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Modeling Evolving Innovation Networks
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8.1 Introduction

8.1.1 The Importance of Innovation Networks

Economists widely agree on technological change and innovation being the main
components of economic growth (Aghion and Howitt, 1998; Tirole, 1988). In the
absence of ongoing technological improvements, economic growth can hardly be
maintained (Barro and Sala-i Martin, 2004). The close link between innovation and
economic performance has become generally accepted. Following this insight, in
recent years of economic growth, OECD countries have fostered investments in
science, technology, and innovation (OECD, 2006).

Moreover, technologies are becoming increasingly complex. This increasing
complexity of technologies can make an agent’s “in-house” innovative effort insuf-
ficient to compete in an R&D intensive economy. Thus, agents have to become more
specialized on specific domains of a technology and they tend to rely on knowledge
transfers from other agents, which are specialized in different domains, in order
to combine complementary domains of knowledge for production (“recombinant
growth” (Weitzman, 1998)).

When one agent benefits from knowledge created elsewhere we speak of knowl-
edge spillovers. Knowledge spillovers define “any original, valuable knowledge
generated somewhere that becomes accessible to external agents . . . other than the
originator”1 (Foray, 2004, p. 95).

The knowledge-based economy is developing towards a state in which the costs
for acquiring, reproducing, and transmitting knowledge are constantly decreasing,
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spatial and geographical limitations on knowledge exchange are becoming less
important, and attitudes change towards more open behavior of sharing knowledge
instead of hiding it from others. In this state, knowledge externalities will play an
increasingly important role.

When agents are using knowledge that is created elsewhere, they must have
access to other agents across a network whose links represent the exchange or
transfer of knowledge between agents. The importance of networks in innovative
economies has been widely recognized, e.g., it has been observed that “the develop-
ment of knowledge within industries is strongly influenced by the network structure
of relations among agents” (Antonelli, 1996, p. 1). Subsequently, an ample body of
empirical research has documented the steady growth of R&D partnerships among
firms (Hagedoorn et al., 2006).

8.1.2 Markets for Knowledge Exchange

The exchange of knowledge is not unproblematic. Markets for knowledge exchange
can exhibit serious market failures (Arora et al., 2004; Gerosky, 1995), which make
it difficult for innovators to realize a reasonable return from trading the results of
their R&D activities (the problem of appropriability (Gerosky, 1995)). This is due
to the public good character of knowledge, which makes it different from products
or services. Knowledge is non-rival, meaning its use by one agent does not diminish
its usability by another agent, and sometimes (when knowledge spillovers cannot be
avoided) non-excludable, meaning that the creator of new knowledge cannot prevent
non-payers from using it. The problems associated with trading of knowledge can
prevent agents from exchanging knowledge at all.

There are three generic reasons for failures of markets for technology (Arora
et al., 2004; Arrow, 1962; Gerosky, 1995): (1) economies of scale/scope, (2)
uncertainty and (3) externalities.

(1) R&D projects often require huge initial investments and they can exhibit
economies of scale since the cost for useful technological information per unit
of output declines as the level of output increases (Wilson, 1975). Besides, Nel-
son (1959) has shown that economies of scope can apply to innovative agents.
The broader an agents’ “technological base,” the more likely it is that any out-
come of its R&D activities will be useful for her. The result is that markets for
knowledge exchange are often dominated by monopolies.

(2) Almost all economic investments bear a risk of how the market will respond to
the new product (commercial success). Innovators face additional risks. First,
their investment into R&D does not necessarily lead to a new technology. Sec-
ond, if such a new technology is discovered, it has to be put into practice in a
new and better product than the already existing ones. This inherent uncertainty
of R&D projects often causes agents to invest “too little.”

(3) Externalities are important when the action of one agent influences the profits
of another agent without compensation through the market. Public goods are a
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typical example of creating externalities. Knowledge is a public good and the
returns innovators can realize often are far below their investments into R&D.
This can seriously diminish an agent’s incentive to do R&D.

In order to overcome the above mentioned problems associated with the returns
on investment into R&D, appropriate incentive mechanisms have to be created that
encourage agents to invest into R&D. In general, Von Hippel and Von Krogh (2003)
suggest three basic models of encouraging agents to invest into R&D:

(1) The private investment model assumes that innovation is undertaken by private
agents investing their resources to create an innovation. Society then provides
agents with limited rights to exclusively use the results of their innovation
through patents or other intellectual property rights (by creating a temporarily
monopoly).2

(2) The so-called collective action model (Allen, 1983) assumes that agents are
creating knowledge as a public good. Knowledge is made public and uncon-
ditionally supplied to a public pool accessible to everybody. The problem is
that potential beneficiaries could wait until others provide the public good and
thereby could free-ride. One solution to this problem is to provide contributors
(in this case innovators) with some form of subsidy. Scientific research is such
an example where reputation-based rewards are granted to scientists for their
good performance.

(3) In the private-collective innovation model participants use their private resources
in creating new knowledge and then make it publicly available. This is typ-
ically observed in open-source projects. There are several incentives (Lerner
and Tirole, 2002; Von Hippel and Von Krogh, 2003) for agents to participants
in open-source projects. These range from elevated reputations, the desire of
building a community to the expectation of reciprocity from the community
members for their efforts.

The collective action approach (2) gives a possible explanation for the willing-
ness of agents to share knowledge if there are no costs associated with it. One can
think of a pool of technologies that is accessible to everybody (“broadcasting” of
technologies) (Allen, 1983). This can be the case where agents are non-rivals and
shared information may have no competitive cost. Additionally, knowledge must
be easily understandable and transferable. This assumes that knowledge is highly
codified3 such that the transfer of knowledge from one agent to the other is cost-
less. But, if these assumptions do not hold, the costs for transferring knowledge can

2 For a more detailed treatment of this issue we recommend Scotchmer (2004).
3 The opposite case of codified knowledge is tacit knowledge. “Tacit knowledge is difficult to
make explicit for transfer and reproduction. The exchange, diffusion, and learning of tacit knowl-
edge require those who have it to take deliberate action to share it. This is difficult and costly to
implement . . . Knowledge can, however, be codified. It can be expressed in a particular language
and recorded on a particular medium. As such, it is detached from the individual. When knowledge
is codified, it becomes easily transferable” (Foray, 2004, p. 73).
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often be considerable, and agents become more selective about whom to share their
knowledge with. We study this situation in the next sections.

8.1.3 Economies as Evolving Networks

As we have already outlined above, modern economies are becoming increasingly
networked, and this also affects the innovation process where information and
knowledge are exchanged by interactions between agents (Gallegati and Kirman,
1999; Kirman, 1997). In the agent-based view, the aggregate behavior of the econ-
omy (macro-economics) cannot be investigated in terms of the behavior of isolated
individuals. Not only there are different ways in which firms interact, learning over
time, based on their previous experience; also interactions between them take place
within a network and not in a all-to-all fashion.

The standard neoclassical model4 of the economy assumes that anonymous and
autonomous individuals take decisions independently and interact only through
the price system, which they cannot influence at all. However, competition easily
becomes imperfect because, if agents have only a minimal market power, they will
anticipate the consequences of their actions and anticipate the actions of others.

Game theorists have tried to integrate the idea of strategically interacting agents
into a neoclassical5 framework. But still they leave two questions unanswered.
First, it is assumed that the behavior is fully optimizing. This leads to agents with
extremely sophisticated information processing capabilities. Such ability of pass-
ing these enormous amounts of information in short times cannot be found in any
realistic setting of human interaction. Advances in weakening that assumption are
referred to as “boundedly rationality” (Gigerenzer and Selten, 2002). Second, the
problem of coordination of activities is not addressed in the standard equilibrium
model of the economy. Instead it is assumed that every agent can interact and trade
with every other agent, which becomes quite unrealistic for large systems.

One has to specify the framework within the individual agents take price deci-
sions, and thus limit the environment within which they operate and reason. An obvi-
ous way is to view the economy as a network in which agents interact only with their
neighbors. In the case of technological innovation, neighbors might be similar firms
within the same industry, but these firms will then be linked either through customers
or suppliers with firms in other industries. Through these connections innovations

4 A standard neoclassical model includes the following assumptions (Gabszewicz, 2000): (1)
perfect competition, (2) perfect information, (3) rational behavior, (4) all prices are flexible (all
markets are in equilibrium). The resulting market equilibrium (allocation of goods) is then efficient.
See Hausman (2003) for a discussion of these assumptions.
5 The individual decision making process is represented as maximizing a utility function. A utility
function is a way of assigning a number to every possible choice such that more-preferred choices
have a higher number than less-preferred ones (Varian, 1996). The gradients of the utility function
are imagined to be like forces driving people to trade, and from which economic equilibria emerge
as a kind of force balance (Farmer et al., 2005).
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will diffuse through the network. The rate and extent of this diffusion then depends
on the structure and connectivity of the network. The evolution of the network itself
should be made endogenous where the evolution of the link structure is dependent
on the agents’ experience from using the links available to them. In this framework
the individuals learn and adapt their behavior and this in turns leads to an evolution
of the network structure. The economy then becomes a complex evolving network.

8.1.4 Complex Networks

Although no precise mathematical definition exists for a complex network, it is
worth to elaborate the notion associated with it. In general, a network is a set of
items some of which are linked together by pairwise relationships. The structure
of the relationships can be represented mathematically as a graph in which nodes
are connected by links (possibly with varying strength). However, a network is usu-
ally also associated with some dynamic process on the nodes which in turn affects
the structure of the relationships to other nodes. A wide variety of systems can
be described as a network, ranging from cells (a set of chemicals connected by
chemical reactions), to the Internet (a set of routers linked by physical informa-
tion channels). It is clear that the structure of the relationships co-evolves with the
function of the items involved.

As a first step, a network can be described simply in terms of its associated
graph.6 There are two extreme cases of relatively simple graphs: regular lattices on
one side and random graphs7 on the other side. During the last century, graph theory
and statistical physics have developed a body of theories and tools to describe the
behavior of systems represented by lattices and random graphs. However, it turns
out that, at least for physical scales larger than biomolecules, most systems are not
structured as lattices or as random graphs. Moreover, such a structure is not the result
of a design, but it emerges from self-organization. In some cases self-organization
results from the attempt to optimize a global function. In other cases, as it is typical
in economics, it results from nodes locally trying to optimize their goals, e.g., an
individual utility function.

Large networks are collectively designated as complex networks if their structure
(1) is coupled to the functionality, (2) emerges from self-organization, and (3) devi-
ates from trivial graphs. This definition includes many large systems of enormous
technological, intellectual, social, and economical impact (Frenken, 2006).

6 In general, a graph represents pairwise relations between objects from a certain collection. A
graph then consists of a collection of nodes and a collection of links that connect pairs of nodes.
7 The classical Erdös-Reny random graph is defined by the following rules (Bollobas, 1985):

(1) The total number of nodes is fixed.

(2) Randomly chosen pairs of nodes are connected by links with probability p.

The construction procedure of such a graph may be thought of as the subsequent addition of new
links between nodes chosen at random, while the total number of nodes is fixed.
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8.1.5 The Statistical Physics Approach

As we will discuss later, many of the theoretical tools developed in economics and
specifically in game theory to characterize the stability of small networks of firms
cannot be used for large networks. Asking which is the optimal set of connections
that a firm should establish with other firms has little meaning in a large network if
strategic interaction is taken into account (with more than say, 100 nodes it is simply
not feasible to compute). On the other hand, it makes sense to ask what are connec-
tivity properties of the nodes a firm should try to target in order to improve its utility
with a certain probability. It is then necessary to turn towards a statistical description
of these systems, where one is no longer interested in individual quantities but only
in averaged quantities.

There exists an arsenal of such tools developed within statistical physics in the
last century that allow to predict the macroscopic behavior of a system from the
local properties of its constituents (Durlauf, 1999; Amaral et al., 1999). Such tools
work very well for systems of identical particles embedded in regular or random
network structures in which interactions depend on physical distance. Both a regular
and a random structure have a lot of symmetries, which one can exploit to sim-
plify the description of the system. However, in complex networks many of those
symmetries are broken: individuals and interactions are heterogeneous. Moreover
the physical distance is often irrelevant (think for instance of knowledge exchange
via the Internet). Therefore, a satisfactory description of such systems represents a
major challenge for statistical physics (Amaral et al., 2001).

In the last few years, we have thus witnessed an increasing interest and effort
within the field of statistical physics in studying complex networks that traditionally
were object of investigation by other disciplines, ranging from biology to com-
puter science, linguistics, politics, anthropology, and many others. One of the major
contributions of statistical physics to the field of complex networks has been to
demonstrate that several dynamic processes taking place on networks that devi-
ate from random graphs, exhibit a behavior dramatically different from the ones
observed on random graphs.

An example for all is the case of virus spreading: it has been shown that while
for random networks a local infection spreads to the whole network only if the
spreading rate is larger than a critical value, for scale-free networks8 any spreading
rate leads to the infection of the whole network. Now, technological as well as social
networks are much better described as scale-free graphs than as random graphs.
Therefore all vaccination strategies for both computer and human viruses, which
have been so far designed based on the assumption that such networks were random
graphs, need to be revised. This highly unexpected result goes against volumes pre-
viously written on this topic and is due to the presence of a few nodes with very

8 A scale-free network is characterized by a degree distribution which follows a power-law, f (d) =
αd�. The degree distribution gives the number of agents with a certain number, d, of in- or outgoing
links (in- or out-degree), see the next section for a definition of degree of a node.
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large connectivity. In this case, the rare events (infection of highly connected nodes)
and not the most frequent ones matter.

Explaining the macroscopic behavior of a system in terms of the properties of
the constituents has been a major success of the physicist’s reductionist approach.
But, while in physical systems the forces acting on single constituents can be
measured precisely, this is not the case in a socio-economic system where, more-
over, each agent is endowed with high internal complexity. Today, the physicist’s
approach to socio-economic systems differs from the nineteenth century positivist
approach in so far as it does not aim at predicting, for instance, the behavior of
individual agents. Instead, taking into account the major driving forces in the inter-
actions among agents at the local level we try to infer, at a system level, some
general trends or behavior that can be confirmed looking at the data. This is also
very different from taking aggregate quantities and infer a macroscopic behavior
from a “representative” agent9 as it is done in several approaches in mainstream
economics.

8.1.6 Dynamics Versus Evolution in a Network

After discussing the notion of a complex network which has been strongly influ-
enced by physics, we now try to classify different complex networks.

The nodes in an economic network are associated with a state variable, repre-
senting the agents’ wealth, a firm’s output or, in the case of innovation networks,
knowledge. There is an important difference between the evolution of the network
and the dynamics taking place on the state variables. In the first, nodes or links
are added to/removed from the network by a specific mechanism and in the latter,
the state variables are changed as a result of the interactions among connected nodes
(see also Gross and Blasius, 2007 for a review). Consequently, there are four aspects
that can be investigated in complex economic networks (Battiston, 2003).

1. Statistical characterization of the static network topology without dynamics of
state variables,

2. network evolution without dynamics of the state variables,
3. dynamics of state variables in a static network and
4. dynamics of state variables and evolution of the network at the same time.

This can be incorporated in the following Table 8.1.

9 The concept of the representative agent assumes an economy which consists of a sufficiently
homogeneous population of agents. Because all the agents are equivalent, the aggregate quantities
of the system can be calculated by multiplying the average agent, or the representative agent, by the
number of agents (the system size). For example, the total production of an economy is obtained by
summing up the production levels of the individual firms that constitute the economy. To determine
the behavior of the system, it is therefore sufficient to know the characteristics of the representative
agent.
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Table 8.1 Overview of the different ways in which a network and the state variables of the nodes
can be related

Case State variables Network

1. Static Static
2. Dynamic Static
3. Static Dynamic
4. Dynamic Dynamic

In socio-economic systems as well as in biological systems, dynamics and evolu-
tion are often coupled, but do not necessarily have the same time scale. In Sect. 8.3.9,
we will show how the coupling of fast knowledge growth (dynamics) and slow net-
work evolution can lead to the emergence of self-sustaining cycles in a network of
knowledge sharing (cooperating) agents.

8.1.7 Outline of This Chapter

In this chapter, we focus on (i) the emergence and (ii) the performance of differ-
ent structures in an evolving network. The different scenarios we develop shall be
applied to firms exchanging knowledge in a competitive, R&D intensive economy.
In the existing literature reviewed in the following section, there are two different
lines of research addressing these problems: (i) Models of network formation were
developed based on individual utility functions, e.g., by Jackson (2003), in which
simple architectures emerge in the equilibrium. (ii) In another group of models, e.g.,
Padgett et al. (2003), firms have specific skills and take actions based on goals or
learning, and innovation is associated with the emergence of self-sustaining cycles
of knowledge production. Although both lines of work address the problem of net-
work emergence and performance, they differ significantly in terms of methods and
results. We try to bridge them by introducing a novel model of evolving innovation
networks that combines the topological evolution of the network with dynamics
associated with the network nodes.10

We start our approach by giving a short introduction to graph theory in Sect. 8.2.1.
Here we restrict ourselves only to the most important terms and definitions that are
necessary in the following sections.11

We then proceed by giving an overview of the existing literature on economic
networks. In the first part of our literature review, we explore some basic models
of innovation networks. The selection of these models is by no means unique nor
exhaustive, but points to important contributions to the growing literature on eco-
nomic and innovation networks.12 Similar to our own approach, these models make
considerably simple assumptions and thus allow for analytical insights. This holds

10 The approach of combining a dynamics of the network with a dynamics in the nodes is discussed
in Gross and Blasius (2007).
11 The reader interested in a good introduction in graph theory can consult West (2001).
12 For an excellent introduction, see Jackson (2008), Vega-Redondo (2007), and Goyal (2007).
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in particular for the connections model in Sect. 8.2.2. The model in Sect. 8.2.3
can be considered as an extension of the basic connections model where “small-
world” networks emerge. In the subsequent Sect. 8.2.4, we discuss a model that
takes heterogeneous knowledge into account, as a further extension. In the sec-
ond part of the literature review, we briefly sketch models in which we observe
cyclic network topologies. We show that in certain cases the stability of a network
and its performance depends critically on its cyclic structure. The critical role of
cycles in a networked economy has already been identified by Rosenblatt (1957)
and many succeeding authors, e.g., Bala and Goyal (2000), Kim and Wong (2007),
Maxfield (1994). In this chapter, we review some recent models in which cyclic
networks emerge: in Sect. 8.2.5, we first introduce a model of production networks
with closed loops and next we discuss a model of cycles of differently skilled
agents.

