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Abstract Networks play an important role in a wide range of economic phenomena.
Despite this fact, standard economic theory rarely considers economic networks
explicitly in its analysis. However, a major innovation in economic theory has been
the use of methods stemming from graph theory to describe and study relations
between economic agents in networks. This recent development has lead to a fast
increase in theoretical research on economic networks. In this tutorial, we introduce
the reader to some basic concepts used in a wide range of models of economic
networks.

1 Introduction

Networks are ubiquitous in social and economic phenomena. The use of methods
from graph theory has allowed economic network theory to improve our understand-
ing of those economic phenomena in which the embeddedness of individuals in their
social inter-relations cannot be neglected. In this tutorial will give a brief overview
of network models, starting from simple network constructions to more complex
models that allow for the strategic formation of links.

When discussing these models we try to introduce the reader to the most im-
portant concepts of economic networks. However, the literature that is discussed in
this tutorial is far from being exhaustive. For a more detailed introduction to eco-
nomic network theory we recommend the books Vega-Redondo [84], Jackson [52]
and Goyal [42] as well as the lecture notes by Calvó-Armengol [15], Zenou [93]. A
more mathematical treatment of complex networks can be found in Chung and Lu
[20] and Durrett [30]. Standard references for graph theory are Bollobas [8], Diestel
[28], West [91].
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This tutorial is organized as follows. First, we will argue in Section 2 that stan-
dard economic theory is in the need of incorporating networks in its analysis. In
Section 3 we will mention several applications of economic network theory and we
will introduce the basic terminology used to describe networks in Section 4. We will
proceed by discussing several prominent network models with an increasing degree
of complexity ranging from Poisson random networks in Section 5.1, its general-
ization in Section 5.2, growing random networks in Section 6 to models of strategic
network formation in Section 7.

2 Why Networks in Economics?

Gallegati and Kirman [36], Kirman [60] propose that the aggregate behavior of an
economy cannot be investigated in terms of the behavior of isolated individuals, as
it is usually done in standard economic theory. Firms interact only with a few other
firms, out of all firms present in the economy. Moreover, there are different ways
in which firms interact, and they may learn over time to adapt their interactions,
meaning that they strengthen profitable ones while they cut costly ones. All this is
based on their previous experience. We may then view the economy as an evolving
network.

Viewing the economy as an evolving network is different from what a standard
neoclassical model1 of the economy would look like. In such a model it is assumed
that anonymous and autonomous individuals take decisions independently and inter-
act only through the price system which they cannot influence at all. This situation
refers to a market with perfect competition. However, competition easily becomes
imperfect because, if agents have only minimal market power, they will anticipate
the consequences of their actions and anticipate the actions of others. In order to
overcome this deficiency, game theorists have tried to integrate strategically interact-
ing firms into a general equilibrium 2 framework. But still they leave two questions
unanswered. First, it is assumed that the behavior is fully optimizing considering all
possible actions as well as all possible actions of others. This leads to agents with
extremely sophisticated information processing capabilities. Such ability of pass-
ing these enormous amounts of information in short times cannot be found in any
realistic setting of human interaction. Advances in weakening that assumption are
referred to as “bounded rationality” [40]. Second, the problem of coordination of
activities is not addressed in the standard equilibrium model of the economy. Instead

1 A standard neoclassical model includes the following assumptions [35]: (1) perfect competition,
(2) perfect information, (3) rational behavior, (4) all prices are flexible (all markets are in equi-
librium). The resulting market equilibrium (allocation of goods) is then efficient. See [49] for a
discussion of these assumptions.
2 The individual decision making process is represented as maximizing a utility function. A utility
function is a way of assigning a number to every possible choice such that more-preferred choices
have a higher number than less-preferred ones [82]. The gradients of the utility function are imag-
ined to be like forces driving people to trade, and from which economic equilibria emerge as a kind
of force balance [32].
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it is assumed that every agent can interact and trade with every other agent, which
becomes quite unrealistic for large systems. One has to specify the framework
within the individual agents take price decisions and thus limit the environ-
ment within which they operate and reason. An obvious way is to view the economy
as a network in which agents interact only with their neighbors. In the case of tech-
nological innovation, neighbors might be similar firms within the same industry,
but these firms will then be linked either through customers or suppliers with firms
in other industries. Through these connections innovations will diffuse throughout
the network. The rate and extent of this diffusion then depends on the structure and
connectivity of the network.

Finally, the evolution of the network itself should be made endogenous. In this
case the evolution of the link structure is dependent on the agents’ experience from
using the links (respectively contacts) available to them. Individuals learn and adapt
their behavior and this in turn leads to an evolution of the network structure which
then feeds back into the incentives of agents to form or sever links. We will briefly
discuss this coupled dynamic interaction between individuals’ incentives and the
network dynamics in Section 4.4.

3 Examples of Networks in Economics

In this section we point to several applications of network models in economics. We
have restricted ourselves to a few applications but this list could of course be greatly
expanded [see e.g. also 84, p. 10].

Corporate Ownership and Boars of Directors

Ownership relations between firms, as well as members in common in the boards
of directors, give raise to intricate networks. On one hand ownership relations
are instruments to exert corporate control and several works have studied indirect
ownership relations [13] and patterns such as the so-called pyramids and cross-
shareholdings [19], as well as business groups [33, 45]. Other works have also
studied the financial architecture of corporations in national or global economies
[5, 21, 37, 61].

On the other hand, interlocked directors among firms are known to convey in-
formation and power [4, 27]. The spread of corporate practices through the director
network and the role of inter-organizational imitation of managers has been stud-
ied by Davis and Greve [26]. Moreover, it has been shown that the structure of the
intrlock network has implications for the decision making process [3].

Labor markets

A wide range of empirical studies of labor markets have shown that a signifi-
cant fraction of all jobs are found through social networks. The role of informal
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social networks in labor markets has been emphasized first by Granovetter [44].
He found that over 50% of jobs were found through personal contacts. In a re-
cent paper, Jackson and Calvo-Armengol [53] introduce a network model of job
information transmission. The model reproduces the empirically stylized fact that
the employment situation of individuals that are connected, either directly or indi-
rectly, is correlated. Further, they show that the topology of the network influences
the length and correlation of unemployment among individuals. Finally, with this
model the authors can explain the pervasive inequalities in wages, employment and
drop-out rates.

Diffusion in Networks

In economics diffusion is usually related to the spread of a technology through a so-
ciety or industry. A new technology or idea might be generated by an innovator and
then be subsequently adopted by others over time. The literature on technological
diffusion focuses on alternative explanations of the dominant stylized fact: that the
usage of new technologies over time typically follows an S-curve. Geroski [39] gives
an excellent survey on models of technological diffusion [see also 24, 79, 85]. Most
models assume that there are no restrictions on the interactions between agents and
the path along which knowledge can flow. This assumption is clearly not supported
by the restrictions and limited contacts firms realistically maintain [47, 74]. In par-
ticular, if knowledge diffuses through social contacts or personal interrelations then
the diffusion of a technology critically depends on the underlying network structure.
Thus, a proper understanding of the diffusion of innovations needs to be grounded
in economic network theory.

Formal and Informal Organizations

The central question in the theory of organizations is how a complex decision prob-
lem can be efficiently decomposed into distinct tasks, distributed among the differ-
ent units of an organization. A network can represent the paths along which these
tasks are distributed in an organization [see 80, 81, for a general discussion of net-
work forms of organization].

One can distinguish between formal or informal networks in an organization.
Formal network usually refer to the hierarchical structure of an organizational chart.
On the other hand, informal organizational networks are usually referred to “com-
munities of practice”. They can serve as a complement to the formal organizational
structure [11, 14, 65]. Beyond the formal working relationships institutionalized in
the organizational chart, informal working relationships may coexists or may even
play a predominant role [16]. In principle. a hierarchical formal organization as-
sumes that a central coordinator can distribute tasks efficiently among the members
of an organization. However, central coordination may not be feasible when the
number of agents in the organization is large, the problems the organization has to
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solve are highly complex and their nature varies considerably such that they cannot
be decomposed and distributed.

The existing literature has mainly focussed on the formal organizational struc-
ture whereas recent works try to incorporate both the formal as well as the informal
communication networks [51] among individuals in an organization. A recent ex-
ample is the work by Dodds et al. [29]. The authors find a particular organizational
network structure that enhances the robustness of the organization and reduces the
possibility of a communication overload among its members.

R&D Collaborations

There exist many theoretical works in the literature on industrial organization try-
ing to explain the effects and incentives of R&D collaborations between competing
firms [see e.g. 59] and Veugelers [86], for a review. However, these works do not
address the heterogeneity of inter-firm collaborations that have been observed in
empirical studies [e.g. 72]. In recent works by Goyal and Moraga-Gonzalez [43]
and Vega-Redondo [83] R&D collaborations are investigated in a network setup
in which these collaborations are not exogeneously given but the endogeneous out-
come of the incentives of firms to collaborate. In this way, heterogeneous interaction
profiles are possible. Their equilibrium analysis, however, leads to simple network
structures. These simple networks are in contradiction to the empirical literature that
shows that R&D networks can have complex network topologies, in general char-
acterized by high clustering, sparseness and a heterogeneous degree distribution. A
recent example of a model that tries to incorporate these empirical stylized facts can
be found in König et al. [62], König et al. [63] and we will give a brief overview of
this model in Section 7.3.

4 Characterization of Networks

If the links in a network do not change over time (we have a static network) we
can associate a state variable to the nodes based on their position in the network.
If, for example, an agent has many neighbors which in turn have many neighbors,
for instance, she may have much better opportunities to gather information from
others compared to an agent that maintains only a few connections to other loosely
connected agents. We can assign this agent a high centrality in the network (see
Section 4.3.3). But a highly central agent may also be much more frequently ex-
posed to any threat propagating through the network, e.g. viruses or avalanches of
insolvencies.

In this section, we start with some concepts of graph theory that deals with the
properties of static networks. We then review some of the measures that are used
to characterize networks, discussing briefly their meaning in economic systems
and point to some relevant literature. Finally, we introduce a possible classification
scheme for models of networks in economics.
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4.1 Elements of Graph Theory

In this section we follow closely West [91] to which we refer the reader for further
details. In the following, we will use the terms graph and network as synonyms. The
same holds for nodes and nodes as well as links and edges.

A graph G is a pair, G = (V,E), consisting of a node set V (G) and an edge set
E(G). The edge set E(G) induces a symmetric binary relation on V (G) that is called
the adjacency relation of G. Nodes i and j are adjacent if ei j ∈ E(G).

