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Abstract. We study the mean field approximation of a recent model of cas-
cades on networks relevant to the investigation of systemic risk control in fi-
nancial networks. In the model, the hypothesis of a trend reinforcement in the
stochastic process describing the fragility of the nodes, induces a trade-off in
the systemic risk with respect to the density of the network. Increasing the
average link density, the network is first less exposed to systemic risk, while
above an intermediate value the systemic risk increases. This result offers a
simple explanation for the emergence of instabilities in financial systems that
get increasingly interwoven. In this paper, we study the dynamics of the prob-
ability density function of the average fragility. This converges to a unique
stationary distribution which can be computed numerically and can be used
to estimate the systemic risk as a function of the parameters of the model.

1. Introduction. A network of interdependent units which, individually, are sus-
ceptible to fail, is potentially exposed to multiple joint failures of a significant frac-
tion of units in the system. This is the notion that is usually associated with the
term systemic risk.

1.1. Systemic risk in financial networks. Systemic risk is particularly impor-
tant in the context of infrastructure networks, such as power grids, and in financial
networks. These latter should be meant in a broad sense, including units of different
types, such as business firms, insurance companies, banks, mutual funds and other
financial institutions that are linked by credit relationships. For instance, if one or
more firms fail and are not able to pay back their debts to the bank, this affects the
balance sheet of the bank which might try to improve its own situation by increas-
ing the interest rate to the other firms, causing other failures among the firms. If
finally the bank itself fails, this affects negatively the banks that are linked to it by
interbank loans. This is somehow similar to failure cascades in power grids where
a failing power line implies a higher load an other lines which might bring them to
fail. The size distribution of such failure avalanches is one way of quantifying the
systemic risk.

There is a growing body of literature in economics on financial networks, that
investigates also the issue of systemic risk. While banks-firms credit relationships
have been extensively studied (for an overview, see [16]), only recent works have
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analyzed phenomena of financial contagion in interbank credit [2, 11] and trade
credit. The latter, is a form of credit among business firms, typically in a supplier-
customer relation, which has been less investigated despite the fact that in some
countries it represents a significant part of the short-term liabilities of the corporate
sector [8]. In the literature on complex networks only few works have dealt with
financial networks, mainly in the context of self-organized criticality [1, 13]. Most
of those works suggest that when the degree of the nodes in the network increases
the network is less exposed to systemic risk. In some cases, evidence that systemic
failures may be more rare but also more severe has been found (see for instance
[13]).

1.2. The fragility model for cascades on networks. In this paper, we consider
the model of cascades on networks introduced by [4], in which a tradeoff emerges
in the systemic risk, as a function of the network density. This means that up to
an intermediate level of network density there is a benefit in creating links between
units because they allow to diversify the risk. However, above a certain level of
density, the probability of many joint failures increases. This effect depends on the
presence of a trend reinforcing term in the dynamics of the fragility of the nodes.
The fragility is a state variable that determines the failure of the node, when it
exceeds a given threshold, as well as subsequent transfer of some damage to the
connected nodes. The trend reinforcing of the fragility corresponds to the following
idea. If the fragility of a firm at the end of the year has reduced compared to last
year, the firm is rated better in terms of solvency and it has easier access to credit.
Conversely, if the fragility has increased, the firm faces worse conditions for credits
and thus additional cost that are likely to increase its fragility furthermore. Notice
that, through the links in the network, this propagates also to the neighbours, since
the fragility of the firm affects the fragility of the neighbours. For instance, hedge
funds leverage even small differences in performance across firms by ‘short-selling’
the stocks of the slightly worse ones and ‘going long’ on the slightly better ones.
Thus, even small differences in the evolution of two firms may matter a lot. Further
on, effects like predatory trading [9] may induce trend reinforcing.

1.3. Outline of the paper. We provide an analysis of the tradeoff regarding sys-
temic risk mentioned above. We consider the stochastic process defined by the mean
field approximation of the fragility of the individual node. This is now a stochastic
process for a single variable, and it is also clear that, having reduced the system to
one single variable, the cascading part of the process is excluded by construction.
In this approximation the failure probability can be taken as a proxy for systemic
risk. In fact, the mean field approximation is valid when all units behave in a sim-
ilar way. We study some mathematical properties of the process and we provide a
simple method to show the existence of a tradeoff in systemic risk as function of
the density of the network. The method is based on recognizing that the process is
a combination of a Gaussian Random Walk (RW) and a Persistent Random Walk
(PRW). PRW [18] is a variant of the classic RW in which the walker has a proba-
bility p to keep the direction of his former movement and 1− p to switch direction.
The process is sometimes called correlated random walk. It is approximated by
the Telegraph equation [12, 17] in the limit of continuous time and space. It dif-
fers from RW in the scaling with time of the variance of the displacement of the
walker. In our model, the dynamics in time of the fragility induces a dynamics on
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the probability density function of its values. This dynamics has an exact analyt-
ical expression and the systemic risk is measured as the number of failures in the
stationary distribution of fragility. It is possible to prove the existence, uniqueness
and convergence to a stationary distribution, based on the Birkoff-Jentzsch theorem
which extends the Perron-Frobenius Theorem to infinite dimensional vector spaces.
We cannot provide an closed-form expression of the sytemic risk as a function of
the parameters of the model, but we compute the systemic risk numerically, by
iterating the dynamics on the pdf. We show in this way that the systemic risk has
indeed a minimum as function of the network density.

