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Abstract

We present analytical investigations of a multiplicative stochastic process that models a simple investor dynamics in a random
environment. The dynamics of the investor’s budget, x(t), depends on the stochasticity of the return on investment, r(t), for which
different model assumptions are discussed. The fat-tail distribution of the budget is investigated and compared with theoretical
predictions. We are mainly interested in the most probable value xmp of the budget that reaches a constant value over time. Based
on an analytical investigation of the dynamics, we are able to predict xstat

mp . We find a scaling law that relates the most probable
value to the characteristic parameters describing the stochastic process. Our analytical results are confirmed by stochastic computer
simulations that show a very good agreement with the predictions.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Multiplicative stochastic processes denote type of dynamics where a variable x(t) changes its value in time due to
a stochastic term λ(t):

x(t + 1) = λ(t) x(t) (1)

λ(t) may describe different stochastic processes, such as Gaussian white noise, uniform random distributions, GARCH
or ARCH processes, which are explained later in this paper. Despite its great simplicity, the dynamics of Eq. (1) gained
much attention in different fields of applications. It was, for example, used already in 1931 by Gibrat to describe the
annual growth of companies — an idea extended in different works by economists [10,42] and econophysicists [1].
Several theoretical aspects of stochastic processes with multiplicative noise have been focus of recent research
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in physics [20,31,40,41,44]. Moreover, by taking into account additional couplings between these processes, the
approach has been extended towards a generalized Lotka–Volterra model [22,39] which is referred to later in this
paper.

The importance of multiplicative stochastic processes was also reflected by several mathematical investigations [12,
13,46]. In the so-called Kesten process [16] – from which we depart in this paper – the dynamics of Eq. (1) was
extended by a second additive stochastic term a(t) independent of λ(t)

x(t + 1) = λ(t) x(t) + a(t). (2)

This extension has the nice feature that the stochastic process is repelled from zero, provided some constraints on a(t)
are satisfied. We will come back to this later in our paper. At this point, we rather want to provide some arguments
why we became interested in this topic and why we think that this is relevant.

Our investigations started with the question of how much “intelligence” is needed for an agent to survive in a
noisy environment (see also Ref. [9]). The example at hand is explained in Section 2.1: agents with a personal budget,
x(t), participate in a simple investment scenario and face a return on their investment, r(t). Given some uncertainty
of r(t), they have the choice to adjust individually the portion of the budget they wish to invest, q(t), which can
be called their risk propensity. The strategy to choose q(t) may of course depend on whether the agents are able to
obtain some information about the expected return on investment, r(t). Here, different levels of internal complexity,
or “intelligence”, of agents come into play, namely their capability to observe and to store a history of previous returns
r(t − τ), to calculate different measures from such a time series (such as trends, moving least squares, etc.), to detect
or to forecast certain periodicities in the signal received (such as cycles in the market) [26,27]. At this point, a wealth
of different models, assumptions, suggestions, speculations etc. about the agent’s behavior comes into play from
various fields (financial theory [9,19,24,30], economics [5,11,17,21,29,45], behavioral sciences [43], physics [6,23,
25], computer sciences [7,15,18]). All these rather complex assumtions eventually lead to their specific outcome of the
game, and can hardly be compared. So, before embarking on some more refined modelling assumptions about agents’
behaviour, we had to ask ourselves what could be the reference case in this simple investment scenario, to which later
all advanced simulations can be compared. In other words: what would be the dynamics of that investment process
without all these “intelligent” assumptions? It turns out that this baseline case is exactly given by the dynamics of a
multiplicative stochastic process with an additive term as described by Eq. (2). Instead of a rather complex strategy
q(t), we simply assume q0 = const. as the reference case, instead of an unknown additional influx a(t), we take a
constant, but positive “income” a, and instead of specific economic assumptions about market fluctuations we choose
r(t) from four different stochastic processes, which are simple, but analytically tractable. This way, in Section 2.1 we
arrive at the basic dynamics of Eq. (12), which is equivalent to our starting Eq. (2).

The aim of our paper is (i) to elucidate the dynamics of Eq. (2) for some specific settings of λ(t) and a(t) by
means of some computer simulations, and (ii) to investigate its stationary properties by means of analytical treatment.
This will reveal some scaling between the most probable value of x(t) and the parameters describing the stochastic
processes. Before we continue in this direction, we want to shortly summarize some previous theoretical investigations
of Eq. (2), in order to refer to it later.