The degree, di, of a node i is the number of edges incident to it. A graph can either
be undirected or directed, where in the latter case one has to distinguish between
indegree, d−

i , and outdegree, d+
i , of node i. In the case of an undirected graph, the

(first-order) neighborhood of a node i in G is Ni = {w ∈ V (G) : ewi ∈ E(G)}. The
degree of a node i is then di = |Ni|. The second-order neighborhood of node i is
⋃

u∈Ni
Nu\{i∪Ni}. Similarly, higher order neighborhoods can be defined (as well as

neighborhoods for directed graphs). A graph G is regular if all nodes have the same
degree. A graph G is k− regular if every node has degree k.

The adjacency matrix, A(G), of G, is the n×n matrix in which the entry ai j is 1
if the edge ei j ∈ E(G), otherwise ai j is 0. For an undirected graph A is symmetric,
i.e. ai j = a ji ∀i, j ∈V (G). An example of a simple directed graph on four nodes and
its associated adjacency matrix A is given in Figure (1).

The eigenvalues of the adjacency matrix A are the numbers λ such that Ax =
λx has a nonzero solution vector, which is an eigenvector associated with λ . The
term λPF denotes the largest real eigenvalue of A [the Perron-Frobenius eigenvalue,
cf. 50, 75], i.e. all eigenvalues λ of A(G) satisfy |λ | ≤ λPF and there exists an
associated nonnegative eigenvector v ≥ 0 such that Av = λPFv. For a connected
graph G the adjacency matrix A(G) has a unique largest real eigenvalue λPF and a
positive associated eigenvector v > 0.

A walk is an alternating list, {v0,e01,v1, ...,vk−1,ek−1k,vk}, of nodes and edges.
A trail is a walk with no repeated edge. A path is a walk with no repeated node.
The shortest path between two nodes is also known as the geodesic distance. If the
endpoints of a trail are the same (a closed trail) then we refer to it as a circuit. A
circuit with no repeated node is called a cycle. In particular, Cn denotes the cycle on

A =

⎛

⎜
⎜
⎝

0 1 0 0
0 0 1 1
0 0 0 1
1 0 0 0

⎞

⎟
⎟
⎠

1

2

4

3

Fig. 1 (Right) a directed graph consisting of 4 nodes and 5 edges. (Left) the corresponding adja-
cency matrix A. For example, in the first row in A with elements, a11 = 0,a12 = 1,a13 = 0,a14 = 0,
the element a12 = 1 indicates that there exist an edge from node 1 to node 2 while node 1 has not
other outgoing links
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Fig. 2 A cycle C5 (left), a path P5 (middle) and the star K1,4 (right). All graphs are undirected and
contain 5 nodes

n nodes. Note that a cycle is also a circuit but a circuit is not necessarily a cycle.
Examples of simple graphs are shown in Figure (2).

The kth power of the adjacency matrix is related to walks of length k in the graph.
In particular,

(
Ak

)
i j gives the number of walks of length k from node i to node j

[41].
A subgraph, G′, of G is the graph of subsets of the nodes, V (G′) ⊆ V (G), and

edges, E(G′) ⊆ E(G). A graph G is connected, if there is a path connecting ev-
ery pair of nodes. Otherwise G is disconnected. The components of a graph G are
the maximal connected subgraphs. A graph is said to be complete if every node is
connected to every other node. Kn denotes the complete graph on n nodes.

4.2 Graphs and Matrices

We will state some useful facts about matrices and graphs in this section. The study
of irreducible and primitive graphs is important in linear dynamic network models.
We will present the theory here and discuss a particular application in Section 7.3.
Next, we introduce bipartite graphs and show how they can be applied to study
networks between members of boards of different companies.

Irreducible and Primitive Graphs

If a graph G is not connected then its adjacency matrix A(G) can be decomposed in
blocks, each block correspond to a connected component. An n×n matrix A is said
to be a reducible matrix if and only if for some permutation matrix P, the matrix
PT AP is block upper triangular. If a square matrix is not reducible, it is said to be
an irreducible matrix. If a graph is connected then there exists a path from every
node to every other node in the graph. The adjacency matrix of a connected graph
is irreducible [50] and in particular it cannot be decomposed in blocks. Irreducible
matrices can be primitive or cyclic (imprimitive) [75]. This distinction is relevant for
several results on the convergence of linear systems Boyd [12], Horn and Johnson
[50] and we will apply it in Section 7.3.

A non-negative matrix A is primitive if Ak > 0 for some positive integer k ≤
(n− 1)nn. This means that, A is primitive if, for some k, there is a walk of length
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k from every node to every other node. Notice that this definition is a much more
restrictive than the one of irreducible (or connected) graphs in which it is required
that there exits a walk from every node to every other node, but not necessarily of
the same length. A graph G is said to be primitive if its associated adjacency matrix
A(G) is primitive.

It is useful to look at an alternative but equivalent way to characterize a primitive
graph. A graph G is primitive if and only if it is connected and the greatest common
divisor of the set of length of all cycles in G is 1 [50, 92]. This means for instance
that the connected graph consisting of two connected nodes is not primitive as the
only cycle has length 2 (since the link is undirected a walk can go forward and
backward along the link). Similarly, a chain or a tree is also not primitive, since
all cycles have only even length. However, if we add one link in order to form a
triangle, the graph becomes primitive. The same is true, if we add links in order to
form any cycle of odd length. In general, if the graph of interaction between agents
is connected, the presence of one cycle of odd length is a sufficient condition for the
primitivity of the graph.

Bipartite Graphs

In a bipartite graph G, V (G) is the union of two disjoint independent sets V1 and
V2. In a bipartite graph, if e12 ∈ E(G) then v1 ∈V1 and v2 ∈V2. In other words, the
two endpoints of any edge must be in different sets. The complete bipartite graph
with partitions of size |V1|= n1 and |V2|= n2 is denoted Kn1,n2 . A special case is the
star which is a complete bipartite graph with one partition having size n1 = 1 and
n2 = n−1, denoted as K1,n−1 in Figure (2).

A bipartite graph can be ’projected’ into two one-mode networks. For sake of
clarity let us take the following example. Assume that in Figure (3) each node de-
noted with a number represents the board of directors of a company, while each node
denoted with a letter represents a person. A link, say, between person B and board
1 represents the fact that person B serves in board 1. Notice that B serves also in
board 2. The one-mode projection on the directors is a new graph in which there is a
link between two persons if they serve together in one or more boards. In doing this
projection some information is lost: consider for instance three directors connected
in a triangle (not shown). The links do not specify whether each pair of directors sit
in a different board or whether the three directors sit all in the same board. Denote
C the adjacency matrix of our network of boards and persons,

Cαi =
{

1 if α sits in board i
0 otherwise. (1)

C is an M ×N matrix, M being the number of persons, and N being the number of
boards. This is a binary matrix, and in general it is neither square, nor symmetric.
For the one-mode projection relative to the boards, we should take into account that
the number of directors sitting in boards i and j, is equivalent to the number of paths
of length 2 connecting i and j in the bipartite graph. Therefore, this number can be
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Fig. 3 Example of bipartite network (top). There are two classes of nodes and links are assigned
only between nodes that do not belong to the same class. A one-mode projection is a new graph
consisting only of nodes of one class in which a link between two nodes implies that, in the original
bipartite graph, the two nodes where connected to a same third node

assigned as the weight of the connection between i and j, and result in a natural way
from the follwong operation on the adjacency matrix. If we define the adjacency
matrix of the board network as

Bi j =
{

wi j if i and j are connected with weight wi j
0 if i and j are not connected. (2)

then it holds that
Bi j = ∑αCαiCα j. (3)

In terms of matrix product this means B = CT C. In analogous way, the adjacency
matrix of the director network is related to the initial board-person network as
follows

Dαβ = ∑
i

CαiCβ i. (4)

which is equivalent to D = CCT . While the off-diagonal entries correspond to the
edge weights, the diagonal entries, are, respectively, the size Bii of board i (the num-
ber of directors serving on it), and the number Dαα of boards which director α
serves on.

4.3 Network Measures

This section covers only a few network measurements. For a more extensive survey
see Costa et al. [22] and also Newman [67] as well as Wasserman and Faust [87].
The following definitions assume undirected graphs.
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4.3.1 Average Path Length

The average path length L is the mean geodesic (i.e. shortest) distance between
node pairs in a graph

L =
1

1
2 n(n−1)

n

∑
i≥ j

di j

where di j is the geodesic distance from node i to node j. The average path length
is important for instance in networks in which agents benefit from the knowledge
of the others (so called knowledge spillovers, see Section 7.2 and 7.3 for examples).
The smaller is the average distance among agents the more intense is the knowledge
exchange.

For Poisson random graphs (Section 5.1) we obtain L = lnn
lnz where n denotes the

number of nodes in the graph and z the average degree. For a regular graph the
average path length is L = n

2z . For a complete graph Kn it is trivially L = 1. For a
cycle Cn it is half the length of the cycle L = n

2 and for scale free networks (see
Section 6.3) it is L = lnn

ln lnn . [1].

4.3.2 Clustering

For each node i, the local clustering coefficient, Cl(i), is simply defined as the frac-
tion of pairs of neighbors of i that are themselves neighbors. The number of possible
links between the neighbors of node i is simply di(di −1)/2. Thus we get

Cl(i) =
|{e jk ∈ E(G) : ei j ∈ E(G)∧ eik ∈ E(G)}|

di(di −1)/2

The global clustering coefficient Cl is then given by Cl = 1
n ∑n

i=1 Cl(i).
A high clustering coefficient Cl means (in the language of social networks), that

two of your friends are likely to be also friends of each other. It also indicates a high
redundancy of the network. For a complete graph Kn it is trivially Cl = 1. Let 〈d〉
denote the average degree then we get for a Poisson random graph Cl = 〈d〉

n−1 and for
a cycle Cl ∼ 3

4 for large n [1].

4.3.3 Centrality

Centrality measures the importance of a node on the basis of its position in the
network [9, 10, 34]. We can look at a simple example. Consider the star K1,n−1 in
Figure (2). the most central node is node 3 which has the highest centrality, and all
other nodes have minimum centrality. Actually, the star is also the most centralized
graph [87].