The paper is organized as follows. In Section 2 we introduce the model. In
Section 3 we analyze the model: first, we describe the mean-field approximation
of the dynamics and we show how it can be described by using a PRW. Then in
Section 3.2 we derive the dynamics on the probability density function and we prove
existence and uniqueness of the stationary pdf. In Section 4 we report the results of
the numerical computation of systemic risk. In Section 5 we check the robustness
of our results with respect to the type of noise that enters in the stochastic process
of the fragility and some other slight modifications. In Section 6 we summarize the
results and we draw conclusions.

2. The model. In this section, we describe the network fragility model. Consider
a set of n firms connected in a network, each associated with two state variables,
the size a and the fragility ϕ. The first captures the notion of a proxy for the size of
the firm, such as its output. The fragility captures the notion of financial fragility
of the firm. This could be measured for instance in terms of its net worth: when the
net worth decreases down to zero, the firm is not able to pay back its debts and goes
bankrupt. So the larger the net worth, the smaller the fragility. As shown in [4], in
a network of firms linked by supply-customer relationships, the net worth of a firm
evolves as a stochastic process that depends on the net worth of the neighboring
firms. The interaction with the neighbors results in an averaging term and in a
trend reinforcing term. Each firm has a portfolio of suppliers and customers, which
reduces the impact of the fluctuations of prices and shocks both from the suppliers
and customers, thus resulting in the averaging term. On the other hand, if the
production cost increases when the net worth of the firm and its neighborhood is
decreasing (because it is more costly for the firm to access the credit it needs for
production), this results in a trend reinforcing term [5]. Following [4] we model
directly the fragility of firms as a stochastic process confined in the interval [0, θ],
where θ is the failure threshold.

Firms are connected in a weighted and directed graph with adjacency matrix
W ∈ R

n×n. W is nonnegative and row-stochastic (i.e.
∑

j Wij = 1).
As a first step, let us look at the following equation for the evolution of the

fragility of the set of firms

ϕ(t + 1) = Wϕ(t) = W tϕ(0) (1)

where ϕ = [ϕ1, . . . , ϕn] is the vector of fragility values. If Wij is positive, then the
fragility of firms j contributes to a fraction Wij to the value in the next time step
of the fragility of firm i. In other words, the fragility of firm i at time t + 1 is a
weighted arithmetic mean of the fragility values of the neighboring firms. Under
some conditions about connectivity in the network, the values of fragility of the firms
will converge to the same value, namely if the matrix W has only one essential class
of indices which is primitive (see [15], where such matrices are called regular). If
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there are more then one essential classes the fragilities in these classes converge
internally to the same value, as well as all inessential firms which have connections
exclusively to this essential class. But there is no interplay with fragilities in other
essential or inessential classes. If an essential class is not primitive there is some
internal cycling of fragility values. See [6, 10] for the results in the context of
conditions of finding consensus in a group of experts. So, for a network with high
link density we could assume that the fragility values will converge to the same
value.

We now introduce additive stochastic shocks and trend reinforcing.

ϕ(t + 1) = W (ϕ(t) + σξ(t)) + αsign(W (ϕ(t) − ϕ(t − 1))) (2)

In the equation above ξ(t) is a vector of iid random variables, ξ1(t), . . . , ξn(t), drawn
from a distribution fξ, with expected value zero, standard deviation 1, and no
skewness (i.e. its probability density function is symmetric). The parameter σ
determines the standard deviation of shocks and is also called the noise level. The
fragility of each firm receives, as a net shock, the weighted average of the shocks
that hit the fragility of the firms in its neighborhood. In other words, the firm
hedges the risk for upward shocks to its own fragility, by sharing the shocks with
other firms. In the second term of the equation, the sign is applied component-wise
(for completeness we define φ(−1) = 0) and α is a constant that we call the trend
strength. A fixed constant α is added if the difference between the current average
fragility in the neighborhood and that at the previous time step is positive (i.e. if
fragility has increased) and is subtracted if the difference is negative (if fragility has
decreased).

