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1 Introduction

Credit is extended by banks to firms (loans), by one bank to another (inter-
bank credit) and by one firm to another (trade credit). As a result, there is a
network of credit relationships among firms, among banks and between firms
and the banking system.

Credit relations create value but also financial dependency. Therefore, for
a node in the credit network having many links is a way to diversify risk but
it is also the ground for the so called financial contagion [1].

In particular, some of these credit relationships are between firms or insti-
tutions in different countries and thus connect national credit networks in a
world wide network. The possibility of a systemic crisis affecting the whole or
a significant part of a credit network raises growing regulatory concern and it
is the responsibility of policy makers to ensure that adequate fire walls are in
place in order to prevent the spill over of crisis across institutions and firms
[18].

An important and open debate, with major policy implications, concerns
whether or when higher network density (in other words more links in the
network) leads to lower or higher systemic risk (in the sense of probability of
joint failures causally related).

The dominant neoclassic approach in economics typically assumes (1)
equilibrium and/or (2) indirect interaction through price. The failure of co-
ordination which is likely to arise in a decentralized market economy is simply
assumed away. [6].

This approach to economic theory has been recently challenged by the ap-
proach based on heterogeneous interacting agents, which conceives the econ-
omy as a complex system. The starting point of this approach is that while
prices surely play a fundamental role, the price mechanism can work well only
if information is perfect and markets are complete. If this is not the case,
i.e., if the future is uncertain, it is not possible to ignore direct interactions
and co-ordination mechanisms that arise in spatio-temporal way – i.e. supply
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chains, communication, imitation, learning, trust and credit relationships. In
this context, complex patterns of heterogeneous agents’ interactions at the mi-
cro level lead to the emergence of statistical regularity at the macroeconomic
level through a self-organised process. A pioneering work applying a com-
plex systems approach to the macroeconomic impact of a production network
dates back to the early 90’ [2]. There, it was shown that local uncorrelated
fluctuations can nevertheless generate, through interaction, large aggregate
output fluctuations. Concerning credit networks, the view resulting from the
dominant approach tends to see more dense networks as more stable. In this
chapter, we show how the interacting agents approach results in a different
view.

While banks-firms credit relationships have been extensively studied since
long ago in the economic literature (for an overview, see [5]), a recent in-
teresting line of research has analysed phenomena of financial contagion in
interbank credit [1, 18]. Finally, trade credit , is less investigated but yet an
important part of the network of credit relationships. It represented, for in-
stance, one half of the short term liabilities of the corporate sector in 2004
in the U.S. [3]. Moreover, trade credit is largely used as collateral in bank
borrowing, especially by small and medium sized firms. In the U.S., lines of
credit secured by accounts receivables represented approximately one quarter
of total bank loans in 1998 [8]. In Italy, loans secured by receivables were 22%
of total loans and 54% of short term loans in 2002 [12]. In the theoretical
literature, [7] emphasize the role of trade credit as a propagation mechanism
(the so called balance-sheet contagion) , while the dynamics of credit chains
has been investigated by [3].

From the point of view of complex systems, few important works have
applied the concept of self-organized criticality (see also below) to the context
of interbank markets [15, 19].

However, the issue of systemic risk in credit networks remains to some
extent underresearched, both at the theoretical and empirical levels.

In this chapter, we present a model recently introduced in [14, 16] and we
discuss the features of a networked economy in which N firms are organised
in M production levels. Each firm at a certain level is supplied by a subset
of firms in the upper level (suppliers) and supplies a subset of the firms in
the lower level (customers). The bottom level consists of retailers, i.e., firms
that sell in the consumer market. The top level consists of firms that provide
primary goods to the other firms. Firms are connected by means of two mech-
anisms: (i) the output of supplier firms is an input for customer firms; (ii)
supplier firms extend trade credit to customers (as it is typically the case in
reality).

However, in the model, the trade credit contract is only implicitly sketched:
we neither design the optimal trade credit scheme nor look for the optimal
amount of trade credit a customer firm should require. Instead, we focus on
the mechanisms of propagation of bankruptcy . When a firm is unable to
reimburse debt, it goes bankrupt. This may happen as a result of one of (or
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any combination of) three mechanisms: (1) there is a production default in
the firm (production is lost and so is profit, while the firm still has to pay
for input and processing); (2) some customers are not able to pay; (3) some
suppliers are not able to deliver the agreed input (in this case the firm does
not bear the cost of input but still does bears some cost due the fact the
resources were allocated in view of processing that input).

Thus, the failure to fulfill debt commitments by a customer may hamper
the solvency of the supplier, who may become unable in turn to pay its own
suppliers located in the upper level, which may lead to a chain of similar fail-
ures (domino effect) and in extreme cases result in bankruptcy avalanches.
When a firm goes bankrupt, in fact, the probability of bankruptcy in con-
nected firms increases, yielding clustered fluctuations in the number of failing
firms. In other words, a single bankruptcy may have systemic repercussions
through an avalanche of bankruptcies.