In the following paragraphs we will introduce different measures of centrality
which incorporate different aspects of a nodes position in the network. Degree
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centrality counts the number of links incident to a node. Closeness centrality mea-
sures how many steps it takes to reach any other node in the network. Betweenness
centrality measures how many paths between any pair of nodes pass through a node.
Finally, eigenvector centrality measures the importance of a node as a function of
the importance of its neighbors. The different measures of centrality capture differ-
ent aspects of the position of an agent in a network and therefore the choice of the
right measure depends on the particular application under consideration.

Degree Centrality

The degree centrality of node i is just the number of links di . We have that di =
∑n

j=1 ai j = ∑n
j=1 a ji (since A is symmetric). If we consider the degree of an agent

as a measure of centrality then her centrality depends on the size of the network
(with maximum centrality given by n− 1). In order to overcome this bias one can
consider the normalized degree centrality that divides the degree by n−1, yielding
a measure in [0,1]. There are several applications of degree centrality, for example
the popularity in friendship networks, the diffusion of information and the spread of
infections.

Closeness Centrality

The closeness CC(i) of i is the reciprocal of the sum of geodesic distances to all
other nodes in the graph, that is

CC(i) = ∑
v �=i

1
div

. (5)

If an agent has high closeness centrality she can quickly interact with other agents
and gather information from them since she has short communication paths to the
others.

Betweenness Centrality

The betweenness centrality of i, denoted by CB(i) is defined as follows.

CB(i) = ∑
u,v �=i

guv(i)
guv

. (6)

More precisely, if guv is the number of geodesic paths duv from u to v and guv(i)
is the number of paths from u to v that pass through i, then guv(i)

guv
is the fraction

of geodesic paths from u to v that pass through i. Normalized betweenness divides
simple betweenness by its maximum value. Agents who are not directly connected
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might depend on another agent if she lies on a path connecting them. If an agent
lies on many such path connecting different components in a network then she has
a high betweenness centrality.

Eigenvector Centrality

Eigenvector centrality measures the importance of a node from the importance of its
neighbors. Even if a node is only connected to a few others (thus having a low degree
centrality) its neighbors may be important, and therefore the node is important too,
giving it a high eigenvector centrality. Let’s assume that the importance of a node
i is measured by xi. Then the eigenvector centrality of node i is proportional to the
sum of the eigenvector centralities of all nodes which are connected to i [68].

xi =
1
λ ∑

j∈Ni

x j =
1
λ

n

∑
j=1

ai jx j, (7)

where Ni is the set of nodes that are connected to node i, n is the total number of
nodes and λ is a constant. In matrix-vector notation we can write Ax = λx, which
is the eigenvector equation. If the proportionality factor λ is given by the largest
eigenvalue λPF (Section 4.1) of the adjacency matrix A then all the elements in the
eigenvector must be positive [50] and we get a proper measure of centrality.

4.4 Dynamics of State Variables and Network Evolution

In the following we introduce a classification of network models in four types. This
classification has mainly a didactic value and it should help readers to find their way
in the growing landscape of network models.

As mentioned in the beginning of this section, the agents N = {1, ...,n} in an
economic network G can be associated with a state variable xi, representing agent
i’s wealth, firm i’s output or, in the case of R&D collaborations, knowledge. The
links between the agents i and j can be indicated by the elements ai j of an adjacency
matrix A. It is important to distinguish between (1) the dynamics taking place on
the state variables x(t) and (2) the evolution of the network A(t). In the first, the
state variables are changed as a result of the interaction among connected nodes.
In the latter, nodes or edges are added to/removed from the network by a specific
mechanism. For example, the value of the assets of a firm depends on the value of
the firms it holds shares in. Even if the links do not change the asset value may
change. On the other hand, the links may change in time, depending or not on the
asset value. Consequently, there are four types of dynamics that can be investigated
in models of economic networks, as illustrated in Figure (4).

In socio-economic systems dynamics and evolution are often coupled. The utility
of agents depends on their links to the other agents and agent modify their links
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network

state variables
static dynamic

static dxi
dt = 0, dai j

dt = 0 dxi
dt �= 0, dai j

dt = 0

dynamic dxi
dt = 0, dai j

dt �= 0 dxi
dt �= 0, dai j

dt �= 0

Fig. 4 Possible combinations of static and dynamic state variables xi associated with the nodes
and fixed or changing links indicated by ai j between the nodes for i, j ∈ N

over time depending on the utility they expect or they experience from a link. So,
in principle, all systems should be studied with models in which the state variables
and the network are dynamic, they co-evolve. However, evolution and dynamics do
not necessarily have the same time scale.

Assume that agents have a certain inertia for creating new links and evaluating
their existing ones. The rate at which links are formed is much slower than the rate at
which the state variables change. In other words, there are two different time scales
in our dynamical system: the fast dynamics of the state variables and the slow evo-
lution of the network. The state variables immediately reach their quasi-equilibrium
state, whereas the network remains unchanged during this short adaptation time. An
illustration can be seen in Figure (4.4). One can say that the variables with the fast
dynamics are “slaved” by the variables with the slow dynamics [48], [see also 46,
for a review]3. We will introduce such an approach in Section 7.3 when studying the
evolution of R&D networks.

initialization

xi reach
quasi-equilibrium

perturbation
of ai j

Another example for the coupling of a dynamic network with dynamic state
variables are credit relations among firms. The links may represent credit relations
among firms, established through contracts. Many financial variables (such as to-
tal asset value or solvency ration) of a firm are affected when financial variables
change in the connected firms. Despite that, some relations maybe fixed until the
expiration of the contract. Therefore, while links may be modified on a time scale
of, say, several months, financial variables may vary on a time scale of days.

In the following sections we will discuss several models of networks. Accord-
ing to the classification we have introduced in this section, the models in Section 5
and Section 6 do not consider a state variable attached to the nodes. These models

3 This principle has been used e.g by [57, 58] in the context of evolutionary biology and by [64] in
order to explain the sustainability of informal knowledge exchange in innovation networks.
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consider different ways how networks can be constructed in a stochastic network
formation process. The process can be viewed as a network evolution. Since these
models do not consider a dynamic state variable, they are easier to analyze and so
we take them as a starting point before moving on to more complex network mod-
els. More complex models follow in the next sections. Both models in Section 7
introduce a state variable attached to the nodes. The nodes are interpreted as agents
and the state variable is their utility. The model in Section 7.2 considers the case of
a dynamic network but does not assume any dynamics on the state variables (even
though the state variables depend on the network). Finally, in Section 7.3 we discuss
a model that includes both a dynamic state variable and a dynamic network and it
assumes a time-scale separation between the two.

5 Random Network Constructions

In this section we present some basic models of networks. In this discussion we fol-
low Newman [67] as well as Vega-Redondo [84]. For a more detailed mathematical
treatment see Chung and Lu [20] and Durrett [30]. The network construction algo-
rithms introduced in this section can be simulated with the Java package “econnet”
available upon request to the authors4. The algorithms used there serve for edu-
cational purposes only and we refer to Batagelj and Brandes [2] for an efficient
implementation.

5.1 Poisson Random Graphs

We denote the Poisson random graph by G(n, p) with n nodes and in which every
edge is present with probability p. The expected degree is z = 2p

n

(n
2

)
= p(n− 1)

where
(n

2

)
is the number of edges in the complete graph Kn. The degree distribution

of G(n, p) is given by

pk =
(

n−1
k

)

pk(1− p)n−1−k, (8)

where pk is the probability that a randomly chosen node has degree k. We have that

lim
n→∞

pk =
zke−z

k!
= Pois(z;k). (9)

Many results on the topological properties and phase transitions can be derived for
Poisson random graphs. We refer to West [91], Chung and Lu [20], Durrett [30] and
Bollobas [7] for the interested reader.

4 Mail to mkoenig@ethz.ch.
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Fig. 5 Poisson random graph G(n, p) 50% below the phase transition p = 1
n−1 (left) and at the

phase transition (right). The graph was generated with the Java package “econnet” and the ARF
layout algorithm [38]
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Fig. 6 Degree distribution of the Poisson random graph G(n, p) with p = 0.1, n = 1000 and aver-
aged over 10 realizations

5.2 Generalized Random Graphs

In the following we give a short introduction to random graphs with arbitrary degree
distributions. For a detailed discussion (including all the material presented here) see
Newman et al. [69, 70].

5.2.1 Random Graph Construction

Consider a set of nodes N = {1, ...,n}. A degree sequence of a graph is a list of node
degrees d1 ≥ d2 ≥ ...≥ dn with the property that ∑n

k=1 dk must be even. We construct
the random graph G by creating di half-edges attached to node i, and then pair the
half-edges at random. The resulting graph may have loops and multiple edges.
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5.2.2 Neighborhood Size, Diameter, Phase Transition and Clustering

The probability of a randomly chosen node having degree k is given by

pk =
1
n
|{i ∈ N : di = k}|. (10)

Its generating function is defined by [31]

G0(x) =
∞

∑
k=0

pkxk. (11)

pk is the probability that a randomly chosen node has degree k. The distribution pk
is assumed to be correctly normalized, so that

G0(1) =
∞

∑
k=0

pk = 1. (12)

G0(x) is finite for all |x| ≤ 1. If the distribution is Poisson, pk = zke−z/k!, then the
generating function is

G0(x) = ∑
k

1
k!

e−zzkxk = e−z ∑
k

(zx)k

k!
= ez(x−1). (13)

The probability pk is given by the kth derivative of G0 according to

pk =
1
k!

dkG0

dxk

∣
∣
∣
∣
x=0

. (14)

Thus, the function G0(x) encapsulates all the information of the discrete probability
distribution pk.

The mean (first-order moment), e.g. the average degree z of a node, is given by

z = 〈k〉 =
∞

∑
k=0

kpk = G′
0(1). (15)

Higher order moments of the distribution can be calculated from higher derivatives.
In general we have

〈kn〉 =
∞

∑
k=0

kn pk =
(

x
d
dx

)n

G0(x)
∣
∣
∣
∣
x=1

. (16)

For the first two moments of the Poisson distribution we obtain

x
d
dx

ez(x−1) = z (17)
(

x
d
dx

)2

ez(x−1) = z(1+ z). (18)
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If we select a node i then the number of neighbors has distribution p. However, the
distribution of the first neighbors of a node is not the same as the degree distribution
of nodes on the graph as a whole. Because high-degree nodes have more edges
connected to it, there is a higher probability that a randomly chosen edge is incident
to it, in proportion to the node degree. The number of nodes with degree k is npk.
The number of edges incident to nodes with degree k is given by knpk. This is
equal the number of possibilities to select an edge which is incident to a node with
degree k. Thus, the probability that a node incident to a randomly chosen edge has
degree k is proportional to kpk and not just pk. Through normalization we get that
the probability distribution of the degree among neighbors of a randomly selected
node i is given by [67]

qk =
kpk

∑s sps
. (19)

The average degree of a neighboring node is then

∑
k

kqk = ∑k k2 pk

∑s sps
=

〈k2〉
〈k〉 . (20)

The corresponding generating function is

∑
k

qkxk = ∑k kpkxk

∑s sps

=
1
〈k〉x∑

k
pkkxk−1

︸ ︷︷ ︸
G′

p(x)

=
xG′

p(x)
G′

p(1)
.

