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Abstract. Trees are a special sub-class of networks with unique properties, such as the level distribution
which has often been overlooked. We analyse a general tree growth model proposed by Klemm et al. [Phys.
Rev. Lett. 95, 128701 (2005)] to explain the growth of user-generated directory structures in computers.
The model has a single parameter q which interpolates between preferential attachment and random
growth. Our analysis results in three contributions: first, we propose a more efficient estimation method
for q based on the degree distribution, which is one specific representation of the model. Next, we introduce
the concept of a level distribution and analytically solve the model for this representation. This allows for an
alternative and independent measure of q. We argue that, to capture real growth processes, the q estimations
from the degree and the level distributions should coincide. Thus, we finally apply both representations
to validate the model with synthetically generated tree structures, as well as with collected data of user
directories. In the case of real directory structures, we show that q measured from the level distribution are
incompatible with q measured from the degree distribution. In contrast to this, we find perfect agreement
in the case of simulated data. Thus, we conclude that the model is an incomplete description of the growth
of real directory structures as it fails to reproduce the level distribution. This insight can be generalised
to point out the importance of the level distribution for modeling tree growth.

PACS. 64.60.aq Networks – 89.75.Fb Structures and organisation in complex systems – 89.75.Hc Networks
and genealogical trees

1 Introduction

Tree structures are pervasive in natural systems as well
as in artificial ones [1]. For example, in geology, river net-
works are a paradigmatic example [2]. Moreover, trees also
appear in biology, for example in the vascular systems
of animals and plants [3,4]. Recently, it was shown that
these transport systems exhibit universal scaling proper-
ties, which only depend on the dimensionality of the space
they are embedded in [5]. Apart from that, trees are fun-
damental in computer models of plant growth, also called
Lindenmayer-systems [6].

Trees are not only pervasive in nature but also in
the way humans structure knowledge and information:
different species have been historically classified based
on trees where each node represents one species. First,
through the linnaean taxonomic classification, where the
complete hierarchy is known as the tree of life [7].
Later through more evolved techniques, such as clado-
rams [8], and (more recently) phylogenetic trees which
have helped to understand the diversification patterns
at increasing resolution [9]. Interestingly, these phyloge-
netic trees show an outstanding invariance when seen
at different scales, ranging from inter- to intra-species
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ones [10,11]. Another example of trees is the categorisa-
tion of entries in Wikipedia. Even though Wikipedia is
non-hierarchically organised, the categorisation forms an
emergent tree structure [12].

Likewise, trees are dominant in computer systems.
They are a fundamental concept of algorithms: data com-
pression, sorting, searching and analysis of recursion are
all tied to often highly sophisticated hierarchical struc-
tures [13–15]. This also applies to one of the most obvious
tree in everyday work life: the directory structure in our
computers. The first popular fully hierarchical file system
was introduced with the UNIX operating system. Despite
new non-hierarchical organisation paradigms such as tag-
ging [16] or relational data bases [17], the hierarchical or-
ganisation in directories remains the indispensable basis
of data storage in all modern computer systems. A model
to describe the growth of these directory trees has been
proposed in [18,19].

From a formal point of view, trees are a special sub-
class of networks. For example, in the network growth
model by Krapivsky et al. [20], if the number of added
edges per time unit is one, the resulting network is a tree.
Later, in [21], the authors studied a non-linear attach-
ment process that yields a directed tree structure. On a
different context, each weighted network can easily by re-
duced to a minimum spanning tree. This method was for
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example used to describe the backbones of complex net-
works [22,23]. The fact that trees are a sub-class of net-
works, however, should not lead to the misconception that
they are trivial. Indeed they often show a high degree of
complexity and offer a set of unique properties, not ex-
istent in general networks. For example, many existing
tree structures exhibit scaling laws in the sub-tree size or
branch size distribution, named allometric scaling [1]. Fur-
thermore, in trees there is a special node, the root, from
which the tree grows. Thus, all trees also possess a level
distribution as a characteristic property. Given these sig-
nificant differences between networks and trees and their
remarkable features, such allometric scaling and level dis-
tribution, the tools developed for complex networks are
not sufficient to capture the idiosyncratic properties of
trees. Characterising the trees by means of its level dis-
tributioasn has been mostly overlooked in the literature,
with very few exceptions (for example, see Ref. [21]).