Finally, in Sect. 8.3 we develop a novel framework, which we call Evolving
Innovation Networks, to study the evolution of innovation networks. We show
how different modalities of interactions between firms and cost functions related
to these interactions can give rise to completely different equilibrium networks.
We have studied the case of linear cost and bilateral interactions in König et al.
(2008a,b). There we find that, depending on the cost, the range of possible equilib-
rium networks contains complete, intermediate graphs with heterogeneous degree
distributions as well as empty graphs. Here, we focus on a type of non-linear cost
and both, on unilateral and bilateral interactions. In the unilateral case, we find that,
in a broad range of parameter values, networks can break down completely or the
equilibrium network is very sparse and consists of few pairwise interactions and
many isolated agents. Equilibrium networks with a higher density can be reached if
(i) the utility function of the agents accounts for a positive externality resulting from
being part of a technological feedback loop or if (ii) all interactions are bidirectional
(direct reciprocal). Otherwise, the network collapses and only few, if any, agents can
beneficially exchange knowledge.

The results found in our novel approach to evolving innovation networks are
summarized in Sect. 8.4.1. The appendices shall be useful for the reader interested
in more numerical results and the parameters and explanation of the algorithms
used.

8.2 Basic Models of Innovation Networks

8.2.1 Graph Theoretic Network Characterization

Before we start to describe specific models of economic networks, we give a brief
introduction to the most important graph theoretic terms used throughout this chap-
ter to characterize networks. For a broader introduction to graph theory see West
(2001). In this chapter, we will use the terms graph and network interchangeably,
i.e., both refer to the same object.



196 M.D. König et al.

A graph G is a pair, G = (V, E), consisting of a set of node V (G) and a set of
links E(G). Kn is the complete graph on n nodes. Cn the cycle on n nodes. Nodes i
and j are the endpoints of the link ei j ∈ E(G).

The degree, di , of a node i is the number of links incident to it. A graph can either
be undirected or directed, where in the latter case one has to distinguish between
in-degree, d−i , and out-degree, d+i , of node i . In the case of an undirected graph, the
neighborhood of a node i in G is Ni = {w ∈ V (G) : ewi ∈ E(G)}. The degree of
a node i is then di = |Ni |. The first-order neighborhood is just the neighborhood,
Ni , of node i . The second-order neighborhood is, Ni ∪ {Nv : v ∈ Ni }. Similarly,
higher order neighborhoods are defined. In the case of a directed graph, we denote
the out-neighborhood of node i by N+i and the in-neighborhood by N−i . A graph G
is regular if all nodes have the same degree. A graph G is k-regular if every node
has degree k.

A walk is an alternating list, {v0, e01, v1, ..., vk−1, ek−1k, vk}, of nodes and links.
A trail is a walk with no repeated link. A path is a walk with no repeated node.
The shortest path between two nodes is also known as the geodesic distance. If the
endpoints of a trail are the same (a closed trail) then we refer to it as a circuit. A
circuit with no repeated node is called a cycle.

A subgraph, G ′, of G is the graph of subsets of the nodes, V (G ′) ⊆ V (G), and
links, E(G ′) ⊆ E(G). A graph G is connected, if there is a path connecting every
pair of nodes. Otherwise, G is disconnected. The components of a graph G are the
maximal connected subgraphs.

The adjacency matrix, A(G), of G, is the n-by-n matrix in which the entry ai j

is 1 if the link ei j ∈ E(G), otherwise ai j is 0. For an undirected graph, A is sym-
metric, i.e., ai j = a ji ∀i, j ∈ V (G). An example of a graph and its associated
adjacency matrix is given in Fig. 8.1. For example, in the first row with elements,
a11 = 0, a12 = 1, a13 = 0, a14 = 0, the element a12 = 1 indicates that there exists a
link from node 1 to node 2.

In a bipartite graph G, V (G) is the union of two disjoint independent sets V1 and
V2. In a bipartite graph, if e12 ∈ E(G) then v1 ∈ V1 and v2 ∈ V2. In other words, the
two endpoints of any link must be in different sets. The complete bipartite graph
with partitions of size |V1| = n and |V2| = m is denoted Kn,m . A special case is the
star which is a complete bipartite graph with one partition having size n = 1, K1,m .

There exists an important class of graphs, random graphs, which are determined
by their number of nodes, n, and the (independent) probability p of each link being
present in the graph (Bollobas, 1985).

Fig. 8.1 (Right) A directed
graph consisting of four
nodes and five links. (Left)
The corresponding adjacency
matrix A

A =
⎛
⎜⎜⎝

⎛
⎜⎜⎝

0 1 0 0
0 0 1 1
0 0 0 1
1 0 0 0

1

2

4

3
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We now introduce two topological measures of a graph, the clustering coefficient
and the average path length. For further details see, e.g., Newman (2003) and Costa
et al. (2007). The following definitions assume undirected graphs.

For each node, the local clustering coefficient, Ci , is simply defined as the frac-
tion of pairs of neighbors of i that are themselves neighbors. The number of possible
neighbors of node i is simply di (di − 1)/2, where di is the degree of node i . Thus
we get

Ci = |{e jk ∈ E(G) : ei j ∈ E(G) ∧ eik ∈ E(G)}|
di (di − 1)/2

. (8.1)

The global clustering coefficient C is then given by

C = 1

n

n∑

i=1

Ci . (8.2)

A high clustering coefficient C means (in the language of social networks), that
the friend of your friend is also likely to be your friend. It also indicates a high
redundancy of the network.

The average path length, l, is the mean geodesic (i.e., shortest) distance between
node pairs in a graph:

l = 1
1
2 n(n − 1)

n∑

i≥ j

di j , (8.3)

where di j is the geodesic distance from node i to node j .
In Sect. 8.2.3, we will show a model of innovation networks that produces “small-

worlds” which combine the two properties of a high clustering coefficient and a
small average path length.

In the following sections, we will describe some basic models of economic
network theory, where we shall use the definitions and notations introduced above.

8.2.2 The Connections Model

The connections model introduced by Jackson and Wolinsky (1996) is of specific
interest, since it allows us to compute equilibrium networks analytically. The suc-
ceeding models can then be considered as extension of the connections model. Since
these models are more complicated than the basic connections model they can, to
a large extent, only be studied via computer simulations.13 Nevertheless, they are
of interest because they show a wider range of possible network configurations and
associated performance of the agents in the economy.

13 For the use of computer simulations in economics, see Axelrod and Tesfatsion (2006).
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In the following, we discuss the (symmetric) connections model proposed by
Jackson and Wolinsky (1996).14 In this model, agents pass information to other
agents to whom they are connected to. Through these links they also receive infor-
mation from those agents that they are indirectly connected to, that is, through the
neighbors of their neighbors, their neighbors, and so on.

The individual incentives to form or severe links determine the addition or dele-
tion of links. Incentives are defined in terms of the utility of the agents which
depends on the interactions among agents, i.e., the network. The utility functions
assigns a payoff to each agent and this payoff depends on the network the agents are
embedded in.

The utility, ui (G), agent i receives from network G15 with n agents is a function
ui : {G ∈ Gn} → R with

ui (G) =
∑

j 	=i

δdi j −
∑

j∈Ni

c, (8.4)

where di j is the number of links in the shortest path between agent i and agent j .
di j = ∞ if there is no path between i and j . 0 ≤ δ < 1 is a parameter that takes into
account the decrease of the utility as the path between agent i and agent j increases.
N (i) is the set of nodes in the neighborhood of agent i . c is a positive parameter
capturing the fact that direct links are costly. This implies that agents want to have
short paths to other agents while maintaining as few links as possible.

A measure of the global performance of the network is introduced by its effi-
ciency. The total utility of a network is defined by

U (G) =
n∑

i=1

ui (G). (8.5)

A network is considered efficient if it maximizes the total utility of the network
U (G) among all possible networks, G(n) with n nodes.

Definition 1 A network G is strongly efficient if U (G) = ∑n
i=1 ui (G) ≥ U (G ′) =∑n

i=1 ui (G ′) for all G ′ ∈ G(n)

Under certain conditions no new links are accepted or old ones deleted. This
leads to the term pairwise stability.

Definition 2 A network G is pairwise stable if and only if

1. for all ei j ∈ E(G), ui (G) ≥ ui (E\ei j ) and u j (G) ≥ u j (E\ei j )
2. for all ei j /∈ E(G), if ui (G) < ui (E ∪ ei j ) then u j (G) > u j (E ∪ ei j )

14 For a good introduction and discussion of related works, we recommend the lecture notes of
Zenou (2006). There one can find the proofs given here and related material in more detail. For a
general introduction to economic networks, see also Jackson (2006).
15 In this model the network is undirected.
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In words, a network is pairwise stable if and only if (i) removing any link does
not increase the utility of any agent, and (ii) adding a link between any two agents,
either does not increase the utility of any of the two agents, or if it does increase one
of the two agents’ utility then it decreases the other agent’s utility.

The point here is that establishing a new link with an agent requires the consensus
(i.e., a simultaneous increase of utility) of both of them. The notion of pairwise sta-
bility can be distinguished from the one of Nash equilibrium,16 which is appropriate
when each agent can establish or remove unilaterally a connection with another
agent.

There exists a tension between stability and efficiency in the connections model.
This will become clear, after we derive the following two propositions.

Proposition 3 The unique strongly efficient network in the symmetric connections
model is

1. the complete graph Kn if c < δ − δ2,
2. a star encompassing everyone if δ − δ2 < c < δ + n−2

2 δ2,
3. the empty graph (no links) if δ + n−2

2 δ2 < c.

Proof 1. We assume that δ2 < δ − c. Any pair of agents that is not directly
connected can increase its utility (the net benefit for creating a link is at least
δ − c − δ2 > 0) and thus the total utility, by forming a link. Since every pair
of agents has an incentive to form a link, we will end up in the complete graph,
where all possible links have been created and no additional links can be created
any more.

2. Consider a component of the graph G containing m agents, say G ′. The number
of links in the component G ′ is denoted by k, where k ≥ m − 1, otherwise the
component would not be connected. For example, a path containing all agents
would have m − 1 edges. The total utility of the direct links in the component is
given by k(2δ−2c). There are at most m(m−1)

2 −k left over links in the component
that are not created yet. The utility of each of these left over links is at most 2δ2

(it has the highest utility if it is in the second-order neighborhood). Therefore,
the total utility of the component is at most

k2(δ − c)+
(

m(m − 1)

2
− k

)

2δ2. (8.6)

Consider a star with m agents. See as an example a star containing four agents
in Fig. 8.2. The star has m − 1 agents which are not in the center of the star.
The utility of any direct link is 2δ − 2c and of any indirect link (m − 2)δ2, since
any agent is two links away from any other agent (except the center of the star).
Thus, the total utility of the star is

16 Considering two agents playing a game (e.g., trading of knowledge) and each adopting a certain
strategy. A Nash equilibrium is characterized by a set of strategies where each strategy is the
optimal response to all the others.
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Fig. 8.2 A star encompassing
4 agents

1 2

3

4

(m − 1)(2δ − 2c)
︸ ︷︷ ︸

direct connections

+ (m − 1)(m − 2)δ2

︸ ︷︷ ︸
indirect connections

. (8.7)

The difference in total utility of the (general) component and the star is just
2(k− (m−1))(δ−c−δ2). This is at most 0, since k ≥ m−1 and c > δ−δ2, and
less than 0 if k > m − 1. Thus, the value of the component can equal the value
of the star only if k = m − 1. Any graph with k = m − 1 edges, which is not a
star, must have an indirect connection with a distance longer than 2, and getting
a total utility from indirect connections less than 2δ2. Therefore, the total utility
of the indirect links will be below (m − 1)(m − 2)δ2 (which is the total utility
from indirect connections of the star).
If c < δ− δ2, then any component of a strongly efficient network must be a star.
In a similar fashion, it can be shown (Jackson and Wolinsky, 1996) that a single
star of m + n agents has a higher total utility than two separate stars with m and
n agents. Accordingly, the star is a strongly efficient network.

3. A star encompassing every agent has a positive value only if δ + n−2
2 δ2 > c.

This is an upper bound for the total achievable utility of any component of the
network. Thus, if δ+ n−2

2 δ2 < c the empty graph is the unique strongly efficient
network.

Proposition 4 In the connections model in which the utility of each agent is given
by (8.4), we have

1. A pairwise stable network has at most one (non-empty) component.
2. For c < δ − δ2, the unique pairwise stable network is the complete graph Kn.
3. For δ − δ2 < c < δ, a star encompassing every agent is pairwise stable, but not

necessarily the unique pairwise stable graph.
4. For δ < c, any pairwise stable network that is non-empty is such that each agent

has at least two links (and thus is efficient).

Proof 1. Let us assume, for the sake of contradiction, that G is pairwise stable and
has more than one non-empty component. Let ui j denotes the utility of agent
i having a link with agent j . Then, ui j = ui (G + ei j ) − ui (G) if ei j /∈ E(G)
and ui j = ui (G) − ui (G − ei j ) if ei j ∈ E(G). We consider now ei j ∈ E(G).
Then ui j ≥ 0. Let ekl belong to a different component. Since i is already in a
component with j , but k is not, it follows that u jk > ui j ≥ 0, because agent k
will receive an additional utility of δ2 from being indirectly connected to agent
i . For similar reasons u jk > ulk ≥ 0. This means that both agents in the separate
component would have an incentive to form a link. This is a contradiction to the
assumption of pairwise stability.
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2. The net change in utility from creating a link is δ − δ2 − c. Before creating the
link, the geodesic distance between agent i and agent j is at least 2. When they
create a link, they gain δ but they lose the previous utility from being indirectly
connected by some path whose length is at least 2. So if c < δ − δ2, the net
gain from creating a link is always positive. Since any link creation is beneficial
(increases the agents’ utility), the only pairwise stable network is the complete
graph, Kn .

3. We assume that δ−δ2 < c−δ and show that the star is pairwise stable. The agent
in the center of the star has a distance of 1 to all other agents and all other agents
are separated by two links from each other. The center agent of the star cannot
create a link, since she has already maximum degree. She has no incentive to
delete a link either. If she deletes a link, the net gain is c − δ, since there is no
path leading to the then disconnected agent. By assumption, δ − δ2 < c < δ,
c−δ < 0 and the gain is negative, and the link will not be removed. We consider
now an agent that is not the center of the star. She cannot create a link with the
center, since they are both already connected. The net gain of creating a link to
another agent is δ− δ2− c, which is strictly negative by assumption. So she will
not create a link either. The star is pairwise stable.

The star encompasses all agents. Suppose an agent would not be connected
to the star. If the center of the star would create a link to this agent, the net gain
would be δ − c > 0 and the benefit of the non-star agent is again δ − c > 0. So
both will create the link.

The star is not the unique pairwise stable network. We will show that for four
agents, the cycle, C4 is also a pairwise stable network. Consider Fig. 8.3.

If agent 3 removes a link to agent 4, then her net gain is c − δ − δ3. For the
range of costs of δ − δ2 < c < δ − δ3 < δ, she will never do it. If agent 3
adds a link to agent 1, Fig. 8.4, the net gain is δ − δ2 < 0. Thus, for n = 4 and
δ− δ2 < c < δ− δ3, then there are at least two pairwise stable networks: the star
and the cycle.

4. For δ < c, the star is not a pairwise stable network because the agent in the
center of the star would gain c − δ from deleting a link. Moreover, it can be

Fig. 8.3 A cycle of four
agents (left) and the resulting
graph (right) after the
deletion of a link from agent
3 to agent 4

1 2

34

1 2

34

Fig. 8.4 A cycle of four
agents (left) and the resulting
graph (right) after the
creation of a link from agent
3 to agent 1 1 2

34

1 2

34
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shown (Jackson and Wolinsky, 1996) that any connected agent has at least two
links.

One can see, from the two propositions described above, that a pairwise stable
network is not necessarily efficient. For high cost, i.e., c > δ there are non-empty
pairwise stable networks but they are not efficient.

We now come to the evolution of the network as described in Jackson and Watts
(2002). The network changes when agents create or delete a link. At every time step
an agent is chosen at random and tries to establish a new link or delete an already
existing one. If a link is added, then the two agents involved must both agree to its
addition, with at least one of them strictly benefiting (in terms of a higher utility) of
the new link. Similarly, a deletion of a link can only be in a mutual agreement. This
adding and deleting of links creates a sequence of networks. A sequence of networks
created by agents myopically adding and deleting links is called an improving path17

(Jackson and Watts, 2002).
There is a small probability, ε, that a mistake occurs (trembling hand) and the link

is deleted if present or added if absent. ε goes to zero in the long run, limt→∞ ε(t) =
0. By introducing this decreasing error ε in the agent’s decisions, the evolution of the
network becomes a Markov process18 with a unique limiting stationary distribution
of networks visited (Jackson and Watts, 2002).

The following definition is important to describe the stochastic evolution of the
network.

Definition 5 A network is evolutionary stable if it is in the limiting stationary
distribution of networks of the above mentioned Markov process.

We have already investigated the structure and stability of the star, Fig. 8.2, and
the cycle, Fig. 8.3. In Jackson and Watts (2002) it is shown that for the case of
four agents, the evolutionary stable networks indeed are the stars and cycles. So the
network of agents evolves into a quite simple equilibrium configuration.

8.2.3 The Connections Model and Small-World Networks

Carayol and Roux (2005, 2003) propose a model of innovation networks in which
networks emerge that show the properties of a “small world.”19 This model is an

17 Each network in the sequence of network updates differs in one link from the previous one. An
improving path is a finite set of networks G1, ..., Gk in which one agents is better off by deleting
a link (Gk+1 has one link less than Gk ) or two agents are better off by adding a link (Gk+1 has one
link more than Gk ).
18 A Markov process is a random process whose future states are determined by its present state
and not on the past states, i.e., it is conditionally independent on the past states given the present
state.
19 A small-world network combines high clustering (high probability that your acquaintances are
also acquaintances to each other) with a short characteristic path length (small average distance
between two nodes) (Watts and Strogatz, 1998).
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extension of the above described connections model, Sect. 8.2.2, and it uses the
same notion of pairwise stability and efficiency.

