree and
the in-degree of every vertex i. This allows to draw a directed link from i to j with
an asymmetric probability pij = p(xi, yj ) 
= pji . However, in this simple extension
the presence of a link from i to j is statistically independent from the presence of
the reciprocal link from j to i. This implies that, in contrast with what empirically
observed, the reciprocity coefficient ρ is trivially zero, or in other words that there
is no interesting reciprocity structure. Non-trivial reciprocity can only be generated
by a more refined extension of the fitness model where mutual links are statistically
dependent on each other. A way to do this is by drawing, for each single vertex pair
(i, j), a single link from i to j , a single link from j to i, two reciprocal links, or
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no link at all with four different probabilities (that must sum up to one) [36, 38]. In
this generalised model, each vertex is now assigned three fitness values {xi, yi,wi},
separately controlling its non-reciprocated outgoing links, non-reciprocated incom-
ing links, and reciprocated links going both ways, respectively [38]. When applied
to the directed WTW, this model turns out to reproduce all the properties discussed
above. Notably, the model preserves a high degree of simplicity, as the three values
{xi, yi,wi} are all again related to the GDP alone.

These results highlight once again that the GDP is the main factor underlying
the unweighted topology of the WTW, and that a satisfactory and detailed model
of the network can be defined in terms of the empirical GDP values. However, as
we mentioned, when weights are explicitly considered a range of new possibilities
emerge, as relations that are indistinguishable at a topological level may be strongly
heterogeneous at the weighted level. As we discussed, while nonzero weights are
well reproduced by gravity models of trade, there is currently no model that allows
to simultaneously capture the topology and the weighted architecture of the real
WTW. This implies that one important open problem to address in the future is
the definition of a unified framework where network models and gravity models
are reconciled. This is likely to involve joint efforts from the different scientific
communities of trade economists and network theorists.
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