As a result of the dynamics of Eq. (2), the values of fragility may very well go out
of the interval [0, θ]. Therefore, φi(t+1) is set to zero if φi(t+1) /∈ [0, θ] . For firms
whose fragility would go below zero this means that their fragility cannot become
lower than that. For firms that get above θ this means that they go bankrupt and
are replaced by a new firm with initial fragility zero. So, Eq. (2) can be stated as

ϕ(t + 1) = 1[0,θ] (W (ϕ(t) + σξ(t)) + αsign(W (ϕ(t) − ϕ(t − 1))))

where 1[0,θ] is the (componentwise) indicator function (e.g. 1[0,θ](ϕ) = 1 if ϕ ∈ [0, θ]
and 0 otherwise, also known as χ[0,θ]).

In the following we will omit 1[0,θ] when we describe dynamics because the reset to
zero when a firm fails is not the only reasonable choice. We discuss some variations
at the end of the paper. In any case throughout we assume that the process is
somewhere reset when it gets out of [0, θ].

In the original model, when a firm i goes bankrupt, some damage, proportional
to the size ai of the firm is transferred to the fragility of neighbors. If, as result, the
fragility of some neighbors exceed the threshold θ, they, in turn, transfer a damage
to their (surviving) neighbors. This cascading process occurs at a faster time scale
than the dynamics above. In this paper, we do not use at all the cascading part of
the model. So Eq. (2) describes completely the dynamics we study here.

3. Model analysis. Since the dynamics depends on the relative magnitude of the
parameters α, σ and θ. we can fix θ = 1 without loss of generality. For abbreviation
we define the difference ∆ϕ(t) = ϕ(t) − ϕ(t − 1).

If W is the unit matrix (i.e. there is no hedging of risk) (2) reduces to

ϕi(t + 1) = ϕi(t) + σξi(t) + αsign(∆ϕi(t)) (3)
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Figure 1. Example of six trajectories of the stochastic process
for φ with fixed trend strength α and decreasing noise level σ.
The number of failures first decreases but then increases. Since
decreasing the noise level is equivalent to increasing the hedging
level, the figure suggests that there is an optimal hedging level
which minimizes the number of failures.

for all i.
If firms are connected in a complete graph and share their fragility shock to an

equal proportion with all other firms, then Wij = 1
n

for all i, j. In this case, the

fragility of each firm, evolves as the average φ(t) = 1
n

∑k

i=1 ϕi(t). Then, the central
limit theorem implies that

φ(t + 1) = φ(t) +
σ√
n

ξ(t) + αsign(∆φ(t)).

In general, if each firm is connected, on average, to k ≤ n other firms, one can
make a mean-field approximation of the dynamics of the fragility of each firm and
write

φ(t + 1) = φ(t) +
σ√
k

ξ(t) + αsign(∆φ(t)). (4)

The parameter k is the average number of hedging partners or hedging level. In
other words, the stochastic process on φ represents the evolution of the average
fragility of the economy where each firm has on average k hedging partners. In this
approximation, increasing the average number of hedging partners k decreases the
standard deviation of the shocks σ by a factor of 1/

√
k. Intuitively, one can expect

that the failures become less frequent, because, the smaller are shocks at each time
step, the longer it takes to eventually hit the threshold θ. However, if the noise
level σ is very small compared to the trend strength α, the second term in Eq. (4)
dominates. In particular, if the fragility was increasing from time t − 1 to time t,
then the second term is for sure equal to +α while the first is probably very small
and therefore the fragility will also increase at time t + 1. Therefore, the noise level
or equivalently, the average number of neighbors in the network, seems to play a
crucial role for the probability of a given firm to hit the fragility threshold.

As an example, Figure 1 shows six trajectories of the stochastic process defined
in Eq. (4) for a fixed value of trend strength α and decreasing value of noise level
σ (which corresponds to increasing level of hedging partners).
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In the following, we will investigate the role of noise on the probability of failure
by computing the pdf of φ in the limit of large t, which represents the probability
distribution of fragility in the steady state of the process. Such pdf can be inter-
preted both as the firm’s individual probability of having a given value of fragility
and as a histogram of fragility values of an ensemble of firms.

3.1. Dynamics of fragility as persistent random walk. Since varying the
hedging level k is equivalent to varying the noise level, in the following we drop k
from Eq. (5) and we study the process

φ(t + 1) = φ(t) + σξ(t) + αsign(∆φ(t)) (5)

Assuming that the boundary conditions are not effective during two consecutive
time steps, we can derive from (5) the expression of φ(t + 2) in terms of φ(t).