Notwithstanding this insight, trees are all to often just
treated as (simplified) extreme cases of networks. The aim
of this paper is to fill this gap. We focus on the tree growth
model presented in [18]. Although introduced as a model
to explain the growth of computer directories, this model
constitutes a very general and straight-forward approach
to the growth hierarchical structures. As the main idea,
it interpolates two fundamental growth mechanisms: ran-
dom growth and preferential attachment. In this paper
we complement the results on this general model in sev-
eral ways: we show that, when rewritten in terms of the
level distribution, the equations describing the growth of
the tree can be solved and easily validated against the
data. Moreover, we introduce an alternative method to
estimate the parameters of the model based on the de-
gree distribution. We find that both methods allow us to
obtain unbiased, independent estimations of the relevant
model parameters. Finally we contrast the parameter esti-
mation for computer simulated data of the model with real
world data. We confirm that the model presented in [18]
reproduces the properties of the degree distribution of user
generated directories, but we find that it falls short in re-
producing the corresponding level distribution.

The paper is organised as follows. In Section 2 we re-
view the stochastic model of reference [18,19] and the main
results therein. In Section 3 we solve two complementary
representations of the stochastic model: one written in
terms of the degree distribution, and another in terms of
the level distribution. Section 4 shows the comparison be-
tween the estimation of the relevant parameters with sim-
ulations and data gathered from different computer pools.
The closing Section 5 presents the final summary and dis-
cusses the main results.

2 Model

The model introduced in reference [18] interpolates be-
tween two growth processes: one based on preferential at-
tachment, and the other based on random attachment.
Initially, at t = 1, there is one node: the “root” node.
Then, at every time step t, a node is added to the tree by

one of two different processes: (i) with probability q, the
node is added following a preferential attachment rule: the
larger the in-degree (k − 1) of a node, the more probable
the new node is linked to it. (ii) otherwise, with proba-
bility 1 − q, the node is added at random to one of the
existing ones. Thus, at time t the network size is N = t.
Throughout this Paper, we will use N and t interchange-
ably depending on the context.

The probability of adding a node to an existing one
with degree k is defined by the following equation:

Π(k) = q
k − 1

N
+ (1 − q)

1
N

. (1)

The normalisation of the second term (on the right-hand
side) is straight-forward: each node is equally likely to be
chosen at random; thus it is divided by N , the number of
nodes in the system. The normalisation of the first term
deserves a brief explanation. First, it is assumed that edges
in the tree are directed from child to parent. Each node
has thus an out-degree of 1. The in-degree is consequently
k−1. The proper normalisation would be N−2 as in a tree
the sum of all degrees equals 2(N−1). We assume however
that the root node has an initial degree of 2, otherwise in
the case of q = 1 and time t = 1, Π(k) for the only existing
node, root, would be zero. For this reason, also the q term
is normalised with N .

The authors of reference [18] verified this model
against real directory data in two ways. First, by a com-
parison of the allometric scaling defined by the model and
the one found in the data. The authors showed that the
model matches the data in this respect. In the second
test, the authors calculated from the data the second,
third, and fourth moment of the degree distribution as
well as the average distance between nodes. For each of
these four observed variables, the most probable value of
q was then estimated by extensive computer simulation
of the model, rejecting/accepting randomly drawn values
of q via a Monte Carlo method. The authors found an
excellent agreement between these values of q estimated
independently.

Apart from these tests, reference [18] shows that the
degree distributions of the directory trees exhibit a non-
universal exponent while the scaling exponent of the dis-
tribution of branch sizes (i.e. sub-tree size distribution) is
a power law with a universal exponent which equals 2. In
reference [19] these findings were complemented: in direc-
tory structures, the average distance to the root increases
logarithmically with system size and the exponent of the
allometric scaling is in all the cases close to 1.

