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Abstract

In this paper, we present experimental investigations on a day-to-day route choice

scenario. Here, the equilibrium outcome is, according to real traffic observations, fair

(equal for all users) but induces an inefficient usage of network capacity. Optimal usage

would be characterized by some users winning and some losing in comparison to the

equilibrium state. Coherent, alternating cooperation strategies can be a suitable solution,

but they require innovation and group coordination in addition to cooperativeness. In these

points, our work differs considerably from other contributions observing the emergence of

cooperation in social dilemmas. By classifying the two-person variant of our experiments

among the symmetrical 2x2 games we show the situation of the Route Choice Game not

to be addressed by the literature so far. Although the equilibrium outcome in this setup

is “strongly stable”, in our experiments we find eminent empirical evidence of alternating

cooperation and, thereby, observed persistent utilization of the system optimum. The

transition to this optimal configuration can be well described by quantitative considerations

that are presented in the paper. Furthermore, the straight success of a learning scenario

indicates that the collective innovation of alternating strategies may be the most critical

challenge to the individuals instead of just learning to be cooperative. Presumably, this also

holds for other social dilemma situations.

Keywords: Game theory, experiments, alternating cooperation, learning

1 Introduction

The question of optimally distributed entity-flows in capacity-restricted networks is a certain

kind of social dilemma (compare to [14, 16, 25, 34, 35, 43]). Inefficiencies in urban traffic networks,
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especially during peak times in the morning and afternoon, are not only inconvenient but also

expensive, both from the individual and general public point of view. Nevertheless, the concept

of the “Wardrop equilibrium”1[48] is not only a theoretical construct, but can approximately

also be observed in reality. It is described by equal travel times on all suitable routes between a

given origin and destination (“o-d pair”) which obviously does not necessarily imply a minimum

of overall travel times. However, a system optimal distribution, characterized by minimal overall

travel times, would require that a fraction of users additionally change to another alternative,

thereby decreasing travel times on their previous route but increasing their own travel times on

the new route2.

Since Pigou [37], it has been suggested to resolve the problem of inefficient road usage by

congestion charges, but are they really needed? Is the missing establishment of a system optimum

just a problem of varying traffic conditions and changing origin-destination pairs, which make

route-choice decisions comparable to one-shot games? Or would individuals in an iterated setting

of a day-to-day route choice game with identical conditions spontaneously establish cooperation

in order to increase their returns, as the folk theorem suggests [6]?

How would such a cooperation look like? Taking turns could be a suitable solution [42]. While

simple symmetrical cooperation is typically found for the repeated Prisoner’s Dilemma [3, 4, 28,

29, 30, 33, 36, 38, 41, 43, 46, 47], emergent alternating reciprocity has recently been discovered

for the games Leader and Battle of the Sexes [9]. Note that such coherent oscillations are a

time-dependent, but deterministic form of individual decision behavior, which can establish a

persistent phase-coordination, while mixed strategies, i.e. statistically varying decisions, can

establish cooperation only by chance or in the statistical average. This difference is particularly

important when the number of interacting persons is small, as in the particular route choice

game discussed below.

Note that oscillatory behavior has been found in iterated games before:

• In the rock-paper-scissors game [46], cycles are predicted by the game-dynamical equations

due to unstable stationary solutions [19].

• Oscillations can also result by coordination problems [2, 20, 21, 22], at the cost of reduced

system performance.

• Moreover, blinker strategies may survive in repeated games played by a mixture of finite

automata [5] or result through evolutionary strategies [9, 10, 11, 23, 24, 26, 27, 49].

1Also referred to as system optimum or user optimum.
2The basic assumption here is that travel times at least on average monotonously increase with road occupancy.
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However, these oscillation-generating mechanisms are clearly to be distinguished from the estab-

lishment of phase-coordinated, alternating reciprocity we are interested in (coherent, oscillatory

cooperation to reach the system optimum).