We now give a sketch of the model. Agents are localized on a cycle and benefit
from knowledge flows from their direct and indirect neighbors. Knowledge transfer
decays along paths longer than one link. This means that less knowledge is received,
the longer the path between the not directly connected agents is. The transfer rate is
controlled by an exogenous parameter, δ. Each agent has a probability to innovate
that is dependent on her amount of knowledge. The knowledge level of an agent is
dependent on two factors. (i) the in-house innovative capabilities of the agent and
(ii) the knowledge flows coming directly from the neighbors or indirectly (with a
certain attenuation factor) from those agents that are connected to the neighbors.

Agent i supports costs, for direct connections which are linearly increasing with
geographic distance, that is the distance on the cycle on which they recede. Agent
i’s utility ui at a time t is given by the following expression:

ui (G(t)) =
∑

j 	=i

δdi j − c
∑

j∈Ni

d ′i j , (8.8)

where di j is the geodesic distance between agent i and agent j . δ ∈ (0, 1) is a knowl-
edge decay parameter and δdi j gives the payoffs resulting from the direct or indirect
connection between agent i and agent j . c is a positive constant. d ′i j describes the
geographic distance between agent i and agent j , that is the distance on the cycle.
This is the main difference in the assumptions compared to the connections model
discussed in Sect. 8.2.2.

Agents are able to modify their connections. This is where the network becomes
dynamic. Pairs of agents are randomly selected. If the two selected agents are
directly connected they can jointly decide to maintain a link or unilaterally decide
to sever the link. If they are not connected, they can jointly decide to form a link.
The decision is guided by the selfishness of the agents, which means that they only
accept links from which they get a higher utility.

The stochastic process of adding links to the network can be seen as a Markov
process where each state is the graph structure at a certain time step. The evolution
of the system is a discrete time stochastic process with the state space of all possible
graphs. A small random perturbation where the agents make mistakes in taking the
optimal decision to form a link or not is introduced. Agents are making errors with
a probability ε(t). This error term decreases with time, limt→∞ ε(t) = 0.

The introduction of ε enables us to find long-run stationary distributions that
are independent of initial conditions (the ergodicity of the system) (Jackson and
Watts, 2002). Simulations are used in order to find these stationary distributions.
Agents are forming and severing links until the network reaches a pairwise stable
configuration, where the agents have no incentive to create or delete links any more.
The set of stochastically stable networks selected in the long run is affected by the
rate of knowledge transfer, δ. The authors find critical values of this parameter for
which stable “small-world” networks are dynamically selected (Carayol and Roux,
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2005). This is the main difference in the resulting equilibrium network structure to
the connections model, in which simpler network configurations are obtained.

8.2.4 Introducing Heterogeneous Knowledge

Ricottilli (2005, 2006) studies the evolution of a network of agents that improve
their technological capabilities through interaction while knowledge is heteroge-
neously distributed among agents. In addition to the sharing of knowledge, each
agent is assumed to have an “in-house” innovative capability. Considerable effort is
necessary for this “in-house” research and as research is not always successful, it is
assumed to change stochastically.

An agent i’s innovation capability, Vi , is given by

Vi (t) =
n∑

j=1

ai j bi j (t)Vj (t)+ Ci (t) (8.9)

with an economy consisting of n agents. ai j =const. is the broadcasting capacity
of agent j to agent i and aii = 0 since no agent can broadcast information to
herself. The matrix A with elements ai j indicates the total technological information
broadcasting capability of this economy. The proximity matrix elements bi j (t) are
either 0 or 1 according to whether agent j is identified from agent i as an information
supplier. This is the neighborhood of agent i . Ci (t) ∈ (0, 1) is the in-house capability
of agent i . This is a stochastic variable.

Each agent i assesses the value of knowledge of its neighbors (where bi j 	=
0), which are the addends of the first term in (8.9). From this function the least
contributing one, denoted by �i (t), is selected.

�i (t) = min1≤ j≤N {ai j bi j (t − 1)Vj (t − 1)}. (8.10)

In a random replacement procedure (search routine) an agent selects either its
neighbors and second neighbors (local, weak bounded rationality) or the entire econ-
omy excluding its first and second neighbors (global, strong bounded rationality).
By doing so, agent i assigns a new member j to the set of information suppliers,
setting bi j from 0 to 1. This selection is only accepted if

Vi (t) > Vi (t − 1). (8.11)

The population of agents is classified according to the size of the set of other
agents by which they are observed. Global paradigm setters are agents that are
observed by almost all agents in the economy. Local paradigm setters are observed
by almost all agents belonging to the same component.

Simulations of the evolution of the network show that stable patterns emerge.
When the knowledge-heterogeneity of the economy is not very high, global paradigm
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setters emerge. For high levels of heterogeneity the economy becomes partitioned
into two separate halves. In each homogeneous one, local paradigm setters emerge.
Ricottilli (2006, 2005) shows that the highest technological capabilities are achieved
neither with a local search routine in which only the second neighbors are included
nor in global search routines that span the whole economy. Rather, a combination
of both improves the system’s innovative efficiency the most.

8.2.5 Emerging Cyclic Network Topologies

When studying multi-sector trading economies and input–output systems,
Rosenblatt (1957) already identified the importance of circular flows and “feedback”
input dependencies between industries (realized by subgraphs called “cyclic nets”).
A sufficient condition for a strongly connected network (in which there exits a path
from every agent to every other agent and that has an irreducible adjacency matrix)
is the existence of a cycle. Subsequent works (Baldry and Ghosal, 2005; Maxfield,
1994) have further incorporated cyclic network topologies (or strong connectivity
which implies the existence of a cycle in the network) for the existence of a compet-
itive economy. More recently, Kim and Wong (2007) studied a generalized model
of Bala and Goyal (2000) and found that the equilibrium networks consist of cycles
(so-called “sub-wheel partitions”).

In the following sections, we will focus on some recent network models of
knowledge transaction and innovation (the creation of new knowledge) in which
cyclic interactions of agents emerge. In Sect. 8.3, we will study a new model of
evolving innovation networks. Similarly to the above mentioned authors, we find
that the existence of equilibrium networks with a positive knowledge production
depends critically on the existence of cycles in the network.

8.2.5.1 Production Recipes and Artifacts

We start by reviewing a model by Lane (2005) in which agents try to produce and
sell artifacts. These artifacts can be manufactured according to a production recipe.
Such a recipe can either be found independently or through the sharing of knowledge
with other agents, which in turn can lead to an innovation, that is the discovery of a
new recipe.

Let us denote with rik the kth recipe of agent i . There is an external environment
which consists of external agents (customers) and artifacts which are not produced
in the model. At each time period t one agent i is randomly chosen. Then the
following steps are taken:

1. The agent tries to get the input required for each recipe rik . If it is in the agent’s
own stock then she can produce immediately. If it is not, she buys it from another
agent and if it cannot be bought she moves to another recipe.
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2. The agent chooses a goal, i.e., the product she wants to produce (one that gives
high sales). Therefore she has to find the right recipe for the goal. She produces
the product if a successful recipe is found. This can be achieved in two ways.
The agent either can try to innovate by herself or she can try to innovate together
with another agent.

3. The wealth of agent i at time t + 1, wi (t), is calculated according to

wi (t + 1) = wi (t)+
Nk∑

k=1

nik(t)− wi (t)
Nl∑

l=1

pilcil − λwi (t), (8.12)

where Nk is the number of products sold, nik(t) is the number of units sold of
product k belonging to agent i , pil is the number of products produced with
recipe ril , and cil is the production cost.
The last term −λwi (t) guarantees that the wealth of an agent that has not sold
any products and does not have any active recipes vanishes.

4. The recipes that could not be successfully used to produce products are canceled.
5. The set of acquaintances of an agent is enlarged. This is possible when two or

more agents that have goals which are close in artifact space (i.e., they require
similar inputs) cooperate to produce that artifact.

6. With a certain probability dead agents are substituted.

The basic dynamics, absent innovation, is one of production and sales, where the
supply of raw materials is external as well as final product demand. There are two
main differences to most agent-based innovation models. First, here the agents try
to develop new recipes in order to produce products with high sales, as opposed
to many agent-based models where the generation of novelty is driven by some
stochastic process. Second, in simulations Lane (2005) shows that the network of
customers and suppliers often forms closed, self-sustaining cycles.

8.2.5.2 An Autocatalytic Model with Hypercycles

Padgett (1996) and Padgett et al. (2003) introduces an autocatalytic model, based on
a hypercycle20 model. Here agents are represented as skills and these skills are com-
bined in order to produce. Skills, like chemical reactions, are rules that transform
products into other products.

In the following, we will give a short overview of the model.21 There are two
main aspects in the dynamic interactions between the agents: The process of produc-
tion and the process of learning. The process of production includes three entities:
skills, products, and agents. Skills transform products into other products. The skills
are features of the agents. On a spatial grid the agents are arrayed with periodic

20 A hypercycle is a system which connects self-replicative units through a cycle linkage (Eigen
and Schuster, 1979).
21 This agent-based model is publicly available on the website http://repast.sourceforge.net/
examples/index.html under the application module hypercycle.
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boundaries. Each agent has eight possible neighbors. At each asynchronous iteration
a random skill is chosen. An agent with that skill randomly chooses an input prod-
uct. If this product fits to the skill then the product is transformed. The transformed
product is passed randomly to the neighbors of the agent. If the trading partner has
the necessary skill it transforms the product further and passes it on. If the agent
doesn’t have the compatible skill, the product is ejected into the output environment
and a new input product is selected.

One can look at the production process from a wider perspective. An input prod-
uct comes from the environment, then passes through production chains of skills
until it is passed back as output to the environment. These chains self-organize
because of a feedback mechanism of the agents. This mechanism is learning through
the trade of products.

The process of learning is modeled as learning by doing. If a skill transforms a
product and then passes it on to another transforming skill, then the skill is repro-
duced (learned). Whenever one skill is reproduced anywhere in the system then
another one is deleted at random to keep the overall number of skills constant. The
agents are able to learn new skills by practicing them and they can forget skills they
did not use for a certain period of time. This procedure of learning introduces a
feedback mechanism. When an agent loses all its skills, then it is assumed to never
recover.

In Padgett (1996) and Padgett et al. (2003) the emergence of self-reinforcing
hypercycle production chains is shown. In these hypercycles agents reproduce each
other through continuous learning. Such cycles generate a positive growth effect on
the reproduction of skills. Thus, even in a competitive environment the sharing of
knowledge is crucial to the long-run performance of the system.

8.3 A New Model of Evolving Innovation Networks

8.3.1 Outline of the Modeling Framework

In this section, we study the evolution of networks of agents exchanging knowl-
edge22 in a novel framework. The network can evolve over time either, by an
external selection mechanism that replaces the worst performing agent with a
new one or, by a local mechanism, in which agents take decisions on forming or
removing a link. In the latter case, we investigate different modalities of interac-
tion between agents, namely bilateral interactions, representing R&D collaborations
(Hagedoorn et al., 2006, 2000) or informal knowledge trading (Von Hippel, 1987),
versus unilateral interactions (similar to Bala and Goyal (2000) agents decide uni-
laterally whom to connect to), representing a generalization of informal knowledge
trading. We further study the impact of varying costs for maintaining links and the

22 See also the chapter of Robin Cowan and Nicolas Jonard in this book as well as Cowan and
Jonard (2004), Cowan et al. (2004).
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impact of augmenting or diminishing effects on the value of knowledge with the
number of users associated with different types of knowledge. Our model exhibits
equilibrium networks and we compare their structure and performance. Similar to
the models discussed in the last section we will show that cyclic patterns in the
interactions between agents play an important role for the stability (permanence)
and performance of the system.

We study different assumptions on the behavior of agents. In the most simple
case, denoted by Extremal Dynamics, agents form links at random and, through an
external market selection mechanism, the worst performing agent (this is where
the denotation extremal stems from) is replaced with a new one. In this set-
ting, agents are completely passive and they are exposed to a least-fit selection
mechanism.

In a more realistic setting, called Utility Driven Dynamics, agents choose with
whom to interact, but their behavior is still boundedly rational and does not con-
sider strategic interaction. The way in which agents create or delete links to other
agents is a trial and error process for finding the right partner. Here we study two
different modes of interaction. In the first interaction mode, agents are creating
bilateral links. Bilateral links represent formal R&D collaborations among agents
(Hagedoorn et al., 2000), or informal knowledge trading (Von Hippel, 1987). In
the second interaction mode, agents are transferring knowledge unilaterally, which
means that one agent may transfer her knowledge to another but the reverse is
not mandatory. In this setting, the transfer of knowledge may be reciprocated, but
knowledge can also be returned from a third party. In the latter case, we speak of
indirect reciprocity. If knowledge is transferred unilaterally, the innovation network
can be represented as a directed graph comprising unilateral links, while if all inter-
actions are bilateral, the innovation network can be represented as an undirected
graph.

In the setting of unilateral links, we also investigate the impact of additional
benefits from network externalities. These benefits consider specific structural prop-
erties of networks which have an augmenting effect on the value of knowledge. We
study two different types of network properties which increase the value of knowl-
edge. We call these types Positive Network Externalities. The first Positive Network
Externality considers the factor that the more the centrality of an agent rises with
the creation of a link, the higher is the benefit from that link. A high centrality
indicates that an agent is connected to other agents through short paths. This means
that, when knowledge travels along short distances between agents, it has a higher
value than knowledge that has to be passed on between many agents. This effect can
be captured by introducing an attenuation of knowledge with the distance it has to
travel (by getting passed on from one agent to the next) until reaching an agent. The
second Positive Network Externality captures an opposite effect when knowledge is
passed on from one agent to the next. Here the value of knowledge increases with
the number of transmitters (who are also user) of that knowledge. More precisely,
we assume that feedback loops create an increase in the value of knowledge of the
agents that are part of the loop. The more the agents absorb and pass on knowledge
the higher is the value of that knowledge. This means that a link that is part of a long
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feedback loop increases the value of the knowledge passed on from one agent to the
next.23

We can summarize the different settings that are studied in this section as fol-
lows. We investigate the performance and evolution under the two aforementioned
assumptions on the behavior of agents, namely Extremal Dynamics and Utility
Driven Dynamics. In the latter setting, we further study the effect of different modes
of interaction, i.e., bilateral and unilateral knowledge transactions among agents.
When studying unilateral interaction among agents, we introduce different augment-
ing processes on the value of knowledge depending on the structure of the network,
called Positive Network Externality. We study the impact of an attenuation of the
value of knowledge by the distance from the giver to the receiver as well as the
contrary effect of an increase of the value of knowledge with the number of users
of that knowledge depending on the type of knowledge under investigation. Finally,
we discuss the networks obtained under these different settings with respect to their
topologies and performance.

8.3.2 Bilateral Versus Unilateral Knowledge Exchange

We interpret bilateral interactions as R&D collaborations on a formal or informal
basis (Hagedoorn et al., 2000). Both parties involved share their knowledge in a
reciprocal way, that means one agent is giving knowledge to another if and only if
the other agent is doing this as well and both agents benefit from this transaction.

We then compare bilateral interaction with the case of agents sharing knowledge
in a unidirectional way with other agents. They then maintain only those interactions
that are in some form reciprocated (and this way lead to an increase in their knowl-
edge levels after a certain time) but not necessarily from the agent they initially
gave their knowledge to (indirect reciprocity). The latter is referred to unilateral
knowledge exchange which can be seen as a generalization of informal knowledge
trading.

In the case of informal knowledge trading, agents exchange knowledge if both
strictly benefit. Instead, in the case of generalized informal knowledge trading, one
agent transfers knowledge to another one without immediately getting something
back. After a certain time (time horizon T ) an agent evaluates its investment by
assessing its total net increase in knowledge. By introducing unilateral knowledge
exchange we relax two requirements: (i) we do not require that the investment in
sharing ones knowledge has to be reciprocated instantaneously and in a mutually
concerted way. And (ii) the reciprocation does not necessarily have to come from
the same agent. With this generalization we introduce that (i) agents have only
limited information on the value of knowledge of others and on the network of
interactions. (ii) Agents proceed in a trial and error fashion to find the right partners

23 We study closed loops, because we assume that knowledge issued from one agent has to return
to that agent in order for her to take advantage of this added value of knowledge (created by the
multiplicity of other users).



210 M.D. König et al.

for exchanging their knowledge. In this setting reciprocity emerges either directly
or indirectly.

If the total knowledge level of an agent at the time horizon T is higher than it was
when the agent started to share her knowledge with another agent, this interaction
is evaluated beneficial, otherwise it is not. Only if the interaction is evaluated ben-
eficial, the agent continues sharing its knowledge with the other agent, otherwise it
stops the interaction. This procedure requires only limited information on the other
agents, since the agent cares for its own total increase in knowledge and does not
need to evaluate the individual knowledge levels of others. We describe this link
formation mechanism in more detail in Sect. 8.3.9.3.

8.3.3 Unilateral Knowledge Exchange and Reciprocity

If the interaction of agents are unilateral then agents invest into innovation by shar-
ing knowledge with other agents. An investment is an advance payment with the
expectation to earn future profits. When one agent transfers knowledge to another
one without immediately getting something back, this can be regarded as an invest-
ment. There are usually two ways in which an investment can be expected to bring
in reasonable returns.

One way is the creation of contracts. As a precondition for contracts technologies
must be protectable by intellectual property rights (IPR). Otherwise agents cannot
trade them (once the technology is offered, i.e., made public, everybody can simply
copy it and there is no more need to pay for it). Contracts must be binding and com-
plete (Dickhaut and Rustichini, 2001). The contract has to be binding or agents may
not meet their agreement after the payment has been made. It has to be complete, or
uncertain agreements may lead agents to interpret it in a way most favorable to their
position and this can cause agents to retreat from the contract.

The requirements for contracts can be difficult to realize. Another way is to
expect reciprocative behavior to the investment. The beneficiary can either directly
or indirectly reciprocate the benefit. Direct reciprocity means to respond in kind
to the investor, and indirect reciprocity to reward someone else than the original
investor.