3 Analysis

In this section we present the results of our analysis of the
model defined in equation (1). The first part is dedicated
to the degree distribution generated by the model, while
Section 3.2 addresses the level distribution.
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3.1 Degree distribution

Just like networks, trees have a certain degree distribution
which depends on their growth process. To analyse this,
we first write down the exact discrete equations for the
evolution of this distribution over time. Next, we present
closed forms for the recursive solution and analyse their
validity. Finally, we analyse how far concrete realisations
of trees grown based on the model defined in Section 2
divert on average from the expected average solution. This
indicates how well the parameter q can be estimated from
a given degree distribution.

3.1.1 Discrete description

The evolution of the degree distribution can be formalised
as a set of recursive discrete equations. Let K(k, t) be the
number of nodes with degree k at time t. The initial condi-
tion is the following: at time t = 1 only one node exists, the
root. It has by definition k = 2 (see Eq. (2)). Equation (3)
shows that the set of nodes with k = 1 is decremented by
the expected number of its members being chosen to be
linked to a freshly added node. Furthermore, new nodes
are added here, hence a one is added. Finally, the number
of nodes with degree k bigger than one are incremented by
the expected number of nodes with degree k − 1 attract-
ing a connection to a new node and decremented by the
expected number of nodes with degree k attracting one
(cf. Eq. (4)). Thus, the whole set of equations is:

K(k, 1) = δk,2, (2)

K(1, t) = K(1, t−1) + 1 − (1 − q)
K(k, t−1)

t
, (3)

K(k, t) = K(k, t−1)

+ (1 − q)
K(k−1, t−1)− K(k, t−1)

t

+ q
(k−1)K(k−1, t−1)− (k−2)K(k, t−1)

t
.

(4)

Figure 1 shows the numerical solution of these equations
for different values of q. First, for q = 0.0, it can be seen
that the degree distribution is exponential. This is because
for this value, the growth of the tree is equivalent to a
network generated by random attachment of nodes. For
larger values of q, the preferential attachment term has
an increasing weight. The curves for q = 0.5 and q =
0.9 show that asymptotically (i.e. for large values of k)
the distribution approaches a scale-free behaviour. The
limit case q = 1, however evolves into a star as nodes
with degree k = 1 can never be chosen as target of a new
node. Thus, the degree distribution for this case is simply:
K(t − 1, t) = 1, K(1, t) = t − 1. This fact causes the dent
in figure 1 for q = 0.9 at k = 1.

3.1.2 Closed forms

As pointed out in reference [18], the model constitutes a
particular case of the network growth model developed in
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Fig. 1. Degree distribution K(k, t) at t = 104 for different val-
ues of q obtained by recourse of iteration of the discrete equa-
tions (2–4). The different lines correspond to: q = 0.0 (dash-
dotted), q = 0.5 (dashed) and q = 0.9 (solid). The plot shows
that for increasing values of q, the distribution approaches a
power law. The extreme case q = 1 corresponds to a star, with
the root having k = t − 1 and all other nodes having k = 1.

reference [24], given that only one link is added each time
step. The authors of reference [24] also derived a closed
form for the stationary degree distribution in the limit in
infinitely large networks (i.e. when t → ∞). From this,
we can infer the time dependent degree distribution. We
substitute the variables used in reference [24] by the ones
used in reference [18] as follows: m = 1 and a = 1 + 1/q.
The result is

K(k, t)
t

=
1
q

Γ (2q−1 − 1)
Γ (q−1 − 1)

Γ (k − 1 + q−1)
Γ (k + 2q−1)

. (5)

We use Γ to denote the Gamma function. For large values
of k the asymptotic limit of the distribution is

K(k) ∝ k−(1+q)/q. (6)

While solving equations in the limit of infinitely large net-
works is a common practice in the field of complex net-
works, one must be cautious when dealing with real data.
The question is whether or not the systems is large enough
to justify the assumption N → ∞. For example, real di-
rectory structures analysed contain between 102 and 105

nodes.
We have numerically computed the deviation of the

numerical solution of equations (2–4) from the limit distri-
bution defined by equation (6). The deviation is strongest
for low values of q, i.e. q = 0 is the worst case sce-
nario. Figure 2 shows how the thermodynamic limit is
approached for the case q = 0.1 (Eq. (6) is undefined for
q = 0) for networks of comparable sizes to those found
in our data (102 and 105). The lines K(k, t)/N = 10−2

and K(k, t)/N = 10−5 are marked to indicate the areas
relevant for estimating q for these trees.