(21)

If we are interested in the (excess) distribution p∗k of links of a node that can be
reached along a randomly chosen edge, other then the one we arrived along, p∗ =
qk+1 ∝ (k +1)pk+1, then its generating function is

Gp∗(x) = ∑
k

(k +1)pk+1

∑s sps
xk

=
1

G′
p(1) ∑

k
kpkxk−1

=
G′

p(x)
G′

p(1)
.

(22)

In order to compute the expected number of second neighbors we have to exclude
node i from the degree count of its neighboring node and obtain

qk−1 =
kpk

∑s ps
, (23)
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or equivalently

qk =
(k +1)pk+1

∑s sps
. (24)

The average (excess) degree of such a node is then

∑
k

kqk = ∑k(k +1)pk+1

∑s sps

= ∑k(k−1)kpk

∑s sps

=
〈k2〉−〈k〉

〈k〉 .

(25)

The average total number of second neighbors of a node is given by the average
degree of the node times the excess degree of the first neighbours:

z2 = 〈k〉 〈k
2〉−〈k〉
〈k〉 = 〈k2〉−〈k〉. (26)

The average number of second neighbors is then equal to the difference between the
second- and first-order moments of the degree distribution p. The expectation of the
first neighbors is z1 = G′

p(1) and for the second neighbors one derives z2 = G′′
p(1).

Note that in general the number of rth neighbors is not simply the rth derivative of
the generating function.

The average number of edges leaving from a second neighbor is given by Equa-
tion (25). This also holds for any distance m away from a randomly chosen node.
Thus, the average number of neighbors at distance m is

zm =
〈k2〉−〈k〉

〈k〉 zm−1

=
z2

z1
zm−1

=
(

z2

z1

)m−1

z1,

(27)

where z1 = 〈k〉 and z2 is given by Equation (26). Depending on whether z2 is greater
than z1 or not, this expression will either diverge or converge exponentially as m
becomes large so that the average number of neighbors of a node is either finite or
infinite for n → ∞. We call this abrupt change a phase transition at z1 = z2. This
condition can be written as 〈k2〉−2〈k〉 = 0 or

∑
k

k(k−2)pk = 0. (28)

In the above sum isolated nodes and nodes with degree one do not contribute since
they can be removed from a graph without changing its connectivity.
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We assume that z2 � z1 so that there exists a giant component essentially includ-
ing all the nodes and most of the nodes are far from each other, at around distance
D, the diameter of the graph. This means that

n ∼ zD =
(

z2

z1

)D−1

z1, (29)

which leads to

ln
n
z1

∼ (D−1) ln
z2

z1

D ∼
ln n

z1

ln z2
z1

+1.
(30)

For the special case of a Poisson network with z1 = z and z2 = z2 we obtain for
large n

D ∼
ln n

z

lnz
+1 =

lnn
lnz

(31)

In the following we study the clustering coefficient Cl of a random graph. For this,
we consider a particular node i. The jth neighbor of i has k j links emanating from it
other than the edge ei j and k j is distributed according to the distribution q. The prob-
ability that node j is connected to another neighbor s is k jks

nz , where ks is distributed
according to q. The average of this probability is precisely the clustering coefficient

Cl =
〈k jks〉

nz

=
1
nz

(

∑
k

kqk

)2

=
z
n

(
〈k2〉〈k〉
〈k〉2

)2

=
z
n

(

c2
v +1− 1

〈k〉

)2

,

(32)

where cv = 〈(k−〈k〉)〉
〈k〉2 is the coefficient of variation of the degree distribution - the ratio

of the standard deviation to the mean. For Poisson networks we get z2 = 〈k2〉−〈k〉=
〈k〉2 = z2 and the clustering coefficient is Cl = z

n . For arbitrary degree distributions
we still have that limn→∞ Cl = 0 but the leading term in (32) may be higher.

5.2.3 Average Component Size Below the Phase Transition

With similar methods one can compute the average size of the connected component
a node belongs to. Here we closely follow the discussion in Baumann and Stiller [6].
The computation is valid under following assumptions:
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(i) The network contains no cycles. One can show that this assumption is a good
approximation for big, sparse random networks.

(ii) For any edge euv of a node u the degree of v is distributed independently of u’s
neighbors and independently of the degree of u.

We then choose an edge e uniform at random among the edges in E(G). We select
one of the incident nodes of e at random, say v. Let p0 denote the distribution of the
size of the component of v in the graph of E(G)\e. Further, let p∗ be the distribution
of the degree of v in E(G)\e. Then p0(1) = p∗(0). If the degree of v is k then we de-
note the neighbors of v in E(G)\e as n1, ...,nk. We define the following probability:
Pk(s− 1) is the probability that the size of the components of the k nodes n1, ...,nk
in E(G)\{e,evn1 , ...,evnk} sum up to s−1. Then we can write

p0
s = ∑

k
p∗kPk(s−1). (33)

Now let S denote a random variable that is the sum of m independent random vari-
ables X1, ...,Xm, that is

S = X1 + ...+Xm, (34)

then the generating function of S is given by

GS(x) = GX1(x)GX2(x) · · ·GXm(x). (35)

Consider the distribution of the sum of the degrees of two nodes when pk is the
distribution of a single node. Then the sum of the degrees has a generating function
G0(x)m. For two nodes we get

G0(x)2 =

(

∑
k

pkxk

)2

=

(

∑
k

pkxk

)(

∑
j

p jx j

)

= ∑
j,k

p j pkx j+k

= p0 p0x0 +(p0 p1 + p1 p0)x1 +(p2 p0 + p1 p1 + p0 p2)x2 + · · · .

(36)

The coefficients of the powers of xn are clearly the sum of all products p j pk such
that j+k = n and hence it gives the probability that the sum of the degrees of the two
nodes will be n. We can use a similar argument to prove that higher order powers of
generating functions can be computed in the same way.

Following our assumptions, the edges evni are chose independently and uniform
at random among all edges in E(G). Therefore, Pk is distributed as the sum of k
random variables, which are in turn distributed according to p0. Using the powers of
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generating functions we have that GPk = Gp0(x)k. Moreover, the generating function
of p0 is

Gp0(x) = ∑
s

p0xs

= ∑
s

xs ∑
k

p∗kPk(s−1)

= x∑
k

p∗k ∑
s

xs−1Pk(s−1)
︸ ︷︷ ︸

GPk (x)=Gp0 (x)k

= x∑
k

p∗kGp0(x)k

= xGp∗
(

Gp0(x)
)

.

(37)

The quantity we are actually interested in is the distribution of the size of the compo-
nent a randomly chosen node belongs to. The number of edges emanating from such
a node is distributed according to the degree distribution pk. Each such edge leads
to a component whose size is drawn from the distribution generated by the function
Gp0(x). In a similar way to the derivation of Equation (37), one can show that the
size of the component to which a randomly selected node belongs is generated by

Gp̃(x) = x∑
k

pkGp0(x)k

= xGp

(
Gp0(x)

)
.

(38)

The expected component size of a randomly selected node can be computed directly
from above. The expectation of a distribution is the derivative of its generating func-
tion evaluated at point 1. Therefore the mean component size 〈s〉 is given by

〈s〉 = G′
p̃(1) = Gp

(
Gp0(1)

)

︸ ︷︷ ︸
=1

+G′
p

(
Gp0(1)

)
G′

p0(1). (39)

where we used the normalization of the generating function. From (37) we know
that

G′
p0(1) = Gp∗

(
Gp0(1)

)
+G′

p∗

(
Gp0(1)

)
G′

p0(1)

= 1+G′
p∗(1)G′

p0(1),
(40)

and thus G′
p0(1) = 1

1−G′
p∗ (1) . Inserting this equation into Equation (39) yields

〈s〉 = 1+
G′

p(1)
1−G′

p∗(1)
. (41)
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We further have that

G′
p(1) = ∑

k
kpk = 〈k〉 = z1

G′
p∗(1) = ∑k k(k−1)pk

∑l l pl

=
〈k2〉−〈k〉

〈k〉
=

z2

z1
.

(42)

Therefore, the average component size below the transition is

〈s〉 = 1+
z2

1
z1 − z2

. (43)

The above expression diverges for z1 = z2 which signifies the formation of the giant
component. We can also write the condition for the phase transition as G′

p∗(1) = 1.
We see that for p = 0 〈s〉= 1 (an empty graph contains only isolated nodes). For the
Poisson random graph z1 = z = p(n−1), z2 = z2 and thus we get 〈s〉= 1+ p(n−1)

1−p(n−1) .

5.3 The Watts-Strogatz “Small-World” Model

The model draws inspiration from social systems in which most people have friends
among their immediate neighbors, but everybody has one or two friends who are a
far away - people in other countries, old acquaintances, which are represented by the
long-range edges obtained by rewiring. Empirically, in social networks the average
distance turns out to be “small”: the fact that any two persons in the US are separated
on average by only six acquaintances is the so called “Small-World” phenomenon
discovered by Milgram [66]. Watts and Strogatz [89] introduced a “Small-World”
network model which has triggered an avalanche of works in the field. Their model
generates a one-parameter family of networks laying in between an ordered lattice
and a random graph. We will explain how such a “Small-World” network can be
constructed in the next section.

5.3.1 “Small-World” Network Construction

The initial network is a one-dimensional ring of n nodes (if each node has only two
neighbors it is a cycle) as shown in Figure (7), with periodic boundary conditions,
each node being connected to its z nearest neighbors. The nodes are then visited one
after the other: each link connecting a node to one of its z

2 neighbors in the clockwise
order is left in place with probability 1− p, and with probability p is reconnected
to a randomly chosen node. With varying p the system exhibits a transition between
order (p = 0) and randomness (p = 1).
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Fig. 7 Regular (lattice) graph with n = 50 nodes and neighborhood size z = 6 (left). Small World
graph with n = 50 nodes, neighborhood size z = 6 of the underlying lattice and rewiring probability
p = 0.1 (right). The graph was generated with the Java package “econnet” and the ARF layout
algorithm [38]

5.3.2 Degree Distribution

For p = 0, each node has the same degree, z. On the other hand, a non-zero value of
p introduces disorder in the network, in the form of a non-uniform degree distribu-
tion, while maintaining a fixed average degree 〈X〉 = z. Let us denote P(X = k) the
probability of the degree of a node being equal k.