The dynamics of Eq. (2) was treated by Ref. [41] as

x(t + 1) − x(t)

x(t)
=

a(t)

x(t)
+ λ(t) − 1. (3)

If the finite difference (x(t + 1) − x(t)) /x(t) is approximated by (d log x/dt), the following overdamped Langevin
equation for w = log x can be obtained:

dw

dt
= a(t)e−w

− |υ| + η(t) (4)

with:

υ = 〈λ〉 − 1 ' 〈log λ〉

〈
η2

〉
=

〈
λ2

〉
− 〈λ〉

2 . (5)

The first term on the r.h.s. of Eq. (4) describes an effective repulsion of x from zero, while the second term, − |υ|,
describes the drift towards zero. The third term, η(t), expresses the stochastic influences resulting from λ(t).
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Going over from the single stochastic realizations of ω(t) to the probability density P(ω, t), it was shown in
Ref. [41] that the following Fokker–Planck equation1 can be derived

∂ P(w, t)

∂t
= a(t) e−w P(w, t) −

(
〈log λ〉 + a(t) e−w

) ∂ P(w, t)

∂w
+

(〈
log(λ)2

〉
− 〈log λ〉

2
) 1

2
∂2 P(w, t)

∂w2 . (6)

In accordance with Eq. (4), the first term of Eq. (6) describes the decay on w, the second term indicates the drift of
the process and the third is a diffusion term with the diffusion constant:

D =

〈
(log λ)2

〉
− 〈log λ〉

2 . (7)

We recall that without the additive stochastic force, i.e. a(t) ≡ 0, Eq. (6) results in a simple Fokker–Planck equation
for x(t), related to the stochastic Eq. (1), with the log-normal distribution as limit distribution [31,41]:

P(x(t)) =
1

√
π D t

1
x(t)

exp
{
−

1
D t

[
log x(t) − 〈log λ〉 t

]2
}

. (8)

Considering, however, an additive stochastic force a(t) 6≡ 0, it was already noted in Ref. [16] that for large x
instead of a log-normal distribution now a power-law distribution results, provided that 〈log λ〉 < 0:

P(x) ∝ x−(1+µ). (9)

The exponent µ satisfies the conditions〈
λµ

〉
= 1; µ =

2 |〈log λ〉|〈
(log λ)2

〉
− 〈log λ〉

2 =
2 |v|

D
. (10)

It was shown [41] that such power-laws result under quite general assumptions about multiplicative stochastic
processes with repulsion at the origin which generalizes previous results by Ref. [20]. We note that an economically
motivated entry/exit dynamics [3,32,36] as a boundary condition of the multiplicative stochastic process also leads to
power distributions.

In the more general case of Eq. (6), we will in Section 3.1 provide a stationary solution for P(ω) at least for
the case of a constant a. We will further use this solution to derive a result for the most probable value of the
multiplicative stochastic process. In order to test the analytical predictions, we will compare them with stochastic
computer simulations, which are described in the following section.

2. Computer simulations for different random environments

2.1. Investment model

Instead of solving the stochastic differential equation (6) numerically, in this section we focus on the individual
realizations of the stochastic process as described by Eq. (2). Hence, we have to specify the stochastic processes
behind the variables λ(t) and a(t), which is done in the following. As it became clear from the previous discussion,
the additive stochastic term acts as a repulsion of the dynamics from zero, i.e. without a(t) after some time every
stochastic realization of x(t) will reach the value zero, i.e. the exit for the process. So, the meaning of a(t) is simply to
keep the dynamics “alive” by preventing it from reaching zero. To simplify the dynamics, instead of a time-dependent
value a(t) we simply choose a small, but constant positive value of a, which results in the same effect.

For the multiplicative stochastic term the following assumption was made:

λ(t) = 1 + r(t) q(t). (11)

In order to give the stochastic dynamics of Eqs. (2) and (11) some interpretation, let us consider the following: x(t)
shall represent the budget (wealth, liquidity) of an agent, who intents to invest some portion 0 ≤ q(t) ≤ 1 of its budget

1 Note that this equation is different from the original one in Ref. [41] by a factor 2 in the diffusion term which later affects the definition of µ

in Eq. (10).
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into a market [26,27]. Depending on the market performance, this investment may result in a loss or a gain. Hence,
there exists a return on investment, RoI, r(t), which is either positive or negative. It should be noted that the RoI has
to satisfy r(t) > −1 as a lower boundary, as investors can never loose more than what they have invested. Because
there is no limit for potential profits, in principle there is no upper boundary for r(t).