To test whether equation (6) is a sufficient approxima-
tion, there must not be a deviation between equation (6)
and the equations (2–4) at values larger than t−1. It can
be seen that the degree distribution found for small sys-
tem sizes are such that the limit case is still a good ap-
proximation of the distribution found for real systems: the
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Fig. 2. Comparison of the normalised degree distribution
K(k, t)/N for q = 0.1 for different system sizes with the asymp-
totic behaviour of the degree distribution in the thermody-
namic limit (cf. Eq. (6)), depicted with solid line. The differ-
ent system sizes are: N = 102 (dash-dotted) and N = 105

(dashed). Equation (6) matches equations (2–4) in the rele-
vant regions K(k, t)/N ≥ 10−2 and K(k, t)/N ≥ 10−5 (dotted
lines).

curve for the system size N = 102 matches equation 6 for
K(k, t)/N ≥ 10−2. Also for N = 105 the limiting case is
a good approximation for K(k, t)/N ≥ 10−5. Effectively,
the finite-size effects are only observed with low probabil-
ity and are all below the K(k, t) = 1 line. For this reason,
equation (5) could constitute an appropriate basis for es-
timating q in a real data set.

3.1.3 Estimation of q from the degree distribution

When fitting q from the degree distribution of a single
data set, it is important to bear in mind that equation (5)
only describes the expected degree distribution (i.e. the
one obtained after building the average of a large num-
ber of concrete tree manifestations). Particular realiza-
tions may deviate from it. Figure 3a, shows (solid line)
the average value for the degree distribution over 103 re-
alizations of the tree obtained by numerical simulation.
The dashed lines display the intervals in which 90% of the
degree distributions lie. The expected values obtained via
equation (5) are represented with circles. It can be seen
that the intervals around the average values are relatively
narrow.

In order to estimate the value of q for a given tree
of size N , one can proceed as follows: first, the degree
distribution K∗(k, t) of the tree, is measured. Then, this
distribution is compared to the expected ones obtained
through equation (5) for different values of q. The value q̄k

is the one whose associated degree distribution minimises
the root mean square distance to the empirical K∗(k, t).

How accurate the estimation actually is, can be found
by determining the specific error margins while estimat-
ing q for a single tree. To do so, we generated 104 different
trees for each q-value: q = 0.0, q = 0.5 and q = 0.9, and a
system size N = 2 500. For each run, q was estimated
by fitting equation (5) with the least squares method
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Fig. 3. (a) Deviation of single simulated trees from the cal-
culated degree distribution (q = 0.5, t = 2500). The solid line
shows the mean of the simulations, circles the calculated mean,
the dashed lines mark the tunnel in which 90% of the simu-
lated trees lie. Panel (b): distribution of estimated values of q
by means of the degree distribution (see in-line text for details)
for trees generated by computer simulations of the stochastic
model described in Section 2. In the different plots: q = 0.0
(left), q = 0.5 (middle) and q = 0.9 (right). The tree size is
N = 2 500 and the distribution is based on 104 simulation runs
each.

described above. Figure 3b shows the distributions of the
estimated values of q. In the case of q = 0.5 the empiri-
cally estimated error margins for q are [0.48, 0.53]. Then,
for q = 0.0, the corresponding estimated error margins
for q are [0.0, 0.05]. For q = 1.0 the estimation is always
exact as the only possible manifestation corresponds to a
star. For this reason we analysed the case q = 0.9 and
found error margins of [0.91, 0.89]. In all the cases, we set
a confidence level of 90%. We can conclude that, using
this method, the parameter q can be well approximated
by means of the degree distribution.

