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Two replicas of spatially extended chaotic systems synchronize to a common spatio-temporal cha-
otic state when coupled above a critical strength. As a prototype of each single spatio-temporal
chaotic system a lattice of maps interacting via power-law coupling is considered. Furthermore,
each unit in the one-dimensional chain is linked to the corresponding one in the replica via a local
coupling. The synchronization transition is studied as a nonequilibrium phase transition, and its
critical properties are analyzed at varying the spatial interaction range as well as the nonlinearity of
the dynamical units composing each system. In particular, continuous and discontinuous local maps
are considered. In both cases the transitions are of the second order with critical indices varying
with the exponent characterizing the interaction range. For discontinuous maps it is numerically
shown that the transition belongs to the anomalous directed percolation �ADP� family of univer-
sality classes, previously identified for Lévy-flight spreading of epidemic processes. For continuous
maps, the critical exponents are different from those characterizing ADP, but apart from the nearest-
neighbor case, the identification of the corresponding universality classes remains an open problem.
Finally, to test the influence of deterministic correlations for the studied synchronization transitions,
the chaotic dynamical evolutions are substituted by suitable stochastic models. In this framework
and for the discontinuous case, it is possible to derive an effective Langevin description that
corresponds to that proposed for ADP. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2945903�

Synchronization is ubiquitous in nature; neuronal popu-
lations, cardiac pacemakers, Josephson circuits, and even
coupled chaotic systems can synchronize during their ac-
tivity. Remarkably, all these different phenomena can be
described within a common framework represented by
nonlinear dynamics.1 Synchronization of spatially ex-
tended chaotic systems is particularly interesting as it al-
lows for transferring concepts and methods borrowed
from statistical mechanics to nonlinear dynamics. Indeed,
a direct connection between the critical properties of non-
equilibrium phase transitions and synchronization pro-
cesses has been established.2,3 Noticeably, for diffusively
coupled chaotic systems only two universality classes, Di-
rected Percolation and Multiplicative Noise, encompass
all the synchronization transitions. Originally these
classes have been identified in completely different con-
texts such as epidemics spreading and pinning/depinning
of interfaces to/from a substrate.4,5 The parallel between
nonequilibrium critical phenomena and synchronization
processes is possible only thanks to the erratic nature of
the synchronized state, where chaos somehow mimics the
presence of thermal noise in real systems. In this paper
we propose an extension of such an analogy to synchro-
nization transitions of long-range coupled systems. Long-
range interactions naturally appears in many circum-
stances ranging from neuronal networks to solid state

physics. Therefore, a characterization of these transitions
is definitely worthy and of interest for a wide scientific
community.

I. INTRODUCTION

Since its discovery,6 chaotic synchronization is a very
active and important field of research,1 with applications in
such diverse fields as secure communications,7,8 semicon-
ductor lasers,9 chemical reactions,10 living systems,11 and
electrically coupled neurons in vitro.12

The phenomenology of the synchronization transition
�ST� is particularly rich for spatially extended chaotic sys-
tems, where a parallel with critical phenomena can be
drawn.13 In the last decade, an ongoing research activity has
been devoted to relate chaotic STs to nonequilibrium phase
transitions.2,3,14–24 Nowadays, it is well established that the
synchronization of two replicas of a chaotic system coupled
via the same realization of spatio-temporal noise,2 or by cou-
pling corresponding elements of the replicas via a local
interaction,3 can be characterized as a continuous nonequi-
librium transition from an active to an absorbing phase. In
systems with nearest-neighbor �NN� couplings, it has been
found that the STs belong to two universality classes, de-
pending on the local dynamical features, namely, directed
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percolation �DP� �Refs. 4 and 25� or multiplicative noise
�MN�.5 These studies have been mainly performed for
coupled map lattices �CML�, which are prototype models for
systems exhibiting spatio-temporal chaos.26 A dynamical or-
der parameter able to locate the synchronization transitions
�ST� is represented by the propagation velocity of informa-
tion VI, Refs. 28 and 29; in the synchronized �resp. desyn-
chronized� state this quantity is zero �resp. finite�. Moreover,
for continuous maps, where the dynamics is dominated by
linear effects, VI vanishes together with the transverse
Lyapunov exponent. Therefore, a characterization of the syn-
chronization phenomenon in terms of linearized equations
�corresponding to a Lyapunov analysis� is sufficient to prop-
erly locate the STs. In this case the critical indexes associated
to the ST are of the MN kind.3 On the other hand, for dis-
continuous �or quasi-discontinuous27� maps, due to the pre-
dominance of nonlinear effects, the replicas synchronize for
definitely negative transverse Lyapunov exponents.2,29 For
these maps the ST cannot be anymore described within a
linear framework and the transition is now characterized by
critical properties typical of DP, analogously to what happens
for cellular automata.22,30 These findings have been also con-
firmed by the analysis of stochastic models mimicking the
synchronization of continuous/discontinuous maps.17

Recently, synchronization has also been studied for cha-
otic systems presenting long-range interactions, which are
relevant to many real contexts, such as disease spread via
aviation traffic,31 neuron populations,32 Josephson
junctions,33 and cardiac pacemaker cells.34

Typically, long-range interactions are introduced by con-
sidering CMLs with coupling decaying as a power
law.21,35–37 In such a model, when the local dynamics is
dominated by nonlinear mechanisms, the STs have been
shown to belong to a family of universality classes known as
anomalous directed percolation �ADP�.24,38 ADP has been
previously identified for epidemic spreading whenever the
infective agent can perform unrestricted Lévy flights.39,40

Such processes, originally introduced in Ref. 41, can be
modeled by assuming, e.g., in d=1, that the disease propa-
gates from an infected site to any other with a probability
P�r��r−�1+�� algebraically decaying with the spatial distance
r, where � controls the interaction range. Hinrichsen and
Howard have numerically shown for a stochastic lattice
model �generalizing directed bond percolation� that the criti-
cal exponents vary continuously with �.40 These findings
confirm previous theoretical results39 indicating that usual
DP should be recovered for sufficiently short-ranged cou-
pling �namely, ���c�2.0677�2�� and that a mean-field de-
scription should become exact for ���m�0.5 �for a recent
and exhaustive review, see Ref. 38�.

