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We investigate an extension of the voter model in which voters are equipped with an
individual inertia to change their opinion. This inertia depends on the persistence time
of a voter’s current opinion (ageing). We focus on the case of only two different inertia
values: zero if a voter just changed toward a new opinion, and ν otherwise. We are
interested in the average time to reach consensus, i.e. the state in which all voters
have adopted the same opinion. Adding inertia to the system means to slow down
the dynamics at the voter’s level, which should presumably lead to slower consensus
formation. As an unexpected outcome of our inertial voter dynamics, there is a parameter
region of ν where an increasing inertia leads to faster consensus formation. These results
rest on the heterogeneity of voters which evolves through the described ageing. In a
control setting of homogeneous inertia values, we only find monotonously increasing
consensus times. In this paper, we present dynamical equations for the mean field case
which allow for analytical insight into the observed slower-is-faster effect.

Keywords: Voter model; heterogeneity; social inertia; consensus times.

1. Introduction

Decision making means selection among alternatives. It is one of the fundamental
processes in economics and in social systems. If these systems consist of many inter-
acting elements — which we will call voters from now on — the system dynamics
may be described on two different levels: the microscopic level, where the decisions
of the individual voters occur, and the macroscopic level, where a certain collective
behavior can be observed [24].

Based on incomplete information, how does a voter take his decision on a partic-
ular subject? A “simple” utility maximization strategy may fail, because in many
social situations, such as public votes, the private utility cannot easily be quantified,
i.e. voters do not exactly know about it. So, voters have to involve supplemented
strategies to take their decisions. In order to reduce the risk of making the wrong
decision, it seems to be appropriate just to copy the decisions of others. Such an imi-
tation strategy is widely found in biology, and also in cultural evolution. Different
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species, including humans, imitate the behavior of others of their species to become
successful or just to adapt to an existing community [7].

In order to understand the intrinsic properties of systems comprising many
such individuals, a number of models have been developed that take the spread
of opinions as sample application. Early approaches in the social sciences showed
that the existence of positive social influence (i.e. imitation behavior) tends to
establish homogeneity (i.e. consensus) among individuals [10, 1]. The “voter model”
(VM), rigorously defined by Liggett [18], confirms these results. Other works showed
that mobility might lead to the segregation of opinions [23] and that selection of
interaction partners (“bounded confidence” [5, 14]) can lead to stable diversity of
opinions, even when considering positive social influence.

Here, we focus on the VM — a paradigmatic model to simulate such imitation
behavior. Because of its simplicity, it allows for many analytical calculations [18,
22] and, therefore, gives a comprehensive understanding of the dynamics involved.
Application areas of the VM range from coarsening phenomena [6] to spin glasses
[18, 8], species competition [21, 4] and opinion dynamics [17]. Among the most
prominent properties of the VM, the conservation of magnetization has extensively
been studied [9, 2, 28] and compared to other prototypical models, such as the Ising
model with Kawasaki dynamics [13].

Based on the VM, investigations were conducted to study interesting emer-
gent phenomena and relevant applications. Such works comprise the possibility of
minority opinion spreading [11, 30], dominance in predator–prey systems [21], for-
est growth with tree species competition [4] and the role of bilingualism in the
context of language competition [3]. The question of consensus times and their
scaling for different system characteristics was particularly addressed in several
studies [18, 22, 26, 2, 29].

In this paper, we study a modified version of the VM introduced recently [27].
There, we assume that an individual voter has a certain inertia νi to change his
opinion. νi increases with the persistence time τi, which is the time elapsed since the
last change of opinion. The longer the voter already stays with his current opinion,
the less he may be inclined to change it in the next time step. We show that
this slowing-down of the dynamics at the microscopic level of the voters can lead
to accelerated formation of consensus at the macroscopic level. In this paper, we
extend the previous results by presenting a reduced description of the model which
is based on only two levels of inertia. We show that this reduction still explains the
origin of the faster consensus formation and thus complements the results presented
in Ref. 27. Moreover, we emphasize the relevance of our approach to the research
on social dynamics.