In this paper, we review former results by the authors [18] but focus more on game theoretical

implications and on the results of a learning scenario. The paper is organized as follows: In section

2, we introduce our empirical work on this topic. It is based on previous investigations by Selten

et al. and Helbing et al. [17, 44] but extends their work by a crucial feature - the distinction

between equilibrium and overall efficient network usage. This directly leads us to the question

of the corresponding situation (game) in game theory. Section 3 provides the corresponding

discussion and findings, thereby introducing the Route Choice Game as a symmetrical 2x2 game

that is almost completely neglected in the literature so far. Additionally, at the end of section 2,

quantitative investigations regarding the transition to coordinated alternating cooperation are

presented. The final section 4 summarizes the obtained results and gives an outlook on promising

fields of future research.

2 Experimental setup and results

2.1 Setup

Route 1

Destination
Route 2

Origin

Figure 1: Illustration of the investigated day-to-day route choice scenario. We study the dynamic decision

behavior in a repeated route choice game, where a given destination can be reached from a given origin via two

different routes, a freeway (route 1) and a side road (route 2).

In the following, we will investigate a scenario with two alternative routes between a certain

origin and a given destination, say, between two places or towns A and B (see Fig. 1). We are

interested in the case where both routes have different capacities, say a freeway and a subordinate

or side road. While the freeway is faster when it is empty, it may be reasonable to use the side

road when the freeway is congested.
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N1 0 1 2

N2 2 1 0

P1(N1) - 300 0

P2(N2) -200 -100 -

N1 0 1 2 3 4

N2 4 3 2 1 0

P1(N1) - 600 300 0 -300

P2(N2) -300 -200 -100 0 -

Table 1: Payoff tables for experiments with N=2 (left) and N=4 participants (right).

The “success” of taking route i could be measured in terms of its inverse travel time 1/Ti(Ni) =

Vi(Ni)/Li, where Li is the length of route i and Vi(Ni) the average velocity when Ni of the

N drivers have selected route i. One may roughly approximate the average vehicle speed Vi on

route i by Greenshield’s linear velocity-density relationship [15]

Vi(Ni) = V 0
i

(

1 −
Ni(t)

Nmax
i

)

, (1)

where V 0
i denotes the maximum velocity (speed limit) and Nmax

i the capacity, i.e. the maximum

possible number of vehicles on route i. With Ai = V 0
i /Li and Bi = V 0

i /(Nmax
i Li), the inverse

travel time then obeys the relationship

1/T (Ni) = Ai − BiNi , (2)

which is linearly decreasing with the road occupancy Ni. Other monotonously falling relation-

ships Vi(Ni) would make the expression for the inverse travel times non-linear, but they would

probably not lead to qualitatively different conclusions.

Using this motivation, we define the payoff functions for our experiments.

Pi(Ni) = Ci − DiNi (3)

Since there are only two routes, leading to a total of N = N1 + N2, we can say that the payoff

of route 1 falls and the payoff of route 2 rises with higher occupation of route 1. We scaled

the functions in a way that there is an integer fraction of route 1 choosers (N1) that leads to

equal payoffs for both routes (representing the Wardrop equilibrium). Furthermore, for a better

orientation to the participants, this payoff value is set to zero. For the 2-participants setup

we chose C1 = 600, D1 = 300, C2 = 0, and D2 = 100. For the 4-participants experiments we

change C1 to the value of 900 which leads to the payoffs shown in Table 1.

Altogether we have carried out more than 80 route choice experiments with different experi-

mental setups, all with different participants. In the 24 two-person [12 four-person] experiments

evaluated here, test persons were instructed to choose between two possible routes between the
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same origin and destination. They knew that route 1 corresponds to a ‘freeway’ (which may be

fast or congested), while route 2 represents an alternative route. Test persons were also informed

that, if two [three] participants chose route 1, everyone would receive 0 points, while if half of

the participants chose route 1, they would receive the maximum average amount of 100 points

per person, but 1-choosers would profit at the cost of 2-choosers. Finally, participants were

told that everyone could reach an average of 100 points per round and that the (additional)

individual payment after the experiment would depend on their cumulative payoff points

reached in at least 300 rounds (100 points = 0.01 EUR). Of course, communication between the

participants was not allowed. See the appendix for an example of the handout to the participants.