In this paper, we first reconsider, by performing more
accurate estimations of the critical exponents, the results ob-
tained for NN interactions both for deterministic as well as
for stochastic local dynamics.16,17 Then we focus on the syn-
chronization transition in systems with power-law coupling.
In this context we extend previous analysis for discontinuous
deterministic maps24 to a stochastic version of the model,
and we confirm that whenever the STs are driven by nonlin-
ear effects the associated critical properties belong to the

anomalous directed percolation universality classes. Finally,
we present a first evaluation of the critical properties of the
synchronization transitions for continuous chaotic maps with
power-law interactions.

The paper is organized as follows: The employed deter-
ministic and stochastic models are introduced in the next
section, while Sec. III is devoted to the methods used to
study their critical properties. In Sec. IV, STs are re-
examined for nearest-neighbor interacting systems; while
Sec. V is focused on power-law coupled systems. Conclu-
sions and perspectives are discussed in Sec. VI. The Appen-
dix presents a derivation of the field equation, known to re-
produce ADP critical phenomena, for the stochastic model
with power-law interactions.

II. MODELS

In this paper we investigate the synchronization between
two replicas of CMLs transversally coupled according to the
following scheme:

xi�t + 1� = �1 − ��F�x̃i�t�� + �F�ỹi�t�� ,

�1�
yi�t + 1� = �1 − ��F�ỹi�t�� + �F�x̃i�t�� ,

where i=1, . . . ,L is the discrete spatial index with L denoting
the system size; xi�t� ,yi�t�� �0:1� are the state variables, and
periodic boundary conditions are used �xL+1=x1�; F�x� deter-
mines the local dynamics on each site of the lattice �see
below for its specification�. The parameter � sets the strength
of the site-by-site coupling between the two replicas.

The variables z̃i� �x̃i , ỹi� indicate spatially averaged
quantities. In particular, two different kind of spatial aver-
ages are introduced to reproduce short– and long-ranged in-
teractions. The former represents a discretized version of
spatial diffusion among nearest neighbor sites and reads

z̃i = �1 − ��zi +
�

2
�zi−1 + zi+1� , �2�

where � measures the intensity of the diffusive interaction
within each replica. The latter is obtained by considering a
coupling decaying as a power law,21,35,37 i.e.,

z̃i = �1 − ��zi +
�

����	k=1

L�
zi−k + zi+k

k1+� , �3�

where � tunes the interaction range �the rationale for defin-
ing the exponent as 1+� will become clear in Sec. V�. For
�→�, Eq. �3� reduces to the diffusive case Eq. �2�, while for
�=−1 it corresponds to the mean-field coupling, usually em-
ployed in the study of globally coupled maps.42 Actually, as
discussed in Ref. 21, the large scale properties of the system
should coincide with those at �=0 for any �� �−1:0�. Since
the sum extends up to L�= �L−1� /2 the model is well defined

only for odd L-values, and ����=2	k=1
L� k−�1+�� is a normal-

ization factor to ensure that z̃� �0:1�. For both kinds of cou-
pling Eqs. �2� and �3�, periodic boundary conditions are as-
sumed and the diffusive coupling � is set to 2 /3. Notice that
the results do not seem to depend on the chosen value of �.
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Several studies2,3,17,21,28 have shown that the system dy-
namics is strongly influenced by the continuity properties of
the local map F�x�.29 In particular, the spatio-temporal
propagation of disturbances28 and the properties of
synchronization3 are noticeably different if the map is con-
tinuous or �quasi� discontinuous. For this reason, throughout
this work, we consider two different deterministic maps: The
Bernoulli map F�x�=2x�mod 1�, which is characterized by a
discontinuity making dominant the nonlinear effects, and the
tent map F�x�=1−2 
x−1 /2
, whose dynamical properties
are well captured by linear analysis.

The synchronization transition is observed while increas-
ing the coupling �: Above a critical value �c the two replicas
synchronize onto the same chaotic trajectory. In other words,
for ���c the synchronization error wi�t�= 
xi�t�−yi�t�
 van-
ishes for sufficiently long times.

Parallel to Eq. �1�, we also consider a stochastic model
which mimics the evolution of the synchronization error �dif-
ference field� wi�t� in proximity of the ST. Stochastic dynam-
ics is expected to deplete the role played by spatio-temporal
correlations, unavoidable in deterministic systems, and thus
should allow more accurate estimations of the critical expo-
nents.