One of the possible explanations for reciprocal behavior (Bolton and Ockenfels,
2000; Fehr and Fischbacher, 2003; Fehr and Schmidt, 1999; Nowak and Sigmund,
1998, 2005) (see, e.g., Dieckmann, 2004, for a survey) is to assume the existence
of reputation. Agents believe that if they invest into another agent they will increase
their reputation and then realize a reasonable return coming back to them directly
or indirectly (“strategic reputation building”).

In reality, only partial information about reputation is available and experimen-
tal works show that, even in the absence of reputation, there is a non-negligible
amount of reciprocal cooperative behavior among humans (Bolton et al., 2005). As
Dickhaut and Rustichini (2001) put it, “. . .investment occurs even though agents
cannot create binding contracts nor create reputation.” Thus, agents invest into each
other by transferring their knowledge even if they cannot immediately evaluate the
benefit from this investment.
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We assume that agents are not a priori reciprocating if they receive knowledge
from others. But they perceive that interactions that are reciprocated in some way
are beneficial (increasing their own knowledge) and these are the interactions that
they maintain in the long run.

The problems associated with bilateral exchange of knowledge (direct reci-
procity) and experimental evidence suggest that unilateral knowledge exchange, in
which indirect reciprocity can emerge, is a relevant mode of interaction between
agents. Moreover, the fact that interactions between anonymous partners become
increasingly frequent in global markets and tend to replace the traditional long-
lasting mutual business relationships poses a challenge to economic theory and is
one of the reason for the growing interest about indirect reciprocity in the economic
literature.

8.3.4 Indirect Reciprocity, Directed Graphs, and Cycles

An R&D network can be described as a graph in which agents are represented
by nodes, and their interactions by directed links. Indeed, as mentioned above, if
agent i transfers knowledge to agent j (e.g., by providing a new technology), the
reverse process, i.e., that agent j in turn transfers knowledge to i , is in principle
not mandatory. This means that the links representing the transfer of knowledge are
directed. The underlying graph can be represented by an adjacency matrix, A with
elements ai j ∈ [0, 1], which is not symmetric, ai j 	= a ji . In other words, directed
means that we distinguish the pairs (i, j) and ( j, i) representing the links from i
to j and from j to i , respectively. On the other hand, if the adjacency matrix is
symmetric, it means that any two agents are connected both by a link from i to
j and by a link from j to i . We say, in this case, that they are connected by a
bidirectional link. Notice that the symmetry also implies that the two links have
identical weights.

Reciprocity requires the presence of cycles. In particular, direct reciprocity cor-
responds to a cycle of order k = 2, while indirect reciprocity corresponds to a cycle
of order k ≥ 3 (see Figs. 8.5 and 8.6). Therefore, the emergence and permanence of

Fig. 8.5 A cycle of length 2
represents an interaction
between agents that is direct
reciprocal

1 2

Fig. 8.6 A cycle of length 3
(or longer) represents an
interaction between agents
that is indirect reciprocal

1 2

3
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direct/indirect reciprocity is deeply connected to the existence of cycles and in the
graph of interactions.

8.3.5 Formal Modeling Framework

In this section, we formalize the general framework for the investigation of evolv-
ing networks of selfish agents engaged in knowledge production via the sharing of
knowledge. In such a framework, it is possible to investigate how the emergence
and permanence of different structures in the network is affected by (1) the form
of the growth function of the value of knowledge, (2) the length of time horizon
after which interactions are evaluated and (3) the link formation/deletion rules.
At a first glance, this problem includes a multitude of dimensions, as the space of
utility functions and link formation/deletion rules is infinite. However, some natural
constraints limit considerably the number of possibilities and make a systematic
study possible. In the following, we present the general framework. We then focus
on a subset of the space of utility functions and link formation rules. For these, we
present briefly some analytical results, but since the value of knowledge of an agent
is assumed to be a non-linear function of the neighboring agents, we illustrate them
in terms of computer simulations. We finally summarize the results and discuss them
in relation to the context of innovation.

We consider a set of agents, N = {1, ..., n}, represented as nodes of a network
G, with an associated variable xi representing the value of knowledge of agent i .
The value of knowledge is measured in the units of profits an agent can make in a
knowledge-intensive market. It has been shown that the growth of such knowledge-
intensive industries is highly dependent on the number and intensity of strategic
alliances in R&D networks (Powell and Grodal, 2006). In our model we bring the
value of knowledge of an agent, denoted by xi (t), at time t in relation with the
values of knowledge of the other agents x j (t) at time t in the economy, that are
connected to the current agent i . A link from i to j , ei j , takes into account that
agent i transfers knowledge to agent j . The idea is, that through interaction, agents
transfer knowledge to each other which in turn increases their values of knowledge.

We focus here only on the network effects on the value of knowledge of an agent.
We therefore neglect the efforts of agents made to innovate on their own, without
the interaction with others.24 In particular, we assume that the growth of the value of
knowledge of agent i depends only on the value of knowledge of the agents, j , with
outgoing links pointing to him (those who transfer knowledge to her), j ∈ V (G)
such that e ji ∈ E(G).

24 The “in-house” R&D capabilities of an agent could be introduced by an additional (stochastic)
term Si (xi ). Similar to Ricottilli (2006) in Sect. 8.2.5, Si (xi ) captures the innovation activities of
agent i without the interaction with other agents. We assume that the “in-house” capabilities of
agents are negligible compared to network effects. Thus, we concentrate only on network effects
on the increase or decrease in the value of knowledge.
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In a recent study on the dynamics of R&D collaboration networks in the US
IT industry, Hanaki et al. (2007) have shown that firms form R&D collabora-
tions in order to maximize their net knowledge (information) flow. Cassiman and
Veugelers (2002) suggested that this knowledge flow can be decomposed into
incoming and outgoing spillovers capturing the positive and negative effects of R&D
collaborations.

We try to incorporate these positive and negative effects into a differential equa-
tion that describes the change (increase or decrease) in the value of knowledge of an
agent through R&D collaborations with other agents. We assume that the knowledge
growth function can be decomposed into a decay term, a benefit term, and a cost
term depending on the interactions of an agent. The equation for knowledge growth
reads

dxi

dt
= −Di (xi )+ Bi (A, x)− Ci (A, x), (8.13)

where

ẋi . . . growth of the value of knowledge of agent i
A . . . adjacency matrix (representing the network)
x . . . vector of agents’ values of knowledge
Di (ẋi ) . . . knowledge decay (obsolescence of knowledge)
Bi (A, x) . . . interaction benefits of agent i
Ci (A, x) . . . interaction costs of agent i

B ≥ 0 and C ≥ 0 are benefit and cost terms, respectively, while D ≥ 0 is a decay
term which includes the fact that a technology loses its value over time (obsoles-
cence). In our setting, only through R&D collaborations with other agents, an agent
can overcome the obsolescence of knowledge. This ensures that agents who do not
interact with others have necessarily vanishing value of knowledge in our model
(since Bi = Ci = 0⇔ ai j = 0 ∀ j and thus ẋi < 0). In other words, we investigate
an R&D intensive economy in which an agent’s performance is critically depending
on its R&D collaborations.

Interaction is described by the adjacency matrix A that contains the elements ai j

in terms of 0 and 1. This dynamics can be interpreted as a catalytic network of R&D
interactions (passing a technology to another agent, R&D collaborations), where
the different agents are represented by nodes, and their interaction by links between
these nodes, cf. Fig. 8.1. More precisely,

ai j =
{

1 if agents i transfers knowledge to agent j

0 otherwise
(8.14)

We noted already that the network of interactions is modeled on a directed graph,
which means that the adjacency matrix is not generally symmetric: ai j 	= a ji .
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The benefit term, Bi (x, A), accounts for the fact that an agent’s value of knowl-
edge increases by receiving knowledge from other agents. The cost term, Ci (x, A),
accounts for the fact that transferring knowledge to other agents is costly. Such a
cost can vary in magnitude depending on the technological domain, but, in general,
to make someone else proficient in whatever new technology requires a non-null
effort.

In the following, we will further specify the growth of the value of knowledge in
(8.13). We will make simple assumptions on benefits, Bi (x, A), and costs, Ci (x, A),
which allow us to derive some analytical results and thus gain some insight on the
behavior of the system.

8.3.6 Pairwise Decomposition

Networks are sets of pairwise relationships. In systems of interacting units in
physics, a superposition principle holds, such that the force perceived by a unit is
due to the sum of pairwise interactions with other units. Similarly, one could think
of decomposing both benefits and costs of each agent i in a sum of terms related
to the agents j interacting with i . However, this would imply to ignore network
externalities25 (it is very important to note this fact). We will see in the following
that externality does play an important role. So far, in the literature on complex
networks one has considered only the pairwise interaction term, while the literature
on economic networks has focused on some simple externalities such as the network
size, or the distance from other agents, see Sect. 8.2.5.

Our approach is to assume that benefit and cost are each decomposable in two
terms: one term related to the direct interaction, further decomposable in pair-
wise terms, and another term related to externality (corresponding to positive and
negative externality):

Bi (A, x) =
∑

j

b ji (x j , a ji )+ be
ji (x j , A), (8.15)

Ci (A, x) =
∑

j

ci j (xi , ai j )+ ce
i j (xi , A, x), (8.16)

where b stands for benefit, c for cost, e for externality. The effect of network exter-
nalities will be explained in Sect. 8.3.9.9. Benefit, b ji (x j , a ji ), and cost, ci j (xi , ai j ),
terms are monotonically increasing with the value of knowledge, xi . They have the
following properties:

25 In our model we define a network externality as a function of the network that affects the utility
of an agent.
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b ji (x j , a ji ) =
{

0 if a ji = 0 ∨ x j = 0

> 0 if a ji = 1 ∧ x j > 0
, (8.17)

ci j (xi , ai j ) =
{

0 if ai j = 0 ∨ xi = 0

> 0 if ai j = 1 ∧ xi > 0.
(8.18)

We assume that benefits are linear functions of the value of knowledge of agent
i which shares its knowledge with agent j . We introduce the linear assumption
b ji (x j , a ji ) = a ji x j .

In the most simple case costs for transferring knowledge can be neglected,
ci j (xi , ai j ) = 0. This means that knowledge is fully codified (Foray, 2004) and it
can be transferred to another agent without any losses. Further, null costs imply that
knowledge is non-rivalrous, meaning that the value of knowledge is not reduced by
the use of that knowledge by another agent. When costs are neglected, the growth
in the value of knowledge of agent i is given by the following equation (the case of
Null Interaction Costs, further analyzed in Sect. 8.3.8).

dxi

dt
= −dxi + b

n∑

j=1

a ji x j . (8.19)

In more realistic setting, costs cannot be neglected. In order to come up with
a reasonable expression for these costs, we make some further assumptions. We
assume that the higher the value of knowledge of an agent is, the more complex it
is. Moreover, the more the complex knowledge is, the more difficult it is to transfer
it (Rivkin, 2000; Sorenson et al., 2006). The coordination and processing capabili-
ties of agents are constrained (“managerial breakdown”). Thus, the more complex
knowledge gets the higher are the costs for transferring it. The cost, ci j (xi , ai j ), for
transferring knowledge from agent i to agent j is an increasing function of the value
of the knowledge that is to be transferred, xi . We assume that costs increase by more
than a proportional change in the value of knowledge that is being transferred.

ci j (αxi ) > αci j (xi ). (8.20)

This characteristic is closely related to decreasing returns to scale and convex
cost functions.26 The most simple setting for such a function is a quadratic term of
the form ci j (xi , ai j ) = cai j x2

i . The growth in the value of knowledge of agent i is
then governed by the following equation (the case of Increasing Interaction Costs,
further analyzed in Sect. 8.3.8):

26 In the standard economic theory of the agent the extent to which a given input can increase out-
put is usually assumed to be a decreasing function of the input. The output increases at a decreasing
rate when the input in production increases (Hausman, 2003).
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dxi

dt
= −dxi + b

n∑

j=1

a ji x j − c
n∑

j=1

ai j x
2
i . (8.21)

This is an ordinary differential equation with a linear decay, a linear benefit, and
quadratic costs.

Equation (8.21) can be interpreted as an extension of a logistic equation. In a
complete graph every agent shares her knowledge with every other agent. Starting
with the same initial values, this symmetry implies that all knowledge values are
identical, i.e., xi = x , equation (8.21) then becomes

dx

dt
= −dx + b(n − 1)x − c(n − 1)x2

d
b�n−−→ b(n − 1)x

(
1− c

b x
)

. (8.22)

Equation (8.22) is similar to the logistic function ẋ = αx(1 − x
β

) with parameters
α = b(n − 1) and β = b/c.

In the following section, we relate the topology (cyclic topologies in particular)
of the network with the long-run values of knowledge of the agents.

8.3.7 Non-permanence of Directed Acyclic Graphs

The study of the relation between the performance of an economy and the underly-
ing network of interactions has already a long tradition, see, e.g., Rosenblatt (1957)
(“cyclic nets”). More recently Maxfield (1994) has shown that the existence of a
competitive equilibrium is related to the strong connectedness of the network of
relations between users and producers in a market economy. Strong connectedness
means that there exists a closed walk or a cycle in the network. On the other hand,
if there does not exist such a cycle, then the network is not strongly connected.
In a similar way in our model strong connectedness is critically influencing the
performance of the agents. In the main result of this Sect. 8.11, we show that in our
model all values of knowledge vanish if the underlying network of interactions does
not contain a cycle.

For the general equation (8.13) we can identify the topology of the network
in which agents cannot be permanent. Hofbauer and Sigmund (1998) give the
following definition of permanence:

Definition 6 A dynamical system is said to be permanent if there exists a δ > 0
such that xi (0) > 0 for i = 1, ..., n implies limt→∞ inf xi (t) > δ.

We generalize the above notion of permanence to networks in which the nodes
have a state variable attached (that depends on the state variable of their neighbors).
If the state variables are non-zero the network is said to be permanent, otherwise it is
not. This is justified, since nodes with vanishing state variables have no interactions
at all.
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First, we have to introduce the definition of graphs which do not contain any
closed walks or cycles.

Definition 7 A directed acyclic graph is a directed graph with no directed cycles.

More general, if a graph is a directed acyclic graph then it does not contain a
closed walk.

For several proofs in this section we need the following lemma (denoted by the
comparison principle (Khalil, 1995)).

Lemma 8 If we consider two time-dependent variables, x(t) and y(t) with different
growth functions g(x) and f (x) (continuous, differentiable)

ẋ = f (x) (8.23)

ẏ = g(x) (8.24)

x(0) = y(0) (8.25)

and g(x) ≥ f (x) then it follows that y(t) ≥ x(t). Similarly, if g(x) ≤ f (x) then
y(t) ≤ x(t).

Proof Using Cauchy’s mean value theorem for the two continuous, differentiable
functions, x(t) and y(t), we have

x ′(τ )

y′(τ )
= x(t)− x0

y(t)− y0
≥ 1 (8.26)

with τ ∈ (0, t). The inequality holds since x ′(τ ) = f (x(τ )) ≥ y′(τ ) = g(y(τ ))
∀τ ∈ (0, t). It follows that

x(t)− x0 ≥ y(t)− y0 (8.27)

x0 = y0 (8.28)

and thus x(t) ≥ y(t). �
If a network is a directed acyclic graph then it does not contain a closed walk.

For a directed acyclic graph we can make the following observation.

Proposition 9 In every directed acyclic graph, there is at least one node v with no
incoming links, i.e., a source.

Proof (Godsil and Royle, 2001) We give a proof by contradiction. We assume that
every node has an incoming link. We start with some node u and find an incoming
link (x, u) – by assumption every node has at least one incoming link. We go to
the destination of the link, x . Again, we can find an incoming link (y, x). We then
proceed to node y. There is an incoming link (z, y). We consider node z. After at
most n+ 1 steps, we will visit some node in the graph twice. This is a contradiction
to the assumption that the graph is acyclic. �
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We can partition the nodes in the network into specific sets which take into
account from which other nodes there exists an incoming path to these nodes. We
will show that this is important to obtain a result on the permanence of the values of
knowledge of the agents.

Definition 10 We denote the set of sources of a directed acyclic graph G by S0. We
say that S0 is the 0-th order sources of G. The nodes that have only incoming links
from S0 are denoted by S1, the 1-st order sources of G. We consider the graph G\S0.
The nodes that have only incoming links from S1 in G\S0 (obtained by removing
the nodes in S0 and their incident links from G) are denoted by S2. Accordingly, the
nodes having only incoming links from Sk−1 in the graph G\(Sk−2 ∪ . . . ∪ S0) are
denoted by Sk , the k-th order sources of G, where k ≤ n.

We can have at most n such sets in the graph G with n nodes. In this case G is a
directed path Pk . Moreover, we have that

Proposition 11 The nodes in a directed acyclic graph G can be partitioned in the
sets S0, S1, ..., Sk, k ≤ n defined in (8.10).

Proof From Proposition (9) we know that the directed acyclic graph G has at least
one source node. All the sources form the set S0. If we remove the nodes in S0

(as well as their incident links) from G then we obtain again a directed acyclic
graph G1 := G\S0 (since the removal of links cannot create cycles). Therefore,
Proposition (9) also holds for G1. We consider the source nodes in G1. These nodes
have not been sources in G and they have become sources by removing the incident
links of the sources in G. Thus, the source nodes in G1 have only incoming links
from nodes in S0. Further on, the sources in G1 form the set S1. We can now remove
the nodes S1 from G1 and obtain the graph G2 with new sources S2. We can consider
the k-th removal of source nodes. We make the induction hypothesis that the sources
of Gk−1 form the set Sk−1. Removing the sources from Gk−1 gives a directed acyclic
graph Gk which contains the sources Sk . One can continue this procedure until all
nodes have been put into sets S0, S1, . . . , Sk with at most k = n sets. �

There exists a relationship between the set (defined in (8.8)) a node belongs to
and the nodes from which there exists an incoming path to that node.

Corollary 12 Consider a node i ∈ Sj . Then there does not exist a path from nodes
k ∈ Sm, m ≥ j , to node i . Conversely, node i has only incoming path from nodes in
the sets S0, ..., Sj−1.