In the main experimental setup, there first were two separate two-person experiments simultane-

ously. Thereafter, all participants were merged into one group and played together in four-person

experiments. This is what we refer to as a “learning scenario” and what will be further discussed

and analyzed in section 2.4. This setup allowed us, on one hand, to investigate the participants’

unaffected behavior in the iterated 2x2 Route Choice Game3 (section 2.2) and, on the other

hand, to explore learning effects on the behavior in four-person experiments.

2.2 Results: Emergence of cooperation
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Figure 2: Representative example for the emergence of coherent oscillations in a 2-person route choice experiment

with the parameters specified in table 1. Top left: Decisions of both participants over 300 iterations. Bottom left:

Number N1(t) of 1-decisions over time t. Note that N1 = 1 corresponds to the system optimum, while N1 = 2

corresponds to the user equilibrium of the one-shot game. Right: Cumulative payoff of both players in the course

of time t (i.e. as a function of the number of iterations). Once the coherent, oscillatory cooperation is established

(t > 220), both individuals have high payoff gains on average.

Let us first focus on the two-person route-choice game (see Table 1). For our choice of parameters,

the best individual payoff in each iteration is obtained by choosing route 1 (the “freeway”) and

have the co-player(s) choose route 2. Choosing route 1 is the dominant strategy of the one-shot

3I.e. our two-person experiment. In section 3 we give the corresponding game theoretical classification.
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game, and players are tempted to use it. This produces an initial tendency towards the “strongly

stable” user equilibrium [40] with 0 points for everyone. However, this decision behavior is not

Pareto efficient in the repeated game. Therefore, after many iterations, the players often learn

to establish the Pareto optimum of the multi-stage supergame by selecting route 1 in turns (see

Fig. 2). As a consequence, the experimental payoff distribution shows a maximum close to 0

points in the beginning and a peak at 100 points after many iterations (see Fig. 3), which clearly

confirms that the choice behavior of test persons tends to change over time.
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Figure 3: Frequency distributions of the average payoffs of the 48 players participating in our 24 two-person

route choice experiments. Left: Distribution during the first 50 iterations. Right: Distribution between iterations

250 and 300. The initial distribution with a maximum close to 0 points (left) indicates a tendency towards the

user equilibrium corresponding to the dominant strategy of the one-shot game. However, after many iterations,

many individuals learn to establish the system optimum with a payoff of 100 points (right).

Nevertheless, in 7 out of 24 two-person experiments, persistent cooperation did not emerge

during the experiment. Fig. 4 shows an example for that. In the next section 2.3, we will identify

reasons for this.
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Figure 4: Representative example for a 2-person route choice experiment, in which no alternating cooperation

was established. Due to the small changing frequency of participant 1, there were not enough cooperative episodes

that could have initiated coherent oscillations. Top left: Decisions of both participants over 300 iterations. Bottom

left: Number N1(t) of 1-decisions over time t. Right: The cumulative payoff of both players in the course of time

t shows that the individual with the smaller changing frequency has higher profits.
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2.3 Transition to cooperation

In this section, we will provide some crucial insights into the transition process to coherent,

coordinated behavior. More details regarding this process and, in particular, a novel model of

reinforcement learning that reproduces our experimental observations surprisingly well can be

found in Helbing et al. [18].