Since z
2 of the original z edges are not rewired by the above procedure, the degree

of node i can be written as [1].

X =
z
2

+n0 +n+ (44)

with n0 + n+ ≥ 0. n0 denotes the number of links that have been left in place dur-
ing the rewiring procedure (with probability 1− p) and n0 denotes the number of
links that have been rewired to node i from other nodes (with probability p/(n−1),
since there are n− 1 other nodes). This sequence of independent events (the links
left in place as well as the rewired links) is actually a Bernoulli process. Thus, the
probabilities are given by Binomial distributions

P(n0 = s) =
( z

2
s

)

(1− p)s p
z
2−s, (45)

with 0 ≤ s ≤ z
2 and

P(n+ = s) =
(

(n−1) z
2

s

)(
p

n−1

)s (

1− p
n−1

)(n−1) z
2−s

, (46)

where 0 ≤ s ≤ (n− 1) z
2 and n− 1 is the number of other nodes, z

2 the maximum
number of edges that can be rewired by other nodes. If we define



46 M.D. König, S. Battiston

0 5 10 15 20
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

P

 

 

0.1 sim.
0.1 analyt.
0.5 sim.
0.5 analyt.
1.0 sim.
1.0 analyt.
rand. net.

d

Fig. 8 Empirical and theoretical degree distributions of the “Small-World” network for n = 500,
neighborhood size z = 6 and and different values of the rewiring probability p ∈ {0.1,0.5,1.0}

N = (n−1) z
2

q = p
n−1

λ = Nq = z
2 (n−1) p

n−1 = nq,
(47)

we get the standard form of the Binomial distribution

P(n+ = s) =
(

N
s

)

qs(1−q)N−s. (48)

For N → ∞ respectively n → ∞ we obtain the Poisson distribution

P(n+ = s) =
λ se−λ

s!
=

( pz
2

)s e−( pz
2 )

s!
. (49)

Thus, we get for k ≥ z
2 (k links remain unchanged by construction)

P(X = k) =
min{k− z

2 , z
2 }

∑
i=0

( z
2
2

)

(1− p)i p
z
2−i

( pz
2

)k− z
2−i

(
k− z

2 − i
)
!
e−

pz
2 . (50)

The upper bound in the sum above guarantees that n0 ≤ z
2 . Since any degree k > z

2
must come from new edges. Figure (8) shows the degree distribution for different
values of p.

5.3.3 Average Path Length and Clustering Coefficient

For a cycle (p = 0) we have a linear chain of nodes and we find for the average path
length (defined in Section 4.3) for large n [1]
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L(p = 0) =
n(n+ z−2)

2z(n−1)
∼ n/2z � 1. (51)

Moreover, for p = 0 each node has z neighbors and the number of links between
these neighbors is 3z(z/2−1)

4 and it follows that for large n [1]

Cl(p = 0) =
3(z/2−1)
2(z−1)

∼ 3/4. (52)

Thus, L scales linearly with the system size, and the clustering coefficient is large
and independent of n. On the other hand, for p→ 1 the model converges to a random
graph for which L(p = 1)∼ ln(n)/ ln(z) and Cl(p = 1)∼ z/n when n is large, thus L
scales logarithmically with n and the clustering coefficient decreases with n. Based
on these scaling relationships, one could expect that a large (small) value of Cl is
always associated with a large (small) value of L. Unexpectedly, it turns out that
there is a broad range of values of p in which L(p < 1) is close to L(p = 1) and
yet Cl(p < 1) � Cl(p = 1). The coexistence of small L and large Cl means that
the network is a “Small-world” like a random graph and has high clustering like a
lattice. Interestingly, this feature is found in many real networks. In a regular lattice
(p = 0) the clustering coefficient Cl does not depend on the system size but only on
its topology. As the edges of the network are randomized, the clustering coefficient
remains close to Cl(p = 0) up to relatively large values of p, while the average
path length L drops quite rapidly. This is the reason of the onset of the small world
regime. We show examples for the clustering coefficient and the average path length
in the “Small-World” network in Figure (9).
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Fig. 9 Clustering coefficient Cl and average path length L of the “Small-World” network for with
n = 500, neighborhood size z = 6 and and different values of the rewiring probability p. The aver-
age path length L is normalized to the corresponding value of the lattice. For p = 1 the normalized
path length (proportional to lnn/n) converges to zero for large n
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6 Growing Random Networks

In the next sections we derive the degree distributions for two types of networks, the
uniform and the preferential attachment network, illustrated in Figure (10) and their
corresponding degree distributions in Figure (11). Both networks are generated by
continuously adding nodes to the existing network. The difference is the following:
in the uniform attachment network new nodes form links uniformly to the existing
nodes and in the preferential attachment network new nodes form links more likely
to existing nodes with higher degree. In the derivation of the degree distribution we
follow closely Vega-Redondo [84].
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Fig. 10 Uniform attachment (left) and preferential attachment (right) networks with n = 50 nodes.
The graph was generated with the Java package “econnet” and the ARF layout algorithm [38]
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6.1 Uniform Attachment Network Construction

The network is constructed as follows. Times is measured at countable dates t ≤ 0.
A node that enters the network at time t is attached the label t. We initialize nodes
1,2 and the edge 12. Then, at every step t > 2 we add a new node t and create the
edge ets, where node s is selected uniformly at random from the set {1, ..., t −1} of
already existing nodes in the network.

6.2 Degree Distribution

In the following we derive the degree distribution if edges are attached to existing
nodes with uniform probability. Denote by qt(s,k) the probability that a particular
node s has degree k at time t where s ≤ t. Any existing node s enjoys degree k ≥ 1
at time t + 1 if, and only if, one of the following events occurs: (i) Node s had
degree k−1 at time t (with probability qt(s,k−1)) and is chosen to be linked by the
entering node at time t (with probability 1

t+1 ), or (ii) node s already had degree k at
time t (with probability qt(s,k)) and is not chosen by the new node (with probability
1− 1

t+1 ).
Thus we get the following master equation [73, 90] and Vega-Redondo [84],

p. 272

qt+1(s,k) =
1

t +1
qt(s,k−1)+

(

1− 1
t +1

)

qt(s,k), (53)

with the boundary conditions5

q1(0,k) = q1(1,k) = δk,1
qt(t,k) = δk,1.

(54)

Denote pt(k) the probability that a randomly selected node has any given degree k
at time t. pt(k) is the degree distribution at time t. Assuming that the selection of
nodes is a sequence of stochastically independent events, it follows that

pt(k) =
1

t +1

t

∑
s=0

qt(s,k) (55)

Summation over all nodes s = 0, ..., t in Equation (53) yields

t

∑
s=0

qt+1(s,k) =
1

t +1

t

∑
s=0

qt(s,k−1)+
(

1− 1
t +1

) t

∑
s=0

qt(s,k), (56)

and further adding the term qt+1(t +1,k) on both sides gives

5 The Kronecker-Delta is defined as δi j = 1 if i = j and δi j = 0 if i �= j.
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t+1

∑
s=0

qt+1(s,k) =
1

t +1

t

∑
s=0

qt(s,k−1)+
(

1− 1
t +1

) t

∑
s=0

qt(s,k)+δk,1

= pt(k−1)+ t pt(k)+δk,1,

(57)

where we used the boundary condition qt+1(t + 1,k) = δk,1. This reflects the fact
that, in every period t +1, the entering node t +1 always represents a unit contribu-
tion to the set of nodes with degree 1 (and only these nodes). Then, with

(t +2)
1

t +2

t+1

∑
s=0

qt+1(s,k) = (t +2)pt+1(k), (58)

we may write Equation (57) as follows

(t +2)pt+1(k)− t pt(k) = pt(k−1)+δk,1, (59)

which is the law of motion of the degree distribution. In the limit t →∞, pt(k) attains
its stationary distribution p(k).

2p(k) = p(k−1)+δk,1 (60)

We can solve the above equation for k > 1 (δk,1 = 0):

p(k) = 2−k. (61)

Since there are no disconnected nodes in the network we have that p(0) = 0. For
k = 1 we thus find that Equation (61) also solves Equation (60) for any k = 1,2, ....
This means that the long run stationary degree distribution is geometric.

6.3 Preferential Attachment Network Construction

The network is constructed in a similar way as in the uniform attachment network
formation process. We initialize nodes 1,2 and edge 12, setting t = 3. Let kt(s)
denote the degree of node s at time t. Then, at every step t we add a node t and
create the edge ets with probability kt(s)/∑t−1

r=0 kt(r).

6.4 Degree Distribution

The master equation for the probabilities qt(s,k) that any node s has degree k ≥ 1 at
time t, s ≤ t is given by

qt+1(s,k) =
k−1

2t
qt(s,k−1)+

(

1− k
2t

)

qt(s,k). (62)
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There are two exclusive events that may lead node s to have degree k in time step
t +1: (i) Node s had degree k−1 at time t and the new node t +1 establishes a link
to s, or (ii) node s had degree k at time t and the new node t +1 does not form a link
to it.

The probability of event (i) is given by qt(s,k−1) multiplied by the ratio of the
degree, k− 1, to the sum of the degrees, that is 2t. The probability of the event (ii)
is the complement of the probability that the new node establishes a link to s with
degree k, that is 1− k

2t times qt(s,k). Summing over all nodes s ≤ t +1 in Equation
(62) and adding the term qt+1(t +1,k) on both sides, we arrive at the law of motion
for the degree distribution

t+1

∑
s=0

qt+1(s,k) =
k−1

2t

t

∑
s=0

qt(s,k−1)+
(

1− k
2t

) t

∑
s=0

qt(s,k)+δk,1. (63)

We have that

t+1

∑
s=0

qt+1(s,k) =
1
2

t +1
t

[

(k−1)
1

t +1

t

∑
s=0

qt(s,k−1) −k
1

t +1

t

∑
s=0

qt(s,k)

]

+(t +1)
1

t +1

t

∑
s=0

qt(s,k)+δk,1

=
1
2

t +1
t

((k−1pt(k−1)− kpt(k)))+(t +1)pt(k)+δk,1.