In this context, having many customers and many suppliers is a way for the
firm to diversify the risk of defaulting payment or delivery. If the network is
dense enough, the default of a firm in paying its debt doesn’t cause any other
default. For instance, if every firm has k customers (with similar volume of
orders), the default of one customer in paying causes a unexpected relative
decrease in profit of order 1

k . The larger k the smaller the unexpected loss.
However, in presence of externalities , the loss caused by a defaulted pay-

ment or delivery may be amplified through the network. Some multi-agent
models of financial fragility have been able to account for this effect. In [4] a
single bankruptcy may have systemic repercussions: in fact, the banking sys-
tem reacts to the bankruptcy by restraining the supply of credit and pushing
up the interest rate to all firms. The increase in the interest rate may cause
some other bankruptcies and thus trigger an avalanche of bankruptcies. Such
models incorporate only the indirect interaction among firms that takes place
through the endogenous determination of the interest rate on bank loans.

In the present model, instead, direct interaction among firms takes place
through supply and extension of trade credit which is also subject to an in-
terest rate. If the interest rate is dynamic and depends on the change of
growth rate of the firm itself and its neighbours, then losses can be amplified
through credit relations. Under such conditions, increasing the network den-
sity, while decreasing the shocks to individual firms, it may also increase the
systemic risk, thus inducing a trade-off between individual risk diversification
and global instability.

This result is consistent with a recent work on failure avalanches in complex
networks [17] which has pointed out the role of the interplay of two opposing
mechanisms: diffusion and contagion. On one side, when energy diffuses from
a node to its k neighbours, the energy received by each neighbour is of order
1
k of the initial one. On the other side, in a contagion process, nodes have
discrete states and with a certain probability switch from one to the other
when a neighbour has changed state. Therefore, if both mechanisms are at
work at the same time, then increasing the density of the network, the impact
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of a change of state of a given node on the neighbours first decreases due the
diffusion and then increases due to the contagion. The work by [17] bridges
two strains of work in the physics literature on complex systems: the models
on cascading phenomena on one side and those on epidemic spreading on the
other side.

Avalanches of events in networks have been studied extensively in the con-
text of self-organised criticality (SOC) and in particular in models inspired to
the sand pile model [9] and the fiber bundle model [13]. In all these models, an
event on a node of the network ( a “toppling”) transfers energy to neighbour-
ing nodes, possibly triggering their toppling. Each node is associated with one
state variable, which depends on the toppling of the neighbours and causes
the node to topple when it reaches a given threshold. In the SOC models there
is a slow build-up mechanism (flow of sand, increase of the force on the bun-
dle) acting everywhere in the system and decreasing over time the distance
of the state variable of the nodes from the toppling threshold. Without this
build-up mechanism the system would not become critical and the network
density would increase the resilience of the system. On the other hand, the
works on epidemic spreading have shown that if the network is dense or there
are hubs the onset of the epidemic phase is facilitated [11].

Overall, the investigation on failure propagation in the context of credit
networks of firms deserves more attention. Besides the work of [14, 16] pre-
sented here, [10] have recently studied a similar model where, however, there is
no credit and cost is only proportional to delivered input, so that bankruptcy
occurs only as result of production defaults. In fact, such model addresses a
different issue related to the emergence of activity patterns in geographical
economics.

The rest of the chapter is organised as follows. In section 2 we describe a
modelling framework for networks of firms engaged in supplier-customer rela-
tions. We discuss the properties of a specific model in section 2.10, reporting
some analytical results and some computer simulations. Some conclusions are
drawn in section 3.

2 The Model

2.1 Economic Environment

The economy consists of N firms organised in M production levels. We will
denote firms with indices i, j, k, l, ... and levels with indices J,K,L, .... We
adopt the convention that production takes place along the vertical axis in
downwards direction. The structure of the connections defines the production
network as in the example shown in figure 1, in which arrows represent supply
of goods (supply proceeds downwards, while money moves upwards).

In the example, each node has the same number of links k, but in general
this could be from any distribution and, besides, the number of incoming links
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Fig. 1. Example of structure for the production network. The direction of produc-
tion is from top to bottom. Each firm in a level receives goods from a subset (3 in
this case) of firms from the upper level. The top level consists of primary producers.
Layer 3 (from the top) consists of firms that sell in the consumer market (retailers).
We have highlighted in dark gray the set of all suppliers upward from a given retailer
(in green)

do not have to even outgoing links. Each firm in a level K is supplied by a
subset of firms in the upper level K − 1 and in turn supplies a subset of the
firms in the lower level K +1. The bottom level K = M represents firms that
sell in the consumer market (retailers). The top level K = 1 represents primary
producers. Firms are connected to each other through two mechanisms:

1. A firm asks for inputs from the suppliers in order to produce output.
2. A firm asks for payments from the customers in order to realize profit.