φ(t + 2) = φ(t) + σ(ξ(t + 1) + ξ(t)) + α [sign(∆φ(t)) + sign(σξ(t) + αsign(∆φ(t)))] .
(6)

Obviously, the last term in the square parentheses can only take the values −2, 0
or 2, depending on the sign of ∆φ(t) and the probability

Pr(sign(σξ(t) + αsign(∆φ(t))) = sign(∆φ(t))).

This probability is

Pr(σξ < α) =

∫ α

−∞

fσξ(x)dx =

∫ α

σ

−∞

fξ(x)dx

due to the symmetry of fξ. We define q(α, σ) := Pr(σξ < α) as the probability to
keep the trend. Denoting with Fξ(x) the cumulative distribution function (cdf) of
ξ then it holds q(α, σ) = Fξ(

α
σ
). We can then reformulate the process (5) as

φ(t + 1) = φ(t) + σξ(t) + αtr(t) (7)

where φ(t + 1) is set to zero if it falls out of the interval [0, θ]. The function ‘tr’ is
the discrete stochastic process

tr(t + 1) = η tr(t) with η =

{

1 with probability q
−1 with probability 1 − q

(8)

with possible initial values tr(0) = {1,−1} both with probability 1
2 . Notice that tr

is not affected when φ hits any of the two thresholds. This implies that typically
new firms are created with positive trend. This hypothesis simplifies the analysis
but does not affect the result qualitatively as discussed in Section 5.

There are two important differences between the sign-process (5) and the trend-
process (7). The first regards the behavior at the boundaries. Suppose both pro-
cesses get to 0 at time t−1 coming from a positive value at time t−2 and remain at
0 at time t (because, for instance, in the sign-process ξ(t−1) and ξ(t) were negative
and in the tr-process η(t − 1) and η(t) were 1). In this case, the term sign(∆φ(t))
in Eq. (5) is zero and therefore the sign-process will switch to a positive value at
time t + 1 with probability 1

2 . In contrast, the corresponding term tr(t) in Eq. (7)
can never be zero (by definition its range is {−1, +1} and the tr-process will switch
to a positive value at time t + 1 with probability 1 − q. This means that when the
noise σ is small and therefore q is close to 1, the tr-process tends to stay longer
at 0, compared to the sign-process. The tr-process can be easily modified to bet-
ter approximate the sign-process by redefining what happens at zero. We discuss
possibile modifications and their implications in Section 5.
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The second difference between the two processes concerns the dependencies of
the draws of the random variables. Eq. (5) implies that sign(∆φ(t)) = sign[ξ(t −
1) + αsign(∆(φ(t − 1)))] and therefore ξ(t − 1) affects directly φ(t) and indirectly
also φ(t + 1) through the term sign(∆φ(t)). In contrast, in the tr-process the term
tr(t) evolves independently of the draws of the random variable ξ.

We now compare the tr-process with a process called persistent random walk
(PRW) in the physics literature. PRW is a variant of the classic random walk in
which the walker has a probability q to keep the direction and 1 − q to switch
direction. If we neglect the noise term σξ(t) in (7) and start with φ(0) = 0, then
φ evolves like a PRW on Z. The PRW obeys the telegrapher’s equation in the
continuous limit [3, 14, 18]. An important property of the PRW is that it deviates,
in a transient phase, from the linear scaling of the variance of the displacement
with time, < x2 >∼ t that is characteristic of the RW. Indeed, starting with all
probability mass in zero, the variance first increases quadratically, < x2 >∼ t2, due
to waves that start towards −∞ and +∞ (ballistic scaling). After a continuous
transition, the variance grows linearly as in the usual RW (diffusive scaling) and in
the limit of large t, it evolves as q

1−q
t. Therefore, if q is close to 1, the variance grows

still linearly for large t, although with a high diffusion coefficient q

1−q
. Compared

to a pure persistent random walk, our process includes, additionally, a continuous
additive noise, a sort of reflecting lower bound at zero, an absorbing bound θ (which
leads to a rebirth of firms with zero fragility), and the fact that the probability q of
keeping the trend depends monotonously on α

σ
.

3.2. Dynamics on the probability density function of φ. In order to estimate
the probability that the fragility φ hits the treshold θ, we want to know how its pdf
evolves in time, and in particular to estimate its stationary pdf if this exists.

However, it is important to notice that, at any time step t, the state of the process
(7) is determined both by the value of φ(t) and by the value of the trend tr(t) which
evolves as the simple two-state process (8). In order to study the evolution of the
pdf of φ one has to study the evolution of the pdf of the whole process (7-8)

Since the trend process takes only two values, we can divide the pdf of φ(t) into
two parts, corresponding to negative trend (tr(t) = −1) and positive trend (tr(t) =
+1). We define the two functions as f−

φ(t) : [0, θ] → R≥0 and f+
φ(t) : [0, θ] → R≥0.