(64)

Using the fact that

t+1

∑
s=0

qt+1(s,k) = (t +2)
1

t +2

t+1

∑
s=0

qt+1(s,k)

= (t +2)pt+1(k),

(65)

we get

(t +2)pt(k) =
1
2

t +1
t

((k−1)pt(k−1)− kpt(k))+(t +1)pt(k)+δk,1. (66)

In the limit, as t → ∞, and each pt(k) converges to its stationary distribution p(k),we
obtain

p(k) =
1
2

((k−1)p(k−1)− kp(k))+δk,1, (67)

since pt+1(k) = pt(k) in the stationary state and for large t, t + 2 ∼ t + 1 ∼ t. The
solution for k > 1 of Equation (67) is given by

p(k) =
4

k(k +1)(k +2)
. (68)
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One can write Equation (67) in the form

p(k) =
1
2

(k [p(k−1)− p(k)]− p(k−1))+δk,1

= −1
2

(

k
p(k)− p(k−∆k)

∆k
+ p(k−∆k)

)

+∆k,
(69)

where ∆k = 1. Taking the limit ∆k → 0 one obtains the continuous form of (67)

p(k) = −1
2

(

k
d p
dk

+ p(k)
)

= −1
2

d
dk

(kp(k)) .
(70)

The solution of this equation is given by

p(k) = 2k−3, (71)

where the factor 2 comes from the normalization condition
∫ ∞

1 p(k)dk = 1. We find,
therefore, that the degree distribution satisfies a power law of the form p(k) ∝ k−γ .
If the frequency of nodes with a degree k is proportional to k−γ , then the distribution
is scale-free.

7 Strategic Network Formation

In the preceding sections we have studied the formation of networks under different
stochastic processes governing the way in which links are formed between nodes.
However, in social and economic settings the choice of forming a link or not is gov-
erned by individual incentives and the potential benefits versus costs that arise from
the establishment or withdrawal from a relationship. Strategic network formation6

thus constitute strategic settings in which the payoffs of agents are interdependent
and this interdependency is rooted in a network structure.

7.1 Efficiency and Pairwise Stability

If we want to model network formation based on individual incentives then we first
need to introduce a utility function that describes the net benefits an agent enjoys
from being part of the network. This can formally be done via a utility function
ui : G → R that assigns each agent i ∈ N = {1, ...,n} a utility from the network G.

6 We restrict our discussion in this tutorial to non-cooperative games on networks [see also 42, 55,
84, 93, for an excellent introduction]. Cooperative games on networks have been treated in [76].
For algorithmic issues we refer to Nisan et al. [71].
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Based on a properly defined utility function we can address the question of how
efficient or stable certain network structures are. We treat both of these issues in the
next paragraphs.

A measure of the global performance of the network is introduced by its effi-
ciency. The total utility of a network is defined by U(G) = ∑n

i=1 ui(G). A network is
considered efficient if it maximizes the total utility of the network U(G) among all
possible networks, G with n nodes [56].

Definition 1. Denote the set of networks with n nodes by G(n). A network G is
efficient if U(G) = ∑n

i=1 ui(G) ≥U(G′) = ∑n
i=1 ui(G′) for all G′ ∈ G(n).

The evolution of the network is the result of strategic interactions between agents
when they decide to create or delete links. In the following we consider a particularly
simple network formation process. At every time step a pair of agents is chosen at
random and tries to establish a new link between them or delete an already existing
one. If a link is added, then the two agents involved must both agree to its addition,
with at least one of them strictly benefiting (in terms of a higher utility) from its
formation. Similarly a deletion of a link can only take place in a mutual agreement.
The subsequent addition and deletion of links creates a sequence of networks. If
no new links are accepted nor old ones are deleted then the network reaches an
equilibrium. An equilibrium under the above described network formation process
leads us to the notion of pairwise stability, introduced by Jackson and Wolinsky
[56].

Definition 2. A network G is pairwise stable if and only if

(i) for all ei j ∈ E(G), ui(G) ≥ ui(E\ei j) and u j(G) ≥ u j(E\ei j),
(ii) for all ei j /∈ E(G), if ui(G) < ui(E ∪ ei j) then ui(G) > u j(E ∪ ei j).

A network is pairwise stable if and only if (i) removing any link does not increase
the utility of any agent, and (ii) adding a link between any two agents, either does
not increase the utility of any of the two agents, or if it does increase one of the two
agents’ utility then it decreases the other agent’s utility.

The point here is that establishing a new link with an agent requires the consen-
sus, that is, an increase in utility, of both of them. The notion of pairwise stability
can be distinguished from the one of Nash equilibrium7 which is appropriate when
each agent can establish or remove unilaterally a connection with another agent.

In Section 7.2 and in Section 7.3 we will give specific examples for different
utility functions. As we will show, the particular choice of the utility function sig-
nificantly shapes individual incentives to form or severe links. As a result, different
incentive structures translate into network outcomes that can vary considerably in
terms of efficiency and stability.

7 Considering two agents playing a game (e.g. trading of knowledge) and each adopting a certain
strategy. A Nash equilibrium is characterized by a set of strategies where each strategy is the
optimal response to all the others.



54 M.D. König, S. Battiston

7.2 The Connections Model

In the Connections Model introduced in Jackson and Wolinsky [56] agents receive
information from others to whom they are connected to. Through these links they
also receive information from those agents that they are indirectly connected to, that
is, trough the neighbors of their neighbors, their neighbors, and so on8.

The utility, ui(G), agent i receives from network G with n agents is a function
ui : G → R with

ui(G) =
n

∑
j=1

δ di j − ∑
j∈Ni

c, (72)

where di j is the number of edges in the shortest path between agent i and agent j.
di j = ∞ if there is no path between i and j. 0 < δ < 1 is a parameter that takes into
account the decrease of the utility as the path between agent i and agent j increases.
N(i) is the set of nodes in the neighborhood of agent i.

There exists a tension between stability and efficiency in the connections model.
This will become clear, after we state the following two propositions.

Proposition 1. The unique efficient network in the symmetric Connections Model is

(i) the complete graph Kn if c < δ −δ 2,
(ii) a star encompassing everyone if δ −δ 2 < c < δ + n−2

2 δ 2,
(iii) the empty graph (no links) if δ + n−2

2 δ 2 < c.

Proof. (i) We assume that δ 2 < δ − c. Any pair of agents that is not directly con-
nected can increase its utility (the net benefit for creating a link is δ −c−δ 2 > 0)
and thus the total utility, by forming a link. Since every pair of agents has an
incentive to form a link, we will end up in the complete graph Kn, where all pos-
sible links have been created and no additional links can be created any more.

(ii) Consider a component of the graph G containing m agents, say G′. The number
of links in the component G′ is denoted by k, where k ≥ m− 1, otherwise the
component would not be connected. E.g. a path containing all agents would
have m− 1 links. The total utility of the direct links in the component is given
by k(sδ − 2c). There are at most m(m−1)

2 − k left over links in the component,
that are not created yet. The utility of each of these left over links is at most 2δ 2

(it has the highest utility if it is in the second order neighborhood). Therefor the
total utility of the component is at most

k2(δ − c)+
(

m(m−1)
2

− k
)

2δ 2. (73)

Consider a star K1,m−1 with m agents. The star has m−1 agents which are not in
the center of the star. An example of a star with 4 agents is given in Figure (12).
The utility of any direct link is 2δ −2c and of any indirect link (m−2)δ 2, since

8 Here only the shortest paths are taken into account.
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1 2

3

4

Fig. 12 A star encompassing 4 agents

any agent is 2 links away from any other agent (except the center of the star).
Thus the total utility of the star is

(m−1)(2δ −2c)
︸ ︷︷ ︸

direct connections

+(m−1)(m−2)δ 2
︸ ︷︷ ︸

indirect connections

. (74)

The difference in total utility of the (general) component and the star is just
2(k−(m−1))(δ −c−δ 2). This is at most 0, since k≥m−1 and c > δ −δ 2, and
less than 0 if k > m− 1. Thus, the value of the component can equal the value
of the star only if k = m− 1. Any graph with k = m− 1 edges, which is not a
star, must have an indirect connection with a distance longer than 2, and getting
a total utility less than 2δ 2. Therefore the total utility from indirect connections
of the indirect links will be below (m− 1)(m− 2)δ 2 (which is the total utility
from indirect connections of the star). If c < δ − δ 2, then any component of a
strongly efficient network must be a star.
Similarly it can be shown [56] that a single star of m+n agents has a higher total
utility than two separate stars with m and n agents. Accordingly, if an efficient
network is non-empty, it must be a star.

(iii) A star encompassing every agent has a positive value only if δ + n−2
2 δ 2 > c.

This is an upper bound for the total achievable utility of any component of the
network. Thus, if δ + n−2

2 δ 2 < c the empty graph is the unique strongly efficient
network.
�

Moreover, Jackson and Wolinsky [56] also determine the stable networks in the
Connections Model.

Proposition 2. Consider the Connections Model in which the utility of each agent
is given by Equation (72).

(i) A pairwise stable network has at most one (non-empty) component.
(ii) For c < δ −δ 2, the unique pairwise stable network is the complete graph Kn.

(iii) For δ −δ 2 < c < δ a star encompassing every agent is pairwise stable, but not
necessarily the unique pairwise stable graph.

(iv) For δ < c, any pairwise stable network that is non-empty is such that each agent
has at least two links (and thus is inefficient).

Proof. (i) Lets assume, for the sake of contradiction, that G is pairwise stable and
has more than one non-empty component. Let ui j denote the utility of agent i
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having a link with agent j. Then, ui j = ui(G + ei j)− ui(G) if ei j /∈ E(G) and
ui j = ui(G)−ui(G−ei j) if ei j ∈E(G). We consider now ei j ∈E(G). Then ui j ≥
0. Let ekl belong to a different component. Since i is already in a component
with j, but k is not, it follows that u jk > ui j ≥ 0, because agent k will receive an
additional utility of δ 2 from being indirectly connected to agent i. For similar
reasons u jk > ulk ≥ 0. This means that both agents in the separate component
would have an incentive to form a link. This is a contradiction to the assumption
of pairwise stability.

(ii) The net change in utility from creating a link is δ − δ 2 − c. Before creating
the link, the geodesic distance between agent i and agent j is at least 2. When
they create a link, they gain δ but they lose the previous utility from being
indirectly connected by some path whose length is at least 2. So if c < δ −δ 2,
the net gain from creating a link is always positive. Since any link creation is
beneficial (increases the agents’ utility), the only pairwise stable network is the
complete graph, Kn.