Proof Assume for contradiction that there exists such a path from a node k ∈ Sm ,
m ≥ j to a node i ∈ Sj . By the construction of the sets Sj (8.8), node i must be
a source with no incoming links after the removal of the sets S0, . . . , Sj−1 from G.
But this is a contradiction to the assumption that node j has an incoming link from
a node k ∈ Sm , m ≥ j . �

From the above definition and observations we can derive an upper bound on the
values of knowledge of the nodes in a directed acyclic graph.
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Proposition 13 Consider (8.13) with a linear decay Di (xi ) = dxi , a linear benefit
Bi (A(G), x) = b

∑
j∈N−i

x j and a non-negative cost Ci (A(G), x) ≥ 0 where d ≥ 0,
b ≥ 0. Then for every node i in G there exists a k ≤ n such that

xi (t) ≤ (aktk + ak−1t k−1 + ...+ a0)e−dt . (8.29)

Proof From Proposition (11) we know that the directed acyclic graph G has a parti-
tion of nodes into sources S0, . . . , Sk , k ≤ n. Consider a node x0 ∈ S0. With (8.13)
the time evolution of her value of knowledge is given by

ẋ0 = −dx0 − C0 ≤ −dx0. (8.30)

Here we use the fact that C0 ≥ 0. The function solving the equation ẋ = −dx is an
upper bound for x0(t) (with identical initial conditions), see (8.1).

From Proposition (9) we know that there are first-order sources S1 in G that have
only incoming links from nodes in S0. The evolution of the value of knowledge for
a node x1 ∈ S1 is given by

ẋ1 = −dx1 +
∑

j∈S0

x j − C1. (8.31)

The second term on the right-hand side of the above equation contains the sum
of all values of knowledge of all nodes in S0. We know that they are bounded from
above by x(t) ≤ x(0)e−dt . Thus, (8.31) has an upper bound

ẋ1 ≤ −dx1 + a1e−dt (8.32)

with an appropriate constant a1. The solution of the equation ẋ = −dx + a1e−dt is
given by x(t) = (a1 + a0t)e−dt . It follows that

x1 ≤ (a1 + a0t)e−dt . (8.33)

In the following, we make a strong induction. We have the induction hypothesis
that for the (k − 1)-th order sources there exists an upper bound

ẋk−1 ≤ (ak−1t k−1 + ak−2t k−2 + . . .+ a0)e−dt (8.34)

and this holds also for all nodes in the sets of sources with order less than k− 1. We
consider the nodes in Sk with l ∈ Sk . We have that

ẋl (t) = −dxl + b
∑

j∈N−l

x j − Cl , (8.35)



220 M.D. König et al.

where the in-neighborhood N−l contains only nodes in the sets S0, . . . , Sk−1. For
these nodes an upper bound is given by (8.34), and thus we get an upper bound for
(8.35)

ẋl (t) ≤ −dxl + (ak−1t k−1 + ak−2t k−2 + . . .+ a0)e−dt . (8.36)

We can now use the following lemma:

Lemma 14 For an ordinary differential equation of the form

ẏ + dy = (aktk + ak−1t k−1 + ...+ a2t + a1)e−dt (8.37)

there exists a solution of the form

y(t) =
(

ak

k + 1
t k+1 + ...+ a0

)

e−dt (8.38)

with the limit limt→∞ y(t) = 0

Solving for the upper bound from above gives the desired result.

xl (t) ≤ (aktk + ak−1t k−1 + ...+ a0)e−dt . (8.39)

�
With the last Proposition (13) it is straightforward to obtain the following

proposition, which is the main result of this section.

Proposition 15 Consider (8.13) with a linear decay Di (xi ) = dxi , a linear benefit
Bi (A(G), x) = b

∑
j∈N−i

x j , and a non-negative cost Ci (A(G), x) ≥ 0 where d ≥ 0,
b ≥ 0. If the network G is a directed acyclic graph then the values of knowledge
vanish. This means that G is not permanent.27

Proof From Proposition (13) we know that each node k in the graph G has a value
of knowledge which is bounded by xk(t) ≤ (aktk+ak−1t k−1+· · ·+a0)e−dt for some
finite k ≤ n. Since any finite polynomial grows less than an exponential function we
have that limt→∞ xk(t) = 0. This holds for all nodes in G. This completes the proof
that for all i = 1, . . . , n in a directed acyclic graph G we have that limt→∞ xi (t) = 0
and therefore G is not permanent. �

Thus, if agents are permanent, the graph contains a closed walk (or a cycle). If
agents get their links attached at random, only those survive, who are part of a cycle.
If agents can chose, whom to transfer their knowledge to, then they have to form

27 Remember that the definition of permanence in (8.6) requires that all nodes have non-vanishing
state variables. On the other hand, vanishing state variables would imply that nodes do not interact
with each other and the network would not be permanent.
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cycles in order to survive. Others (Bala and Goyal, 2000; Kim and Wong, 2007)
have found similar results in which the equilibrium network consists of cycles.

There exist a convenient way to identify if a network contains a cycle without
actually looking at the permanence of the network which would require to compute
the long-run values of knowledge (usually by numerical integration). Instead, from
the eigenvalues of the adjacency matrix, A(G), of a graph, G, one can determine
if G contains a cycle. The Perron-Frobenius eigenvalue of a graph G, denoted by
λPF(G), is the largest real eigenvalue of A(G). The following properties hold (Godsil
and Royle, 2001)

Proposition 16 If a graph G

1. has no closed walk, then λPF(G) = 0,
2. has a closed walk, then λPF(G) > 1.

Thus, if the graph contains permanent agents, then λPF(G) > 1. Hofbauer and
Sigmund (1998), Stadler and Schuster (1996) have found similar conditions under
which populations are permanent in a network of replicators.28

Finally, we can compute the probability of a network to contain a cycle if links
were attached at random.

Proposition 17 The probability of a random graph G(n, p) with n nodes containing
a cycle is given by (Jain and Krishna, 2002)

P = (
1− (1− p)n−1

)n
(8.40)

which is 0 if p = 0 and 1 if p = 1.

Proof We can compute the probability of having a closed walk in a random graph
G(n, p). Each link is created with probability p. Thus we have a Bernoulli pro-
cess for the adjacency matrix elements ai j (which indicate if a link exists or
not).

ai j =
{

1 with probability p

0 with probability 1− p
. (8.41)

For every node we have n − 1 events to create a link and we are asking for the
probability of having at least one of them being created (every node should have
at least one incoming link). This is a binomial cumulative function of the form
(Durrett, 2004; Casella and Berger, 2001):

P =
n−1∑

k=1

(
n

k

)

pk(1− p)n−k (8.42)

28 The replicator equation (in continuous form) is given by: ẋi = xi ( fi (x)− φ(x)), where φ(x) =∑
i xi fi (x) and fi (x) is the fitness of species i .
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which is equivalent to (8.40), if we use the Binomial theorem

(x + y)n =
n∑

i=1

(
n

i

)

xi yn−i . (8.43)

�
A similar result to (8.11) has been found by Kim and Wong (2007). The authors

study a generalized version of the network formation model introduced by Bala and
Goyal (2000).29 The equilibrium networks in their model are so-called “minimal”
graphs, which are graphs that maximize the number of agents that are connected
while maintaining only as few links as possible. It is intuitively clear that the most
sparse connected graph is a cycle. Thus, the authors find stable equilibrium networks
that consist of cycles. However, in Sect. 8.3.9.8 we will show that the network evo-
lution can reduce the set of possible cycles in the equilibrium network such that only
the smallest cycles survive.

Thus, cycles play an important role in the evolution of the network and the ability
of agents to have non-vanishing knowledge levels. Before we define the evolution
of the network in Sect. 8.3.9, we study the dynamics of the values of knowledge
for a static network in the next Sect. 8.3.8. There we will further specify the
cost functions under investigation: null costs and non-linear costs for maintaining
links.

8.3.8 Static Network Analysis

In the following, we analyze the growth functions for the value of knowledge and
study two cases separately. In the first, costs are set to zero while in the second costs
are a quadratic function of the values of knowledge of the agents.

8.3.8.1 Null Interaction Costs

The most simple case of our general framework is the one of linear benefit and null
costs.30

29 For a further study of Bala and Goyal (2000) applied to information networks see Haller et al.
(2007), Haller and Sarangi (2005).
30 This model has been studied by Jain and Krishna (1998b), Krishna (2003) to explain the origin
of life from the perspective of interacting agents. The model of Jain and Krishna intends to describe
the catalytic processes in a network of molecular species (which we will denote in the following by
agents). However, it was very soon suggested to be applicable to an economic innovation context
of interacting agents. In the next sections we will present a more general framework encompassing
some of the limitation of the present one. In their model the x were interpreted as concentrations
of chemical species. The ai j are the kinetic coefficients that describe the replication of agents i
resulting from binary interactions with other agents j .
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dxi

dt
= −dxi +

n∑

i=1

a ji x j . (8.44)

In vector notation (8.44) reads:

ẋ = (AT − dI)x, (8.45)

where AT is the transposed of the adjacency matrix and I is the identity matrix. The
solution of the set of equations (8.45) depends on the properties of the matrix A and
has the general form (matrix exponential):

x(t) = e−dt eATt x(0) (8.46)

representing an exponential increase in time of the vector of knowledge values. The
relative values of knowledge (shares) are given by

yi = xi
∑

j x j
;

∑

j

y j = 1. (8.47)

Rewriting (8.44) by means of (8.47) gives us the dynamics of the shares:

ẏi =
n∑

j

a ji y j − yi

n∑

k, j

a jk y j . (8.48)

Equation (8.48) has the property of preserving the normalization of y. Note that the
decay term does not appear in this equation for the relative values. It can be shown
(Horn and Johnson, 1990; Boyd, 2006; Krishna, 2003) that the eigenvector to the
largest real eigenvalue of AT (A respectively) is the stable fixed point of (8.48).31

If we consider an eigenvector y(λ) associated with the largest real eigenvalue λ of
matrix AT (identical to the largest real eigenvalue of A) we have

n∑

j=1

a ji y(λ)
j = λy(λ)

i . (8.49)

Inserting y(λ) into (8.48) yields

ẏ(λ)
i =

n∑

j

a ji y(λ)
j − y(λ)

i

n∑

k, j=1

a jk y(λ)
j (8.50)

31 If the largest real eigenvalue has multiplicity more than one then the stable fixed point can be
written as a linear combination of the associated eigenvector and generalized eigenvectors (Braun,
1993).
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= λy(λ)
i − y(λ)

i

n∑

k, j=1

a jk y(λ)
j

︸ ︷︷ ︸
λ
∑n

k y(λ)
k =λ

(8.51)

= λy(λ)
i − λy(λ)

i = 0. (8.52)

Thus, y(λ)
i is a stationary solution of (8.48). For the proof of stability see, e.g.,

Krishna (2003).

8.3.8.2 Increasing Interaction Costs

In the following, we study the evolution of the values of knowledge under a given
network structure and we try to compute the fixed points wherever possible. We
first show that the values of knowledge are non-negative and bounded. For graphs
with two nodes, for regular graphs (including the complete graph), cycles, and
stars with an arbitrary number of nodes, we can compute the equilibrium points
analytically. For generic graphs with n ≥ 3 nodes, we have to rely on numerical
integrations.

The non-linear (quadratic) dynamical system is given by

ẋi = −dxi + b
n∑

j=1

a ji x j − c
n∑

j=1

ai j x
2
i (8.53)

with initial conditions, xi (0) > 0. ai j are the elements of the adjacency matrix, A,
of a graph G. This can be written as

ẋi = −dxi + b
n∑

j=1

a ji x j − cd+i x2
i (8.54)

where d+i =
∑n

j=1 ai j is the out-degree of node i . In the case of increasing costs we
know that the values of knowledge are bounded. We have that

Proposition 18 For the dynamical system (8.53) the values of knowledge are non-
negative and finite, i.e., 0 ≤ xi <∞, i = 1, . . . , n.

Proof For the lower bound xi ≥ 0, we observe that

ẋi ≥ −dxi − c(n − 1)x2
i . (8.55)

The lower bound is the solution of the equation ẋ = −dx − c(n − 1)x2. The
solution of this equation can be found by solving the corresponding equation for the
transformed variable z = 1

x . We get x(t) = deda

edt−c(n−1)eda with an appropriate constant

a = 1
d ln x(0)

d+(n−1)c . Starting from non-negative initial values x(0) ≥ 0 this lower
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bound is non-negative as well and approaches null for large t , i.e., limt→∞ x(t) = 0.
We conclude that xi (t) ≥ 0.

In order to compute an upper bound, xi ≤ const.<∞we first make the following
observation. The nodes of a graph, G = (V, E), can be partitioned into nodes with-
out outgoing links, V f ⊆ V (“free-riders”), and nodes with at least one outgoing
link, Vs ⊆ V (sources).

Since the “free-riders” in V f have no outgoing links, the benefit terms of
the sources in Vs are independent of the values of knowledge of the free-riders.
Accordingly, a source node i ∈ Vs has the following knowledge dynamics.

ẋi = −dxi + b
∑

j∈Vs\i
a ji x j − cx2

i d+i , (8.56)

where d+i is the out-degree of node i . We can give an upper bound of

ẋi ≤ −dxi + b
∑

j∈Vs

x j − cx2
i . (8.57)

This upper bound has a (finite) fixed point and so does xi (t). The fixed point is
given by

dxi + cx2
i = b

∑

j∈Vs

x j . (8.58)

This is a symmetric equation and therefore all xi are identical, xi = x . For
contradiction assume that there would be xi 	= x j . Then we have that

dxi + cx2
i︸ ︷︷ ︸

b
∑n

k=1 xk

	= dx j + cx2
j

︸ ︷︷ ︸
b
∑n

k=1 xk

(8.59)

But the left and right side of the equation are identical and so two different xi , x j

cannot exist.
When all solutions are identical we get xi = x = bn−d

c ∀i . Thus, we have shown
that there exists an upper bound with a finite fixed point for the source nodes, that is
xi (t) ≤ ∞, i ∈ Vs .

We now consider the nodes with no outgoing links (“free-riders”). A node i ∈ V f

follows the dynamics

ẋi = −dxi + b
∑

j∈Vs

a ji x j . (8.60)

We have shown already that the source nodes are bounded by some constant,∑
j∈Vs

x j ≤ const. Thus, we have that
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ẋi ≤ −dxi + const. (8.61)

We have an upper bound of the xi , i ∈ V f , given by

xi (t) ≤ x0e−dt + const.

d
(8.62)

with limt→∞ xi (t) = const.
d . We have shown that for all nodes (sources Vs as well as

“free-riders” V f ) 0 ≤ xi <∞, i ∈ V (G). �
For special types of graphs we can deduce further results on the values of knowl-

edge of the agents. First, we can compute the fixed points (given by ẋi = 0) for
regular graphs.

Proposition 19 For any k-regular graph G the fixed point of the values of knowl-
edge is given by x∗ = kb−d

kc . In particular, the complete graph Kn has the highest

total value of knowledge among all regular graphs with x∗ = (n−1)b−d
(n−1)c .

Proof The dynamics of the values of knowledge of the nodes in a regular graph with
degree d+i = d−i = k is given by

ẋi = −dxi + b
∑

j∈Ni

x j − ckx2
i . (8.63)

Starting with homogeneous initial conditions we make the Ansatz xi = x i =
1, ..., n. We get the positive stable fixed points x∗ = kb−d

kc . �
Second, we can compute the fixed points for cycles.

Proposition 20 For any cycle Cn the fixed point of the values of knowledge is given
by x∗ = b−d

c .

Proof The dynamics of the values of knowledge of a cycle Ck of length k is given
by

ẋi = −dxi + bxi−1 − ckx2
i . (8.64)

Starting with homogeneous conditions we make the Ansatz xi = x , i = 1, . . . , n.
We get the positive stable fixed points x∗ = b−d

c . �
Third, the fixed points for a star can be computed (the proof can be found in the

Appendix (A)).

Proposition 21 For a star Kn,n−1 there exists a fixed point which increases with the
number of nodes. For d = 0 the star has a fixed point of x∗ = b

c .

Proof The dynamics of the values of knowledge of a star K1,n−1 is given by
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ẋ1 = +b
n∑

i=2

xi − c(n − 1)x2
i , (8.65)

(ẋi )i>1 = −dxi + bx1 − cx2
i , (8.66)

where we assume that all links are bidirectional. Starting with homogeneous initial
conditions we make the Ansatz xi = x2, i = 2, ..., n. Then x2 is determined by the
root of the polynomial

x3
2 +

2d

c
x2

2 +
d(cb + (n − 1)cd)

(n − 1)c3
x2 + b(d2 − (n − 1)b2)

(n − 1)c3
= 0. (8.67)

And x1 = d
b x2 + c

b x2
2 . For d = 0, we obtain x∗1 = x∗2 = b

c . �
The fixed point increases with the benefit b and decreases with the decay d and the
cost c.

We observe that, for vanishing decay, d = 0, the fixed point of the system is
identical for the regular graph, the cycle, and the star and given by b

c . As expected,
this fixed point is increasing with the benefit and decreasing with the cost. In a
regular graph the fixed point is increasing with the degree k and the asymptotic
value (for large k) is b

c . Thus, in a regular graph the fixed point ranges for increasing
k from b−d

c to b
c . Similarly, for the star the fixed point also increases with the number

of nodes (i.e., the degree of the central node) but we cannot provide an analytical
expression here. On the other hand, the fixed point of the cycle is independent of
the length of the cycle. This means that there is no incentive for nodes to be part of
larger cycles. And, as we will see in the next section, this limits the growth of the
network.

Example 22 We numerically integrate (8.53) for n = 2 nodes. We set d = 0.5,
c = 0.5, and b = 1. Fixed points are denoted x∗i for i = 1, 2. x∗i = 0 is a fixed point
for all graphs.