2.3.1 Analytical estimation of the first cooperative episode

In the following, we will analytically estimate the time period until the first system optimal

solution is explored. Therefore, we focus on the time period before persistent oscillatory cooper-

ation is established and denote the occurrence probability that individual i chooses alternative

k ∈ {1, 2} by Pi(k). The quantity pi(l|k) shall represent the conditional probability of choosing

l in the next iteration, if k was chosen by person i in the present one. Assuming stationarity for

reasons of simplicity, we expect the relationship

pi(2|1)Pi(1) = pi(1|2)Pi(2) , (4)

i.e. the (unconditional) occurence probability Pi(1, 2) = pi(2|1)Pi(1) of having alternative 1 in

one iteration and 2 in the next agrees with the joint occurence probability Pi(2, 1) = pi(1|2)Pi(2)

of finding the opposite sequence 21 of decisions:

Pi(1, 2) = Pi(2, 1) . (5)

Moreover, if ri denotes the average changing frequency of person i until persistent cooperation

is established, we have the relation

ri = Pi(1, 2) + Pi(2, 1) . (6)

Therefore, the probability that all N players simultaneously change their decision from one

iteration to the next is
∏N

i=1
ri. Note that there are 2N such realizations of N decision changes

12 or 21, which all have the same occurence probability because of Eqn. (5). Among these,

only the ones in which N/2 players change from 1 to 2 and the other N/2 participants change

from 2 to 1 establish cooperative episodes, given that the system optimum corresponds to an

equal distribution over both alternatives. Considering that the number of different possibilities

of selecting N/2 out of N persons is given by the binomial coefficient, the occurence probability

of a cooperative episode is

Pc =
1

2N

(

N

N/2

)

N
∏

i=1

ri (7)
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(at least in the ensemble average). Since the expected time period T until the cooperative state

incidentally occurs equals the inverse of Pc, we finally find the formula

T =
1

Pc

= 2N (N/2)!2

N !

N
∏

i=1

1

ri

. (8)

This formula is well confirmed by our 2-person experiments (see Fig. 5). It gives the lower bound

for the expected value of the minimum number of required iterations until persistent cooperation

can spontaneously emerge (if already the first cooperative episode is continued forever).
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Figure 5: Comparison of the required number of cooperative episodes y (counted in the experiments as cooper-

ative episodes that did not lead to persistent cooperation) with the expected number x of cooperative episodes

(approximated as occurrence time of persistent cooperation, divided by the expected time interval T until a coop-

erative episode occurs by chance). Note that the data points support the relationship y = x and, thereby, formula

(8).

Obviously, the occurence of oscillatory cooperation is expected to take much longer for a large

number N of participants. This tendency is confirmed by our 4-person experiments compared to

our 2-person experiments. It is also in agreement with intuition, as coordination of more people

is more difficult. (Note that mean first passage or transition times in statistical physics tend to

grow exponentially in the number N of particles as well.)

Besides the number N of participants, another critical factor for the cooperation probability

is the changing frequencies ri. They are needed for the exploration of innovative strategies,

coordination and cooperation. Although the instruction of test persons would have allowed

them to conclude that taking turns would be a good strategy, the changing frequencies ri of

some individuals was so small that cooperation within the duration of the respective experiment

did not occur, in accordance with formula (8). The unwillingness of some individuals to vary

their decisions is sometimes called “conservative” [7, 44, 45] or “inertial behavior” [8]. Note that,

if a player never reciprocates “offers” by other players, this may discourage further “offers” and
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reduce the changing frequency of the other player(s) as well (see the decisions 50 through 150

of player 2 in Fig. 2).

Our experimental time series show that most individuals initially did not know that a periodic

decision behavior would allow them to establish the system optimum. This indicates that the

required depth of strategic reasoning [12] and the related complexity of the game for an average

person are already quite high, so that intelligence may matter. Compared to control experiments,

the hint that the maximum average payoff of 100 points per round could be reached “by variable,

situation-dependent decisions”, increased the average changing frequency (by 75 percent) and

with this the occurrence frequency of cooperative episodes. Thereby, it also increased the chance

that persistent cooperation established during the duration of the experiment.