(iii) We assume that δ − δ 2 < c− δ and show that the star is pairwise stable. The
agent in the center of the star has a distance of 1 to all other agents and all
other agents are separated by 2 links from each other. The center agent of the
star cannot create a link, since she has already maximum degree. She has no
incentive to delete a link either. If she deletes a link, the net gain is c− δ ,
since there is no path leading to the then disconnected agent. By assumption,
δ − δ 2 < c < δ , c− δ < 0 and the gain is negative, and the link will not be
removed. We consider now an agent that is not the center of the star. She cannot
create a link with the center, since they are both already connected. The net gain
of creating a link to another agent is δ − δ 2 − c, which is strictly negative by
assumption. So she will not create a link either. The star is pairwise stable.
Now consider the star encompassing all agents. Suppose an agent would not be
connected to the star. If the center of the star would create a link to this isolated
agent, the net gain would be δ − c > 0 and the benefit of the isolated agent is
again δ − c > 0. So both will create the link.
The star is not the unique pairwise stable network. We will show that for 4
agents, the cycle, C4 is also a pairwise stable network (see Figure (13)).
If agent 3 removes a link to agent 4, then her net gain is c− δ − δ 3. For the
range of costs of δ −δ 2 < c < δ −δ 3 < δ , she will never do it. If agent 3 adds
a link to agent 1, Figure (13), the net gain is δ − δ 2 < 0. Thus, for n = 4 and

1 2

34

1 2

34

1 2

34

Fig. 13 A cycle of 4 agents (left) and the resulting graph after the deletion of a link from agent 3
to agent 4 (middle) and and the resulting graph after the creation of a link from agent 3 to agent 1
(right)
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δ − δ 2 < c < δ − δ 3, then there are at least two pairwise stable networks: the
star and the cycle.

(iv) For δ < c the star is not a pairwise stable network because the agent in the
center of the star would gain c− δ from deleting a link. Moreover, it can be
shown [56] that any connected agent has at least 2 links. �

One can see, from the two propositions described above, that a pairwise stable
network is not necessarily efficient. For high cost c > δ there are non-empty pair-
wise stable networks but they are not efficient. Moreover, Watts [88] shows that if
the benefit from maintaining an indirect link of length two is greater than the net
benefit from maintaining a direct link (δ 2 > δ − c > 0) then the probability that the
unique efficient network, the star K1,n−1, is reached vanishes for large n.

The existence of inefficient equilibria is of interest because it indicates that the
system, let alone to evolve, does not always reach an efficient configuration. In this
respect, the result is important from the point of view of designing of policies that
help the system to reach an efficient configuration.

Finally, we note that Jackson and Rogers [54] have proposed an extension of
the Connections Model in which stable networks show the properties of a “Small-
World” (see Section 5.3).

7.3 A Model of Dynamic Innovation Networks

We now briefly discuss a recent model of dynamic innovation networks in which
agents compete for the most valuable knowledge for production, while knowledge
can only be created through collaborations and knowledge exchange [62, 63]. By
knowledge exchange we mean R&D partnerships (either informal or formal), char-
acterized by bilateral interactions among agents. We characterize the emerging net-
work topologies in terms of their efficiency (total knowledge growth) and in terms
of the individual agents’ knowledge growth.

Consider a set of agents, N = {1, ...,n}, represented as nodes of an undirected
graph G, with an associated variable xi representing the knowledge of agent i. A
link ei j, represents the transfer of knowledge between agent i and agent j. Knowl-
edge is shared among an individual’s direct and indirect acquaintances. The level
of knowledge an agent holds is proportional to the knowledge levels of its neigh-
bors. We assume that knowledge x = (x1, ...,xn) grows, starting from positive values,
xi(0) > 0 ∀i ∈ N, according to the following linear ordinary differential equation

ẋi =
n

∑
j=1

ai jx j, (75)

where ai j ∈ {0,1} are the elements of the adjacency matrix A of the graph G. In
vector notation we have ẋ = Ax. Similar to Carayol and Roux [17, 18] we assume
that the gross return of agent i is proportional to her knowledge growth rate, with
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proportionality constant set to 1 for sake of simplicity9. We also assume that main-
taining a link induces a constant marginal cost c ≥ 0 for both agents connected via
the link. Therefore the utility ui(t) of agent i is given by

ui(t) =
ẋi(t)
xi(t)

− cdi, (76)

where di denotes the degree of agent i. From Equation (75) one can show that [50]
limt→∞

ẋi(t)
xi(t)

= λPF(Gi) where λPF is the largest real eigenvalue (Section 4.1) of the
connected component Gi to which agent i belongs. Therefore, for large times t the
utility function of agent i in a network G is given by

ui = λPF(Gi)− cdi. (77)

We can compare the utility functions of the Connections Model introduced in
Equation (72) and the utility function from Equation (77). In both the utility de-
pends on the position of an agent in the network. In Equation (77) and Equation
(72) the cost term is identical. However, while the utility function in the Connec-
tions Model considers the length di j of the shortest path from node i to node j, the
utility function in Equation (77) takes into account all paths of all lengths (in fact,
λPF is proportional to the asymptotic growth rate of walks in a graph [25]). Indeed,
it has been argued that knowledge gets transferred not only along the shortest path
but also along all other paths in a network [78, 87]. Accordingly, all agents to which
agent i is indirectly connected to along path of any length, contribute to the utility
of agent i in this model.

Based on the definition of efficiency we can derive the efficient networks for
certain values of the marginal cost. For a full characterization of efficient networks
in this model we refer to König et al. [63].

Proposition 3. The complete graph Kn is efficient for c < 1
2 . For costs c ≥ n the

empty graph is efficient.

Proof. Since for the complete graph it is λPF = n−1 and m = n(n−1)
2 , its aggregate

utility is U(Kn) = n(n−1)−2 n(n−1)
2 c = n(n−1)(1− c).

On the other hand, the largest real eigenvalue λPF of a graph G with m edges is
bounded from above so that λPF ≤ 1

2 (
√

8m+1− 1) [77]. For the aggregate utility
of the network we then have

U(G) =
n

∑
i=1

λPF(Gi)−2mc ≤ n max
1≤i≤n

λPF(Gi)−2mc

≤n
2
(
√

8m+1−1)−2cm := b(n,m,c), (78)

9 The detailed derivation of the relation between an agents profits and her knowledge growth rate
can be found in König et al. [63].
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with n ≤ m ≤
(n

2

)
. For fixed cost c and number of nodes n, the number of edges

maximizing Equation (78) is given by m∗ = n2−c2

8c2 if n2−c2

8c2 <
(n

2

)
and m∗ = n(n−1)

2

if n2−c2

8c2 >
(n

2

)
. The graph with the latter number of edges is the complete graph.

Inserting m∗ into Equation (78) yields

b(n,m∗,c) =

{
n
2 (

√
n2−c2

c2 +1−1)− n2−c2

4c c > n
2n−1

n(n−1)(1− c) = Π(Kn) c < n
2n−1 .

(79)

The bound for c ≤ n
2n−1 ∼ 1

2 coincides with the aggregate utility of the complete
graph Kn for large n. Kn is therefore the efficient graph. If instead c = n then m∗ = 0.
The efficient graph is the empty graph. This concludes the proof. �

In the following we make an important assumption. The network evolution pro-
cess is assumed to be much slower than the knowledge growth of Equation (75), so
that agents make decisions based on the asymptotic growth rate of knowledge and
the utility function in Equation (77). Thus, we introduce a coupling of fast knowl-
edge growth coupled with a slow network evolution, as illustrated in Figure (4.4) in
Section 4.4.

Given the utility function in Equation (77) and the network evolution introduced
in Section 7.1 one can show that the network evolution can lead to pairwise stable
networks [63]. However, there exists a multiplicity of different equilibria, as the next
proposition reveals (for the proof see König et al. [63]).

Proposition 4. Consider costs c, c′ = αc, α ∈ [0,1] and the network G with n nodes

such that10 � 2
c � ≤ n≤ � 1+c′2(6+c′2)

4c′2 �. If there exists an integer k ≤ n, mod (n,k) = 0

such that � 1+c(1−c)
c � ≤ k ≤ � 2−c′(1−c′)

c′ � then G can be stable for at least two cases:

(i) G consists of disconnected cliques K1
k , ...,Kd

k , n = kd or
(ii) G consists of a spanning star K1,n−1.

There are at least two stable networks for the same level of marginal cost c (degen-
erate cost region).

The variety of the possible equilibria is not only restricted to cliques and stars
of different sizes but it also includes networks with complex topologies which are
characteristic of many real word networks. Examples of such equilibrium networks
can be seen in Figure (14). Differently to the Connections Model this model is able
to reproduce some stylized empirical facts of R&D networks, namely that networks
are sparse, locally dense and show heterogeneous degree distributions [23, 72].

We have seen that in this model there exist multiple equilibrium networks, some
of them being inefficient. Depending on the cost of interactions the system can get
stuck in stable but inefficient structures. However, in König et al. [62] it is shown

10 In the following, �x�, where x is a real valued number x ∈ R, denotes the smallest integer larger
or equal than x (the ceiling of x). Similarly, �x� the largest integer smaller or equal than x (the floor
of x).
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Fig. 14 Equilibrium networks for vanishing cost c = 0 (left), intermediate cost c = 0.2 (middle)
and high cost c = 0.5 (right) for n = 50 agents (without link removal in the network formation
process) adopted from König et al. [62]. Clearly, the higher the cost c, the sparser and the more
clustered are the equilibrium networks

that if it is difficult to break up already existing collaborations and agents maintain
R&D collaborations even when, in the short run, they may be unprofitable, then
emerging networks are efficient.

7.4 Summary and Conclusion

In this tutorial we have given an introduction to models of economic networks and
we have tried to show the wide applicability and importance of these models. Since
the field of economic network theory is growing at an increasing pace, this tutorial
is far from being exhaustive. However, the models presented here can serve as a
starting point for interested students and prospective researchers in the field.
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16. Calvó-Armengol, A. and Martı́, J. d. (2007). On optimal communication networks. Working

paper, Universitat Autonoma de Barcelona.
17. Carayol, N. and Roux, P. (2003). Self-organizing innovation networks: When do small worlds

emerge? Working Papers of GRES - Cahiers du GRES 2003-8, Groupement de Recherches
Economiques et Sociales.

18. Carayol, N. and Roux, P. (2005). Nonlinear Dynamics and Heterogeneous Interacting Agents,
chapter Collective Innovation in a Model of Network Formation with Preferential Meeting,
pages 139–153. Springer.