.
The output of each level K is produced by processing the input from the

previous level K−1. Output is qualitatively different from input. For the sake
of simplicity, we assume the following linear technology:

Y
(K)
i =

∑

j∈V S
i

Q
(K,K−1)
ij Y

(K−1)
j (1)

where Yi is the output of firm i, Si is the set of suppliers of firm i, and Qij

represents the fraction of the total output of firm j that firm i uses to produce
its own output. In other words, Q is the input-output matrix and for any K,
it follows that:

∑

i ∈ level K

Q
(K,K−1)
ij = 1, ∀j ∈ level K − 1 (2)

2.2 Timing

We have to model the fact that over time, firms decide their desired amount of
production, send orders, produce, deliver to customers and pay suppliers. We
assume that time is discrete and divided into periods, each period including
the following events for all firms: At the beginning of each period (or time
step) t, orders flow upwards; then production and delivery flow downward. At
the end of the period, money flows upward.



224 S. Battiston et al.

In greater detail, at the beginning, all firms in the bottom level M de-
termine their desired output, based on the demand they face on the market
and their production capacity, and then send orders to the upper level M − 1.
Afterwards, all firms in level M − 1 determine their desired output based on
the demand they face from their customer firms in level M . One after an-
other, all levels do the same, up to level 1 (primary producers). Once the
desired output is known, firms can compute their expected output, based on
the expected output of the suppliers, which they communicate to the firms
downward. This allows customer firms to allocate the necessary resources and
premises to process the inputs they will receive.

At this point, production starts in level 1 and proceeds downward one
level after the other, as each firm needs the input from its suppliers in order
to produce. Output produced by a firm is delivered to customers on the basis of
full trade credit; we rule out the possibility of inventory accumulation. When
production reaches the bottom level, products are fully sold in the consumer
market.

At the end of the period, a sequence of payments proceeds upwards from
the retailers up to the primary producers. At each level, each firm pays its
suppliers upstream only after having been paid by its customers. If costs
exceeds revenues, the firm goes bankrupt and does not pay the suppliers in
the current period. Moreover, the firm stops production for a number τ of
periods in the future, after which it is replaced by a new firm endowed with
an assigned initial value of production capacity. During those τ periods, the
suppliers of that firm do not receive orders from it, nor do the customers
receive production from it. Therefore, bankruptcy at the end of period t results
not only in disruption of payments but also in a temporary local disruption
in the production chain which is repaired in period t + τ + 1.

2.3 Remarks

The structure of the connections does not change during the process. This
means that when a firm goes bankrupt, its customers do not create new links
with other suppliers. This follows from the assumption of prohibitively high
costs of establishing relations with new suppliers. So far, we have described a
general framework, while the mechanisms involved can be specified in several
ways (for example, we have to specify the dynamics of price, profit and net
worth). However, some of the results presented in this paper do not depend
on the specification of such mechanisms. Therefore, the present structure is
a candidate for a class of models sharing similar behavior, in particular, con-
cerning the conditions for the occurrence of avalanches of bankruptcies which
are analysed in section 2.10. In the following, we provide a detailed descrip-
tion of a simple version of the model and a discussion of its limitations. In any
period t each firm i is endowed with a level of real net worth Ai(t), defined
as the stock of the firm’s assets in real terms, that has been financed only
through net profits (we assume complete equity rationing).
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2.4 Desired Output

Firm i at level K determines at time t its desired output, Y
(d,K)
i . This de-

pends on the orders received from level K + 1, with the constraint of its
production capacity that we assume to be proportional to net worth A

(K)
i by

a constant θ > 0 (as stated in eq. 3). Therefore, capacity is financially con-
strained as, for instance, in Greenwald and Stiglitz,(1993) and in related work
by Delli Gatti et al., (2005). As in Greenwald and Stiglitz we can conceive
of θA

(K)
i (t) as the optimal (i.e., maximizing expected profit) output in the

presence of bankruptcy costs.
Hence, desired output is defined as follows:

Y
(d,K)
i (t) = min{θA(K)

i (t),
∑

j ∈ V C
i

O
(K,K+1)
ij (t)Y (d,K+1)

j (t)} (3)

In the equation above, V C
i is the set of customers of firm i, O(K,K+1) is the

order matrix describing the orders from level K + 1 to K, and in particular
O

(K,K+1)
ij is the fraction of the total supply needed by firm j, that firm j

orders to firm i. In matrix notation we can write:

Y (d,K)(t) = min{θA(K)(t), O(K,K+1)Y (d,K+1)(t)} (4)

For level M , we assume that at each time step the consumer market absorbs
the whole production and therefore:

Y (d,M)(t) = θA(K)(t) (5)

2.5 Expected and Effective Output

Once the desired output is known at all levels, firms compute their expected
output, based on the expected output of the suppliers. Here, “expected” has
nothing to do with “expectation value” in statistical sense. A firm i may not
be able to fulfill the orders of its customers, either because they exceed its
production capacity or because the input from its suppliers is insufficient. As
a result, supply can be smaller than the ordered quantity and therefore the
expected output of firm i, Y