At variance with the standard VM, our extension considers the current opinion
of voters as an important decisive factor. The voters do not only act based on the
frequencies in their neighborhood, but take their own current opinion into particular
account. This general idea can also be compared to the models of continuous opinion
dynamics [5, 14, 19]: already in the basic continuous models, the current opinion of
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a deciding individual is of high importance. More precisely, it is as decisive as the
average opinion in the considered neighborhood because the updated opinion is the
average of both. The concept of bounded confidence emphasizes this importance
because individuals do only approach opinions that are not too far away from their
own current one. Therefore, bounded confidence can also be interpreted as a kind
of inertia that tends to let individuals keep their own current opinion. However,
the parameter regulating the confidence interval is generally kept constant in time
whereas, in our model, individuals change their decision behavior depending on
their history.

Our new parameter ν, which reduces the probability of state changes in the VM,
can have different interpretations in the various fields of application of the VM: It
may characterize molecules that are less reactive, the permanent alignment of spins
in a magnet, etc. In economics, changes may be discarded due to transition costs
or “sunk” costs. In social applications, there are at least two interpretations for the
parameter ν: (i) within the concept of social inertia, which deals with a habituation
of individuals and groups to continue their behavior regardless of possible advan-
tages of a change; (ii) to reflect a (subjective or objective) conviction regarding a
view or an opinion. Originally, the latter point served as a motivation for us to study
the implications of built-in conviction in a simple imitation model like the VM. Will
the systems, dependent on the level of conviction, still reach a consensus state, or
can we observe the segregation of opinions? What do the ordering dynamics and
the emergent opinion patterns look like?

Our investigations focus on the average time to reach consensus, i.e. the number
of time steps the system evolves until it reaches an equilibrium state in which all
voters have the same opinion. Taking into account the inertia introduced into the
VM, we would assume that the time to reach consensus would be increased because
of the slowed-down voter dynamics. Counterintuitively, we find that increasing iner-
tia in the system can decrease the time to reach consensus. This result resembles
the “faster-is-slower” effect reported in a different context by Helbing et al. [15].
In their work on panic situations, they explain why rooms can be evacuated faster
if people move slower than a critical value through the narrow exit door. When
individuals try to get out as fast as they can, this results in clogging effects in
the vicinity of the door, which decreases the overall evacuation speed. Note that
although the phrase “slower-is-faster” is appropriate for both findings, our effect
has to be clearly distinguished from the one described by Helbing et al. In their
generalized force model, an individual increase in the desired velocity would have
a contrary effect on the microscopic level, i.e. all individuals would get slower and
thereby the macroscopic dynamics would be decelerated. In our case, microscopic
changes produce the counterintuitive effect only on the macroscopic level.

This paper is organized as follows. In the following section, we introduce the
model. In Sec. 3 we present simulation results of our main finding — the “slower-is-
faster” effect on reaching consensus through inertial voters. Section 4 investigates
deeper, under which circumstances the effect can be observed, and introduces a
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theoretical framework, which allows to understand the phenomenon. Finally, con-
clusions are drawn in Sec. 5.

2. The Model

2.1. The standard voter model

In the original VM [16, 18, 6], N voters are positioned at the sites of a regular,
d-dimensional lattice, the topology which defines the number of neighbors for each
voter. Every voter has one of two possible opinions: σi = ±1. A time step consists
of N update events, in each of which one voter is picked at random and adopts the
opinion of one of the voters he is connected with. Thus, the probability that voter i

adopts opinion σ, which we will denote as WV
i (σ), is equal to the density of opinion

σ in its neighborhood. Hence,

WV
i (σ, t) ≡ WV

i (σ|σi, t) =
1
2


1 +

σ

k

∑
j∈{i}

σj(t)


 , (1)

where k is the number of neighbors each voter has, and {i} is the set of its neighbors.
Note that this equation can also be applied to networks of different topology, as we
will do later on.

The dynamics is a fluctuation-driven process that, for finite system sizes, ends
up in one of two absorbing states, i.e. consensus in one of either opinions. The time
to reach consensus, Tκ, depends on the size of the system and the topology of the
neighborhood network. For regular lattices with dimension d = 1, Tκ ∝ N2, for
d = 2, Tκ ∝ ln N , and for d > 2, Tκ ∝ N . A critical dimension, d = 2, was found,
below which the system coarsens. For any dimension larger than 2, the system can
get trapped in disordered configurations in infinite systems [25].