The pdf of the whole process is determined by the pair of functions (f−
φ(t), f

+
φ(t))

under the condition that
∫ θ

0
f−

φ(t)(φ
′) + f+

φ(t)(φ
′)dφ′ = 1.

From this pair of functions we can derive the pdf of φ as fφ(t) = f−
φ(t) + f+

φ(t). In

other words, f−
φ(t)(φ

′)dφ′ represents the probability to have fragility in [φ′, φ′ + dφ′]

and at the same time a downward trend, tr(t) = −1. Analogous relation holds for
the positive trend.

It is also possible to derive the pdf of tr as ftr(t) = (
∫

f−
φ(t),

∫

f+
φ(t)), which is a

pair of scalar values specifying the probability of having negative and positive trend
and which is therefore not really a pdf but a probability mass function defined on
{−1, +1}.

We also define δα to be the Dirac δ-distribution with mass shifted by α (also
known as δ(·−α)), ‘∗’ to be the convolution operator for functions (defined for two
functions h1, h2 : R → R as (h1 ∗ h2)(x) =

∫

h1(y)h2(x − y)dx), fσξ to be the pdf
of the noise).
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Proposition 1. Let the pdf of φ(t) be (f−
φ(t), f

+
φ(t)). If the stochastic evolution of φ

evolves as defined in Eq. (7), then the pdf of φ(t + 1) is (f−
φ(t+1), f

+
φ(t+1)) with

f−
φ(t+1) = g−t 1[0,θ] + (b−(t) + z−(t))δ0

f+
φ(t+1) = g+

t 1[0,θ] + (b+(t) + z+(t))δ0. (9)

The functions g−t , g+
t are defined as

g−t = (qf−
φ(t) ∗ δ−α + (1 − q)f+

φ(t) ∗ δα) ∗ fσξ

g+
t = ((1 − q)f−

φ(t) ∗ δ−α + qf+
φ(t) ∗ δα) ∗ fσξ (10)

and b−(t) =
∫ +∞

θ
g−t , b+(t) =

∫ +∞

θ
g+

t are the probabilities to go above θ for

φ(t) with negative or, respectively, positive trend, and z−(t) =
∫ 0

−∞
g−t , z+(t) =

∫ 0

−∞
g+

t are the probabilities to go below zero for φ(t) with negative or, respectively,
positive trend.

The successive steps in the computation of g−t and g+
t are illustrated in Figure 2

(steps 2 to 4), while the computation of (f−
φ(t+1), f

+
φ(t+1)) is illustrated in step 5.

Proof. First, we look at (9). Notice that the convolution operation is commutative
and distributive with respect to the operation of addition. Thus, the order of the
computation does not matter.

Adding the noise term +σξ(t) to φ(t) in Eq. (7), corresponds to the convolution
of the pdf of φ(t) with the pdf of the noise fσξ.

The term αtr(t) in the same equation, implies that the part of the pdf repre-
senting the upward trend is shifted upwards by α and that the part representing
the downward trend is shifted downwards by α. This is because shifting a function
along the x-axis is represented by convolution with a shifted delta-function.

If the process is on a downward trend, it will keep that trend with probability
q and switch with probability (1 − q) . The vice-versa holds for the upward trend.
Thus, a q-fraction of f−

φ(t) will remain in f−
φ(t+1), while a (1− q)-fraction of f+

φ(t) will

join f−
φ(t+1). The vice-versa holds for f+.

Finally, Eq. (10) ensures that all probability mass which overlaps the interval
[0, θ] is distributed back to [0, θ]. The overlapping probability mass is determined
by b−(t), b+(t), z−(t), z+(t) and according to the boundary conditions, it is put in
a δ-peek at zero, while the trend information gets conserved.

Notice that other definitions for rebirth after failure can easily be modeled by
changing δ0 in Eq. (9) to any other pdf (for example to the pdf of the uniform
distribution if firms should be reborn with random and equally distributed fragility).
Further on, also other rules for changes of the trend can be modeled by replacing
(b−(t) + z−(t)) and (b+(t) + z+(t)) by other combinations.

To better approximate the sign-process, one should replace z−(t) and z+(t) by
1
2 (z−(t) + z+(t)). This models the fact that a firm with fragility zero for two
time steps has a zero trend, and switches with equal probability to the upward or
downward trend, regardless of the former trend.