In a real investment scenario, the RoI can be determined from a time series of a real market that is influenced by
several thousands bids and asks. This would involve to model the market dynamics explicitly. In the spirit of other
investigations in economics and econophysics [1] we have chosen instead to model the market return r(t) by means of
different stochastic processes, i.e. to keep its dynamics independent of the investment of the agent. Further, we have
bound the RoI to values between −1 and +1. The upper boundary was chosen to obtain a mean of zero for r(t), which
allows us to better understand the basic dynamics. The following distributions for r(t) are discussed:

(1) B{−1, 1}, a binary stochastic switch between only two states, −1 and +1
(2) U (−1, 1), a uniform distribution, where every possible value between −1 and +1 has the same probability to be

chosen
(3) N (0, 0.1), a normal distribution with mean 0 and standard deviation 0.1, i.e. values close to the mean are more

likely to be picked
(4) ARCH(1), a distribution, where possible values between −1 and +1 are chosen by considering some correlations

between times t and t − 1 (autoregressive conditional heteroskedasticity) [2,8].

These stochastic processes were not chosen in the first place because they capture real economic processes e.g.
on financial markets, but because they later allow for analytical calculations of some properties of the probability
distributions, as shown in Section 3.2. However, we note that the four types cover different degrees of complexity in
the stochastic process, as their spectrum of values (discrete, continuous) and their range of values (rather broad for
the uniform distribution, but narrowed and centred for the normal distribution) vary and even correlations between
different time steps are taken into account (ARCH(1)).

The investment dynamics is then described by the multiplicative stochastic process

x(t + 1) = x(t) [1 + r(t) q(t)] + a, (12)

where the positive constant a prevents the investor from going bankrupt.
The challenge for an agent in this very simple investment model is then to adjust its portion of the budget to be

invested, q(t), given some (observed) market returns r(t). Low values of q refer to a risk averse investment strategies,
while higher values may be more risky, but also more rewarding with respect to the budget. In Ref. [27] we have
discussed different scenarios for agents to adjust their risk propensity, q(t). In this paper we focus more on the
stochastic dynamics and therefore just choose q(t) = q0, which is a small but constant value. This can serve as a
reference case for more complex investment strategies [27].

At this point, we wish to note that the dynamics proposed in Eq. (12) is much simpler than the comparable starting
equation in the generalized Lotka–Volterra model [22,39] mentioned in Section 1,

xi (t + 1) = xi (t) [1 + λ(t)] + ax̄(t) − Cxi (t) (13)

which assumes additional couplings between different individual stochastic processes, xi (t). Instead of a small, but
constant income a the term ax̄(t) considers a global coupling via the mean budget x̄(t) of all agents (which may be
related to general publicly funded services). Moreover, the third term Cxi (t) describes direct interactions between
different agents, as C is a function dependent on other x j . These may account for competition for limited resources
and saturation effects in the dynamics. Even if, after some approximations discussed in Ref. [22], these additional
influences may be small, they still affect the general solutions for the underlying probability distributions as we
will discuss in Section 3.1. If we recast the differences between Eqs. (12) and (13) using the general framework of
multiplicative processes [33]

∆x(t) = η(t)G[x(t)] + F[x(t)], (14)

where η(t) is a stochastic variable, then we have for our model, Eq. (12) G(x) = x and F(x) = a, whereas for
Eq. (13) G(x) = x and F(x) = a(1 − x) results [22]. This will eventually affect the specific exponents of the
stationary probability distributions, Ps(x).
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Fig. 1. Investor’s budget probability distribution P(x, t) for different time steps, assuming x(0) = 10 and r(t) ∈ B{−1, 1}, q0 = 0.1 and a = 0.5.
The probability was estimated from N = 104 runs.

Fig. 2. Investor’s budget stationary probability distribution Ps (x) (estimated from frequencies after t = 104): (left) Binary stochastic return
distribution r(t) = B{−1, 1}. (right) Uniform stochastic return distributions r(t) = U (−1, 1). In both cases, x(0) = 10, q(t) = 0.1 and a = 1.
Data are binned in logarithmic intervals of the same size. The dashed lines show the theoretical prediction of these curves by Eq. (21), derived later.

2.2. Simulation results

Here, we present stochastic computer simulations of Eq. (12) for different distributions of r(t) as described in the
previous section. Initially, x(0) = 10 holds for the agent’s budget, q0 and a are kept constant during each simulation.
The distributions were realized using 10’000 agents. In the case of the time evolution of the most probable value
xmp, the plotted values were calculated averaging over the xmp obtained for distributions resulting from 10 different
realizations of the simulation.