Let Pσ(t) be the global density of voters with opinion σ at time t. The average
opinion of the system (also called “magnetization”, analogous to studies of spin
systems in physics) can be computed as

M(t) = P+(t) − P−(t). (2)

The order parameter, most often used in the VM, is that of the average interface
density ρ. It gives the relative number of links in the system that connect two voters
with different opinions and can be written as

ρ(t) =
1
4

∑
i

∑
j∈{i}

(
1 − σi(t)σj(t)

)
. (3)

In the mean field limit, which we will study in more detail later on, we assume
that the change in the opinion of an individual voter only depends on the aver-
age densities of the different opinions in the whole system. Therefore, we replace
the local densities (1) by global ones, which leads to the adoption probabilities
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WV (σ|−σ, t) = Pσ(t). For the macroscopic dynamics, we can compute the change
in the global density of one opinion as

Pσ(t + 1) − Pσ(t) = WV (σ|−σ, t)P−σ(t) − WV (−σ|σ, t)Pσ(t)

= Pσ(t)P−σ(t) − P−σ(t)Pσ(t)

≡ 0, (4)

i.e. the density of each opinion is conserved for every state of the system. In the
simulations, consensus is reached by finite-size fluctuations only.

2.2. The voter model with social inertia

In contrast to the standard VM described above, we consider that voters addi-
tionally are characterized by a parameter νi, an inertia to change their opinion.
This extension leads us to the inertial voter model, in which we have to distinguish
between the probability that voter i changes his opinion,

Wi(−σi|σi, νi) = (1 − νi)WV
i (−σi), (5)

and the complementary probability of sticking to his previous opinion,
Wi(σi|σi, νi) = 1 − Wi(−σi|σi, νi). In this setting, νi represents the strength of
“conviction” that voter i has regarding his opinion.

We consider that the longer a voter has been keeping his current opinion, the
less likely he will change to the other one. For the sake of simplicity, we consider
that the inertia grows with the persistence time as

νi(τ) =
{

ν0, if τ = 0,

ν, if τ > 0.
(6)

At time t = 0, and in every time step after voter i has changed his opinion, the
persistence time is reset to zero, τi = 0, and the inertia has the minimal constant
value ν0.a Whenever a voter keeps his opinion, his inertia increases to ν. We will
study two distinct scenarios later on: (i) fixed social inertia, where ν0 = ν is a
constant value for all voters; (ii) ν0 < ν, a scenario in which inertia grows for larger
persistence times.

It would be expected that including inertial behavior in the model would invari-
ably lead to a slowdown of the ordering dynamics. We will show that, contrary to
this intuition, these settings can lead to a much faster consensus.

3. Numerical Results

We performed extensive computer simulations in which we investigated the time
to reach consensus, Tκ, for systems of N voters. We used random initial condi-
tions with equally distributed opinions and an asynchronous update mode, i.e.

aNote that the results of this paper are qualitatively robust against changes in the concrete
function νi(τ). For more details on this see Ref. 27.
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on average, every voter updates his opinion once per time step. The numerical
results correspond to regular d-dimensional lattices (von Neumann neighborhood)
with periodic boundary conditions, and small-world networks with a homogeneous
degree distribution.

3.1. Fixed social inertia

We first consider the case of a fixed and homogeneous inertia value, ν0 = ν. In the
limit ν → 0, we recover the standard VM, while for ν = 1 the system gets frozen in
its initial state. For 0 ≤ ν < 1, the time to reach global consensus will be affected
considerably, i.e. the system will still always reach global consensus, but this process
is decelerated for higher values of ν. This can be confirmed by computer simulations
which assume a constant inertia equal for all voters (see left panel of Fig. 1).

In the right panel of Fig. 1, we depict the evolution of the interface density ρ for
both the standard VM and the inertial VM with ν0 = ν = 0.5. Differences between
these cases can be seen in the very beginning and at about 103 time steps, right
before the steep decay of disorder in the system. There, the ordering process is
slower than in the VM without inertia. The distributions of Tκ at different ν values
are very similar and show the log-normal like form known from the standard VM
(ν = 0).