In particular, we consider a stochastic model able to re-
produce the main features of ST both for continuous and
discontinuous maps. We consider the so-called random mul-
tiplier model, originally proposed in Refs. 16 and 17. The
quantity wi�t� defined in each site of the chain evolves ac-
cording to the following stochastic dynamics:

wi�t + 1� = �1, w.p. p = aw̃i�t�
aw̃i�t� , w.p. 1 − p

if w̃i�t� � 	 , �4�

wi�t + 1� = �w̃i�t�/	 , w.p. p = a	

aw̃i�t� , w.p. 1 − p
if w̃i�t� 
 	 , �5�

where wi�t�� �0:1� and w̃i indicates the spatial averages that
depending on the nature of the coupling, NN or long-range,
is given by Eq. �2� or �3�. The parameter 	 controls the
nonlinear effects, while a the linear ones. For the local maps
considered in this article a can be identified with 2�1−2��.17

Therefore, to vary the coupling � in the deterministic model
amounts to modify a in the stochastic one. Notice that, due to
the relationship between the parameters � and a, in the ran-
dom multiplier model to achieve synchronization a should be
reduced. For sufficiently small �resp. large� 	 the models �4�
and �5� mimic the dynamics of �quasi�-discontinuous �resp.
continuous� maps, where nonlinear �resp. linear� effects are
predominant. Following Ref. 17, in order to reproduce the
behaviors of the Bernoulli or of continuouslike maps we
fixed 	=0 or 	=0.2, respectively.

III. CHARACTERIZATION OF THE SYNCHRONIZATION
TRANSITIONS

The phenomenology of the synchronization transitions at
varying the coupling range and the type of local dynamics
can be visualized by looking at Fig. 1. The figure displays
the difference field wi�t� for various values of � with trans-
versal coupling just above the synchronization transition

����c� for Bernoulli as well as for tent maps. The spatio-
temporal evolution of wi�t� is strongly dependent not only on
the continuous/discontinuous nature of the local dynamics,
but also on the interactions range within each replica. For the
discontinuous maps �Figs. 1�a�–1�d��, percolating structures
are clearly visible in the short-range limit �i.e., large ��.
However, as the range of the interaction increases �i.e., �

decreases� these spatial structures tend to be smoothed out
and, finally, for ��0.5, they are no more detectable. When
the local dynamics is governed by a continuous map, the
qualitative results change completely �Figs. 1�e�–1�h��. In
this case, desynchronization �resurgence� phenomena are
possible within the already synchronized areas and this leads
to a less defined distinction between synchronized and de-
synchronized regions. However, a disappearance of the spa-
tial structures is once more observable by increasing the in-
teraction range.

The patterns observed in Fig. 1 suggest a link between
synchronization transitions and nonequilibrium phase transi-
tions from an active to an absorbing �quasi-absorbing�
phase.4,5 In particular, Fig. 1 recalls the patterns observed for
directed percolation �DP�,4,25 a contact process usually em-
ployed in the description of epidemics spreading. DP has
been the subject of active research in the last 20 years and,
notwithstanding exact analytical results are still lacking, de-
tailed numerical studies have been able to determine its criti-
cal properties up to a noticeable accuracy.43 Quite recently,
also experimental measurements of the critical DP indices
have been reported for a transition to spatio-temporal inter-
mittency in a quasi-one-dimensional system consisting of a
ring of ferrofluidic spikes,44 and for a transition between two
topologically different turbulent states in a quasi-two-
dimensional layer of nematic liquid crystals.45 Figure 1�e�
resembles instead surface roughening. Indeed, Kurths and
Pikovsky46 have proven that within a linear framework the
evolution of the difference field of coupled CMLs is de-
scribed by a Kardar–Parisi–Zhang equation47 in the presence
of a hard wall. This latter equation can be put in a direct
relationship with the multiplicative noise �MN� Langevin
equation,5 which reproduce critical properties of nonequilib-
rium pinning-depinning as well as wetting-dewetting
transitions.19,48

As mentioned in the Introduction, the above analogies
are not merely qualitative, indeed several studies2,3,17,18 have
quantitatively shown that, depending on the prevalence of
linear �resp. nonlinear� effects in the local dynamics, ST in
diffusively coupled systems belongs to the MN �resp. DP�
universality class. In particular, by changing the value of the
local multiplier �a control parameter�, one can pass continu-
ously from one class to the other,17 thus suggesting that both
these nonequilibrium transitions can be described within a
single field-theoretic framework. This is confirmed by further
results reported in Ref. 19 for a microscopic model of wet-
ting transitions and in Ref. 18 for the Kardar–Parisi–Zhang
equation with an attractive wall. Indeed, for such processes
the time evolution of the local density of active sites n�x , t�
admits a formally quite similar Langevin description,
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FIG. 1. �Color online� The spatio-temporal evolution of the synchronization error for power-law coupled maps is depicted for local dynamics given by the
Bernoulli map �panels �a�–�d�� and the tent map �panels �e�–�f��. Each row corresponds to different values of the exponent �, namely, �=5 �panels �a� and �e��;
�=2 �panels �b� and �f��; �=1.2 �panels �c� and �g�� and �=0.5 �panels �d� and �h��. The horizontal axis represents space, while the vertical one represents
time. Note that the patterns observed for NN interaction closely resembles those reported in �a� and �e� for discontinuous and continuous maps, respectively.
The color code represents the synchronization error �in logarithmic scale�, ranging from white �wi�t�→0� to black �wi�t�=1�; larger values correspond to
darker tones. The results reported in the panels have been obtained by employing the modified model �14� for q=4 and M =5.
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�tn = DN�2n + 
n − �np + g�n�� . �6�

Such equation recovers the Reggeon–field theory describing
DP for p=2 and g�n���n, while the minimal model for MN
can be obtained from Eq. �6� whenever g�n��n. In the syn-
chronization context, n represents the coarse grained syn-
chronization error obtained by averaging wi�t�= 
xi�t�−yi�t�

over a suitable space-time cell. The parameters entering Eq.
�6� are the diffusion coefficient DN �corresponding to ��; 

that measures the distance from the critical point �i.e., from
the synchronization threshold �c� and the amplitude of the
nonlinear term �. Finally, � is a zero-average �-correlated �in
space and time� Gaussian noise field with unit variance.