Fig. 1 shows the distribution of the investor’s budget at different time steps. Starting from the delta distribution at
x(0) = 10, the distribution disperses over time until it reaches a stationary state. The number of time steps needed to
reach this stationary state depends on the initial conditions, the distribution of r(t) and the additive constant a. For the
conditions in Fig. 1, this takes about 104 iterations.

One can clearly see that the stationary distribution is characterized by a fat tail described by a power-law
distribution, as shown in Fig. 2. This is in accordance with previous investigations [20,40] and was already discussed
in Section 1. We have determined the scaling exponent µ of the power law, Eq. (9), from the simulation data for
different stochastic processes and will later compare it with our analytical investigations.

In the following, we are more interested in the clear maximum of the stationary distribution which gives the most
probable value, xmp. Fig. 3 (right) shows the evolution of xmp over time for three different additive terms. The most
probable value increases with time until a balanced state is reached, where the dissipation described by the negative
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Fig. 3. Most probable budget value vs. time: (left) for q = 0.1 and three different additive constants a, (right) for a = 0.5 and three different
constant risk propensities q0. Other parameters and settings as in Fig. 2 (right).

Fig. 4. Most probable budget value vs. scaled variable a/q2
0 for the binary stochastic process r(t) ∈ {−1, 1} (o) and for the uniform stochastic

process r(t) ∈ U (−1, 1) (4). Each set was plotted by varying a and q0 over the range of [0.1, 0.9] in 0.1 increments, giving a total of 81 data
points per combination,, averaged over 100’000 Monte-Carlo simulations and 10 runs. The value of the slope found for the numerical simulations
is for the binary stochastic process c = 0.961 ± 0.006 and the uniform stochastic process c = 3.149 ± 0.014.

drift towards zero and the constant influx a compensate on average. It can be noticed that the standard deviation of xmp
increases with a. Larger a lead to larger values for the budgets, this in turn leads to an amplification of the fluctuations
due to the multiplicative nature of the process. Fig. 3 shows the evolution of xmp for three different values of the risk
propensity q0. Obviously, the larger q , the smaller xmp.

Fig. 3 suggest that there is a scaling between the most probable value xmp and the parameters characterizing the
stochastic dynamics, Eq. (12), namely q0 and a. This scaling is investigated numerically in the following and will
later be confirmed by analytical investigations. Figs. 4 and 5 show

〈
xmp

〉
at a fixed time, t = 104, for the four different

realizations of the stochastic process, r(t), discussed in Section 2.1. In all four cases, the results, plotted against the
variable a/q2

0 clearly show a straight line, which allows for the scaling:

xmp = c ·
a

q2
0

. (15)

By means of analytical investigations of the stochastic multiplicative dynamics, we now want to confirm the
findings of the numerical experiments.
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Fig. 5. Most probable budget value vs. scaled variable a/q2
0 : (left) for the normal distributed stochastic process r(t) ∈ N (0, 0.1). The value found

for the slope of the numerical simulations in this process was: c = 102.17 ± 0.701, (right) for the ARCH(1) process (α0 = α1 = 0.1), with a slope
of c = 9.089 ± 0.029.

3. Analytical investigations

3.1. Stationary state

In order to derive the observed scaling law, Eq. (15), we start with the Fokker–Planck Eq. (6).2 Using the
approximation of a constant value of a and the notation of Eq. (7) for the diffusion constant D, we find for the
stationary solution of Eq. (6):

0 = −∂w

[(
〈log λ〉 + a e−w

)
Ps(w) −

D

2
∂w Ps(w)

]
. (16)

This results in the stationary solution:

Ps(w) = N exp
(

2 〈log λ〉 w − 2a e−w

D

)
(17)

with normalization N . Using w = log x , the corresponding stationary probability distribution Ps(x) is recovered by
the chain rule:

Ps(x) = Ps (w(x))
dw

dx
= N x

2〈log λ〉

D −1 exp
(

−
2a

D x

)
. (18)

The normalization is explicitly calculated via:

1
!
= N

∫
∞

0
x

2〈log λ〉

D −1 exp
(

−
2a

D x

)
dx = N

(
D

2a

)−
2〈log λ〉

D

0

(
−

2 〈log λ〉

D

)
, (19)

where 0(y) is the Gamma function. Redefining

µ := −
2 〈log λ〉

D
, (20)

we eventually find the stationary distribution in the normalized form:

Ps(x) =

(
2a
D

)µ

0(µ)
x−(1+µ) exp

(
−

2a

D x

)
. (21)

2 In the Appendix, we point to the direct treatment of the stochastic dynamics, Eq. (2).
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A graphical visualization of this function can be seen in Fig. 2 together with the results obtained from the averaging
of the stochastic computer simulations. It is worth noticing that the Gamma function diverges for µ → 0. Hence, the
condition of 〈log λ〉 < 0 is indeed important for the existence of the stationary solution. One should also notice that
for large x Eq. (21) reduces to the power-law distribution, Eq. (9).