2.3.2 Strategy coefficients

In order to characterize the strategic behavior of individuals and predict their chances of coop-

eration, we have introduced some strategy coefficients. For this, let us introduce the following

quantities, which are determined from the iterations before persistent cooperation is established:

• ck
i = relative frequency of a changed subsequent decision of individual i, if the payoff was

negative (k = −), zero (k = 0), or positive (k = +).

• sk
i = relative frequency of individual i to stay with their previous decision, if the payoff

was negative (k = −), zero (k = 0), or positive (k = +).

The Yule-coefficient

Qi =
c−i s+

i − c+

i s−i
c−i s+

i + c+

i s−i
(9)

with −1 ≤ Qi ≤ 1 was used by Selten et al. [44] to quantify short term strategies of the

participants. High absolute values of Qi indicate a strong tendency to base decisions on the last

received payoff, whereas values around zero negate such a correlation. Positive values Qi > 0.5

correspond to a “win-stay lose-shift” strategy [34] and are referred to as “direct response”

strategies. On the opposite, “contrarian response” is indicated by values Qi < −0.5 and could

be explained by the participants’ conjecture that high payoffs will attract too many other players

and low payoffs cause them to leave the chosen alternative.

However, a problem arises if one of the variables c−i , s+

i , c+

i , or s−i assumes the value 0. Then,

we have Qi ∈ {−1, 1}, independently of the other three values. If two of the variables become

zero, Qi is sometimes even undefined. Moreover, if the values are small, the resulting conclusion

is not reliable. Therefore, we instead prefer to use the percentage difference
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Si =
c−i

c−i + si
i

−
c+

i

c+

i + s+

i

. (10)

Additionally, we introduce the proportion of changed decisions after the user equilibrium

Zi =
c0
i

c0
i + s0

i

(11)

as a second strategy coefficient. The above described interpretation of Qi also holds for our Si,

but comparisons with Qi show that this time direct response corresponds to values Si > 0.25,

while values Si < −0.25 correspond to contrarian behavior. The values of Zi range from 0 to 1.

A value Zl = 0 would mean that individual i does not change routes, if the user equilibrium was

reached. Zi = 1 would would imply that person i always changes in the equilibrium case, while

Zi ≈ 0.5 would correspond to a random response.

The significance of those strategic behaviors and their effect on the group performance in our

experiments can be seen in Fig. 6.
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Figure 6: S- and Z-coefficients averaged over both participants in all 24 two-person route choice games. Final

stages of persistent cooperation were excluded. The mainly small, but positive values of S indicate a slight

tendency towards direct responses. However, the S-coefficient is barely significant for the emergence of persistent

oscillations. A good indicator for their establishment is a sufficiently large Z-value.

2.4 Effects of the “learning scenario”

So far, especially in our two-person experiments, we have investigated the learning of participants

over time (e.g. 300 iterations). It would be interesting to study the effect of past experience on

the coordination process as it has been studied for the Prisoner’s Dilemma by many publications!
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For example, Andreoni and Samuelson [1] conducted a two-period Prisoner’s dilemma experiment

where the absolute payoff values can vary between the two periods4. One empirical result was

that well adjusted lower amounts in the first period (and, therefore, higher amounts in the second

period) lead to the highest overall payoffs in the experiments. That means that a two-period

setup can induce a learning effect that increases the overall performance of the system.

Our approach described in section 2.1 is different, but not unrelated. According to intuition

and formula (8), it is more difficult (and takes more iterations) to coordinate between many

players. This is supported by experimental results indicating that the probability of persistent

cooperation within a given number of iterations is decreasing with the Number N of participants

(see Table 2). Although the optimal, time-dependent behavior is not more complicated in games

with N > 2, the accidental occurrence of cooperative episodes is less likely.