In Refs. 39 and 40 the field description has been ex-
tended to include long-range interactions, leading to the fol-
lowing stochastic equation:

�tn = D�2n + DA��n + 
n − �n2 + g�n�� , �7�

which generalizes Eq. �6� through the addition of an anoma-
lous diffusion term with coefficient DA and range of interac-
tion parametrized by �. For g�n���n, Eq. �7� describes the
ADP universality class while, to the best of our knowledge,
such an equation has never been studied in the context of
anomalous MN, i.e., for g�n��n.

Recently in Ref. 24 we have numerically shown that STs
observed for model �1� with power law coupling Eq. �3� and
equipped with discontinuous maps �namely, Bernoulli maps�
belong to the ADP universality class. In this context the ex-
tension of the analysis to the stochastic models �4� and �5�
would be particularly interesting, for two reasons. First, the
models �4� and �5� are known to reproduce quite well the
phenomenology of synchronization for systems like Eq. �1�
with short-range coupling.17 Second, after a suitable coarse-
graining, such models for 	=0 are effectively described by
the Langevin equation derived for Reggeon field theory, pro-
viding further support to the connection with DP.17 Here, in
the Appendix, we show that this kind of mapping can be
extended also to the power-law interacting model and, in this
case, Eq. �7� is recovered. Furthermore, the aim of the
present work is to extend the studies reported in Ref. 24 also
to continuous maps.

Before reporting a detailed analysis of the synchroniza-
tion transition for the above defined models, let us introduce
the exponents employed to characterize STs as nonequilib-
rium transitions. These are defined through the spatially av-
eraged synchronization error ���t�=	iwi�t� /L which, at suf-
ficiently long times, vanishes whenever a complete
synchronization is achieved, i.e., �

�
*=limt→����t�=0 for �

��c; whilst it remains finite at any time in the desynchro-
nized state, i.e., for ���c.

The order parameter ���t� allows us to define the critical
exponents �, � and z which characterize the transition; � is
the exponent that rules the temporal scaling of the order pa-
rameter at the critical point �=�c, namely,

��c
�t� � t−�. �8�

For ���c, �
�
*�0 and one has

�
�
* � ��c − ���, �9�

which defines the critical exponent �. Finally, the dynamical
exponent z can be defined in terms of the finite-size scaling
relation, valid at the critical point,

��c
�t� � L−�zf�t/Lz� . �10�

These three indices are sufficient to fully characterize the
transition, since from their knowledge all the other critical
exponents can be derived. In particular, the exponent ��

�resp. �
� ruling the divergence of spatial �resp. temporal�
correlation length at the critical point is given by

�� =
�

�z
�resp. �
 =

�

�
� . �11�

A detailed description of the numerical estimation of �, �,
and z is reported in the following sections.

IV. SHORT-RANGE INTERACTIONS

Let us now consider the synchronization of two replicas
of diffusively coupled map lattices. We start with the case of
coupled tent maps where the linear analysis is sufficient to
identify the critical point and we can thus limit to study the
behavior of the difference field wi�t� in the tangent space. In
particular, the norm of this field grows at a rate given by the
transverse Lyapunov exponent3

�� = lim
t→�


wi�t�
 = ln�1 − 2�� + � , �12�

where � is the maximal Lyapunov exponent of a single
CML. The synchronization transition occurs at the point
where �� vanishes, locating the critical coupling to

�c = 1
2 �1 − e−�� . �13�

For this model, it has been suggested that �c

=0.176 15�5�,3 by extrapolating from finite size measure-
ments the asymptotic value for �. We have estimated the
synchronization value from the scaling of the density ���t�
for chains of length L=225 finding �c=0.176 16�2�, in agree-
ment with the previous estimation. The corresponding criti-
cal exponents are reported in Table I, we observe that these
values are in reasonable agreement with the one reported in

TABLE I. Critical exponents for nearest-neighbor coupled tent and Ber-
noulli maps as well as for the corresponding stochastic models. Also, the
best estimations of the critical indices for DP and MN universality classes
are reported.

� � z

Bernoulli 0.159�1� 0.27�1� 1.58�4�
RM �	=0� 0.1595�4� 0.276�2� 1.58�2�
DPa 0.159464�6� 0.276486�6� 1.580745�6�
Tent 1.275�15� 1.70�8� 1.5�1�
RM �	=0.2� 1.13�3� 1.67�3� 1.53�6�
MNb 1.10�5� 1.70�5� 1.53�7�
MNc 1.184�10� 1.776�15� ¯

aReference 43.
bReference 49.
cReference 50.
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the literature for the MN universality class,5,49 apart for �,
which is larger than the corresponding MN value. This dif-
ference is probably due to the presence of correlations in the
dynamical evolution of these maps, that limits the time range
over which a critical scaling of the density ���t� can be
found. In particular, in our analysis as well as in Ref. 3, the
time interval where it is possible to observe a clear power-
law scaling is limited to �102:4.5�104�, since at longer
times the density �above and below �c� always saturates to a
�small� constant value. As we show in the following, much
more accurate estimations can be obtained by replacing the
tent map with its stochastic version, thus reinforcing the hy-
pothesis that scaling laws are hindered by long-time dynami-
cal correlations.

For coupled Bernoulli maps linear analysis fails in locat-
ing the synchronization transition, therefore we are forced to
directly investigate the scaling of the density ���t�. In par-
ticular, for L=217 we have estimated a critical value �c

=0.287 52�1�, in agreement with Ref. 3 �see Table I for the
values of the critical exponents�. In this case finite size ef-
fects and time correlations are less relevant, since good scal-
ing can be already observed in the time interval �102:105� for
much shorter chains.