We note that Eq. (21) is a special form of the general solution

Ps(x) =
1

G2(x)
exp

(
2
D

∫ x F(x ′)

G2(x ′)
dx ′

)
(22)

obtained in Refs. [22,33]. If we use F(x) = a and G(x) = x in accordance with the stochastic process defined
in Eq. (12), this would lead to the (non-normalized) solution Ps(x) = x−2 exp(−2a/Dx). This is in agreement
with Eq. (21) because of µ ≈ 1 in our case. The solution discussed in Ref. [22] is however different from ours
because F(x) = a(1 − x) and G(x) = x was used there, which eventually lead to the stationary distribution
Ps(x) = x−2(1−a/D) exp(−2a/Dx), and consequently to µ = 1 + (2a/D). Only in the limit of a � D (which
may hold for the case discussed in Ref. [22] because of e.g. a ≈ D/4, but is hardly satisfied in our model, because for
example a = 0.5, D = 0.01 in Fig. 1), both solutions tend to converge. Apart from these differences, the emergence
of the stable power-law distribution, Eq. (9), for large x was already discussed in Refs. [3,20,33,34,37–41].

3.2. Scaling of the most probable value

In the following, we are less interested in the power-law behaviour of Eq. (21), but mainly in the most probable
value of the process, xmp, which correspond to the peaks of the distribution shown in Fig. 2. From the extremum
condition

0
!
= ∂x Ps(x) (23)

we find with Eq. (21) for the most probable value:

xmp =
a

D − 〈log λ〉
. (24)

(Note again the difference to the result xmp = a/(D + a) obtained in Ref. [22] — for a different stochastic process).
In order to derive the scaling of xmp on the parameters a and q0, we have to calculate the diffusion constant D,

Eq. (7), and, hence, have to specify the stochastic process, λ(t), Eq. (11), or r(t) respectively. From Eqs. (7) and (11)
we find with q(t) = q0

D =

〈
log2(1 + q0 r)

〉
− 〈log(1 + q0 r)〉2

≈ q2
0

(〈
r2

〉
− 〈r〉

2
)

. (25)

Because of 〈r〉 = 0, this results in first approximation in the following expression for the most probable value:

xmp ≈
a

q2
0

〈
r2

〉 . (26)

Note that this yields a good approximation only for 〈log λ〉 ≈ 0 and small values of q0.
For the specification of r(t) we refer to the four different distributions listed in Section 2.1 and already used in the

computer simulations of Section 2.2. We find the following results:

(1) If the returns, r(t), are randomly drawn from the binomial distribution B{−1; 1},
〈
r2

〉
= 1 holds and the scaling is

obtained as:

xmp =
a

q2
0

. (27)

(2) If the returns are randomly drawn from the uniform distribution U (−1, 1), we find〈
r2

〉
=

1
2

∫ 1

−1
r2 dr =

1
3

(28)
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and for the scaling

xmp = 3
a

q2
0

. (29)

(3) If the returns are randomly drawn from the Gaussian distribution N (0, 0.1), the deviation is given by
〈
r2

〉
= σ 2

=

0.01 and the scaling is obtained as

xmp = 100
a

q2
0

. (30)

(4) If the returns are randomly drawn from the ARCH(1) process, we find with α0 = α1 = 0.1 [23, p. 78]〈
r2

〉
= σ 2

=
α0

1 − α1
= 0.111 (31)

which leads to a scaling of

xmp = 9
a

q2
0

. (32)

We note that the nature of the stochastic process in all four cases is reflected only in the different prefactors c, while
the scaling function xmp = c a/q2

0 remains the same. Comparing the analytical results with the computer simulations
presented in Section 2.2 one can see that both the scaling function and the values of the prefactors c are in perfect
agreement. This shows indeed that the approximations made for the analytical treatment were appropriate.

