
Emergence and Software development

Joris Deguet12, Laurent Magnin2, and Yves Demazeau1

1 Laboratoire Leibniz, 46 avenue Félix Viallet, 38031 Grenoble Cedex, France
joris.deguet@imag.fr, yves.demazeau@imag.fr,

2 DIRO, Université de Montréal, Montréal, (Québec) H3C 3J7, Canada
magnin@iro.umontreal.ca

1 Introduction

Emergence, a concept that first appeared in philosophy [18, 17], has been
widely explored in the domains of Multi-agent Systems (MAS) and Complex
Systems [25, 13, 14, 5, 4, 6, 2, 12] and is sometimes considered to be the key
ingredient that makes complex systems complex” [24].

On January 30th 2006, we made a one-keyword query for emergence”
papers on computer science specific engines and generalist scientific engines.
We retrieved impressive amounts of documents:

Search Engine Number of results
ACM 1606
IEEE 783

CiteSeer 8596
ScholarGoogle 675000

However, there is still a lack of well defined Emergence Based Engineering
(EBE) methodologies. Before building such methodologies, we have to look
at what implies emergence into software development. Since there is multiple
definitions of emergence, we will build our study based on five papers3 that
match the following criteria:

• Emergence definition is the primary goal
• It contains a significantly different (and possibly contradictory) approach

from other selected papers

3 A previous paper [8] presents a deeper analysis of those emergence definitions.

www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007

“

“

J. Deguet et al.: Emergence and Software development Based on a Survey of Emergence Definitions,
Studies in Computational Intelligence (SCI) 56, 13–21 (2007)

Table 1

Based on a Survey of Emergence Definitions

Joris Deguet et al.

2 Emergence definitions, usual software development

and Emergence Based Engineering

Emergence Based Engineering can be defined as efficient methodologies to
build systems that will produce emergent (and useful) phenomena”. Conceiv-
ing Emergence Based Engineering approaches might not be an easy task, so
before going further, let see if we could apply the usual software development
methodologies to achieve that goal.

In general, how to design a system that will produce phenomena? In fact,
as software analysts and developers, we do not want to produce random phe-
nomena (i.e. random system behaviours) in general, but a specific set of well
defined phenomena specified through requirements. To obtain such phenom-
ena, we know, thanks to our understanding of how a computer handle a code,
that we have to design and code the system in a specific way. In other words,
we (need to) understand the causality between the code and the results of its
execution.

So, is it possible to use traditional design and coding approaches for Emer-
gence Based Engineering? We will in the following sections study that question
through definitions of emergence.

2.1 Detection and emergence

A first definition of emergence is provided by Bonabeau and Dessalles [4].
Given the two following notions:

detector defined as any device which gives a binary response to
its input”

relative complexity C(S|D,T) of a system S where D is a set of detectors
and T a set of available tools that allow to compute a
description of structures detected through D” which cor-
responds to the difficulty to describe the system given T
and D.

Emergence happens when between time t and t + ∆t, two events happen:

1. a detector Dk becomes activated
2. Ct+∆t(S|T, D1, . . . , Dk−1, Dk) < Ct(S|T, D1, . . . , Dk−1)

This property is likely to happen in a hierarchy of detectors when an
upper level entity summarizes states of a lower level. Thus emergence is the
apparition of a synthetic entity.

One widely shared feature of emergence definitions is the existence of lev-
els. Bonabeau and Dessalles do not assume levels a priori in the definition but
suggest that this is a condition sine qua non for the complexity discontinuity
to happen.

No assumption is made about the system under detection, therefore one
can apply this criterion on both artificial and natural systems as long as
detection is possible.

14

“

“

“

Emergence and Software development

Emergence Based Engineering’s Implications

Usual software development assumes that the expected phenomena produced
;

in order to design and write that code. Here, we cannot predict the nature
of the phenomena statically, but by detectors that can be used only after
coding of the system, at runtime. . . Therefore, usual software development is
not suited to design systems that produce emergent phenomena as defined by
Bonabeau and Dessalles.

2.2 The emergence test

The first definition focused on an observer modelled by a detection apparatus
made emergence somehow subjective” as the complexity measure depends
on this apparatus. However, once the observer is defined, emergence only
depends on the perceived behaviour. The emergence test [22, 21] introduces
the consideration of the system’s design in addition to its behaviour.