Let us now turn our attention to the Random Multiplier
model �4� and �5�, which reproduces the Bernoulli map be-
havior for 	=0 and that of a generic continuous map for
	=0.2.16,17

For the stochastic model with 	=0 the scaling laws are
reported in Figs. 2�a�–2�c�. In this case the critical point is at

ac=0.606 15�5� and the measured indices are in perfect
agreement with the best estimates of DP’s exponents. � and
� coincide with the DP values up to the fourth and third
digit, respectively. The evaluation of z is less accurate, since
it relies on a data collapse of finite size estimates �10�.

In the case 	=0.2, by considering the scaling in time of
the density Eq. �8� for L=5�105 maps over a time span t
� �103:106�, we have found that the critical point is located
at ac=0.566 942�4�. In particular, � has been estimated by a
best fit to a power-law over more than two decades �Fig.
2�d��. The quality of the estimation of the other two expo-
nents can be appreciated from Figs. 2�e� and 2�f�. The values
of the critical indices are in fairly good agreement with those
reported in Ref. 49, obtained by considering a time and space
discretized version of the corresponding Langevin equation,
i.e., Eq. �6� with g�n���n. It should be remarked that the
exponents recently reported in Ref. 50, for a suitable lattice
model reproducing the Kardar–Parisi–Zhang-type interface
growth, are slightly larger than ours, while the � value

�namely, �=7 /6=1.1666̄� conjectured by Droz and
Lipowski20 is, within the error bars, consistent with our esti-
mation.

V. LONG-RANGE INTERACTIONS

In the presence of long-range interactions, accurate nu-
merical analysis of the synchronization transition requires
huge time costs. This can be appreciated by noticing that at
each time step O�L2� operations are involved �see the cou-

FIG. 2. �Color online� �Top� Scaling relationships for the critical exponents for the random multiplier �RM� models �4� and �5� with NN coupling for 	
=0: �a� �a�t� vs t is displayed for a=0.606 20, 0.606 15, 0.606 10 with L=219 maps and averaging over 5�102 different realizations. The inset shows the
logarithmic derivative d ln��a�t�� /d ln�t�; �b� various curves �a�t� vs t are reported for a�ac revealing the saturation to �

a
*. In the inset �

a
* vs �a−ac� is reported

together with the best fit giving the � estimation. Here, L=219 maps and the average is over 500 realizations; �c� data collapse based on Eq. �10�, averaging
over 103–104 initial conditions. �Bottom� Same as the top for the random multiplier model with 	=0.2: �d� Analogous to �a� for a=0.566 938, 0.566 942,
0.566 945 with L=5�105 and averaging over 1–2�102 realizations. Here in the inset we report �ac�t�t� vs t; �e� same as �b� with L=5�105 and averaging
over 22–1.2�103 initial conditions; �f� analogous to �c�, averaging over 105 initial conditions. The values of the estimated critical exponents are reported in
Table I.
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pling definition in Eq. �3��. Simulation times become pro-
hibitive as the range of the interaction increases �i.e., the
exponent � decreases�, because finite size effects become
more relevant and larger sizes are needed. It is therefore
fundamental to reduce the CPU cost for each time step. As in
Refs. 24 and 36, to achieve such aim we consider the follow-
ing coupling scheme Eq. �3�:

z̃i = �1 − ��zi +
�

������zi−1 + zi+1� + 	
m=1

M zi−jm�q� + zi+jm�q�

�jm�q��� � ,

�14�

where jm�q�=qm−1 and M =logq�L /2�;51 the model with full
coupling Eq. �3� is recovered for jm�q�=m, M =L−1 and by
substituting �→1+� �see below for more details�. Clearly,
the new choice is very convenient because each updating
step only requires O�L logq L� operations instead of O�L2�
needed for the fully coupled case. The parameter q is typi-
cally chosen as q=2,4 and 8, while the normalization factor
is given by ����=2�1+	m=1,M�jm�q��−��−1.

The critical properties of the reduced model
�jm�q�=qm−1� with exponent � map into those of the fully
coupled one �jm=m� with exponent � fc=�+1. This can be
easily understood by noticing that the two versions of the
model should display the same critical behavior once the
spatial interactions scale analogously. For the modified
model the coupling weight over the interval �jm�q� : jm+1�q��,
containing a single coupled site, is simply given by

1

jm+1�q�� �
1

q�m+1�� ,

while over the same interval the weight for the fully coupled
model can be estimated by evaluating the sum

	
k=jm�q�+1

jm+1�q�
1

k�fc
�

1

q�m+1���fc−1� .

By comparing the two expressions it is thus clear that the
two weights scale in the same manner when � fc=�+1, as we
have also numerically verified in Ref. 24. Apart for this shift
of the � value, the fully coupled and reduced model are
completely equivalent, as far as their critical properties are
concerned, and using the latter is simply a way to reach
larger sizes.

Before discussing the numerical results we observe that
the coupling scheme �14� can be easily implemented both for
coupled maps as well as for the stochastic model.

A. Discontinuous maps and ADP universality class

Synchronization transition of long-ranged coupled sys-
tems with discontinuous maps has been previously studied in
Ref. 21, as far as the self-synchronization of a single chain is
concerned, and in Ref. 24, where the synchronization of two
�transversely coupled� replicas is discussed. Here we summa-
rize the results obtained in Ref. 24 for Bernoulli maps
coupled with reduced coupling scheme52 and extend the
analysis to the random multiplier model with 	=0 in the
same coupling conditions.