4. Conclusions

In this paper, we have derived an analytical expression for the stationary probability distribution of an investor’s
budget x , Eq. (21), when investing in a random environment. The nature of the underlying stochastic process was
considered in four different distributions for the return on investment (RoI), r(t). Assuming that in every time step the
investor invest a constant portion q0 of his current budget on which he receives an RoI and further receives a very small
amount a as a constant income, we have shown that the most probable value of the investor’s budget scales with the
aforementioned variables as xmp = a/(q0

〈
r2

〉
), Eq. (26). This result was confirmed both by analytical investigations

and extensive computer simulations for the four different stochastic processes.
At the end, we want to comment on the range of validity for the scaling obtained. One of the underlying assumptions

of our model was a constraint of the RoI to values between (−1, +1), where −1 means a complete loss of the
investment and thus is a reasonable lower bound, whereas +1 means a doubling of the investment, chosen for reasons
of better tractability (i.e. 〈r〉 = 0 holds, for example). These constraints for r(t) used during the computer simulations
may indeed result in deviations from the theoretical prediction, Eq. (26), if the underlying stochastic process for r(t)
frequently gives values outside the interval (−1, +1), which then need to be discarded. This can be the case both for
the normal and for the ARCH distribution.

For our computer simulations, we have thus chosen small values of σ 2 and a0, α1, respectively, to control the width
of the distribution and the “outliers”. In fact, the larger these values, the less is the agreement between the “truncated”
computer simulations and the theoretical approximation based on the full range of r values.

Nevertheless, this argument does not restrict the value of the scaling obtained in Eq. (26), which is still valid. In
order to deal with broader distributions for the RoI, one has two options:

(i) The computer simulations can be repeated on a larger interval for r(t) ∈ (−C, +C) which controls the number of
“outliers”. This will however not change the principal insights derived in this paper.

(ii) The analytical prediction can be improved by dealing with truncated distributions. This basically affects the
calculation of

〈
r2

〉
. Assuming the constraint r(t) ∈ (−1, +1), one finds for example for the truncated normal

distribution [35]

〈
r2

〉
= σ 2

− σ

√
2
π

exp
{
−

1
2σ 2

}
erf

{
1

√
2σ

} (33)
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which holds also for larger σ 2. For truncated ARCH or GARCH distributions, the situations are more complicated,
here we refer to the literature [2,4,8,28].

Eventually, we wish to comment on the investor dynamics proposed in this paper. These were by purpose related
to multiplicative stochastic processes, to allow for analytical insights and conclusions about the influence of different
stochastic distributions. Despite its simplicity, the dynamics of Eq. (12) is not restricted to artificial scenarios. In fact,
the dynamics of the RoI, r(t), can be taken from real time series, instead of being modelled by a stochastic process.
The most challenging application, however, is in the dynamics of the variable q(t) which decides about the portion
of the budget to be invested. While risk averse agents may tend to lower q , risk seeking strategies may go for higher
q and for higher yields in the lucky case. Throughout this paper, q was set to a constant but small value, independent
of individual characteristics. Any realistic investment scenario deals with the question to adjust the risk propensity
q(t) in time based on the observation of previous r(t). For the model given, an artificial intelligence approach to
this question is presented in Ref. [27]. As a next step, the investment dynamics can be extended towards a portfolio
scenario, where both r and q become multidimensional variables, to allow different investment strategies for different
assets.
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Appendix

Instead of dealing with the probability distribution P(x) as in Section 3, one can try to treat the stochastic dynamics
of Eq. (2) directly. For this case, we can present at least a formal solution using the Z-transform [14]. Rewriting
Eq. (2) as

a = x(t + 1) − λx(t) (34)

the Z-transform leads to

a
∞∑

n=0

1
zn = a

z

z − 1
= z [X (z) − x(0)] − λX (z), (35)

where X (z) is given by

X (z) = x(0)
z

z − λ
+ a

z

(z − 1)(z − λ)
. (36)

Using the inverse transform

X (z−1) =

[
x(0) −

a

1 − λ

]
1

1 − λz
+

a

1 − λ

1
1 − z

(37)

the solution for x(t) can be found as

x(t) =
1
t !

∂ t
z X

(
1
z

)
(38)

= λt
[

x(0) −
a

1 − λ

]
+

a

1 − λ
(39)

= λt x(0) + a
1 − λt

1 − λ
(40)

= λt x(0) + a
t−1∑
s=0

λs . (41)
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From this solution, we see that the decisive condition on λ for a well-defined solution reads:

|λ| < 1 (42)

which agrees with the finding of 〈log |λ|〉 < 0 obtained from the treatment of the probability distribution P(x).
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