This behavior can be well understood by analyzing Eq. (5). It can be seen
that the ratio between the opinion changes in the standard VM and the inertial
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Fig. 1. Left: Average times to consensus Tκ in the voter model with a fixed and homogeneous
inertia value, ν0 = ν. The line corresponds to the theoretical prediction Tκ(ν) = Tκ(ν = 0)/(1−ν),
whose details are given in the text. Right: Comparison of the development of the average interface
density ρ in the voter model and the model with fixed inertia. The curves correspond to the mean
values obtained out of 500 realizations. Right panel, inset: Collapse of the curves where the time
scale has been rescaled according to t → t/(1− ν). The system size is N = 30× 30 in both panels
and the voters are placed in a two-dimensional regular lattice.
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VM is given by W (−σ|σ, ν)/WV (−σ|σ, 0) = 1 − ν. Consequently, it is possible to
infer that the characteristic time scale for a VM with fixed inertia will be rescaled
as t → tV /(1 − ν). As can be seen in Fig. 1, there is good agreement between
this theoretical prediction and computer simulations in both: the average time to
consensus (left panel), and the time evolution of the interface density (inset of right
panel).

3.2. Evolving social inertia

We now turn our attention to the case where the individual inertia values evolve
with respect to the persistence time according to Eq. (6). Without loss of generality,
we fix ν0 = 0. Other choices simply decelerate the overall dynamics as described
in the previous subsection. Note that increasing ν raises the level of social inertia
in the voter population. Figure 2 shows the average time to reach consensus as a
function of the parameter ν, namely the maximum inertia value reached by the
voters when the system is embedded in regular lattices of different dimensions. In
Fig. 2, it is apparent that, for lattices of dimension d ≥ 2, the system exhibits a
noticeable reduction in the time to reach consensus for intermediate values of the
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Fig. 2. Average time to reach consensus Tκ as a function of the maximum inertia value ν.
Panels (a), (b), (c) and (d) show the results for different system sizes in one-, two-, three- and
four-dimensional regular lattices, respectively. The results are averaged over 104 realizations. The
system sizes for the different panels are the following: (a) N = 50 (◦), N = 100 (�), N = 500
(�); (b) N = 302 (◦), N = 502 (�), N = 702 (�); (c) N = 103 (◦), N = 153 (�), N = 183 (�);
(d) N = 44 (◦), N = 54 (�), N = 74 (�).
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Fig. 3. Dependence of the average time to consensus on the control parameter ν. The symbols
represent different rewiring probabilities ω, when the network topology is a small-world one. The
curves correspond to ω = 0 (◦), ω = 0.03 (�), ω = 0.1 (�) and ω = 0.9 (♦).

control parameter ν. We observe that there is a critical value of ν such that the
average consensus time reaches a minimum. Especially when compared to the results
of the previous section, this result is against the intuition that a slowdown of local
dynamics would lead to slower global dynamics. Furthermore, it is apparent that
the larger the dimension of the lattice, the more pronounced is the phenomenon.
Figure 2(a) shows the results for a one-dimensional lattice, where the phenomenon
is not present at all. For this network topology, it is found that all the curves
collapse according to a scaling relation, Tκ(ν, N) = Tκ(ν)/N2.

In Fig. 3, we plot Tκ as a function of the maximum inertia value ν for differ-
ent small-world networks [31]. Starting with a two-dimensional regular lattice, two
edges are randomly selected from the system, and with probability ω their end
nodes are exchanged [20]. With this procedure, the number of neighbors remains
constant for every voter. It can be seen that the phenomenon of lower consen-
sus times for intermediate inertia values is also present in small-world networks.
Furthermore, increasing the rewiring probability ω leads to larger reductions of
the consensus times at the optimal value νc. This implies that the formation of
spatial configurations, such as clusters, is not the origin of this slower-is-faster
effect.

Finally, we show the results on a fully connected network, i.e. where every voter
has N − 1 neighbors. The results are presented in Fig. 5. As can be seen, the time
to reach consensus is significantly decreased for intermediate values of ν.