Therefore, our hypothesis is that “positively experienced” players, who already have discovered

and experienced successful cooperation in a transparent5 setup of a two-person Route Choice

Game, will cooperate in the following four-person experiments with the same payoff structure

more easily.

treatment groups/runs coop. runs payoff

2 unexp. 24 17 63.96

4 exp. 12 7 34.19

4 exp. (0) 2 0 -35.20

4 exp. (2) 3 0 -18.56

4 exp. (4) 7 7 76.63

Table 2: Overview of different treatments. We conducted experiments with 2 parallel runs of 2 unexperienced

participants first (’2 unexp.’) who played a 4-person game afterwards (’4 exp.’). The results of the 4-person

games can be distinguished according to the number of participants who discovered persistent cooperation in

the previous 2-person games (number shown in brackets). The third column shows the number of runs where

persistent cooperation occurred and the last one contains the average payoffs per participant and per iteration.

Table 2 provides an overview of our results for different treatments. Although the standard

deviations are very high, the mean values are still indicative of systematic effects. In spite of the

limits imposed by only 12 data points coming from the 12 four-person experiments, the results

are clear-cut:

• All of the 7 groups with only “positively experienced” participants reached persistent

cooperation also in the four-person experiments.

4However, the proportions of the values within one payoff matrix and the sum of two subsequent payoff matrices

were always constant.
5In the two-person experiments, the participants have sufficient information to recognize the actions of all

players in the game. This does not hold for the four-person experiments.
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• None of the 5 remaining groups (in which 2 or more participants did not experience per-

sistent cooperation before) reached persistent cooperation in the four-person experiments.

• In the 3 groups with 2 “positively experienced” participants only, the average group perfor-

mance was higher than in the 2 groups without any “positively experienced” participants6.

The first item indicates that our hypothesis is empirically evident. Although one could expect

this result since the optimal, time-dependent strategic behavior is the same in both variants of

the experiment, it is worth noticing that it would be profitable to be the only defector, and there

is anonymity among the four participants. Furthermore, the second and the third item suggest

that cooperative individuals are not able to transfer their knowledge of the cooperative strategy

to players with no cooperation experience.

3 Game theoretical implications

4

2

3

1

3 1

42

300 300 600

−100 −200 200 100

−100 200 −200 100

−200 −300 −300 −400

0

12

11

21

22

21 221211

−100 −200

3000

21

Route 2

Route 1

Figure 7: Illustration of the concept of higher-order games defined by n-stage strategies. Left: Payoff matrix

P = (Pij) of the one-shot 2x2 Route Choice Game. Right: Payoff matrix
`

P
(2)
(i1i2),(j1j2)

´

= (Pi1j1 +Pi2j2) of the 2nd-

order Route Choice Game defined by 2-stage decisions (right). The arrows indicate temptation (1), punishment

(2), an offer (3), and reward for this offer (4). Note that the time-averaged payoff of this cycle lies below the

system optimum.

As mentioned before, this situation of day-to-day route choice is also interesting from the game

theoretical point of view. The left hand side of Fig. 7 gives the usual payoff matrix representation

of our symmetrical Route Choice Game7. It is characterized by a dominant strategy which leads

6Note that these values are based on only 2 and 3 runs, respectively, and thus their difference may not be

significant.
7The Route Choice Game is one of three congestion games among the symmetrical 2x2 games. Any congestion

game is characterized by strictly non-increasing payoffs for every alternative with higher frequency of selection.

Therefore, Leader and Battle of the Sexes (see Fig. 8) are the remaining two. Furthermore, congestion games

belong to the class of potential games [31], for which many theorems are available.
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to a Pareto efficient Nash equilibrium in the one-shot game. This fulfilled efficiency criteria is

a major difference to the Prisoner’s Dilemma. However, since the sum of all payoffs in the off-

diagonal (one player plays route 1, the other one chooses route 2) is highest, there is a strategical

conflict in the repeated game.