In order to observe clean scaling laws, we have em-
ployed the reduced scheme with increasingly larger q values
for smaller �. This amounts to chain lengths varying from
L=216 for �=5.0 up to L=222 for �=0.5. Analogous to the
NN case, due to the failure of linear analysis, the critical
point �c has been located by considering the scaling relation
�8�, in particular from the critical power-law decay the expo-
nent � can be estimated. The critical index � can be derived
by considering the asymptotic values �

�
* below the transition

����c� as in Eq. �9�, finally z is estimated by data collapse

TABLE II. Summary of the results for the critical exponents �also shown in Fig. 3� corresponding to coupled Bernoulli maps and to chains of random
multiplier �RM� models �with 	=0� at various values of �. HH denotes the results taken from Ref. 40 which are also reported for comparison.

� HH B q=2 B q=4 B q=8 RM q=4

� � z � � z � � z � � z � � z

0.2 0.99�4� 0.99�4� 0.21�2� ¯ ¯ ¯ ¯

0.5 0.94�4� 0.95�6� 0.54�2� ¯ ¯ 0.97�4� 1.02�5� 0.50�5� 0.92�3� ¯ ¯

0.6 0.86�4� 0.88�5� 0.58�2� ¯ ¯ ¯ ¯

0.8 0.67�3� 0.76�4� 0.71�2� ¯ 0.73�2� 0.91�5� ¯ 0.68�5� 0.80�5� 0.67�5� 0.66�2� 0.76�1� ¯

1.0 0.52�3� 0.65�3� 0.82�2� ¯ ¯ ¯ 0.52�1� 0.65�1� 0.75�5�
1.1 ¯ ¯ ¯ ¯ 0.48�2� 0.64�5� ¯ ¯ ¯

1.2 0.40�3� 0.56�3� 0.96�3� 0.50�1� 0.67�5� 0.83�4� 0.40�5� 0.57�4� 0.92�5� ¯ ¯

1.4 0.33�3� 0.49�3� 1.09�3� 0.35�1� 0.52�5� 0.96�4� 0.33�5� 0.49�5� 1.05�5� ¯ 0.33�1� 0.48�2� 1.06�4�
1.6 0.27�3� 0.43�3� 1.21�3� 0.30�1� 0.49�5� 1.14�4� ¯ ¯ 0.27�1� 0.41�1� 1.20�4�
1.8 0.24�4� 0.39�3� 1.32�3� ¯ ¯ ¯ ¯

2.0 0.21�4� 0.34�3� 1.43�3� 0.19�2� 0.35�5� 1.40�3� 0.20�2� 0.35�3� 1.45�5� ¯ 0.20�1� 0.33�1� 1.42�2�
2.2 0.19�4� 0.32�3� 1.49�4� ¯ ¯ ¯ ¯

2.4 0.17�4� 0.30�3� 1.53�5� ¯ ¯ ¯ ¯

3.0 ¯ ¯ ¯ 0.16�1� 0.29�5� 1.58�4� ¯ ¯ ¯

5.0 0.159538 0.276 1.58 ¯ ¯ ¯ ¯
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based on the finite-size relation �10� at �=�c. As shown in
Ref. 24, the quality of the scaling behavior is very good.

Table II and Fig. 3 summarize our findings and present
the new critical exponents estimated for the random multi-
plier model �4� and �5�, where we have employed the cou-
pling scheme Eq. �14� with q=4 and M =7 �for �=1.4 and
1.6� and M =9 �for �=1.0�. As one can appreciate from Table
II the estimated errors are smaller for the stochastic model
than for the Bernoulli map. In Table II we also report the
critical indices found by Hinrichsen and Howard40 for the
anomalous DP universality classes which, as one can see, are
approached by those obtained with the Bernoulli map at in-
creasing q, i.e., for chains with larger sizes. This tendency
suggests that the observed discrepancies are mainly due to
finite size effects, which however seem to be less severe for
the stochastic model. Indeed by considering the random mul-
tiplier model with chain sizes L�3�104–5�105 we found
that the exponents coincide, within the error bars, with those
reported in Ref. 40.

According to the analysis reported in Refs. 39 and 40,
the upper critical dimension dc is 2� and therefore the mean-
field regime in the one-dimensional chain should establish
below �m�0.5. The corresponding critical exponents are
�MF=�MF=1 and zMF=� �in accordance the temporal and
spatial correlation length exponents are given by �
MF=1 and
��MF=1 /��. Therefore, the long-range nature of the interac-
tions is reflected in the mean-field regime only by the scaling
of the spatial correlations, since for short-range interactions
the exponents coincide apart zMF=2 �and, correspondingly,
��MF=1 /2�. Our data reported at �=0.5 for the Bernoulli
maps confirm the mean-field expectations, but due to com-
putational limitations we could not explore smaller � values.

For ADP, it has also been shown39,40 that the following
hyperscaling relation holds:

� = 1 − � + �1 − 2��z � 0; �15�

in the �-range ��m :�c�. The �c value at which the behavior
of the system should cross over to usual DP can be directly
estimated by inserting the estimated values of the DP expo-
nents in Eq. �15�. Quite astonishingly the crossover takes
place at �c�2.0677�2��2, as suggested also by field theo-
retic arguments.39,40 As shown in Table III the relation �15� is
fulfilled within the error bars for the Bernoulli coupled maps
as well as for its stochastic version. Notice that, � departs

from zero only at �=3.0��c, where usual DP scalings are
expected. Finally, in the Appendix we show that, after a suit-
able spatio-temporal coarse-graining, the stochastic model
can be effectively described by a Langevin equation of the
form Eq. �7� corresponding to the field theoretic description
associated with ADP. These results further reinforce the par-
allel between ST induced by nonlinear effects, in the pres-
ence of power-law interactions, and ADP.