(e)
i , can be smaller than the desired one Y

(d)
i . In

this version of the model, firms have a fixed set of suppliers (the network
structure is static) and they cannot look for new suppliers. However, there
is some freedom in the way firms decide to place orders to their suppliers,
in other words, the way O

(K,K+1)
ij are determined. This is discussed later on,

and plays an important role. The production function of firms is assumed to
be linear so that the output of a firm in level K is a linear combination of the
input received from the suppliers in level K − 1. This yields:

Y
(e,1)
i (t) = Y

(d,1)
i (t)

Y
(e,K)
i (t) =

∑

j ∈ V S
i

Q
(K,K−1)
ij (t)Y (e,K−1)

j (t) (6)
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For firms at level 1, the expected output coincides with the desired one, as
they do not have suppliers. V S

i is the set of suppliers of firm i, Q(K,K−1) is the
input-output matrix describing the transformation of input from level K − 1
into the output of level K. Each entry Q

(K,K−1)
ij represents the fraction of the

total output of firm j that firm i uses to produce its own output. Firms in level
1 are primary producers and do not need any supply, therefore Y

(e,1)
i = Y

(d,1)
i .

In matrix notation, the output of any level can be expressed as a function of
the output of the first level as follows:

Y (e,K)(t)=Q(K,K−1)(t)Y (e,K−1)(t)=Q(K,K−1)(t) · ... · Q(2,1)(t)Y (e,1)(t) (7)

The expected output is communicated downward to customers. Any two firms
engaged in a supplier-customer relation agree on this amount to be delivered
and paid at the end of the period. Customer firms allocate the necessary
resources and premises to process the expected input they will receive from
suppliers.

At this point, we include in the model some occasional production failures
(due, for instance, to technical problems). At each period t, with probability
q, the production of firm i is lost during the processing and no output is
delivered to customers. This event occurs independently of the financial state
of firms i and this failure lasts only one period. Therefore, we have to rewrite
the effective output of i, Y

(K)
i (t), as:

Y
(K)
i (t) = Y

(e,K)
i (t)Si(t) (8)

where Sj(t) = 1 with probability q and Sj(t) = 0 with probability 1 − q.

2.6 Production Costs

The output produced by firm i is sold to the customer at the price Pi(t)
(no inventory accumulation). We can think of the price of a firm’s output in
level K as Pi(t) = P (K)(t)ui(t) where P (K)(t) is the general price at level K
and ui(t) is the relative price for the output of the single firm. We assume
that ui(t) is a random variable, uniformly distributed in [1 − δP , 1 + δP ] and
independent of P (K)(t). Therefore, firm i incurs the following cost to get its
supply of inputs from level K − 1:

C̃
(s,K)
i (t) =

∑

j ∈ V S
i

Q
(K,K−1)
ij P (K−1)(t)uj(t)Y

(K−1)
j (9)

The cost of inputs in real terms is obtained by dividing nominal costs by the
level of prices in the level K:

C
(s,K)
i (t) =

P (K−1)(t)
P (K)(t)

∑

j ∈ V S
i

Q
(K,K−1)
ij (t)uj(t)Y

(K−1)
j (t)

= cs

∑

j ∈ V S
i

Q
(K,K−1)
ij (t)uj(t)Y

(K−1)
j (t) (10)
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where cs is defined as the ratio of the price levels at level K − 1 and K and
we assume it to be the same for all K.

Firm i also incurs a cost associated with the resources used in processing
the input (labour and premises). As for the supply cost, this cost is assumed to
be proportional to the expected output through a constant cr > 0. We assume
that the resources allocated by the customers of i to process its expected
output cannot be dis-allocated within the current time period. Therefore, in
case of a production failure of i, its customers run a cost proportional to the
expected output and not to the effective output:

C
(r,K)
i (t) = crY

(e,K)
i = cr

∑

j ∈ V S
i

Q
(K,K−1)
ij (t)Y (e,K−1)

j (t) (11)

Of course, in the case of a production failure by i, the customers of i do not
incur any supply cost. On the other hand, firm i not only does not receive any
payment but has also to pay for the input from its suppliers. The production of
firm i resumes at the next time step, if it has survived the shock. In conclusion,
the production cost of firm i is the sum of the two terms defined above:

C
(K)
i (t) = C

(s,K)
i (t) + C

(r,K)
i (t) (12)

2.7 Profit and Bankruptcy

In each period, when output is sold in the consumer market and payments
start, some firms may realize sales revenue smaller than their supply costs. If
this loss is high enough, firms go bankrupt and do not pay their suppliers .
Therefore, we have to distinguish between the output delivered by firm i to
its customers, Yi(t), and the output Y s

i (t) that is actually paid for (“s” for
“sold”), at price ui(t), to firm i by its customers. Profit in real terms is equal
to the difference between revenues and costs in real terms.