3.2 Level distribution of nodes

At difference with what occurs in non-hierarchical net-
works, trees possess a special node, root, from which the
tree starts its growth. Knowing the dynamics of the distri-
bution of distances towards the root, unveils an alternative
description of the process of tree growth. In this section,
the evolution over time of this level distribution is solved.
Moreover, it is shown that the equations describing the
growth in terms of the level distribution are quite simple
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Fig. 4. Representation of the tree structure in terms of the
level distribution: at level 0, there is only one node, the root.
From it, the tree is grown with the stochastic model described
in the text. The level distribution L(l, t) is simply given by the
number of nodes at a distance l of the root. In the figure we
represent each link with an arrow from child to parent.

for the considered model, and allow for an independent
estimation of the parameter q.

Let L(l, t) be the number of nodes at distance l to the
root node at time t; i.e. l defines the level of the node. From
the set of the levels of all nodes, the level distribution of
the tree can be compiled (for an illustration see Fig. 4).

3.2.1 Discrete description

In analogy to the recursive description of the degree distri-
bution in Section 3.1.1, we formulate recursive equations
for the level distribution:

L(l, 1) = δl,0 (7)
L(0, t) = 1 (8)
L(l, t) = L(l, t−1)

+ (1 − q)
L(l−1, t−1)

t
+ q

L(l, t−1)
t

, l ≥ 1. (9)

First, equation (7) refers to the initial condition of sys-
tem in which only one node exists at level zero. Equa-
tion (8) explicits the condition of uniqueness of the root
node over time. To understand equation (9) keep in mind
that, adding a node at level l means that a node at level
l − 1 was selected as parent. The first non-trivial term –
the one preceded by the factor (1 − q) – corresponds to
the process of random attachment. When nodes are se-
lected at random, this term is proportional to L(l − 1, t).
The last term represents the preferential attachment part,
which occurs with probability q. To explain it, one has to
consider that the probability to attach a new node to an
existing one in level l−1 is proportional to the sum of the
in-degrees on level l − 1. Interestingly, in a tree, the sum
of the in-degrees on level l − 1 is equal to the number of
nodes in the next level, i.e. L(l, t).

Figure 5 shows the expected level distributions ob-
tained by direct integration of equations (7–9) for different
values of q at time t = 104. By increasing q, the distribu-
tion shifts closer to the root, and the tree is more shallow.
In the limiting case of q = 1, the tree takes the form of
a star with the root at level zero and all the other nodes
at level 1. Lower values of q produce a broader level dis-
tribution, generating deeper trees. The influence of time
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Fig. 5. Level distribution L(l, t) at t = 104 for different values
of q obtained by recourse of iteration of the discrete equa-
tions (7–9). The different lines correspond to: q = 0.0 (dash-
dotted), q = 0.5 (dashed) and q = 0.9 (solid). The plot shows
that for increasing values of q, the distribution is sharper, corre-
sponding to flatter structures and the average level approaches
l = 1. The extreme case q = 1 corresponds to a star, with the
root node as centre.

(not shown in the figure) is straight-forward: the larger
a tree grows, the higher the average node depth will be.
This effect is stronger for lower values of q. In the next
section we investigate the closed forms description of this
relationship.

3.2.2 Closed forms

In order to take a closer look at the influence of t on the
level distribution, it is needed to solve the set of equa-
tions (7–9), which define its evolution. In particular it is
possible to derive closed forms for the extreme cases q = 1
and q = 0.

First, the case of q = 1 is trivial: it produces a star
with the root node as centre and the N − 1 other nodes
located at level 1, i.e.

L(0, t) = 1 ; L(1, t) = t − 1. (10)

The average level 〈L(l, t)〉 = 1 − 1/t in this case, ap-
proaches the constant value 1 for large enough trees.

Second, by rewriting the discrete time t into the con-
tinuous limit, the following differential equation represents
the case q = 0:

dL(l, t)
dt

=
L(l − 1, t)

t
. (11)

The initial condition is L(0, 1) = δ1,l. As L(l, t) does not
appear on the right hand side of the differential equation
the solution for level l can trivially be obtained by direct
integration of the solution for level l−1, divided by t. The
general solution is found to be

L(l, t) =
∫ t

1

L(l − 1, τ)
τ

dτ =
1
l!