B. Continuous maps

Let us finally consider two coupled replicas with local
dynamics given by the tent map. In this case the critical point
can be estimated by the vanishing of the transverse
Lyapunov exponent accordingly to the expression �13�. Fur-
thermore, we have independently evaluated �c by examining
the critical behavior of the density ���t�. Usually the
Lyapunov approach was able to locate �c within a precision
of 1–2�10−4 or even better.

In the present case, to simplify the analysis we keep the
parameter q=4 and we analyze system sizes ranging from
L=219 to L=223. The results for the exponents � and � are
shown in Fig. 4 while z in Fig. 5, we observe that these
critical indices for ��3 tend to the results reported for the
MN universality class �see Table I�. For smaller � values �
and � �resp. z� increase �resp. decreases� and appear to satu-
rate �resp. to vanish� for �
1. While the numerical values
are completely different from the ADP ones, the general
trends are analogous to those observed for coupled Bernoulli
maps. This suggests that in the present situation the mean-
field value for the indices are �MF�2.2�1�, �MF�2.6�1� and
by assuming a linear dependence among z and the power-law
exponent one finds that zMF�0.65�5�� ��−�0�, with �0

�0.40�5�. At variance with the mean-field behavior of the
ADP case, �MF and �MF do not coincide, thus suggesting that

FIG. 3. �Color online� Critical exponents �a� �, �b� �, and �c� z for coupled Bernoulli maps and random multiplier �RM� models �for 	=0� as a function of
the long-range power exponent � compared with those obtained in Ref. 40 for a stochastic lattice model. Symbols are explained in the legend. The dotted
horizontal line represents the best estimate of the critical exponents for usual DP, i.e., for nearest-neighbor spreading.

TABLE III. Scaling relation �15� for various values of �, for each measure-
ment the corresponding basis q is reported. For the random multiplier model
with q=4 we obtained: For �=1.0 �=−0.03�2�, for �=1.4 �=−0.04�4� and
for �=1.6 �=−0.05�4�. The measured � are compatible with zero in the
range �0.5:2.0677�. See text for details.

��q� 3.0 �2� 2.0 �4� 1.4 �4� 1.2 �4� 0.8 �8� 0.5 �8�

� 0.93�6� −0.13�9� −0.04�12� −0.03�10� −0.04�9� 0.03�9�
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�
MF�1.18�10� and z seems to vanish already for �
�0.40�5�. Finally, from the numerical estimates of z we can
conjecture that ��MF�1.8�5� / ��−�0�. Apart from the poor
quality of the estimates, it is important to stress that, analo-
gous to ADP, the presence of long-range interactions reflects
mainly in the scaling of the spatial correlations. The mean-
field limit for systems with multiplicative noise has been
examined recently only for short-range couplings.54,55 The
authors of the papers agree on the values of the correlation
exponents �
MF=1 and ��MF=1 /2, which implies zMF=2
and �MF=�MF. However, the value of �MF seems to depend
on the approximation employed to derive the mean-field. In
particular, in Refs. 54 and 56 a value �MF=5 /3 is reported,
while in Refs. 5 and 55 is predicted that �MF is a nonuniver-
sal scaling exponent dependent on noise amplitude, diffusion
coefficient, and nonlinear term. Therefore the mean-field
analysis is still unclear for the multiplicative noise case with
usual diffusion �as discussed also in Ref. 55� moreover a
study for the fractional diffusion case is still to be addressed.

The analysis of the corresponding stochastic model, i.e.,
the random multiplier model with 	=0.2 with power-law
coupling, reveal enormous fluctuations in the asymptotic be-
havior of the density induced by abrupt synchronizations of
the whole chain. Thus making impossible any estimation of
critical scaling laws, even by employing quite long chains
�namely, L=223�. Our analysis cannot rule out the possibility
that for this stochastic model the transitions became discon-
tinuous. Similar to what done in Ref. 53, a detailed analysis
of the scaling of the synchronized clusters with the system
size should be performed to address this point, but this goes
beyond our scopes. Moreover, it is quite astonishing that the
analysis of the deterministic case was somehow clearer. We
can conjecture that the correlations induced by the determin-
istic evolution of coupled tent maps prevent the abrupt syn-
chronization of large islands within the chain. However, this
is just a working hypothesis to be investigated in the future.

VI. CONCLUSIONS

The critical properties of the synchronization transitions
among replicas of chaotic and stochastic spatially extended
systems have been numerically estimated both for diffusively
coupled and for power-law interacting systems. In particular,
we focus on the differences between transitions dominated
by linear and nonlinear mechanisms.

For nearest-neighbor coupling, our analysis confirms
previous findings indicating that the transitions are always
continuous, while two distinct universality classes character-
ize the transition depending on the nature of the local dy-
namics. For continuous �resp. discontinuous� local maps the
critical properties correspond to those of multiplicative noise
�resp. directed percolation� nonequilibrium phase transitions.

The introduction of a power-law coupling modifies the
critical properties of the STs, in particular for �quasi-� dis-
continuous maps all the studied transitions can be gathered in
a unique family of universality classes termed anomalous
directed percolation. The analysis of the stochastic models
reinforce the analogy between epidemic spreading mediated
by unrestricted Lévy flights and the examined STs for a two-
fold reason: On one side the numerically evaluated indices
are almost identical to the ones found in Ref. 40 for a lattice
model reproducing anomalous DP, on the other hand an ef-
fective Langevin equation has been derived coinciding with
that proposed for ADP. It is worth stressing that it is highly
nontrivial that the deterministic systems here investigated ex-
hibit scaling properties in quantitative agreement with those
found for stochastic models, like the lattice model studied in
Ref. 40 and the random multiplier model. Moreover, the ac-
curacy achieved in the investigation of the STs for the sto-
chastic model suggests that these models can represent a
valid alternative to the use of lattice dynamics for the inves-
tigations of nonequilibrium phase transitions.