Before we have a closer look on this conflict, let us classify the Route Choice Game in line with

the other symmetrical 2x2 games. Since there is this symmetry between the payoffs of both

players, we can define the game by giving 4 payoff values (cf. left of Fig. 7). Now, we make

one more abstraction. Instead of cardinal values, we just take the ordinal ranking of the payoff

values into account. Hence, we can fix the two outcomes of any game where both players take

the same decision. For example, we fix the lower outcome of both at -200 and the higher at 0

(see Fig 8). As a consequence, the whole information regarding the ordinal ranking of the four

payoff values are now given by the two remaining outcomes and their classification into smaller

than -200, between -200 and 0, or higher than 0. On the right of Fig. 8 we extended the resulting

concise classification of the games as it was used before by Eriksson and Lindgren [13].

−200

21P

−200 P12
0

Prisoner´s
Dilemma

Leader
Battle  

of the Sexes

HarmonyStag Hunt Route Choice

Pure
Coordination Deadlock

Chicken

P21

P12

1

0

−200Strategy 2

Strategy 1

2

Notation:

Figure 8: Classification of symmetrical 2x2 games according to their payoffs Pij . Two payoff values have been

kept constant as payoffs may be linearly transformed and the two strategies of the one-shot game renumbered. Our

choice of P11 = 0 and P22 = −200 was made to define a payoff of 0 points in the user equilibrium and an average

payoff of 100 in the system optimum of our investigated route choice game with P12 = 300 and P21 = −100.

According to the game-theoretical literature, there are 12 ordinally distinct, symmetric 2x2

games [40], but after excluding strategically trivial games in the sense of having equilibrium

points that are uniquely Pareto-efficient, there remain four archetypical 2x2 games: the Pris-

oner’s Dilemma, the Battle of the Sexes, Chicken (Hawk-Dove), and Leader [39]. However, this

conclusion is only correct, if the four payoff values Pij are specified by the four values {1, 2, 3, 4}.

Taking different values would lead to a different conclusion: If we name subscripts so that

P11 > P22, a strategical conflict between a user equilibrium and the system optimum results

when

P12 + P21 > 2P11 . (12)
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Our conjecture is that players tend to develop alternating forms of reciprocity if this condition

is fulfilled, while symmetric reciprocity is found otherwise. This has the following implications

(see Fig. 8):

• If the 2x2 games Stag Hunt, Harmony, or Pure Coordination are repeated frequently

enough, we always expect a symmetrical form of cooperation.

• For Leader and the Battle of the Sexes, we expect the establishment of asymmetric reci-

procity, as has been found by Browning and Colman with a computer simulation based on

a genetic algorithm incorporating mutation and crossing-over [9].

• For the games Route Choice, Deadlock, Chicken, and Prisoner’s Dilemma both, symmetric

(simultaneous) and asymmetric (alternating) forms of cooperation are possible, depending

on whether condition (12) is fulfilled or not. Note that this condition cannot be met for

some games, if one restricts to ordinal payoff values Pij ∈ {1, 2, 3, 4} only. Therefore,

this interesting problem has been largely neglected in the past (with a few exceptions,

e.g. [32, 35]). In particular, convincing experimental evidence of alternating reciprocity is

missing so far.

Finally, let us have a look at the advantages of the concept of higher order games, illustrated on

the right of Fig. 8. There, we can clearly see the strategical conflict our test persons faced due

to the many iterations played. Still, strategy 11 is strict dominant and, therefore, always taking

route 1 is still the only Nash solution. But it is not any longer Pareto efficient as an encounter

of strategy 12 with 21 yields 200 payoff points for both players. This second order Route Choice

Game can exactly be divided into two subconflicts.

First, assume strict readiness to cooperate for both players. That means that the temptation

arrow (1) in Fig. 7 has no meaning in that case. Then, only strategies 12 and 21 would come

into consideration to the players. The remaining game, consisting of the four possible solutions

in the inset of the 4x4 matrix, is an “anti-coordination” problem, but allows for a symmetrical

form of cooperation.