(1)

1 2

A1 =
0 1
1 0

0 5 10 15 20
0.5

0.6

0.7

0.8

0.9

1
x1
x2

x
i

t
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The fixed points are given by

x∗i =
b − d

c
, i = 1, 2, 3. (8.68)

(2)

1 2

A2 = 0
0 0

0 5 10 15 20
0

0.2

0.4

0.6

0.8
x1
x2

x
i

t

1

The fixed points are given by

x∗i = 0, i = 1, 2, 3. (8.69)

(3)

1 2

A3 =
0 0
0 0

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5
x1
x2

x
i

t

The fixed points are given by

x∗i = 0, i = 1, 2, 3. (8.70)

In general, the fixed points of (8.53) can only be computed numerically. As an
example, we compute the fixed points for all graphs with n = 3 nodes for a specific
choice of parameters. The results can be found in Appendix (A). In our model we
numerically integrate (8.53) for a large time T (and we find that in our simulations
the system always reaches a stable fixed point).
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8.3.9 Dynamics of Network Evolution

8.3.9.1 Network Evolution as an Iterative Process

After providing the static equilibrium analysis, in this section we turn now to the
dynamics of the network evolution by investigating different assumptions for the
creation and deletion of links in the network. In particular, we compare two differ-
ent scenarios, namely the so-called extremal dynamics, where agents do not decide
themselves about the link creation and deletion, and the utility driven dynamics,
where agents make this decision themselves based on different rules discussed
below.

We first define the utility of the agents in our model for a given network G.

Definition 23 Consider a (static) network G. The utility of agent i is given by

ui =
{

yi (T ), for Null Interaction Costs

xi (T ), for Increasing Interaction Costs
, (8.71)

where the value of knowledge xi (t) is given by (8.53) and A(G), the relative value
of knowledge yi (t) by (8.48) and A(G). T is called the time horizon.

We assume that the accumulation of knowledge is faster than the frequency of the
agents creating or deleting links.32 With this assumption, we can introduce a time-
scale separation between the accumulation of knowledge and the evolution of the
network.

The evolution of the system is then defined by an alternating sequence of
knowledge accumulation, where we keep the network fixed for a given time T ,
A(G) =const., and changes in the links (asynchronous updating of the nodes) (see
Fig. 8.7). When the knowledge accumulation has reached time T , the network struc-
ture is changed. A change in the network takes place by either link addition between
two agents i and j , ai j = 0 → ai j = 1, or by link removal, ai j = 1 → ai j = 0.
When the network has changed, the new utility, determined by (8.18), can be com-
puted for time 2T . This iterative procedure of knowledge accumulation and link

Fig. 8.7 Schematic
representation of the network
evolution as an iterative
process

initialization

xi reach
quasi-equilibrium

perturbation
of aij

32 This means that the value of knowledge on the market (which is not explicitly modeled here)
reaches a stationary state determined by the R&D collaborations of each agent (and her neighbors).
Only after this adaptation of the evaluation of the stocks of knowledge is finished, i.e., it has reached
a stationary state, agents asynchronously change their links.
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changes continues for 3T, 4T, ... and so on until the network reaches an equilibrium.
One can schematically represent this iteration by the following algorithm:

1. initialization: Random graph G(n, p).
2. quasi-equilibrium: fast knowledge growth/decline

With A fixed, agents evolve according to (8.13) for a given (large) time T .
3. perturbation: slow network evolution

After time T , the network evolves according to two alternative selection pro-
cesses:

1. Extremal Dynamics.33

The agent with the minimum utility is chosen (if there are more than one agent
with the same minimum value, then one of them is chosen at random). The
utility of that agent is set to its initial value and all its outgoing and ingoing
links are replaced with new random links drawn with probability p from and
to all other agents in the system.

2. Utility Driven Dynamics
An agent is randomly chosen to create or delete one link (unidirectional or
bidirectional link formation mechanisms, see Sect. 8.3.9.3). More specifically:

(i) Either a pair or a single agent is randomly chosen to create or remove a
link.

(ii) The effect of this link decision (creation or deletion) is evaluated at time T .
The evaluation can have the following consequences on the link decision.

• If the utility has increased, then sustain the link decision.
• If the utility has decreased, then undo the link decision.

4. Stop the evolution, if the network is stable (stability is defined in Sect. 8.3.9.3,
otherwise go to 2

8.3.9.2 Extremal Dynamics Versus Utility Driven Dynamics

Extremal dynamics intends to mimic natural selection (the extinction of the weakest)
and the introduction of novelty, which is a global selection mechanism. In contrast,
utility driven dynamics is a local selection mechanism that mimics the process by
which selfish agents improve their utility through a trial and error process.

The decision upon to add or to remove a link implies a certain level of informa-
tion processing capabilities (IPC) of the agents. IPC is usually bounded in a complex
environment consisting of many other agents and a complex structure of interactions
between these agents. In our approach we assume that the agents have no infor-
mation on the knowledge values of the other agents and only limited information
on their links (alliances). They only know with whom they interact directly (their
neighborhood). In Table 8.2 we give a short overview of levels of increasing IPC.

33 See Bak and Sneppen (1993).
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Table 8.2 Increasing levels of agents’ information processing capabilities (IPC)

0 Least fit addition/removal of links, e.g Jain and Krishna
(1998b)

1 Reactive (passive) acceptance/refusal of link changes.
2 Deliberate decision upon to add/remove a link based on an

individual utility function depending on the network, without
considering the possible decision of others. An example
would be the Connections model discussed in Sect. 8.2.2
with a utility function given by (8.4).

3 Strategic interaction, e.g., Bala and Goyal (2000),
considering the possible actions of others

Extremal dynamics refers to a situation in which agents are exposed to link
changes that they cannot influence and thus to level 0 in Table 8.2. Utility driven
dynamics instead requires a higher level of IPC than a mere acceptance or refusal of
link changes. But it requires less IPC than an approach assuming strategic interac-
tions of agents. This follows from the fact that in our model, agents do not estimate
how other agents could react on their decisions to change their links. This situation
refers to level 2 in Table 8.2. In this chapter, we compare two different settings, level
0 and level 2. In the following paragraphs, we describe them in more detail.

0 Extremal Dynamics: At time T the agent with the smallest utility is removed
from the system and replaced with a new one (market entry). The new agent is
randomly connected to the already existing agents and a small initial value of
knowledge is assigned to it. This process is a least fit replacement (extinction
of the weakest) and the new agent introduces a kind of novelty in the system
(innovation).

2 Utility Driven Dynamics: The main difference between local link formation
(utility driven dynamics) compared to global link formation (extremal dynam-
ics) is that agents are now individually taking decisions upon their interactions
and they do that on the basis of a utility function (their values of knowledge at
time T ). Agents are bounded rational since they explore their possible interaction
partners in a trial and error process. At every period, that is after time T , an
agent is selected at random to create and delete links (asynchronous update). We
distinguish two possible link formation mechanisms which we study separately,
namely unilateral and bilateral link formation. In the former, unilateral link for-
mation (i), the agent optimally deletes an old link and randomly creates a new
link. Optimal means that either for creation or deletion of links the action is taken
only if it increases the value of knowledge of the agent at time T in the range of all
possible actions. In the latter, bilateral formation (ii), the selected agent optimally
deletes a bilateral connection that she currently has or she randomly creates a new
bilateral connection. Here optimal (in the range of all possible actions) means,
that links are deleted if the initiator of the deletion, i.e., the selected agent, can
increase its value of knowledge at time T with the deletion of the link, while
for the bilateral creation both agents involved have to strictly benefit from the
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creation of the mutual connection.34 In the following two sections, we give a
description of mechanisms (i) and (ii).

To compare the two levels, for utility driven dynamics the evolution of the net-
work follows from local, utility driven, actions, as opposed to extremal dynamics,
where the evolution follows from a global stochastic process (least fit selection plus
random link formation). To be more specific about the latter, the rules for the net-
work evolution, i.e., the creation and deletion of links under extremal dynamics, are
the following:

Step 1 After a given time T the least fit agent, i.e., the one with the smallest ui =
yi (T ), is determined. This agent is removed from the network along with all
its incoming and outgoing links.

Step 2 A new agent is added to the network with some small initial value of knowl-
edge y0. The new agent will take the place of the old one (it gets the same
label), and randomly links itself to the other nodes in the network with the
same probability p. Each of the other nodes can in turn link itself to the
newcomer node with a probability p.

These rules for the network evolution are intended to capture two key features:
natural selection, in this case, the extinction of the weakest; and the introduction
of novelty. Both of these can be seen as lying at the heart of natural evolution. The
particular form of selection used in this model has been inspired by what Bak and
Sneppen have called “extremal dynamics” (Bak and Sneppen, 1993).

8.3.9.3 Rules for Link Creation and Deletion Using Utility Driven Dynamics

In this section, we introduce the process of the formation and deletion of links by
agents that maximize a local utility function (depending on the agent and its neigh-
bors). After time T , long enough such that the system reaches a quasi-equilibrium
in the values of knowledge, an agent is randomly chosen to create or delete a link,
either unidirectional or bidirectional.

Unilateral Link Formation

If agents unilaterally delete or create links, it is possible that the interactions they
form create a feedback loop, i.e., a closed cycle of knowledge sharing agents, that
involves more than two agents. This introduces the concept of indirect reciprocity
(see Sect. 8.3.3). Unilateral formation of links (we then have a directed network) is
necessary for indirect reciprocity to emerge, since if all interactions were bilateral
they would be direct reciprocal by definition. We now describe the procedure of
unilateral link creation and deletion.

34 This behavior is individually optimal and thus may also be called rational.
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1. Random Unilateral Creation
An agent creates a link to another one to which it is not already connected at
random and evaluates the creation of the link by comparing the change in their
values of knowledge before and after the creation. Only if the change is positive,
the link is maintained, otherwise the agent does not create the link. In this way
agents explore possible partners for sharing their knowledge in a trial and error
procedure (Fig. 8.8).

Step 1 An agent i is selected at random.
Step 2 Another agent j is selected at random which is not already an out-

neighbor of i .
Step 3 Agent i creates an outgoing link to agent j .
Step 4 The new utility (for the old network plus the new link ei j ) of agent i is

computed and compared with the utility before the creation.
Step 5 Only if agent i’s utility strictly increases compared to her old utility, then

the link is created.

2. Optimal Unilateral Deletion
An agent deletes one outgoing link if this increases her utility (Fig. 8.9).

Step 1 Agent i is selected at random s.t. it has at least one outgoing link.
Step 2 Agent i deletes separately each of its outgoing links to its neighbors v j ∈

N+i and records the change in her utility, Δui . Before the next link is
deleted, the previous one is recreated.

Step 3 Agent i computes the maximum change Δui and if it is positive, deletes
the referring link. This means that only one link is finally deleted. The
deletion only takes place if the current agent strictly increases her utility.

To characterize the equilibrium networks under this link formation and deletion
mechanism, we introduce the following characterization of stability.35

Definition 24 A network is unilaterally stable if and only if (i) no agent can create
a link to (strictly) increase her utility and (ii) no agent can remove a link to (strictly)
increase her utility.

Fig. 8.8 Random unilateral
creation 1 2

create

Fig. 8.9 Optimal unilateral
deletion

1

23

4 5

delete

35 Compare this to the definition of bilateral stability (8.20)
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Bilateral Link Formation

If agents form links bilaterally then all interactions are direct reciprocal by defini-
tion. We describe the process of bilateral link creation and deletion in the following
paragraphs:

1. Random Bilateral Creation
In this link creation process, a pair of agents is selected at random and given the
possibility to form a bilateral connection (Fig. 8.10).

Step 1 Two agents are uniformly selected at random such that they are not
connected already.

Step 2 Both agents create an outgoing link to each other and therewith create a
2-cycle.

Step 3 The new utilities (for the old network plus the new 2-cycle) of both agents
are computed and compared with the utilities before the creation.

Step 4 Only if both agents strictly benefit in terms of their utilities compared to
their old utilities, then the bilateral connection is created.

2. Optimal Bilateral Deletion
An agent deletes one of its outgoing links to another agent from which the agent
also has an incoming link if this deletion increases her utility (Fig. 8.11).

Step 1 Agent i is selected at random such that it has at least one mutual link to
another agent.

Step 2 From all bilaterally connected neighbors agent i deletes separately each
of its outgoing links to its neighbors (and so does each neighbor j to
agent i). For each, the change in the utility, Δui is recorded. Before new
links are deleted, the old ones are recreated.

Step 3 Agent i computes the maximum change Δui and, if it is positive, the
referring bilateral connection is deleted. The deletion only takes place if
agent i strictly increases her utility.

In order to characterize the equilibrium outcomes of our simulations, we will
introduce a characterization of network stability. This definition has been introduced
already in Sect. 8.2.2 and we repeat it here for expository reasons.

Definition 25 A network G is pairwise stable if (i) removing any link does not
increase the utility of any agent and (ii) adding a link between any two agents,
either doesn’t increase the utility of any of the two agents, or if it does increase one
of the two agents’ utility then it decreases the other agent’s utility.

Fig. 8.10 Random bilateral
creation

1 2

create

create
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Fig. 8.11 Optimal bilateral
deletion
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delete
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8.3.9.4 The Role of the Time Horizon for Unilateral Link Formation

So far, we have assumed that the time horizon T (after which agents evaluate their
decisions to create or delete links) is long enough such that the values of knowledge
reach a stationary state and the utilities of the agents are given by the fixed points
of the values of knowledge. In this section, we discuss the effect of a time horizon
that is smaller than the time to convergence to the stationary state of the values of
knowledge. For related works that incorporate a finite time horizon in the evaluation
of the actions of agents see, e.g., Huberman and Glance (1994) or Lane and Maxfield
(1997).

If we consider utility driven dynamics, we will show that permanent networks
with positive values of knowledge emerge if agents wait long enough (with respect
to the time the values of knowledge need in order to reach a stationary state) in
evaluating their decisions. This is a necessary condition. Otherwise networks are not
able to emerge or, if a network with positive knowledge values is existing already, it
gets destroyed over time (network breakdown). This effect is important in the case
of null as well as increasing costs.

To illustrate this point, we consider a 5-cycle of agents and the deletion of one
link in this cycle which creates a linear chain of five nodes, Fig. 8.12. The evolution
of value of knowledge for null costs and for costs c = 0.5 can be seen in Fig. 8.13.

More formally we can give the following proposition:

Proposition 26 Consider the dynamical system (8.21). For a directed path Pk of
length k the value of knowledge of node k is larger than ε for t ≤ τ (ε), i.e., xk(t ≤
τ (ε)) ≥ ε while limt→∞ xk(t) = 0.

Proof Consider a directed path Pk of length k (Fig. 8.14).
For node 1 (the source has no incoming links) in (8.21) we get

ẋ1(t) = −dx1 − cx2
1 . (8.72)

By introducing the variable z = 1
x1

and solving for z, one can find the solution
for x1

Fig. 8.12 A 5-cycle and a
linear chain of five nodes
(obtained from the cycle by
removing one link)

1
2

3
4

5 →
1

2

3
4

5



236 M.D. König et al.

0 10 20 30
0

0.5

1

1.5

 

x1

x2

x3

x4

x5x
i

t

1/n

0 10 20 30
0

2

4

6
x1

x2

x3

x4

x5x
i

t

(b − d)/c

Fig. 8.13 Numerical integration of the value of knowledge for d = 0.5, b = 1.0, null cost c = 0.0
(left) and cost c = 0.5 (right): evolution of knowledge values for a linear chain of five nodes
(obtained from the C5 by removing a link). The agent that removes the link (black upper curve)
initially experiences an increase in the value of knowledge. After an initial increase she experiences
a decline and at a certain time her value of knowledge reaches her initial value (1/n in the case of
null cost and (b − d)/c in the case of increasing cost) and then it further decreases. After a time
long enough her value of knowledge vanishes completely

1 2 k − 1 k· · ·
Fig. 8.14 A directed path Pk of length k

x1(t) = deda

edt − ceda
(8.73)

with a constant a = 1
d ln x1(0)

d+c and the limit limt→∞ x1(t) = 0. Accordingly, for the
k-th node we have that

ẋk = −dxk + bxk−1 − cx2
k . (8.74)

Since xk ≥ 0, from Proposition (18), the following inequality holds

ẋk ≥ −dxk − cx2
k (8.75)

and

xk(t) ≥ deda′

edt − ceda′ (8.76)

with a proper constant a′ = 1
d ln xk (0)

d+c . Equating with ε(t) at t = τ we get

ε = d

edt−da′ − c
(8.77)
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which yields

τ (ε) = ln
(

d
ε
+ c

)+ a′d
d

. (8.78)

Thus, we have found an ε(τ ) such that for t ≤ τ (ε) xk(t) ≥ ε. The limit
limt→∞ xk(t) = 0 follows directly from the fact that the directed path Pk is a directed
acyclic graph and we can apply Proposition (15). �

With Proposition (26) one can readily infer the following. If an agent in a cycle
Ck of length k removes a link unilaterally then a path Pk is created. If the time
horizon after which the agent evaluates this link removal is smaller then τ (ε)) the
agent’s value of knowledge satisfies xk(t ≤ τ (ε)) ≥ ε (this gives the utility of the
agent, see (23)). From Proposition (20) we know that the value of knowledge of
the agent in the cycle is given by xk(0) = b−d

c . Choosing τ (ε) such that ε > b−d
c

gives xk(t ≤ τ (ε)) ≥ xk(0) and the agent experiences an increase in her utility by
removing the link. The agent removes the link in order to increase her utility. This
destroys the cycle. The time horizon of the agent in this case is too short in order
to anticipate the vanishing long-run values of knowledge of all the agents in the
resulting path, limt→∞ x(t) = 0.

From this observation we conclude that if the time horizon is too short, then
all cycles would get destroyed and no network would ever be able to emerge nor
sustain, since only cyclic networks can be permanent. Agents who remove their
links because, in the short run, their utility increases therewith, can be considered as
free-riders. The value of knowledge is maintained by their predecessors in the cycle
while they refuse themselves to contribute to knowledge sharing and production in
the network since they do not have any outgoing links. In the short run they benefit
from the knowledge shared and produced in the network without contributing to it.
However, as we have seen from the discussion above, in the long run this causes the
total value of knowledge of the network to vanish. Therefore, we can say that the
free-riding behavior of agents leads to the breakdown of the economy.

8.3.9.5 Simple Equilibrium Networks for Unilateral Link Formation

In this section, we identify the most simple equilibrium networks for unilateral link
formation. There exists a multitude of other equilibrium networks which usually
cannot be computed analytically and which depend on the parameter values for
decay, benefit, and cost.

The most simple equilibrium network is the empty network.