π
(K)
i (t) = ui(t)Y

(s,K)
i (t) − C

(K)
i (t) (13)

Profit, which can be negative or positive, incrementally changes the real net
worth of the firm:

A
(K)
i (t + 1) = ρA

(K)
i (t) + π

(K)
i (t) (14)

where 1 − ρ measures a depreciation rate.
We assume that firms go bankrupt when the ratio of profit and net worth

becomes smaller than a negative threshold value:

π
(K)
i < −βA

(K)
i (15)

with 1 > β > 0. If a firm goes bankrupt at time t, it stops supplying customers
and paying suppliers for a number τ of time steps (referred to as “inactivity
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time” in the following). During these time steps, neighboring firms are not
allowed to look for alternative customers or suppliers, as the network structure
is static. Firms can however (at least in some of the scenarios considered in
the following) adjust their orders as a function of the production capacity of
the suppliers. As this is proportional to net worth, it means that customers
order less and less when a supplier’s net worth decreases. Once the inactivity
time elapsed, the bankrupt firm is replaced by a new firm with the same links
as its predecessor and its net worth is re-initialized: A(t + τ + 1) = Aentry.

2.8 Strategies for Placing Orders and Delivery

Although the network is static in this version of the model, and therefore the
set of suppliers of a firm is fixed, still there are many possible ways to allocate
orders to the suppliers. Consistently with our bounded rationality framework,
we consider simple strategies for placing orders and one strategy for delivering.
Firm i places orders evenly:

O
(K,K+1)
ij (t) =

1
|V S

i | (16)

where |V S
i | is the cardinality of the set of suppliers j of firm i (notation is

consistent with equation 3).
Firm i delivers to each customer j in proportion to its order:

Q
(K,K−1)
ij (t) =

O
(K,K+1)
ij (t)Y (K−1)

j (t)
∑

l∈V C
j

O
(K,K+1)
lj (t)Y (K−1)

j (t)
(17)

The equation above satisfies the condition of equation 2. For other possible
strategies see ([14])

2.9 Generic Properties of the Model

A number of specific models can be investigated within the framework pre-
sented so far. In particular, in the presence of delayed payments (trade credit)
and costs due to failures in supply (as assumed above), in this model it is
possible to have avalanches of bankruptcies originating locally and spreading
both upstream and downstream.

If bankruptcies can propagate simultaneously in both directions, then, and
only then, are they “reflected” diagonally at each level and the result is a net
horizontal propagation, that is perpendicular to the direction of production
(figure 2, c-d). The horizontal propagation is important because it is a neces-
sary condition for the spreading of an avalanche to a significant part of the
network if the number of layers is much smaller than the number of site po-
sitions. This is typically the case in several sectors and was one of the weak
points among the condition for the emergence of Self Organized Criticality
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a 

b 

c 

d 

Fig. 2. Different modalities of failure propagation. Edges through which failure
propagate are in darker gray. The firm triggering the avalanche is represented by
the node in dark gray. a.-b. Downward and upward propagation of failures. c.-d.
Horizontal propagation occurs when each level transmits downward but also reflects
upwards. In panel c failures have propagated up to two degrees of separation from
the initial firm; in panel d up to three degrees

in the work of [2]. In particular, the horizontal axis could also represents a
geographical or technological space.

In the following we will speak of horizontal bankruptcy propagation to mean
the situation in which bankruptcies can propagate potentially to the whole
network and not only to the downward/upward cone of firms.

On the contrary, previous models ignore local interaction so that the prop-
agation of bankruptcies is activated only by means of global coupling: the more
firms fail, the higher the interest rate for all, hence the more they fail.

The model, as presented so far, reproduces qualitatively important prop-
erties of a production network:

1. Spatio-temporal correlation of output, growth and bankruptcies
2. Exponential growth
3. Oscillations of de-trended aggregate output
4. Heterogeneous firm size distribution
5. Exponential probability distribution of aggregate growth (right side)

For a detailed discussion of this properties, see [14]. Varying allocation
strategies, dynamics on prices and other parameters one can investigate the
role of the main factors involved in models of financial fragility and address
the following issues:

1) The role of trade-credit relationships in the propagation of bankruptcies
2) The role of interest rate and policies to prevent the occurrence of large

avalanches
3) The role of the structure of the network of interactions
4) Policies to make such structure more robust against large avalanches
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In the rest of this chapter, we will focus on the role of the network density
in combination with the dynamics of the interest rate, an issue discussed more
in depth in [16].

2.10 Analysis of a Specific Setting

In order to isolate the impact of network density on the dynamics of avalanches,
we will now consider a specific case of the model in which there is no accumu-
lation of net worth ( we set ρ = 0 in eq. 14). As a result, aggregate output is
no longer growing exponentially and, moreover, firm size distribution does not
evolve in time into a skewed distribution. Consistently, we also set β = 0 in
eq. 15 : as firms do not accumulate net worth, they go bankrupt when profit
is not positive. Therefore, in this setting, a production default implies also
bankruptcy.