Given an initial pdf (f−
φ(0), f

+
φ(0)), Proposition 1 defines a time-discrete evolution

of the probability density function of the firm’s fragility.
In the following of this section, we will use the dynamics as defined in (9).
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Figure 2. Shifting, trend switching, shock addition and redistri-
bution of overlapping mass for given fφ(t) = f−

φ(t) + f+
φ(t). Parame-

ters used: θ = 1, α = σ = 0.15, the noise pdf fσξ is gaussian. This
choice implies q ≈ 0.8413. In step 5 c− = (b−(t) + z−(t)) , c+ =
(b+(t) + z+(t)).

Proposition 2. Consider the process defined in Eq. (7), where ξ is a normally
distributed random variable with mean zero, variance one and pdf fξ, with noise
level σ > 0, trend strength α ≥ 0, failing threshold θ.

If q(α, σ) = Pr(σξ < α) < 1, then there exists a unique stationary pdf (f−
∗ , f+

∗ ).
Furthermore, any initial pdf (f−

φ(0), f
+
φ(0)) converges, under the evolution defined

in Proposition 1, to (f−
∗ , f+

∗ ) geometrically fast, with
∫

f−
∗ =

∫

f+
∗ = 1

2 .

Proof. We want to apply a theorem known as Birkhoff-Jentzsch Theorem [7, Page
224, Theorem 3]. It is an extension of the famous Perron-Frobenius Theorem for
nonnegative matrices to infinite-dimensional vector spaces.

It is easy to see that, for any bounded pdf (f−
φ(t), f

+
φ(t)) the two parts of the pdf

(f−
φ(t+1), f

+
φ(t+1)) are continuous on ]0, θ], have a δ-peak at zero and full support

[0, θ]. So, after one iteration the dynamics (9) remain in the space of pairs of
bounded continuous functions with a δ-peak at zero.

Let us define the operator P on the vector space of these functions such that it
transforms (f−

φ(t), f
+
φ(t)) into (f−

φ(t+1), f
+
φ(t+1)). This operator fulfills the conditions

of the Birkoff-Jentsch Theorem: it is in fact a uniformly positively bounded linear
operator.

It is bounded because, trivially, the integral of the pdf is always one. The linearity
is also easily checked since all entities in the definition of the dynamics Eqs. (9-10)
are linear.

Now we show that it is also uniformly positive (as defined in [7, Page 219]). In
our case an eigenvalue of P must be λ = 1. As lower bound for (f−

φ(t+1), f
+
φ(t+1)) we

take (e, e) with e = (1− q)c1(1[0,θ] + δ0) with c1 = fσξ(θ +α). This is obviously the

lowest value (f−
φ(t+1), f

+
φ(t+1)) can take after one iteration because of convolution

with fσξ. (Take e.g. (f−
φ(t), f

+
φ(t)) = (0, δθ) as a ‘worst case’.) Further on, an upper



194 JAN LORENZ AND STEFANO BATTISTON

bound exists c2(1[0,θ] + δ0) with c2 = fσξ(0). Thus, there exists the desired stretch
parameter K = c2 for the Birkoff-Jentsch Theorem.

The Birkoff-Jentsch Theorem now states that there is a unique (f−
∗ , f+

∗ ) and that
for any inital pdf convergence to (f−

∗ , f+
∗ ) happens by iteration of the operator P

geometrically fast.
The equations

∫

f−
∗ =

∫

f+
∗ = 1

2 are obvious, because any other distribution of
mass in the parts of the pdf would not stay constant because of the equal exchange
of (1 − q) fractions in each step.

This is probably not the most general form of the theorem. Other forms of fσξ

than normal (even with bounded support) also often lead to stabilization. But a
proof is not that straightforward.

If we exchange the terms z−(t) and z+(t) by 1
2 (z−(t) + z+(t)) to better approxi-

mate the sign-process, then fractions of mass in the parts of the still existing unique
stationary pdf will not be equal anymore.

From this section we conclude that there is a unique attractive stationary distri-
bution for the probability density of fragility in the tr-process of Eq. 7. Moreover,
the probability to fail at time t

b(t) = b−(t) + b+(t) (11)

converges to a fixed value which we define as the limit failure probability.

b∗ = lim
t→∞

b(t). (12)

4. Numerical results. Unfortunately, the unique stationary pdf (f+
∗ , f−

∗ ) seems
not to have a closed form, or at least not an easy one. Therefore, we compute it
numerically. We set θ = 1 (without loss of generality) and fξ to be Gaussian (with
mean zero and variance one) and we explore the (α, σ)-parameter space. Each pair
of values (α, σ) corresponds to a value of q which lies in the interval [0.5, 1]. Notice
that, assuming a different pdf for the noise would imply different values of q (cf.
Section 5).