[ln(t)]l . (12)
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Fig. 6. Top: deviation of single simulated trees from the cal-
culated level distribution (q = 0.5, t = 2500). The solid line
shows the mean of the simulations, circles the calculated mean,
the dashed lines mark the tunnel in which 90% of the simulated
trees lie. Bottom: distribution of estimated q for simulations
with q = 0.0 (left), q = 0.5 (middle) and q = 0.9 (right). The
tree size is N = 2 500 and the distribution is based on 104

simulation runs each.

It is easy to see that, in order to obtain the normalised
distribution, the normalisation constant is N , i.e. the num-
ber of nodes at time t. For any given time, the distribu-
tion corresponds to a Poisson distribution, with param-
eter ln(t). Thus, the average level for the distribution is
〈L(l, t)〉 = ln(t) and the variance Var(L(l, t)) = ln(t).

Thus, the broadest level distribution generated by this
model has a mean that grows logarithmically in time.

3.2.3 Estimation of q from the level distribution

In a similar fashion as was done for the degree distribu-
tion, by means of equations (7–9) the expected level dis-
tributions can be calculated. Again, the level distribution
obtained from a single realisation of the stochastic model
in Section 2 might deviate from it. Panel (a) of Figure 6
shows how large this deviation really is. For 103 indepen-
dent trees generated through simulations of the stochastic
model, the dashed lines depict the interval in which 90%
of the obtained level distributions lie. The broad intervals
for the expected distribution suggest that an estimation
of q based on the level distribution is less accurate than
an estimation based on the degree distribution.

Out of an empirically obtained level distribution of a
tree with size N , the parameter q is estimated as follows:
first, the empirical level distribution L∗(l, t) is measured.
Then, this distribution is compared to the expected ones

(Eqs. (7–9)) obtained for different values of q and the same
integration time t = N . The estimated value q̄l is the
one whose associated level distribution minimises the root
mean square distance to the empirical distribution L∗(l, t).

It is important to know how the deviation of an esti-
mated q from the real value used to synthetically generate
the tree according to the model (Sect. 2). This is done
in analogy to the analysis of the estimation based on the
degree distribution (see Sect. 3.1.3). The growth model
was simulated 104 times for three different values of q:
q = 0.0, q = 0.5 and q = 0.9 and system size N = 2 500.
Then, the value of q was estimated according to the above
algorithm. Figure 6 (panel (b)) shows the distributions of
the estimated q. In the case of q = 0.0 (left plot), 90% of
the estimated values are in the interval [0.0, 0.13]. In the
case of q = 0.5 (middle plot), 90% of the estimated val-
ues lie in the interval [0.35, 0.60], and q = 0.9 (right plot)
yields error margins of [0.83, 0.95]. Finally, for the trees
generated with q = 1.0, the situation is similar to the one
in Section 3.1.3: the only possible tree is a star and thus
q is always correctly estimated.

The broad distribution of estimations in the case of
q = 0.5 (middle plot) confirms that estimating q from the
level distribution is less accurate than estimating q from
the from the degree distribution. However, it is worth re-
marking that, if a tree is produced by the process intro-
duced in Section 2, both estimations must agree quantita-
tively. In the next section, we test whether this is the case
for user-generated directory structures.

4 Comparison of real-world data and model

In the previous theoretical investigations, we have repre-
sented the same model, equation (1), in terms of two dif-
ferent distributions, degree and level distribution. They
can be seen as alternative ways of studying the same tree
growth process. Thus, the two methods for computing the
value of the parameter q can be used to test whether the
growth of a tree occurred following the studied model. Ef-
fectively, if the model is able to correctly reproduce the
degree as well as the level distribution found in real direc-
tory structures, the q calculated based on L(l, t) should
strongly correlate with the q calculated based on K(k, t).

In Figure 7a, the estimation of q based on the level dis-
tribution (horizontal axis) and degree distribution (verti-
cal axis) is shown for 100 trees generated by the model of
Section 2. Each point corresponds to a tree of size N = 103

and a value of q uniformly drawn within the interval [0, 1].
As expected, both measures are strongly correlated, and
the points barely depart from the identity function.