Proposition 27 The empty graph is unilaterally stable.

Proof In an empty graph all nodes have vanishing values of knowledge. Creating a
link does not create a cycle (which would be the case however if links were formed
bilaterally) and thus the empty graph plus a link is a directed acyclic graph with
vanishing values of knowledge, see Proposition (15). The creation of a link does not
increase the utility of an agent. Thus, the agents do not form any links. �
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Moreover, if all agents form disconnected cycles then we have an equilibrium
network.

Proposition 28 The set of disconnected cycles {C1, ..., Ck}, and possibly isolated
nodes is unilaterally stable.

Proof We give a proof for 2-cycles. The proof can easily be extended to cycles of
any length. Consider the two cycles C1

2 and C2
2 in Fig. 8.15.

From Proposition (20) we know that the fixed points are given by xi = b−d
c ,

i = 1, ..., 4. In order to show that we have a unilaterally stable equilibrium, we (i)
first show that no link is created and in the following (ii) that no link is deleted.

(i) If a link is created (w.l.o.g.) from node 2 to 4 we get from the dynamics on the
value of knowledge in the case of increasing interaction costs given by (8.21)

ẋ1 = −dx1 + bx2 − cx2
1

!= 0

ẋ2 = −dx1 + bx1 − cx2
2

!= 0
. (8.79)

From the first order conditions for the fixed points we get for node 1

x1 = bx2 − c

d
. (8.80)

And inserting this into the fixed point of node 2 gives

x2 = b2 − d2 +√b4 − 8bc3d − 2b2d2 + d4

4cd
(8.81)

If the last inequality is fulfilled, then the creation of the link would decrease the
utility of agent 2. The inequality holds if c3 ≥ (d−b)3

b which is certainly true for
b > d and c > 0. Thus, no link is created between the cycles.

(ii) If a link is deleted in a C2 then we get vanishing steady-state values of knowl-
edge. Since b−d

c ≥ 0 this would reduce the utility of the agent. Therefore, the
link is not removed.

If there are k ≤ � n
2 � 2-cycles in G then the above argument holds for any pair of

cycles. Similarly, no isolated node can create a link in order to increase her utility
nor can a node in a cycle create a link to an isolated node. Neither link creation

Fig. 8.15 Two cycles C1
2 and

C2
2 and the cases of link

creation (i) and deletion (ii)

1

2

3

4

(ii)

(i)
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nor removal increases the utility of the initiating agent and so the set of 2-cycles is
unilaterally stable. �

We further conjecture that a set of disconnected autocatalytic sets, where an auto-
catalytic set is defined as a set of nodes each having an incoming link from a node of
that set (Jain and Krishna, 2001), stays disconnected under unilateral link formation.
Thus, the size (in terms of nodes) is stable.

With (28) we know that a cycle is unilaterally stable. In Sect. 8.3.9.4, however,
we have shown that this result is critically depending on the time horizon T after
which the action of an agent is evaluated (and it is true for cycles of any length only
if T →∞).

For parameter values d = 0.5, b = 0.5, and c = 0.1 also, the complete graph
with three nodes K3 and the path P3 is unilaterally stable. We observe this in simula-
tions in Fig. 8.22. However, by computing the fixed points numerically for d = 0.5,
b = 0.5, and c = 0.1 in Appendix (A) one can see that K3 is no longer unilaterally
stable (because removing a link increases the utility of an agent).

In the next section, we investigate if the dynamic processes of link formation and
deletion lead to the simple equilibrium structures suggested above (and indeed we
show that they are not obtained).

8.3.9.6 Simulation Studies Using Different Growth Functions

In the remainder of this chapter, we study simulations with different growth func-
tions (for the value of knowledge) and different link formation mechanisms. We
assume that the time horizon T is long enough such that the values of knowledge
reach their stationary state. The dynamics of the value of knowledge is given by
(8.19) with null costs or by (8.21) with increasing costs. The different link formation
mechanisms are described in Sect. 8.3.9.2. We compare the equilibrium networks
obtained from different costs and link formation rules in terms of their structure and
performance. Finally, we study the effect of different positive network externalities
on the equilibrium networks.

Table 8.3 gives an overview of the simulations that we study in the following.
We set d = 0.5, b = 0.5, and c = 0.1. The complete set of parameter values used
throughout this section can be found in Table 8.5 in the Appendix (C).

8.3.9.7 Null Interaction Costs

In the following, we briefly discuss the evolution of the network with least fit link
formation and null link costs. This model has been studied in detail by Seufert and
Schweitzer (2007); Jain and Krishna (2001). Later Saurabh and Cowan (2004) have
applied it to an innovation model where new ideas are created and destroyed in a
network of ideas.

In this model agents do not have to pay costs for maintaining interactions.
Accordingly, the dynamics on the values of knowledge is given by (8.19)
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Table 8.3 Overview of the simulation studies in the following sections with different knowledge
growth functions and different link formation mechanisms

Knowledge Dynamics Network Dynamics Section

Null costs, ci j = 0: Least fit replacement (8.3.9.7)
dxi
dt = −dxi + b

∑n
j=1 a ji x j

Quadratic cost, ci j ∝ x2
i : Least fit replacement (8.3.9.8)

unilateral link formation
dxi
dt = −dxi + b

∑n
j=1 a ji x j − c

∑n
j=1 ai j x2

i bilateral link formation

Quadratic cost, ci j ∝ x2
i , and Unilateral link formation (8.3.9.9)

externality, w j i :
dxi
dt = −dxi +

∑n
j=1(ba ji + bew j i )x j − c

∑n
j=1 ai j x2

i

dxi

dt
= −dxi + b

n∑

j=1

a ji x j

and the dynamics in the shares of the values of knowledge yi = xi/
∑n

j=1 x j is
given by (8.48).

ẏi =
n∑

j

a ji y j − yi

n∑

k, j

a jk y j .

The utility is given by ui = yi (T ). We have described in Sect. 8.3.8 that the fixed
point (stationary solution) of the relative values of knowledge in (8.48) exists and
is given by the eigenvector to the largest real eigenvalue of the adjacency matrix.
We assume that the time horizon T (after which links get created or deleted) is
large enough such that the system has reached this stationary state before links are
changed.

Extremal Dynamics: Least Fit Replacement

After time T the worst performing agent (in terms of her share of value of knowledge
yi (T )) is replaced with a new one. We have described this global link formation
mechanism in Sect. 8.3.9.2. Jain and Krishna (1998a, 2001), Seufert and Schweitzer
(2007) have extensively studied the behavior of the dynamics on y and the network
G represented by A(G). They showed that strongly connected sets of nodes with
free-riders (that are receiving knowledge from the strong component but are not
contributing knowledge back to the strong component) attached36 appear and get
destroyed in the process of repeatedly removing the worst performing node (with
minimum yi ) and replacing it with a new one.

36 Jain and Krishna (2001) denote this set of nodes the autocatalytic set (ACS): it is a subgraph of
nodes in which every node has at least one incoming link from that subgraph.
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Fig. 8.16 Least fit replacement: (a) Average utility. (b) Average degree. (c) Initial random graph.
(d) Graph after 5000 iterations

In computer simulations we can reproduce the results of Jain and Krishna (2001),
Seufert and Schweitzer (2007). We observe crashes and recoveries in the average
utility and degrees of the agents over time as can be seen in Fig. 8.16. Thus, no
stable equilibrium network can be realized with this type of network dynamics.

In the model of Jain and Krishna (2001) links are costless. In the next Sect. 8.3.9.8
we assume that links have a cost attached, that is an increasing function of the value
of knowledge that is being transferred (Sect. 8.3.9.8).

Moreover, the least fit network dynamics treats agents as completely passive units
that are exposed to an external selection mechanism. In a more realistic approach
one should take into account that agents are deliberately deciding upon with whom
to engage in an R&D collaboration or to share their knowledge with. These deci-
sions are taken on the basis of increasing a utility function, that is their value
of knowledge.37 We introduce local link formation rules in Sect. 8.3.9.3. More-
over, as a further extension we study the effect of positive network externalities in
Sect. 8.3.9.9.

37 A model in which the eigenvector associated with the largest real eigenvalue is used as a utility
function is studied in Ballester et al. (2006).
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8.3.9.8 Increasing Interaction Costs

In this section we study the effect of increasing costs for maintaining interactions
with other agents on the resulting equilibrium networks. The evolution of the value
of knowledge is given by (8.53) and the utility of the agents by (8.18). The cost of
a link depends quadratically on the value of knowledge of the agent that initiates
the interaction. We study three different link formation mechanisms. The first is a
least fit replacement. We will compare the results of the simulation with the preced-
ing section where links were costless. In the following two sections link formation
mechanisms are studied in which agents decide locally upon to create or delete
links either unilaterally or bilaterally based on their utility (8.18). We assume that
the time horizon is long enough such that the utility of the agents is given by the
fixed points of the value of knowledge. We will show that least fit replacement of
agents leads to a total network breakdown eventually from which the system cannot
recover. Moreover, we show that bilateral link formation leads to a complete graph
while with unilateral link formation this is not the case. For unilateral link formation
only a small number of agents have non-vanishing knowledge values in the resulting
equilibrium network and these cluster together in bilateral connections. Depending
on the link formation mechanism and the parameter values (for decay, benefit, and
cost) the equilibrium networks can vary considerably.

The evolution of the value of knowledge of agent i (8.53)

dxi

dt
= −dxi + b

n∑

i=1

a ji x j − c
n∑

i=1

ai j x
2
i

and her utility is given by ui = xi (T ).

Extremal Dynamics: Least Fit Replacement

Similarly to the preceding section, links are formed and removed by a least-fit selec-
tion mechanism (introduced in Sect. 8.3.9.2). The agent with the smallest utility
(8.18) is replaced with a new agent. But in this section costs for maintaining links
are an increasing function of the knowledge value of the transmitting agent.

In this setting, it is possible that the system breaks down completely. A simulation
run exhibiting such a crash can be seen in Fig. 8.17. If the network is sparse enough
the link removal mechanism can destroy the cycles in the network and thus creates
a directed acyclic graph. As soon as the network evolution hits a directed acyclic
graph, all value of knowledge vanish (and accordingly the utilities of the agents)
and the network entirely breaks down.

We do not experience a breakdown of the network in the case of null costs in the
last section since there we were considering relative values of knowledge only. The
normalization of the relative values,

∑n
i=1 yi = 1 prevents all the shares to become 0

at the same time, yi = 0 ∀i . Thus, we do not get a total breakdown of the network in
which all values of knowledge vanish. Instead, there the system can always recover
from a crash of the network.
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Fig. 8.17 Extremal dynamics: (a) Average utility. (b) Average degree. (c) Initial random graph.
(d) Graph after 5000 iterations (in the equilibrium). The network experiences a total breakdown
eventually

Utility Driven Dynamics: Bilateral Link Formation

In this section, agents are creating or deleting links bilaterally. All interactions are
therefore direct reciprocal. In simulations we observe the following effect. Bilat-
eral creation and deletion results in a complete subgraph (the average degree is
1/n

∑
di = 1/20× 8× 7 = 2.8, see Fig. 8.20) of the agents that were part of a per-

manent set in the initial graph38 (the stability criterion which defines an equilibrium
network is given in (25)).

Utility Driven Dynamics: Unilateral Link Formation

The mechanisms of unilateral creation and deletion of links has been introduced in
Sect. 8.3.9.3. In our simulations we observe the following effect. When we allow for
unilateral link formation, large cycles get reduced to a small set of 2-cycles. In the
equilibrium network (the stability criterion which defines an equilibrium network is

38 The creation of the initial random graph with a given link creation probability has been chosen
rather small such that only a few nodes are permanent.



244 M.D. König et al.

0 500 1000
0.4

0.5

0.6

0.7

0.8
u

×Ta

0 500 1000
0.5

1

1.5

2

2.5

3

d

×Tb

15

9

1

18

12

13

2
14

4

3

6

5
7

8

11

10

19
17

16

0

15

9

1

18

12

13

2
14

4

3

6

5
7

8

11

10

19
17

16

0

c

15

9

1

18

12

13

2

14

4

3

6

57

8

11

10

19

17

16

0

15

9

1

18

12

13

2

14

4

3

6

57

8

11

10

19

17

16

0

d

Fig. 8.18 Bilateral link formation: (a) Average value of knowledge. (b) Average degree. (c) Initial
random graph (for reasons of visualization we have chosen a rather sparse random graph). (d)
Graph after 1000 iterations (in the equilibrium)

given in (8.19)) most of the agents are isolated nodes and thus have vanishing values
of knowledge. Only a few of them are organized in 2-cycles and small subgraphs
consisting of multiple 2-cycles. As we will show, the reason for this is that as soon
as there exists a shortcut (a smaller cycle) in a larger cycle agents try to free-ride
and, after the other agents have realized that and sopped sharing their knowledge
with them, they get isolated and experience vanishing values of knowledge. One
can interpret this result as follows: Even though agents could in principal form
indirect reciprocal interactions the resulting equilibrium network consists only of
direct reciprocal interactions (2-cycles and clusters of 2-cycles).

We can give an example of the process of the reduction of cycles in a graph
G with three nodes for parameter values d = 0.5, b = 1, and c ∈ (0, 1). By
numerically comparing utilities (the fixed points of the value of knowledge) before
and after a link is created or deleted, we show that there exists a sequence of link
deletions and creations which transform a 3-cycle into a 2-cycle while every link
change is associated with an increase in the utility (the fixed point in the value of
knowledge) of the initiating agent (Jackson (2003) calls this sequence of graphs an
“improving path”).

In Fig. 8.19 (left) agent 3 creates a link to agent 1 because in this range of
parameters this increases her value of knowledge. This can be seen in Fig. 8.19
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Fig. 8.19 Agent 3 forms a link to agent 1, e31, and thus a 2-cycle is created inside a 3-cycle. The
situation is illustrated on the left hand side. On the right, the evolution of the values of knowledge
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Fig. 8.20 Deletion of the link e21. Agent 2 is not sharing any knowledge with others but only
receiving knowledge from agent 3. Thus, agent 2 is free-riding. The situation is illustrated on the
left hand side. On the right, the evolution of the values of knowledge for different values of cost
are shown

(right), where the increase Δx3 different costs c ∈ (0, 1) are plotted and Δu3 =
limt→∞Δx3 > 0.

In Fig. 8.20 (left) agent 2 removes her link to agent 1 and thus she stops con-
tributing knowledge but instead is only receiving knowledge from agent 3. We say
that agent 2 is free-riding. This increases her utility, since Δu2 = limt→∞Δx2 > 0,
as can be seen in Fig. 8.20 (right) for different costs c.

Finally, in Fig. 8.21 (left) agent 3 removes her link to agent 2 because she is
better off, as illustrated in Fig. 8.21 (right), when she stops contributing knowledge
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Fig. 8.21 Deletion of the link e32 by agent 3. Agent 3 realizes that she is better off by not sharing
her knowledge with agent 2. Agent 2, who was free-riding before now gets isolated and experiences
a vanishing value of knowledge in the long run. The situation is illustrated in the figure to the left.
On the right, the evolution of the values of knowledge for different values of cost are shown
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Fig. 8.22 Unilateral link formation: (a) Average utility. (b) Average degree. (c) Initial random
graph. (d) Graph after 2000 iterations (in the equilibrium). For the parameter values d = 0.5,
b = 0.5, c = 0.1, used in this simulation, the complete graph K3 is an equilibrium. Note from
Appendix (A) one can see that for parameter values d = 0.5, b = 1, c = 0.5 this is no longer the
case and K3 would be reduced to a 2-cycle C2

Agent 2 therefore gets isolated and experiences a vanishing value of knowledge in
the long run, limt→∞ x2 = 0. Her utility is null.

We end up in a setting where out of a cooperation of many (the sharing of knowl-
edge) only a small set of cooperators remains and all the remaining agents vanish,
i.e., have vanishing values of knowledge and utility. We can see this in a simulation
starting from an initial random graph with 30 agents and the resulting equilibrium
network in Fig. 8.22 (bottom right).

Since the performance of the system in terms of the total value of knowledge
is very low, we investigate in the next section the conditions under which the per-
formance can be increased (with more agents being permanent in the equilibrium).
We find that the existence of a positive network externality (explained in the next
section) can enhance the performance of the system.

to an agent that is nothing contributing in return. This is actually true for agent 2.
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8.3.9.9 Introducing Positive Network Externalities

In this section, we study the growth of the value of knowledge which includes an
additional benefit term contributing to an increase in the value of knowledge. This
additional benefit depends on the network structure itself. In the economic literature
(Mas-Colell et al., 1995; Tirole, 1988), “positive network externalities arise when a
good is more valuable to a user the more users adopt the same good or compatible
goods.” In our model we define a network externality simply as a function of the
network structure that affects the utility of an agent. Including the externality in
the benefit can yield more complex structures with non-vanishing knowledge values
as equilibrium networks. More precisely, we introduce weights for the connections
between the agents that depend on a measure of network externalities that we will
introduce in the following sections. This means that, if we have strong network
externalities between agent i and agent j , then the weight wi j will represent this
effect and attain a high value. Taking into account the existence of such network
externalities, the growth of the value of knowledge of agent i is given by the
following equation:

dxi

dt
= −dxi + b

n∑

i=1

a ji x j + be

n∑

i=1

w j i x j

︸ ︷︷ ︸
positive network externality

−c
n∑

i=1

ai j x
2
i (8.82)

and the utility is again given by ui = limt→∞ xi (t). Link changes are based on
the increase in utility. The network benefit incorporates the fact that the value of
knowledge can change with the number of users of that knowledge, (8.82). But
the number of users can either enhance or diminish the value of knowledge that
is being transferred between agents, depending on the type of knowledge under
investigation. On one hand, the value can decrease with the number of agents that
pass on that knowledge. Knowledge is attenuated with the distance from the creator
to the receiver. We study this type of knowledge with a link weight defined in (8.82)
and denoted by wc

j i . In the next section, we study the opposite effect: the value of
knowledge increases with the number of users. This holds for example for general
purpose technologies that get more valuable the more they are applied and used
in different contexts (and users). The link weights used for this type of knowledge
in (8.82) are denoted by wccn

j i , wcce
j i , where the first measures the number of agents

using that knowledge and the second the number of interactions.
We introduce different link weights, denoted by wc

j i , w
ccn
j i , wcce

j i . Moreover, agents
are creating and deleting links unilaterally (utility driven dynamics). We then study
the effect of different weights on the equilibrium networks obtained.