4. Analytical Approach

As already mentioned, the results of Figs. 3 and 5 indicate that the spatial clustering
plays no important role in the voters’ ageingb and, therefore, in the qualitative

bBy “ageing” we mean the possibility of building up higher persistence times, which in turn lead
to increasing inertia values.
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Fig. 4. Illustration of the four fractions pσ
l and the possible transitions of a voter.

behavior observed. This finding allows a quantitative approach to the dynamics in
the mean field limit, i.e. we now use the global densities of opinions to calculate the
probability Wi(−σi|σi, νi) in Eq. (5).

Let us first introduce pσ
l (t) as the fraction of voters with opinion σ and inertia

state l, i.e. l = 1 if they are inertial (τ > 0) and l = 0 if they are not inertial
(τ = 0). Thus, voters with opinion +1 who changed their opinion in the last update
step would contribute to the quantity p+

0 (t); without an opinion change they would
contribute to p+

1 (t). The global density of an opinion σ at time t is given by

Pσ(t) = pσ
0 (t) + pσ

1 (t). (7)

Figure 4 illustrates the possible transitions of voters from one fraction to another.
For the mean field limit, the evolution equations have the forms

pσ
0 (t + 1) − pσ

0 (t) = W (σ|−σ, 0)p−σ
0 + W (σ|−σ, ν)p−σ

1

− (W (−σ|σ, 0) + W (σ|σ, 0))pσ
0 , (8)

pσ
1 (t + 1) − pσ

1 (t) = W (σ|σ, 0)pσ
0 − W (−σ|σ, ν)pσ

1 . (9)

In these equations, the global changing and sticking probabilities are easily found
by using Eqs. (1) and (5):

W (−σ|σ, 0) = WV (−σ) = P−σ(t),

W (σ|σ, 0) = WV (σ) = Pσ(t),

W (−σ|σ, ν) = (1 − ν)WV (−σ) = (1 − ν)P−σ(t),

W (σ|σ, ν) = 1 − (1 − ν)WV (σ) = P−σ(t) + νPσ(t).

After some steps of straightforward algebra, the former expressions can be written
in the example of the +1 opinion as

p+
0 (t + 1) − p+

0 (t) = P+(t)
[
p−0 (t) + (1 − ν)p−1 (t)

] − p+
0 (t), (10)

p+
1 (t + 1) − p+

1 (t) = P+(t)p+
0 (t) + P−(t) p+

1 (t)(ν − 1), (11)

and the equivalent terms are found for opinion −1.
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The global density of the +1 opinion evolves as the sum of Eqs. (10) and (11),
which yields, after some more straightforward algebra, the change in the global
density

P+(t + 1) − P+(t) = ν
[
p−0 (t) p+

1 (t) − p+
0 (t)p−1 (t)

]
. (12)

For ν = 0, i.e. the standard VM, we obtain the general conservation of magnetiza-
tion which we already have seen in Eq. (4). For ν > 0 everything depends on the
quantities pσ

l (t). If there is no heterogeneity of social inertia in the system, i.e. if
at some time either p+

0 (t) + p−0 (t) = 1 or p+
1 (t) + p−1 (t) = 1, then there also is no

dynamics in the magnetization. The same holds if the two products in the square
brackets of Eq. (12) are equally high. This is true if P+ = P− and the ratio of
inertial voters is the same within the two global densities, i.e. if p+

0 (t) = p−0 (t).
In the remaining configurations of these four quantities, there is a dynamics

in the magnetization of the system. This implies that even if the global densities
of the opinions are the same (P+ = P− = 0.5), we can find an evolution toward
full consensus at one of the opinions. Interestingly, the opinion whose density is
increasing can be the minority opinion in the system. In general, at every time step
an opinion σ has an increasing share of voters in the system whenever its internal
ratio of inertial voters reaches the inequality

pσ
1

pσ
0

>
p−σ
1

p−σ
0

. (13)

However, the complete process is nonlinear and, therefore, it is not possible to derive
the final outcome of the dynamics from Eq. (13).

Note that condition (13) is evidence of the important role of the heterogeneity
of voters in the dynamics of the system. More precisely, the main driving force of
the observed “slower-is-faster” effect is the voters’ heterogeneity with respect to
their inertia.