Concerning prices, we assume, as discussed in [14], that prices are stochas-
tic and independent, distributed according to a uniform distribution in
[1 − δP , 1 + δP ]. Eq. 15 implies that a firm goes bankrupt if the price falls
below a critical value, which can be approximated as:

u∗
i (t) =

(cr − β/θ)Y e
i (t) + csYi(t)

Y s
i (t)

(18)

Because it is Y s
i ≤ Yi ≤ Y e

i , the probability of bankruptcy increases the
smaller are, with respect to the expected output Y e

i , Yi and Y s
i (see section

2.7).

Density Decreases Systemic Risk

For the sake of simplicity, we assume that firms have the same number k of
suppliers and customers, and we study the impact of different values of k. We
consider M production layers, each including the same number n of nodes.
If k = 1 the network is actually composed of isolated chains, while if k = n
all possible links are realized. Clearly, increasing k reduces the fluctuations of
input from suppliers due to production default and therefore, the probability
of bankruptcy. Consider for simplicity, a two-layer network; for k = 1, with
probability q a customer is not delivered at all (because the supplier experi-
ences a production default with probability q) and goes bankrupt. For large
n, input delivered to each customer approaches the fraction 1− q of the input
requested, and thus, if cr

1−q + cs < 1, the probability of causing bankruptcy of
customers to go bankrupt as a result of a production default among suppliers
is zero. 4

4 Of course, one could assume that firms incorporate probability if defaults in their
decision, by ordering 1

1−q
so to be delivered the exact requested quantity. Instead,

as before, for the purpose of this work we assume agents are boundedly rational
and do not take into account production defaults in their decisions.
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We can make precise predictions on the bankruptcies caused by a
production default by computing the profit of the neighbouring firms. In a
two layer network, after a production default in a supplier, the profit of each
customer is:

πj(t) = pY s
i (t) − csYi(t) − crY

e
i (t) = (p − cs −

k

k − 1
cr)Yi(t) (19)

Similarly, after a production default in one customer, the profit of each sup-
plier is:

πj(t) = pY s
i (t) − csYi(t) − crY

e
i (t) = (

k − 1
k

p − cs − cr)Yi(t) (20)

In both cases, the increase of k increases the profit and makes a bankruptcy
less probable. We can also estimate the profit of firms in case of multiple
defaults in the neighbourhood, and thus compute the expected profit in the
general case [16]. Overall increasing network density reduces the probability of
bankruptcies of individual firms, as well as the probability of joint bankrupt-
cies, in other words, it reduces the systemic risk.

Systemic Risk in Presence of Positive Feedback

However, if there is a positive feedback of the probability of bankruptcy of a
firm i on the cost i faces (namely, that the more a firm is likely to fail the
higher the cost it faces), then the effect of network density can be to increase
the instability of the system. In fact, in a very dense network, an increase
in the average probability of failure would increase the cost of all firms, thus
increasing in turn their probability of failure. In a sparse network, the coupling
is only local so that the probability of failure may increase somewhere while
decreasing somewhere else. In order to investigate quantitatively this issue,
we now, consider the cost of the firm to be dependent on the financial state
of the firm. The rationale for this is that firms pay an interest rate on the
supply they receive (trade credit) and/or on the funds used to pay wages or
processing (loan). The interest rate a firm is charged by other firms or by the
bank increases (at least within a range) with the financial fragility of the firm
itself as its partners need to compensate their risk in extending credit to it
(however, when the interest rate is very high, creditor usually don’t have an
incentive to increase it further, see [5] (chapter 5). In order to capture this
effect, we assume that an increase in bankruptcy risk (a decrease in profit)
leads to an increase in interest rate and therefore in production costs. As a
consequence, the production cost for firm i is multiplied by a factor η evolving
in time as follows:

ηi(t + 1) = ηi(t) + α · sign(
∑

j ∈ Vi

Pj(t) − Pj(t − 1))

ηi ∈ [ηmin, ηmax] (21)
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where Vi is the neighbourhood of i including i itself, while α is a parame-
ter. The range of variation of ηi is bound, corresponding to a minimum and
maximum interest rate. The equation above implies that whenever profit de-
creases/increases among neighbours, cost increases/decreases by a fixed quan-
tity α. Other functional dependencies are possible and reasonable, but the
important feature here is that the net average change of profit in the neigh-
bourhood causes a discrete change in the cost.