19. Chapelle, A. (2005). Separation of ownership and control: Where do we stand? Corporate
Ownership and Control, 15(2).

20. Chung, F. and Lu, L. (2007). Complex Graphs and Networks. American Mathematical Society.
21. Corrado, R. and Zollo, M. (2006). Small worlds evolving: Governance reforms, privatizations,

and ownership networks in italy. Industrial and Corporate Change, 15(2):319–352.
22. Costa, L. F., Rodrigues, F. A., Travieso, G., and Boas, P. V. (2007). Characterization of com-

plex networks: A survey of measurements.
23. Cowan, R. (2004). Network models of innovation and knowledge diffusion. Research Mem-

oranda 016, Maastricht : MERIT, Maastricht Economic Research Institute on Innovation and
Technology.

24. Cowan, R. and Jonard, N. (2004). Network structure and the diffusion of knowledge. Journal
of Economic Dynamics and Control, 28:1557–1575.

25. Cvetkovic, D., Doob, M., and Sachs, H. (1995). Spectra of Graphs: Theory and Applications.
Johann Ambrosius Barth.

26. Davis, G. and Greve, H. (1997). Corporate Elite Networks and Governance Changes in the
1980s. American Journal of Sociology, 103(1):1–37.

27. Davis, G., Yoo, M., and Baker, W. (2003). The Small World of the American Corporate Elite,
1982-2001. Strategic Organization, 1(3):301.

28. Diestel, R. (2000). Graphentheorie. Springer, 2nd edition.
29. Dodds, P. S., Watts, D. J., and Sabel, C. F. (2003). Information exchange and robustness of or-

ganizational networks. Working Paper Series, Center on Organizational Innovation, Columbia
Univeristy.

30. Durrett, R. (2007). Random Graph Dynamics. Cambridge University Press.
31. Durrett, R. A. (2004). Probability. Theory and Examples. Thomson Learning.
32. Farmer, J. D., Smith, E., and Shubik, M. (2005). Economics: The next physical science?
33. Flath, D. (1992). Indirect shareholding within japan’s business groups. Economics Letters,

38(2):223–227.
34. Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks,

1:215–239.
35. Gabszewicz, J. (2000). Strategic Interaction and Markets. Oxford University Press, Center

for Operations Research and Econometrics (CORE), Catholic University of Louvain.
36. Gallegati, M. and Kirman, A. P., editors (1999). Beyond the Representative Agent. Edward

Elgar Publishing.



62 M.D. König, S. Battiston

37. Garlaschelli, D., Battiston, S., Castri, M., Servedio, V. D. P., and Caldarelli, G. (2005). The
scale-free topology of market investments. Physica, A(350):491–499.

38. Geipel, M. (2007). Self-organization applied to dynamic network layout. International Jour-
nal of Modern Physics C. forthcoming.

39. Geroski, P. A. (2000). Models of technology diffusion. Research Policy, 29(4-5):603–625.
40. Gigerenzer, G. and Selten, R., editors (2002). Bounded Rationality: The Adaptive Toolbox

(Dahlem Workshop Reports). MIT Press.
41. Godsil, C. D. and Royle, G. F. (2001). Algebraic Graph Theory. Springer.
42. Goyal, S. (2007). Connections: an introduction to the economics of networks. Princeton

University Press.
43. Goyal, S. and Moraga-Gonzalez, J. L. (2001). R&d networks. RAND Journal of Economics,

32:686–707.
44. Granovetter, M. (1995a). Getting a Job: A Study of Contacts and Careers. University of

Chicago Press.
45. Granovetter, M. (1995b). Industrial and Corporate Change, chapter Coase Revisited: Busi-

ness Groups in the Modern Economy. Oxford University Press.
46. Gross, T. and Blasius, G. (2007). Adaptive coevolutionary networks - a review. eprint arXiv:

0709.1858.
47. Growiec, J., Pammolli, F., Riccaboni, M., and Stanley, H. (2008). On the size distribution of

business firms. Economics Letters, 98(2):207–212.
48. Haken, H. (1977). Synergetics - An Introduction; Nonequilibrium Phase Transitions and Self-

Organization in Physics, Chemistry and Biology. Springer.
49. Hausman, D. M. (2003). Inexact and Separate Science of Economics. Cambridge University

Press.
50. Horn, R. A. and Johnson, C. R. (1990). Matrix Analysis. Cambridge University Press.
51. Huberman, Bernardo, A. and Hogg, T. (1995). Communities of practice: Performance and

evolution. Computational and Mathematical Organization Theory, 1(1):73–92.
52. Jackson, M. (2008). Social and Economic Networks. Princeton University Press.
53. Jackson, M. and Calvo-Armengol, T. (2007). Networks in labor markets: Wage and employ-

ment dynamics and inequality. The Journal of Economic Theory, 132(1):27–46.
54. Jackson, M. and Rogers, B. (2005). The Economics of Small Worlds. Journal of the European

Economic Association, 3(2–3):617–627.
55. Jackson, M. O. (2006). Advances in Economics and Econometrics: Theory and Applications,

Ninth World Congress, volume I, chapter The Economics of Social Networks. Cambridge
University Press.

56. Jackson, M. O. and Wolinsky, A. (1996). A strategic model of social and economic networks.
Journal of Economic Theory, 71(1):44–74.

57. Jain, S. and Krishna, S. (1998). Autocatalytic sets and the growth of complexity in an evolu-
tionary model. Physical Review Letters, 81(25):5684–5687.

58. Jain, S. and Krishna, S. (2001). A model for the emergence of cooperation, interdepen-
dence, and structure in evolving networks. Proceedings of the National Academy of Sciences,
98(2):543–547.

59. Kamien, M. I., Muller, E., and Zang, I. (1992). Research joint ventures and R&D cartels. The
American Economic Review, 82(5):1293–1306.

60. Kirman, A. (1997). The economy as an evolving network. Journal of Evolutionary Economics,
7(4):339–353.

61. Kogut, B. and Walker, G. (2001). The small world of germany and the durability of national
networks. American Sociological Review, 66(3):317–335.

62. König, M. D., Battiston, S., Napoletano, M., and Schweitzer, F. (2008). On algebraic graph
theory and the dynamics of innovation networks. Networks and Heterogeneous Media,
3(2):201–219.

63. König, M. D., Battiston, S., Napoletano, M., and Schweitzer, F. (2009). Efficiency and stability
of dynamic innovation networks. forthcoming.



From Graph Theory to Models of Economic Networks. A Tutorial 63

64. König, M. D., Battiston, S., and Schweitzer, F. (2008). Innovation Networks - New Approaches
in Modeling and Analyzing, chapter Modeling Evolving Innovation Networks. Springer Com-
plexity Series.

65. Lave, J. and Wenger, E. (1991). Situated Learning: Legitimate Peripheral Participation. Cam-
bridge University Press.

66. Milgram, S. (1967). The small world problem. Psychology Today, 2(1):60–67.
67. Newman, M. (2003). The structure and function of complex networks. SIAM review,

45(2):167–256.
68. Newman, M. E. J. (2007). The New Palgrave Encyclopedia of Economics, chapter Mathemat-

ics of networks. Palgrave Macmillan, Basingstoke.
69. Newman, M. E. J., Strogatz, S. H., and Watts, D. J. (2001). Random graphs with arbitrary

degree distributions and their applications. Physcal Review E, 64(2):026118.
70. Newman, M. E. J., Watts, D. J., and Strogatz, S. H. (2002). Random graph models of social

networks. Proceedings of the National Academy of Sciences, 99(90001):2566–2572.
71. Nisan, N., Roughgarden, T., Tardos, E., and Vazirani, V. V., editors (2007). Algorithmic Game

Theory. Cambridge University Press.
72. Powell, W. W., White, D. R., Koput, K. W., and Owen-Smith, J. (2005). Network dynam-

ics and field evolution: The growth of interorganizational collaboration in the life sciences.
American Journal of Sociology, 110:1132–1205.

73. Reichl, L. E. (2004). A Modern Course in Statistical Physics. Wiley-VCH, 2 edition.
74. Riccaboni, M. and Pammolli, F. (2002). On firm growth in networks. Research Policy, 31(8-

9):1405–1416.
75. Seneta, E. (2006). Non-negative Matrices And Markov Chains. Springer.
76. Slikker, M. and van den Nouweland, A. (2001). Social and Economic Networks in Cooperative

Game Theory. Springer.
77. Stanley, R. P. (1987). A bound on the spectral radius of graphs with e edges. Linear Algebra

and its Applications, 87:267–269.
78. Stephenson, K. and Zelen, M. (1989). Rethinking centrality: Methods and examples. Social

Networks, 11:1–37.
79. Stoneman, P. (2002). The Economics of Technological Diffusion. Blackwell Publishers.
80. Van Alstyne, M. (1997). The state of network organization: A survey in three frameworks.

Journal of Organizational Computing and Electronic Commerce, 7(2):83–151.
81. Van Zandt, T. (1997). Contemporary Economic Development Reviewed, Volume 4: The En-

terprise and its Environment, chapter Decentralized Information Processing in the Theory of
Organizations, pages 125–160. MacMillan Press Ltd.

82. Varian, H. R. (1996). Intermediate Microeconomics: A Modern Approach. WW Norton.
83. Vega-Redondo, F. (2006). Diffusion and growth in an evolving network. forthcoming in

International Journal of Game Theory.
84. Vega-Redondo, F. (2007). Complex Social Networks. Series: Econometric Society Mono-

graphs. Cambridge University Press.
85. Venkatesh, B. and Goyal, S. (1998). Learning from neighbors.
86. Veugelers, R. (October 1998). Collaboration in R&D: An assessment of theoretical and em-

pirical findings. De Economist, 146:419–443(25).
87. Wasserman, S. and Faust, K. (1994). Social Network Analysis: Methods and Applications.

Cambridge University Press.
88. Watts, A. (2001). A dynamic model of network formation. Games and Economic Behavior,

34(2):331–341.
89. Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of small-world networks. Nature,

393:440–442.
90. Weidlich, W. (2002). Sociodynamics - a systematic approach to mathematical modelling in

the social sciences. Taylor & Francis.
91. West, Douglas, B. (2001). Introduction to Graph Theory. Prentice-Hall, 2nd edition.
92. Xu, J. (2003). Theory and Application of Graphs. Kluwer Academic Publishers.
93. Zenou, Y. (2006). Course on networks: Theory and applications. lecture notes.



http://www.springer.com/978-3-540-68407-7