The study of smooth continuous maps has revealed a
behavior of the critical exponents similar to the one observed
for ADP, namely, the indices vary with continuity with the
power exponent �, albeit their values are different from
those found for ADP. Moreover, the estimated exponents do
not correspond to any known universality class and this rep-
resents a challenge for future theoretical investigations. In

FIG. 4. �Color online� � and � as a function of � for the tent map with
power-law coupling. The shaded upper �resp. lower� region corresponds to
the best estimate of � �resp. �� reported in the literature �Refs. 5, 20, and 50�
for the MN class in the case of short-range interactions. The thick upper
�resp. lower� horizontal lines to the corresponding estimates for coupled tent
maps with NN coupling reported in Table I. The employed system sizes vary
between L=219 and L=221 with q=4 for the long-range models. For systems
with NN interactions we used sizes L=225 for the �-estimation and L=218

for �.

FIG. 5. �Color online� z vs � for the tent map with power-law coupling. The
shaded region corresponds the best estimate of z reported in the literature
�Ref. 5� for the MN class in the case of short-range interactions. For the
finite-size scaling chains of length L=24–215 have been employed.
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particular, the natural candidate to explore is the field equa-
tion �7� with noise amplitude g�n��n in order to understand
if an anomalous multiplicative noise class could be defined.
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APPENDIX: FIELD DESCRIPTION
FOR THE RANDOM MULTIPLIER MODEL

The aim of this appendix is to provide a self-contained
heuristic derivation of the field equation associated with the
ST for spatially extended systems with power-law decaying
interactions, where the transition is controlled by finite am-
plitude effects. In particular, we focus on the random multi-
plier model �4� for 	=0, which closely reproduces the ST for
discontinuous �or quasi-discontinuous� coupled maps. In our
derivation we follow Ref. 17 where, by introducing a suit-
able spatio-temporal coarse-graining, it has been shown that
the nearest-neighbor version of the model can be “effec-
tively” described by the Reggeon field theory associated with
ordinary DP. In the following, we show that the power law
coupled version of the model can be reduced to Eq. �6�,
which was proposed in Ref. 40 to describe ADP in an epi-
demic spreading processes mediated by Lévy flights.

For the fully coupled case, the model �4� can be rewrit-
ten as follows:

vi�t� = �1 + ��
2 + ��

��wi�t� , �A1�

where vi plays the role of w̃i and ��
2 is the discretized La-

placian operator,

��
2wi�t� =

�

2
wi+1�t� +

�

2
wi−1�t� − �wi�t� , �A2�

while ��
� represents a discretized fractional derivative, which

corresponds to the most relevant term in the small momen-
tum expansion of the following discretized convolution sum:

��
�wi�t� �

�

����� 	
m=2

M
wi−m + wi+m

m�+1 . �A3�

Notice that the sum already contains a short distance cutoff
that should be anyway considered to have a meaningful defi-
nition of fractional derivatives.39,40 The stochastic variable
wi�t�� �0:1� evolves according to Eq. �4�, and the positive
parameter � represents the amplitude of the spatial coupling.
The constant �����=2	m=2

M �m�−�−1 is a normalization factor.
Periodic boundary conditions are imposed.

Let us formally rewrite Eq. �4� as

wi�t + 1� = 2avi�t� − a2vi
2�t� + g�v��i��t� , �A4�

where the term �i� represents a zero-average �-correlated
noise term with unitary variance. In order to recognize that
the above expression recovers the original model it is enough
to notice that

�i��t� =
1

g�v�
��v�i,t� − ��v�i,t��� , �A5�

�v being the dicotomic noise term

�v�i,t� = �1, w.p. p = avi�t�
avi�t� , w.p. 1 − p ,

�A6�

whose average ��v� and variance g2�v� have the following
expressions: ��v�= �2a−1�v−a2v2 and g2�v�=av−3a2v2

+3a3v3−a4v4 �for details, see Ref. 17�.
We can now introduce a coarse-grained variable n�x , t�

= w̄i�t� �where the bar denotes an average over a suitable
space-time cell�, in terms of which Eq. �A1� can be written
as

v̄i�t� = n�x,t� +
�

2
�2n�x,t� +

c���
2

��n�x,t� ,

where the constant c��� takes into account the presence of
the cutoff and various normalization factors. The coarse-
grained evolution equation is then derived from Eq. �A4� and
reads

�tn�x,t� = �2a − 1�n�x,t� + a��2n�x,t� + ac�����n�x,t�

− a2n2�x,t� −
a2

4
���2n�x,t� + c�����n�x,t��2

− a2n�x,t����2n�x,t� + c�����n�x,t��

+ g�n�x,t� +
�

2
�2n�x,t� +

c���
2

��n�x,t����x,t� ,

�A7�

where the coarse-grained noise term ��x , t� is Gaussian and
space-time � correlated. In proximity of the transition the
terms of order ��2n�2, ���n�2, n�2n, and n��n can be shown
to be irrelevant, and also the terms ��2n and ���n entering
in the noise amplitude g�. . .�.

By discarding the irrelevant terms one obtains

�tn = ��2a − 1� + a��2 + ac������n�x,t� − a2n2�x,t�

+ �an��x,t� �A8�

that is essentially the same Langevin equation proposed to
describe anomalous DP in Refs. 39 and 40.
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