Understanding the Dynamics in a Simplified Model

A similar dynamics has been recently introduced in [17] in the context of cas-
cades in complex networks . There, agents are associated with a state variable,
representing their fragility, that evolves as a function of the neighbours. At
each time step, the fragility of each agent receive an i.i.d. shock ( through a
normalized stochastic variable ξ(t), with standard deviation equal to 1), which
is shared with the neighbours. If, at time t the fragility of agent i exceeds a
given threshold θ, the agent fails and the quantity a, representing the damage
associated with its failure, is distributed to the neighbours (by incrementing
their fragility), which may in turn fail. All the toppling events following the
initial failure occur at time scale faster than the one for fragility, in other
words they all occur before the next time step t+1. In formulas the dynamics
reads:

φi(t + 1) =
∑

j ∈ Vi

Wij(φj(t) + σξj(t)) + α · sign(
∑

j ∈ Vi

Wij(φj(t) − φj(t − 1)))

(22)

where W is a matrix representing interaction among agents, with
∑

j Wij =
1∀i, and σ is a parameter. Additionally, if φr(t + 1) ≥ θ ∃r, then:

1. For all neighbours of each node r:
φs → φs + aWsr

2. For all such r, φr → 0

3. Repeat until φi < θ for all i in the system.

In order to understand the onset of instability we analyse the dynamics
above in a mean field approximation, in the case Wij = 1

k . We consider the
average fragility in case of large k:

Φ(t + 1) =
1
N

∑

i

φi(t + 1) � Φ(t) +
σξ(t)√

k
+ α · sign(Φ(t) − Φ(t − 1)) (23)

In the regime where σξ(t)√
k

� α, the process is dominated by the first term
of eq. 24 and it is approximated by a random walk with step of amplitude
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σ√
k
, thus decreasing with k. In particular, if the first term dominates, the

difference Φ(t) − Φ(t − 1) is positive or negative with equal probability and
thus the second term does not contribute any systematic drift. In this regime,
increasing k makes the step of the random walk smaller and thus decrease the
probability to hit the threshold.

If σ√
k
� α, then expressing Φ(t) in terms of Φ(t − 1), we have:

sign(Φ(t) − Φ(t − 1)) = sign(
σξ(t)√

k
+α(sign(Φ(t − 1) − Φ(t − 2)))) =

+α(sign(Φ(t − 1) − Φ(t − 2)))) (24)

The expression above is always true if the distribution of ξ(t) has a limited
support and α is larger than the right limit of such support, otherwise it
is true with a certain probability that can be computed. Therefore, in this
regime the average fragility tends to keep moving in the direction it is already
moving. Because Φ is repelled from 0 by construction, in the limit of large k,
it moves upwards with constant slope and periodically it hits the threshold
and is then reset to 0. When the average fragility hits the threshold and the
individual fragility trajectories are sufficiently close, then one or few failures
cause an avalanche involving the whole system.

The argument suggests therefore that, increasing the density of network
in the system described by eq. 22, the probability of failures first decreases
and then increases. In other words there is a trade-off between diversifying
the risk by sharing the shocks with many other agents and the systemic risk
resulting from the synchronization of the fragility trajectories. For a more
formal analysis see [17].

The argument above suggests that a similar result should also hold for
the economic model presented in this chapter. The reader may notice that we
have inferred an important property of a fairly complicated economic model
from a basic argument, based on a mean field approximation of a simplified
model that captures some essential dynamical features of the original model.
In the next section we will examine the results of computer simulations of the
original model.

2.11 Results of Computer Simulations

In this section, we compare the time evolution of some quantities measured on
a network of 2 production layers, with three different values of connectivity de-
gree, k = 1, 5, 20. Unless specified otherwise, results reported in this work are
obtained with constant price (interval width δP = 0), production default prob-
ability q = 0.03, cs = cr = 0.3, inactivity time τ = 1, 2, 3 with equal probabil-
ity. Firms are endowed with constant value of net worth Ai(t) = Ainit = 1∀i.
As explained above the bankruptcy threshold is set as β = 0 and the depre-
ciation factor is set as ρ = 0 (which yields a depreciation rate 1 − ρ = 1% ).
Finally, the value of α in the dynamics of the cost factor ηi(t) is set to 0.05.
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Fig. 3. Time evolution of output of the production network with degree k = 2.
Zoom on a time interval. Each frame represents the production network at a given
time step with index of the node on the y axis and production layers on the x
axis. The layer of primary producers is now the left column of each frame, while
the layer of retailers in the consumer market is the right column of each frame.
Output is normalized in each frame by its maximum value in order to emphasize
the relative spatial distribution and is represented by a color scale as specified by the
color bar. Magenta crosses indicate production defaults occurring stochastically with
probability q, while black crosses indicate bankruptcy (see text for more details)

In figures 3, 4, 5, the evolution of output over the production network
is shown in an interval of 25 time steps. In order to follow the propagation
of bankruptcies, we choose a represent different from the one used in fig. 1.
Each frame represents the production network at a given time step with index
of the node on the y axis and production layers on the x axis. The layer of
primary producers is now the left column of each frame, while the layer of
retailers in the consumer market is the right column of each frame. Output
is normalized in each frame by its maximum value in order to emphasize the

Fig. 4. Time evolution of output of the production network with degree k = 5. The
figure is constructed in the same way as figure 3
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Fig. 5. Time evolution of output of the production network with degree k = 5. The
figure is constructed in the same way as figure 3

relative spatial distribution and is represented by a color scale as specified by
the color bar. Magenta crosses indicate production defaults occurring stochas-
tically with probability q, while black crosses indicate bankruptcy. Following
the position of the crosses from one frame to the next, it is possible to observe
the propagation of bankruptcies over time. With the parameters chosen in
this specific setting, production default in a firm also implies its bankruptcy,
although it is not true in general.