Figure 3 shows the first time steps of the pdf evolution for different (α, σ) values.
Here the initial value of fragility is zero and the initial value of the trend is ±1
with equal probability. Therefore, the initial pdf is (f+

φ(0), f
−
φ(0)) = 1

2 (δ0, δ0). The

parameter choice in the first row of plots in Figure 3 corresponds to a relatively low
trend strength α compared to the noise level σ and thus to a value of q only slightly
above its minimum 0.5. The random term σξ plays the major role in the process
and in this regime the persistent random walk behaves similar to the usual random
walk. This leads to a fast convergence of the pdf: after only four time steps (last
plot in the row), the pdf is already close to the stationary pdf (cf. Figure 4). Notice
that there is a significant delta peak at 0 (going beyond limit of the ordinate axis
in the plot) which collects the probability to go below 0 and the probability to go
above 1.

In the second row of plots in Figure 3, the values of (α, σ) correspond to values
of q closer to one. This implies that most of the mass of the probability density
function corresponding to the downward trend (f−) stays close to zero. On the
other hand, the mass in f+ moves with a wave towards the failure threshold (which
is at 1, since the abscissa represents φ and θ = 1). The wave smoothes out due to
the repeated convolution with fσξ. Finally, in the third row of plots in Figure 3
q is very close to one. In this case the wave towards the failure threshold repeats
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α = 0.1, σ = 0.3, q ≈ 0.6306
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Figure 3. The first four time steps with initial pdf fφ(0) = f+
φ(0) +

f−
φ(0) = 1

2δ0 + 1
2δ0 and different parameters, fξ is Gaussian, the

q-values are computed from α and σ.

several times until it smoothes out. Notice that in the limit σ → 0, and thus q → 1
(not shown in the figure), the pdf of φ will not converge. There will be a delta peak
which moves constantly upwards (modulo the redistribution of its mass in zero).

Figure 4 shows instead the stationary pdfs for some specific values of α and σ.
The pdf’s were computed by iteration of Eq. (9) with initial uniform distribution
on [0, θ] and discretization of the interval [0, 1] in steps of 0.01. We proceeded until
the norm of the difference in one time step was smaller than an accuracy level of
10−6. There were no hints that a finer discretization would improve the result.

The figure shows that the stationary pdf is approximatively linearly decreasing
for high values of fragility (except for the wavy pdf’s obtained with high α and low
σ). The slope of the linear decrease is non-monotonously controlled by σ and α. It
is easy to explain the slope in some cases, although this is not the case in general.
When q is close to 1, it is very unlikely that a trajectory of the process switches
direction. A trajectories with positive trend moves steadily along the whole range
of values [0, 1], repetitively hits the threshold 1 and gets reset to 0. In contrast a
trajectory with negative trend reaches 0 and stays there. As a result, f+ tends to
a uniform distribution in [0, 1] and f− tends to a delta peak in 0. On the other
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Figure 4. Stationary pdfs for selected trend strength α and noise
level σ values. The limit failure probability b∗ is given and the
minimum in each row is highlighted.

hand, q close to 0.5 is implied by σ much larger than α. In this regime, φ diffuses
very fast which leads again to a rather flat distribution for both f− and f+. In
contrast, for intermediate values of q (for instance α = 0.1, σ = 0.2), the profile has
a pronounced negative slope for high φ.

In the regime of high α and σ close to 0, the trajectory evolves by almost discrete
jumps of magnitude close to α. This results in a wavy stationary pdf with peaks at
multiples of α. But the wavy pattern oscillates around a line with flat slope, which
is consistent with what found in the case of high q and σ not too close to 0.

We are most interested in the limit failure probability which is our proxy for the
systemic risk. It depends on trend strength α and noise level σ. So, we computed
b∗ = b∗(α, σ) for the parameter set α, σ ∈]0, 0.5].

Figure 6 shows that for fixed trend strength α there is an intermediate optimal
σ which leads to minimal systemic risk. In contrast, for a fixed noise level σ there
is no intermediate minimum when varying the trend strength α. Raising the trend
strength always increases the systemic risk. The lines for high σ and low σ intersect.
This resembles the existence of the intermediate optimum for fixed α. The left
plot in Figure 6 shows also values of the probability to keep the trend q at the
intermediate minima of the limit failure probability with respect to σ, given a fixed
trend strength α. It turns out that the optimal noise level lies at a value of q roughly
between 0.75 and 0.9. The value of q corresponding to the local minimum decreases
slowly with α. This is better visible in Figure 6 where we take a bird eye’s view
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Figure 5. The limit failure probability with respect to trend
strength α and standard deviation of shocks σ. (Noncomplete lines
are due to extremely long convergence times.)

on the (α, σ)-plane, where the level lines of equal q appear as rays from the origin.
The ordinate represents q = 0.5, the abscissa q = 1.