Shortest-Path Centrality

The growth function of the value of agent i is given by
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dxi

dt
= −dxi +

n∑

j=1

(ba ji + bew
c
j i )x j − c

n∑

j=1

ai j x
2
i . (8.83)

The utility is given by ui = limt→∞ xi (t) (large T ). Link changes are accepted on
the basis of an increase in utility. The shortest-path centrality measure computes the
sum of the inverse lengths of all the shortest paths containing the link for which the
centrality is computed. If two agents are not connected then the length of the path is
assumed to be infinity and thus its weight is zero. Instead, if two agents are directly
connected via a link, then the weight is one. The weight values links more that bring
agents closer to each other. This is a similar approach to the Connections Model
introduced in Sect. 8.2.2 with a utility given by (8.4). The centrality link weight,
wc

i j , is then computed as follows:

wc
i j =

∑

v∈V

1

(d jv + 1)
, wc

i j ∈ [0, 1], (8.84)

d jv is the shortest path between node j and node v. If there exists no path between
two nodes, then the distance between them is infinity.39

In simulations, Fig. 8.23, we observe that in the equilibrium network only a few
agents have non-vanishing utilities (the asymptotic knowledge values) and most of
them are isolated nodes with zero utilities. This result does not differ too much
from the studies in Sect. 8.3.9.8 where no externality is considered. Apparently, if
more agents should have non-vanishing utilities induced by an additional benefit
depending on the network structure, this cannot be realized with the centrality link
weight.

Circuit-Centrality

The circuit-centrality measure puts a weight on the links that depends on the number
of distinct nodes that are contained in all the circuits going through the link under
consideration. The motivation is that, if many agents are involved in the transfer
of knowledge and this knowledge then comes back to the agent (thus creating a
feedback on the technology issued by the agent), it gets an added value (e.g., for
general purpose technologies (GPT) (Bresnahan and Trajtenberg, 1995; Karshenas
and Stoneman, 1995; Cohen, 1995)). The more agents use a technology the more
it is improved and so the more agents are involved in such a feedback loop the
higher is the value of the technology. We can either count the number of different
agents involved in this feedback loop or the number of interactions (links). Either
possibility is explored in the next sections. This is an alternative way to study the

39 We use a standard depth-first-search algorithm to compute the shortest paths. More details on
this algorithm and further discussion is given in Ahuja et al. (1993), Cormen et al. (2001), Steger
(2001), Steger and Schickinger (2001).
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Fig. 8.23 Shortest-path Centrality: (a) Average utility. (b) Average degree. (c) Initial random
graph. (d) Graph after 500 iterations (in the equilibrium)

emergence of indirect reciprocity where others Nowak and Sigmund (2005) have
studied it by introducing a (global) reputation mechanism.

We then define the weight of a link wi j as (i) the number mn of distinct nodes
that are in the circuits from node i to j ,

wccn
i j =

mn

n
, wccn

i j ∈ [0, 1] (8.85)

and (ii) the number me of distinct links that are in the circuits from node i to j ,

wcce
i j =

me

n(n − 1)
, wcce

i j ∈ [0, 1]. (8.86)

An example of the different link weights can be seen in Fig. 8.23.
In order to compute all circuits in a directed graph G, one needs to compute

the trails in G. The closed trails then are the circuits in G. We use an algorithm to
compute all trails in G from a given source node s. An explanation of the algorithm
is given in Appendix (B).
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Fig. 8.24 The link e12 is
contained in two circuits with
nodes 1, 2, 4 and 1, 2, 3, 4.
The number of distinct nodes
in these circuits is 4 and the
number of distinct links is 5.
Accordingly, wccn

i j = 4
4 = 1

and wcce
i j = 5

12 = 0.42

1

2

4

3

By introducing the circuit-centrality externality, we will show that more agents
are permanent in the equilibrium network. The performance of the system is
increased compared to the equilibrium networks that emerge with unilateral link
formation without this externality.

Using circuit-centrality measure with the number of nodes (8.85), the growth of
the value of knowledge is given by

dxi

dt
= −dxi +

n∑

j=1

(ba ji + bew
ccn
j i )x j − c

n∑

j=1

ai j x
2
i . (8.87)
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Fig. 8.25 Circuit centrality as a function of the number of nodes: (a) Average utility. (b) Average
degree. (c) Initial random graph. (d) Graph after 500 iterations (in the equilibrium)
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The utility is given by ui = limt→∞ xi (t) (large T ). Link changes are accepted on
the basis of an increase in utility. Different to the centrality externality (Sect. 8.3.9.9)
we observe larger cycles as the equilibrium networks. This can be seen in the
simulation run in Fig. 8.25. This positive externality allows for more agents to
be permanent in the equilibrium network than without an externality or with the
centrality-externality. We thus obtain a higher performance of the system.

Using the circuit-centrality measure with the number of links (8.86), the growth
of the value of knowledge is given by

dxi

dt
= −dxi +

n∑

j=1

(ba ji + bew
cce
j i )x j − c

n∑

j=1

ai j x
2
i . (8.88)

The utility is given by ui = limt→∞ xi (t) (large T ). Link changes are accepted on
the basis of an increase in utility. The circuit-centrality with the number of links
values the number of interactions instead the number of agents, that take part in
the transfer of knowledge. We still observe (Fig. 8.26) the emergence of circuits as
equilibrium networks and a similar level of performance (in terms of the total value
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Fig. 8.26 Circuit centrality as a function of the number of links: (a) Average utility. (b) Average
degree. (c) Initial random graph. (d) Graph after 500 iterations (in the equilibrium)
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of knowledge of the system). But now there are more circuits (more links) in the
subgraph containing the set of permanent agents. The equilibrium network has a
higher level of redundancy (since its has more circuits and links) and is therefore
more robust against the destruction of a single circuit (induced by a node or link
failure).

8.4 Discussion and Conclusion

8.4.1 Results from the Novel Modeling Approach

In the following, we summarize the results found by studying our model of inno-
vation dynamics, as described in Sects. 8.3. Let us start by looking at the dynamics
of the value of knowledge in a static network, in Sect. (8.3.8). If we assume that
growth occurs only through interaction among agents (thus neglecting “in-house”
R&D capabilities), then the network sustains itself only through cycles (more pre-
cisely through closed walks or strongly connected components). Agents survive and
grow only if they are part of a cycle (strongly connected component) or if they are
connected to such a cycle through an incoming path.40 We have shown that an inno-
vation network which is acyclic will have vanishing knowledge values for all agents
in the network. However, if agents form cycles they have permanent knowledge
values.

Considering the evolution of the network we have studied two different settings,
Extremal Dynamics and Utility Driven Dynamics. If the network evolves according
to a least fit selection mechanism (extremal dynamics) then we observe crashes and
recoveries of the knowledge values of the agents and the network itself. Thus, an
extremal market selection mechanism which replaces the worst performing agent
with a new agent cannot generate equilibrium networks nor does it sustain a high
performance in the value of knowledge of the individual agents or the economy as a
whole. Notice also that extremal dynamics means that agents are completely passive
and have no control on whom they interact with.

In a more realistic setting (utility driven dynamics), agents decide with whom
they interact and they do so in order to increase their utility. In the context of inno-
vation, this corresponds to their value of knowledge. The information processing
capabilities of agents may be limited, especially if there is a large number of agents
in the economy. Thus, we allow agents to decide themselves to create or delete
links on a trial and error basis. Those interactions that prove to be beneficial are
maintained while detrimental ones are severed. We find that, under these conditions,
the evolution of the network depends on the cost, ci j , of an interaction between the
agents, the type of link formation (unilateral versus bilateral), and the time horizon
T after which interactions are evaluated.

40 Jain and Krishna (2001) have denoted this set of nodes the autocatalytic set (ACS).
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In the case of null cost, agents always form new links and thus the complete
graph is eventually realized.

We have shown in Sect. 8.3.7 that the knowledge values of agents vanish if the
underlying network does not contain a cycle (similar to the results obtained by
Maxfield (1994), Rosenblatt (1957). Equilibrium networks contain cycles, a result
which is similar to the findings of Bala and Goyal (2000), Kim and Wong (2007)).
However, the evolution of the network driven by the selfish linking process of agents
can lead to the destruction of these vital cycles. For a short time horizon T , and
unilateral link formation, cycles get destroyed because agents free-ride and delete
their outgoing links as it is beneficial in the short run to save the costs of supporting
other agents. As a result, the whole innovation network is destroyed. On the other
hand, if the time horizon is long enough, agents do not delete the cycles they are
part of.

However, even when the time horizon is long, large cycles get destroyed in favor
of smaller ones when agents unilaterally form or delete links. The network, starting
from an initial state of high density, evolves into an absorbing state in which most of
the nodes are isolated and few pairs of nodes are connected by bilateral links. These
pairs are trivial cycles of length k = 2.41

Recall that pairwise connections are direct reciprocal interactions. This means
that even though agents are unilaterally forming links and therefore indirect recip-
rocal interactions would be possible in principle (this is equivalent to interaction
taking place on a cycle of length k ≥ 3) no relation of indirect reciprocity is able
to emerge nor to survive. From the point of view of the global performance of the
innovation network, this is a very unsatisfactory situation.

In Sect. 8.3.9, we have studied situations in which even unilateral knowledge
exchange can have a higher performance in terms of the number of permanent agents
and their total value of knowledge. We introduce an externality in the knowledge
growth function which increases the value of knowledge of the agent depending
on their position in the network. We study a type of technology where the value
of knowledge decreases with the number of agents transferring the knowledge.
Here unilateral knowledge exchange still leads to equilibrium networks with a low
performance and only a few permanent agents.

However, for a type of knowledge where its value increases with the number of
agents that transfer and use it, more agents can be permanent in the equilibrium
network and the system performance is increased. Moreover, if the number of inter-
actions instead of the number of users determines the added value of the knowledge
that is being transferred, then the equilibrium has not only a higher performance
than in the setting, where knowledge is attenuated with the number of users or
where no externalities are considered, but it is also more robust against node or
connection failures. We observe that, in our framework, indirect reciprocity emerges

41 This is different to the results obtained by Kim and Wong (2007) since there the benefit term in
the utility of the agents depends on the size of the connected component but not on its structure.
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Table 8.4 Overview of the equilibrium networks that are realized under different assumptions on
the network evolution and a quadratic cost function

Network evolution

Extremal
dynamics

Utility driven dynamics

Unilateral

Cost function Bilateral
Without
externality

With
externality

ci j = cx2
i Network

breakdown
Kn Set of C2 Set of Ck≥2

if it is associated with a positive externality, taking into account the structure of the
network.

If agents form or delete links bidirectionally, that means, every exchange of
knowledge is direct reciprocal, the network evolves into a complete graph. This
equilibrium network has a high performance and all agents are permanent. In our
study, we find that unilateral knowledge exchange is always inferior to bilateral
knowledge exchange. But the above discussion has shown that, when bilateral
knowledge exchange is not possible and agents are sharing their knowledge uni-
laterally, innovation networks are still able to emerge.

The different cases studied in this section have shown that the equilibrium inno-
vation network that is realized in the evolution of the system depends critically on
the assumptions made on the behavior of agents (extremal dynamics versus utility
driven dynamics), on their time horizon for evaluating their decisions and on the
cost associated with the sharing of knowledge. These results are summarized in
Table 8.4

8.4.2 General Conclusions

In this chapter, we studied a variety of different models for innovation networks.
We started by discussing the importance of networks in economics and emphasized
that these networks are intrinsically dynamic and composed of heterogeneous units.
The notion of a complex network was used in the beginning to briefly explain how
statistical physics can be involved to study them. We tried to classify different
approaches to modeling economic networks, in particular we considered the con-
nection between the state variables associated with the nodes of a network, e.g.,
the productivity level of a firm, and the dynamics of the network itself, i.e., the
interactions between firms.

Before developing our own modeling framework, we discussed some basic mod-
els of economic networks with agents engaged in knowledge production. These
models show that the economy can evolve into equilibrium networks which are
not necessarily efficient. Moreover, the equilibrium networks that emerge in these
models are rather simple. We briefly introduced some models in which more com-
plicated network structures emerge, which may be closer to real-world innovation
networks. We then discussed models in which cycles, i.e., closed feedback loops,



8 Modeling Evolving Innovation Networks 255

play an important role in the network formation and the performance of the system
(similar to Rosenblatt, 1957).

The major part of the chapter was devoted to the development of our own
modeling framework, which is based on catalytic knowledge interactions. In this
setting, there are permanent agents (with non-vanishing knowledge values) only if
the underlying network contains a cycle. We investigated the evolution and perfor-
mance of the system under different selection mechanisms, i.e., a least fit selection
mechanism, denoted by Extremal Dynamics, versus Utility Driven Dynamics in
which agents decide upon their interaction partners in a trial and error procedure.
We observe that a least fit mechanism cannot generate stable networks nor sustain
high performance in knowledge production. Moreover, such a mechanism assumes
that agents are completely passive entities. In the case of Utility Driven Dynamics,
agents choose their actions in order to increase their utility but their information
processing capabilities are limited. If agents are evaluating their interactions after a
time long enough, we obtain equilibrium networks with non-vanishing (permanent)
knowledge production.

In our framework, we investigated different assumptions about the behavior of
agents, that is, we either assume that agents share knowledge bilaterally or unilat-
erally. If all interactions are bilateral, the equilibrium network is a complete graph
and it has the highest performance. However, if direct reciprocal interactions cannot
be enforced (which means that links are not necessarily bilateral), we still observe
the emergence of networks of knowledge sharing agents. But in the equilibrium
network only bilateral interactions remain. Moreover, only a few agents are perma-
nent and the system has a low performance compared to the case of purely bilateral
interactions. However, for unilateral interactions, the number of permanent agents
can be significantly increased, for a type of technology where the number of users
increases its value.

Our studies show that the range of innovation networks that can emerge in this
general framework is affected by various parameters. Amongst these are information
processing capabilities of agents, their time horizon, their behavior in interaction
with others, the cost associated with the sharing of knowledge, and the type of
technology which agents produce and transfer.

The variety of possible networks is quite large and the network model appropri-
ate for a given application should be determined based on the specificities of the
problem under investigation.

Appendix A: Stationary Solutions for Three Agents

Example 29 We compute the fixed points for all graphs (auto-morphisms) with n =
3 nodes and initial values x(0) = ( 1

3 , 1
3 , 1

3 )T . For the numerical integration we set
d = 0.5, c = 0.5, and b = 1. The fixed points (stationary solutions) are denoted
x∗i for i = 1, 2, 3. Where possible, we give the analytical solutions for the positive
fixed points. x∗i = 0 is a fixed point for all graphs.
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Appendix B: All-Trails-Single-Source Algorithm

With algorithm All-Trails-Single-Source we want to compute all trails from a given
node s ∈ V to all other nodes in a directed graph G = (V, E). From these trails we
can extract the trails which end in node s and thus form circuits. The pseudo-code
for the All-Trails-Single-Source algorithm is given in Algorithm 1. N+(v) denotes
the out-neighborhood of node v. In the following, we will give a short description
of the algorithm.

Algorithm 1 All-Trails-Single-Source
S ← newStack();
v← s;
W ← {}; {initialization of empty list of trails}
loop

if ∃u ∈ N+(v)\{s} s.t. the link evu cannot be appended to W to create a new trail then
S.push(v);
W [u].add Edge((v, u));
v← u;

else if S.is Empty() == false then
v← s.pop();

else
break;

end if
end loop
return W ;
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Similar to a depth-first-search algorithm, links are explored out of the most recent
discovered node v that still has unexplored links leaving it. This procedure of explor-
ing links can be represented by a search tree T . The tree T explored by Algorithm 1
contains all trails starting at the source s to every node in G.

At every node i , a list W [i] of trails leading from the source s to i is assigned.
When the next link ei j from i to j is processed, to all trails in W [i] the link ei j is
appended (if this is possible, meaning that no link repetition is allowed), denoted by
W [i]+ei j . At node j these trails are added, that is W ′[ j] = W [ j]∪{W [i]+ei j }. This
procedure is continued until the algorithm terminates. The algorithm terminates, if
there are no further links available for exploration. The progress of Algorithm 1 on
a directed graph with four nodes and two circuits containing the nodes (2, 3, 4, 1)
and (2, 4, 1), respectively, is shown in Fig. 8.27.

step 1 1 W [1] = {}

2W [2] = {}

3 W [3] = {}

4
W [4] = {}

step 2 1 W [1] = {}

2
W [2] = {}

3 W [3] = {(e23)}

4 W [4] = {}

step 3 1 W [1] = {}

2W [2] = {}

3 W [3] = {(e23)}

4
W [4] = {(e23, e34)}

step 4 1 W [1] = {(e23, e34, e41)}

2W [2] = {}

3 W [3] = {(e23)}

4 W [4] = {(e23, e34)}

step 5 1 W [1] = {(e23, e34, e41)}

2W [2] =
{(e23, e34, e41, e12)}

3 W [3] = {(e23)}

4
W [4] = {(e2,3, e3,4)}

step 6 1 W [1] = {(e23, e34, e41)}

2
W [2] =

{(e23, e34, e41, e12)}

3 W [3] = {(e23)}

4 W [4] = {(e24), (e23, e34),
(e23, e34, e41, e12, e24)}

Fig. 8.27 The progress of Algorithm 1 on a directed graph with node 2 as the source node. The
node indicated in red is visited in the succeeding steps. After step 6 no further trails are added to
the list of trails
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Appendix C: Simulation Parameters

The parameters shown in Table 8.5 have been used for the simulation runs presented
in Sect. 8.3.9.6.

Table 8.5 Simulation parameters

Description Variable Value

Initial link creation probability p 0.1
Initial value of knowledge x(0) 1.0
Number of agents (without externality) n 30
Number of agents (with externality) n 20
Max. numerical integration time (time horizon) T 100
Numerical integration time step Δt 0.05
Max. number of network updates N [100, 5000]
Benefit b 0.5
Decay d 0.5
Cost c 0.1
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