In order to test whether the same applies to directory
structures, we have collected 20 user-generated directo-
ries corresponding to Linux/UNIX computer facilities. We
have only considered directories as nodes of the network
and did not include files or hard or soft links in the net-
work. Also configuration directories (those with a leading
dot, which are automatically generated either by the sys-
tem or by particular programs) have been discarded, as
they are not consciously generated by the user, and they
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Fig. 7. In both plots, we compare the values of q estimated
through the fitting of the level distribution (on the horizontal
axis), with the estimation of q obtained by means of the degree
distribution (in the vertical axis). Panel (a) shows such a com-
parison for trees obtained by direct simulation of the stochastic
growth model introduced in Section 2. The plot consists of 100
trees with values of q in the range [0, 1] and size 103. In this
plot it is apparent a good agreement between the two indepen-
dent measures of the parameter q. Panel (b) shows the results
obtained when analysing 20 real directory structures with sizes
between N = 119 and N = 75 307. Interestingly, in this case
the correlation between the measures is lost.

present approximately the same structure for every user.
With this, the trees obtained contain between N = 119
and N = 75 307 directories (with median: 3467).

Figure 7b shows correlation between the two estima-
tion methods when applied to the directory data collected.
It can be seen that the correlation between the two mea-
sures is lost. Thus, the two estimated values of q are in-
compatible with each other. This leads us to the conclu-
sion that the model by Klemm et al. in its current state
reproduces the degree distributions of directory structures
quite well as shown in reference [18], but fails to produce
the corresponding level distribution.

It is interesting to note that the parameter q is wide
spread, covering the range [0, 0.9] when estimating it by
means of the degree distribution. This is in agreement
with the experimental findings of reference [18], although
in that reference an alternative Monte Carlo method was
applied. However, when the level distribution is used to
estimate the parameter q, the values found lay in the in-
terval [0, 0.28]. This implies that the tree structures found
in real-world directory structures are much deeper than
the predicted by the model.

It could be argued that the values of q measured are
lower because users might start their directory structure
after a phony directory, such as the Desktop folder. Yet,
performing the same regression analysis on shifted level
distributions shows that in most of the cases the distribu-
tion must be shifted 3 or more levels in order to improve
the correlation between both estimators of q. Such shifts,
it is important to remark, are unrealistic in this context.

5 Conclusions

In this paper we have investigated a stochastic growth
model for trees, where a parameter q interpolates between

two limiting cases: random growth (q = 0) and prefer-
ential attachment (q = 1). This model has been previ-
ously used to model the evolution of user-generated di-
rectories [18,19], in particular the properties of the degree
distribution and allometric scaling.

In this paper we extend the current state of this re-
search by means of three contributions:

(i) We propose an alternative way of estimating the
parameter q from data by fitting an analytical solution.
We show that, even though finite size effects exist [25],
the solution proposed in reference [24] for the thermody-
namic limit is sufficiently accurate to estimate q analyti-
cally from the data. This approach is more efficient than
the computation intensive approach used in reference [18].

(ii) We introduce the concept of level distribution as
an important characterisation of trees. We argue that in
order to verify a tree growth model, in addition to the
degree distribution also the level distribution has to be
taken into account. A model can claim evidence only if
both of these independent representations are matched by
the data. In the particular case of the stochastic growth
model described above, it means that both ways should
lead to the same estimation of the parameter q.

(iii) Applying our results for the degree and the level
distribution to both, simulated and user generated data,
we find a perfect correlation between the estimated q val-
ues for the simulated trees, but no correlation for the
real-world user generated directories. Hence, we have to
conclude that the growth of real directory trees are not
sufficiently captured by the model given in [18]. In partic-
ular, user directories extend more in depth than the model
predicts.

Our contributions also highlight that an analysis
proven to be of relevance for complex networks does not
necessarily give the full description of hierarchical struc-
tures, be they real or simulated. Thus, different aspects
(or complementary descriptions, as was done in this Pa-
per) must be studied in order to fully characterise these
structures.

We want to thank the anonymous users who run our script
to provide us with data on their directory structures. CJT ac-
knowledges financial support from SBF (Swiss Confederation)
through research project C05.0148 (Physics of Risk).

References

1. G. Caldarelli, Scale-Free Networks (Oxford University
Press, 2007)
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