5. Robustness of results. We checked other pdf’s for the noise besides the Gauss-
ian and in most cases we also observe convergence to a unique stationary pdf. Notice
that convergence is not assured in general by Proposition 1. We observed quanti-
tative changes in the results but not qualitative ones in the sense that there always
exists an optimal noise level for a fixed trend strength.

In our model, firms fail when their fragility hits a threshold and are recreated
with an initial value of fragility zero and an initial trend proportional to the number
of failing firms with that trend (so mostly with upward trend). This is a strong
assumption and therefore we checked three other scenarios, in particular to test
whether the phenomena of an intermediate optimal noise level is robust against
these modifications.

If a new born firm is assigned a positive or negative trend with equal probability
(instead of proportional to the number of failing firms of that trend) then the
probability to have a positive trend

∫

f+
φ(t) converges to a fixed number below 1

2

which depends on q. In the extreme case, q = 1 it goes to zero. That would
implies that the probability to fail will also go to zero in the limit. We saw that
for a fixed trend strength there is a critical noise level that implies such high q
that the systemic risk drops to zero when the noise level gets below. Nevertheless,
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Figure 6. Contour plot for the limit failure probability s(α, σ) and
contour lines for q(α, σ) = 0.8, 0.9. The solid black line denotes the
optimal value of σ regarding a fixed α.

for low trend strength values (α below about 0.12) an intermediate optimal noise
level still exists until further decreasing the noise level causes the sudden drop due
to the extinction of the upward trend. One may criticize this variation of the
model because it does not converge to equal proportions of positive and negative
trend. But stationary equal probabilities for upward and downward trend seems
quite reasonable because judgement of fitness is always done comparatively in an
economy. If economy divides firms in good and bad ones this should not lead to a
possible die out of one class.

Another suggestion against our original model could be that firms are not born
with zero fragility but i.e. random and uniformly distributed in the fragility interval.
This obviously changes the limit pdf, but at least in this example the qualitative
behavior with the existence of an optimal number of hedging partners for given rend
strength remains the same.

Another idea is to renormalize the probability mass after a failure. We do this as
follows: we do not redistribute the probability mass after a failure to zero but just
rescale f+ proportional to its actual shape such that it has the same total amount
as before. The same with f−. On the level of individual firms this means that
new firms are born with fragilities drawn randomly from the actual distribution of
fragilities with that trend. That means if the distribution of fragilities is double-
peaked new firms are most likely to appear with fragilities around that two peaks.
This dynamics imply that a given peak structure gets amplified by the evolution
of new firms. In fact this dynamic fragility distribution for new firms leads to
an amplification of mass in high fragility intervals. That means that with high
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probability new firms are born with high fragility (which seems reasoable). In the
limit these regimes are characterized by virtually all firms with positve trend failing
each year. That means that decreasing the noise level (which increases q) is even
more dangerous. Nevertheless, there still exists an intermediate optimal noise level
for a given trend strength to minimize the systemic risk.

6. Conclusions. We have presented a simple model for the stochastic evolution
of the fragility of units in a network. The model applies in particular to networks
of firms connected via financial relationships. The basic ingredients of the model
consist in a mechanism of risk sharing that leads to decrease the fluctuation of the
fragility and in a mechanism of reinforcing feedback on the fragility from the trend
in the immediate past of the fragility of the firm itself and its neighbors. Under
this assumptions, the number of bankruptcies in the system is minimized for an
intermediate density of links in the network e.g. for an intermediate number of
hedging partners. The result is of interest from the point of view of policy design
for the control of systemic risk.

The effect depends strongly on a dynamic division of firms into two classes: the
good evolving (with decreasing fragility) and the bad evolving firms (with increasing
fragility). One might question that this hard cut between the two classes exists. But
we argue that actually, slight differences in performance are exacty what investors
like hedge funds search for when they try to profit from investments indepently of
the economic trend. So, even very slight differences may matter a lot for reinforcing
trends. Further on, these kind of investment strategies have become more popular.

With respect to the original model, the analysis presented here neglects the
process of cascades of failures and therefore underestimates the number of joint
failures. However, its advantage is that the evolution of the probability distribution
of failures can be expressed analytically and that the stationary distribution (which
we prove to exist and be unique) can be computed numerically.

The impact of heterogeneity in the topology of the network is not studied at this
stage. Furthermore, the hedging network is not dynamic. This implies for instance
that firms do not have the possibility to interrupt hedging relations with partners
who do not perform well. This assumption is certainly not very realistic on a time
scale of years. However, it is also true that many partnership or insurance contracts
cannot be modified in a very short time. Furthermore, in future work the impact of
heterogeneous trend strength, noise level and failing threshold should be studied.
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