With degree k = 1 (not shown), production is organized in chains, which
are obviously very fragile to shocks, as the production default of a sup-
plier/customer implies also the bankruptcy of its only customer/supplier.
With the chosen values for cost, cs = 0.3 and cr = 0.3, and with degree
k = 2, the default of a supplier is very likely to cause, the bankruptcy of its
two customers, which in turn do not pay their suppliers, causing two addi-
tional bankruptcies. Overall, five firms go bankrupt in such an event, while
with degree k >= 3 instead, the default of a supplier is very likely not to cause
any bankruptcy. Simulations shown in figures 3, 4 confirm this estimate, al-
though some deviations are possible, due the internal dynamics of the cost
factor. With high degree (k = 30, 5) the feedback mechanism prevails on the
risk diversification and larger avalanches occur (at time 32 in the figure).

The effect can be seen also in figures 6, 7, 8, where the evolution of output
Yi(t) and cost factor ηi(t) is shown over 100 time step. In order to emphasize
the spatio-temporal patterns we use now another representation with respect
to figures 3, 4, 5. The x axis is time, while the y axis represents the index of
the nodes from 1 to N. In other words, positions from 1 to n on y (from to
the top) represent the nodes of the first layer (n = 30 in this example), while
positions from n to 2n (from to the top) represent the nodes of the second
layer. We chose n and time interval relatively small to make the patterns
visible. Output and cost factor are represented by a color scale as specified
by the color bar. Magenta crosses indicate production defaults (occurring
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Fig. 6. Time evolution of output Yi(t) (left) and cost factor ηi(t) (right) with
degree k = 2. The x axis is time, while the y axis represents the index of the nodes
from 1 to N. Output and cost factor are represented using a color scale specified
by the color bar. Magenta crosses indicate production defaults, while black crosses
indicate bankruptcy

stochastically with probability q), while black crosses indicate bankruptcy.
Following the position of the crosses from one frame to the next, it is possible
to observe the propagation of bankruptcies over time.

An important aspect of the phenomenon investigated here is that the in-
stability induced at high k is also visible at the aggregate level. In figure 9
the aggregate output of the network is shown for 200 time steps. Going from
degree k = 2 (blue curve) to k = 5 (green curve) and to k = 30 (magenta
curve), fluctuations first decrease and then increase.

A more detailed investigation of the trade off between individual risk di-
versification and systemic risk is out of the scope of this work and can be
found in [16].
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Fig. 7. Time evolution of output Yi(t) (left) and cost factor ηi(t) (right) with
degree k = 5. The figure is constructed in the same way as figure 6
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Fig. 8. Time evolution of output Yi(t) (left) and cost factor ηi(t) (right) with
degree k = 30. The figure is constructed in the same way as figure 6
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Fig. 9. Time evolution of aggregate output of the production network with different
value of degree k: k = 2 (blue), k = 5 (green) and k = 30 (magenta)

3 Conclusion

In this chapter we have examined the impact of network density on the sys-
temic risk in networks of credit relations. A node in a credit network may
form several links in order to diversify its risk, but this may also induce a
form of financial contagion.

Systemic risk raises today growing regulatory concern and policy makers
would like to know how to ensure adequate fire walls in order to prevent the
spill over of a crisis across institutions and firms. Avalanches of failures in
networks have been studied extensively in the Complex System literature in
the context of SOC and epidemic spreading, but, outside such two contexts,
the investigation deserve more attention. In the economic literature, there is
a growing body of work on systemic risk in credit networks, although there
seems to be a dominant view on the positive role of the network density on
the systemic risk.
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Credit is extended by banks to firms (loans), by one bank to another
(interbank credit) and by one firm to another (trade credit). In this chapter,
we have focused on the last case and we have investigated a specific setting
of the model introduced by [16]. In such a setting it is possible to isolate the
impact of network density on the dynamics of avalanches.

Using a complex system approach, we have inferred some properties of
the economic model based on a mean field approximation of another model,
actually much simpler, that captures some essential dynamical features of the
original one. We have shown how, under some conditions on the parameter
chosen, a trade off emerges between individual risk diversification and systemic
risk. This result is in line with recent finding in the economic literature, but
it is in contrast with the dominant view. This works contributes to the debate
on what are the appropriate regulations to ensure the robustness of credit
networks.
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