Second, let us neglect this problem of anti-coordination. Say, if both players choose one of these

cooperative strategies, an “invisible coordinator” guarantees the optimal outcome. What remains

is the typical Prisoner’s Dilemma situation with two identical cooperation strategies and one

additional option that can be neglected since it is strictly dominated.

4 Conclusions and outlook

In this paper, the main results of a former work by the authors are reviewed [18]. We abstract

real traffic phenomena into an experimental setup in order to observe self-organized coordination
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in favour of the non-trivial system optimal solution. The latter is characterized by a very unfair

distribution of payoffs among the participants in our computer experiments. Therefore, the

requirements for successful, long-term cooperation are quite high and can be described by three

points: (i) exploration of coherent, alternating decisions, either intentionally or by chance, (ii)

readiness to cooperate instead of short-term maximization, (iii) ability to coordinate with the

co-player(s), as uncoordinated alternations even worsen both the system’s and the individual

performance.

The difference with respect to the previous work on route choice experiments is as follows:

Selten et al. [44] have studied a setup in which the system optimum almost agreed with the user

equilibrium. Therefore, their experimental results do not allow to distinguish between them.

The same applies to Helbing et al. [17]. They have varied the payoff parameters in time and

tested different information treatments, including scenarios with route choice recommendations.

These experiments were performed with N ≥ 9 test persons. In contrast, this paper focusses on

the case of 2- and 4-person games with constant payoff parameters and a pronounced difference

between the system optimum and the user equilibrium.

In our data analysis, we do not only document the emergence of coherent, alternating cooperation

strategies, but also investigate details of the transition process from initial tendencies towards

the inefficient user equilibrium to phase-coordinated alternations. Especially the individual Z-

coefficients, that quantify reactions of the participants on the equilibrium outcome, are shown

to be a crucial factor for or against cooperation. Furthermore, the presented results regarding

the effects of our learning scenario suggest that the coordination process towards persistent

cooperation may be the bigger problem compared to the evolution of cooperativeness. Once the

innovation of asymmetric cooperation happened and its long-term profitability is experienced,

there is a very good chance of continuing this strategical behavior in more complex environments.

This fact leads us to the conclusion that investigating the Prisoner’s Dilemma may be not enough

for resolving social dilemmas as they sometimes do not provide symmetrical solutions.

Therefore, the emphasis of this paper lays on game theoretical relevance of the Route Choice

Game and the not very common study of asymmetric, alternating cooperation. Especially the

latter calls for further investigations.

Appendix

Instructions for participants

In this Route Choice experiment, every participant has to repeatedly choose between two possible

routes. All have the same origin and destination.

15/19



Hans-Ulrich Stark, Dirk Helbing, Martin Schönhof, and Janusz A. Ho lyst:
Alternating cooperation strategies in a Route Choice Game:

Theory, experiments, and effects of a learning scenario.
In: A. Innocenti and P. Sbriglia (eds.): Games, Rationality and Behaviour.

Houndmills and New York: Palgrave McMillan, pp. 256–273, 2008.

• Route A corresponds to a freeway (may be fast or congested)

• Route B corresponds to another road.

After each round you will be informed about your payoff for this round. The payoff only

depends on your last chosen route and the number of participants who have chosen this route

as well. The less participants, the more payoff points you get (i.e. the faster it was possible to

drive on this road).

If 2 [3] out of 2 [4] participants choose route A, everyone gets 0 points.

If 1 [2] out of 2 [4] participants choose route A, the average payoff for all participants is 100

points, but A-choosers profit at the cost of B-choosers.

Nevertheless, every participant can reach up to 100 points per decision on average. The sum of

your payoff points after 300 rounds will determine your payment at the end of the experiment

(100 payoff points = 0.01 EUR).
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