In order to have an analytical estimation of the effect of social inertia on the
times to consensus, we initialize the system in a situation just after the symmetry
is broken. In particular, we artificially set the initial densities to differ slightly,
i.e. we set p+

0 (0) = 1/2 + N−1 and, hence, p−0 (0) = 1/2 − N−1.c Then we iterate
according to Eqs. (10) and (11). Furthermore, we assume that the consensus is
reached whenever for one opinion pσ

0 (t) + pσ
1 (t) ≤ N−1 holds.d This is due to the

fact that for a system of size N , if the frequency of the minority state falls below
N−1, the absorbing state is reached. As we are interested in the effect of different
inertia levels, we again use ν as control parameter and compare the results with
computer simulations of the identical setup of our inertial VM. In Fig. 5, the lines

cWe also calculated the theoretical predictions for breaking the symmetry in the other way, namely
by setting p+

0 (0) = 1/2−N−1 and p+
1 (0) = N−1. Here, again, opinion +1 is favored, but this time

just by a higher fraction of inertial voters. The initial densities of opinions are equal. Qualitatively,
this procedure leads to the same theoretical predictions.
dWith the described initial condition, +1 can be the only consensus opinion.
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Fig. 5. Averaged times to consensus Tκ as a function of the value of social inertia ν. Symbols
show the simulation results for different system sizes; intersected lines, the results of the theoretical
estimation. A fully connected network of voters was used.

correspond to this theoretical analysis, where a qualitative agreement can be seen
with the simulation results.

5. Conclusions

The time for reaching a fully ordered state in a two-state system such as the voter
model is a problem that has attracted attention from different fields in the last few
years. In this paper, we have studied the effect of social inertia in the VM based on
the assumption that social inertia grows with the time for which the voter has been
keeping his current opinion. We focused our study on how the times to consensus
vary depending on the level of inertia in the population (ν).

Counterintuitively to the expectation that increasing inertia may lead to increas-
ing times to reach consensus, we found that, for intermediate values of ν, this inertia
mechanism causes the system to reach consensus faster than in the standard VM.
We showed that this phenomenon is robust against the exact topology of the neigh-
borhood network as we found it in regular lattices and small-world networks. In
the former it holds that the larger the dimension, the more noticeable the effect.
Furthermore, we found that the phenomenon also appears in random and fully
connected networks.

Simply, this intriguing effect can be understood as follows. Due to fluctuations,
one of the opinions is able to acquire a slight majority of voters. Therefore, voters
of this opinion change less likely and, hence, the average inertia of this opinion will
be higher than the other. Since inertia reduces emigration but not immigration, the
majority will become even larger. This development is enforced by higher values of ν

and constitutes a clear direction of the ordering dynamics which intuitively can lead
to a faster reaching of consensus. However, for high values of ν, this development is
outperformed by the high level of average inertia in the complete system, i.e. also
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within the minority population of voters, which slows down the overall time scale
of the ordering dynamics (cf. Fig. 1).

Interestingly, this phenomenon implies that individuals reluctant to change their
opinion can have a counterintuitive effect on the consensus process, which has
been studied for some particular cases [12]. Furthermore, an inertial minority can
overcome a less inertial majority in the same fashion as was previously discussed
in Refs. 11 and 30.

Whereas, in a recent paper, we derived the complete macroscopic dynamics of
a system with slowly increasing inertia [27], here we discussed a reduced model
based on only two levels of inertia. Albeit simple, this model can still give rise to
the observed “slower-is-faster” phenomenon. It also allows a theoretical approach to
unveiling its origin, namely the described ageing mechanism that breaks the magne-
tization conservation. This is different from the standard VM, where magnetization
is always conserved. We showed that the breaking of magnetization conservation
holds only when the voters build up heterogeneity with respect to their inertia to
change opinion. Therefore, once the symmetry between (a) the global densities of
the two possible states and/or (b) the proportions of inertial voters is broken, the
favored state (opinion) achieves both (i) reinforcement of its average inertia and (ii)
fast recruitment of the less inertial state. Both effects contribute to a faster devia-
tion from the symmetric state. For some parameter ranges, these mechanisms out
weigh the increasing in the time to reach consensus generated by the high inertia
of the state that disappeared in equilibrium.
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[28] Suchecki, K., Egúıluz, V. M. and San Miguel, M., Conservation laws for the voter
model in complex networks, Europhys. Lett. 69 (2005) 228–234.
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