This emergence test involves a system designer and an observer (possibly
the same person). Then if the following three conditions hold, the emergence
tag is conferred:

Design The system has been constructed by the designer by describing
local elementary interactions between components in a language
L1

Observation The observer is fully aware of the design, but describes global

behaviour and properties over a period of time, using a language
L2

Surprise The language of design L1 and the language of observation L2 are
distinct, and the causal link between the elementary interactions
programmed in L1 and the behaviours observed in L2 is non-

obvious to the observer, who therefore experiences surprise.

We can consider Bonabeau and Dessalles’ D and T as words and syntax
of an observation language L2.

The introduction of the design language L1 has two important conse-
quences:

1. Emergence happens between the design and the observation. This defines
a design-to-behaviour emergence.

2. Existence of L1 restricts the application of this criterion to artificial sys-
tems.

Emergence happens when observation and design appear loosely coupled to
the observer.

In the field of decentralized artificial intelligence, Demazeau and Müller [11]
have made a similar distinction between internal and external descriptions of
agents where internal description refers to the real architecture of an agent
and external description refers to its externally perceived behaviour.

15

“

by the software under development can be predicted directly from the code

Joris Deguet et al.

Emergence Based Engineering’s Implications

Classical software engineering requires that the designer of a system coded
in language L1 can predict the future behaviour of its system, described by
language L2 (used to express the requirements of the system). This is in
contradiction with the emergence test as L2 is not likely to be both predictable
and surprising. Also, since emergence happens between the design and the
observation”, it is de facto not possible to conceive an emergent phenomenon
during the design phase. . . Then again, classical software development is not
suited to design emergent behaviours.

2.3 Simulation emergence

Making the parallel between intelligence and emergence as subjective notions
defined by tests can lead to controversy. One answer could be to consider
that emergence happens when a large number of scientists agree that it does.
Another answer is to make the definition objective. Simulation emergence is
such an attempt, focused on the simulation domain.

In Darley [7] we find this definition:

A true emergent phenomenon is one for which the optimal means of
prediction is simulation.”

The author defines two means of prediction depending on n the size of a
system:

• s(n): the optimal amount of computation required to simulate a system,
and arrive at a prediction of the given phenomenon”.

• u(n): stands for deeper level of understanding”, the way we try to avoid
computation by a creative analysis”, u(n) is the amount of computation
required by this method.

Then the system will be considered as emergent iff u(n) ≥ s(n) i.e. direct
simulation is optimal relative to the amount of computation” measure.

The key issue is to understand what a simulation is. Among all the ways to
derive the phenomenon in a computable manner, some are simulations, others
are shortcuts”. Then optimality of simulation is equivalent to the absence of
shortcuts”.

An interesting point is that both authors address the question of emer-
gence’s decidability:

• In Bedau’s formulation: One might worry that the concept of weak emer-
gence is fairly useless since we generally have no proof that a given macro-
state of a given system is underivable without simulation.”

• With Darley’s words Can we determine, for a given system, whether or
not it is emergent ?”.

If we reformulate as the global behavior is optimally obtained by running
a system made of interacting micro agents”, it provides a natural way to apply
the definition to multi-agent based simulations.

16

“

“

“

“
“

“

“
“

“

“

“

Emergence and Software development

Emergence Based Engineering’s Implications

As already said in the Detection and emergence” section, usual software
development assumes that the expected phenomena produced by the software
under development can be predicted directly from the code. Here again, since
a true emergent phenomenon is one for which the optimal means of prediction

is simulation”, the prediction of the behaviour is not possible directly from
the code (or at a too high cost), which is in contradiction with usual software
development.

2.4 Downward causation and emergence

Bedau has defined weak emergence with respect to the strong emergence based
on downward causation. This view is illustrated by Timothy O’Connor [20]:

to capture a very strong sense in which an emergent’s causal influence
is irreducible to that of the micro-properties on which it supervenes;
it bears its influence in a direct downward fashion, in contrast to the
operation of a simple structural macro-property, whose causal influ-
ence occurs via the activity of the micro-properties which constitutes
it.”

In order to achieve downward causation, Sawyer [23] proposes that:

1. as in blackboard systems, the emergent frame must be represented as a
data structure external to all of the participating agents”

2. all emergent collective structures must be internalized by each agent,
resulting in an agent-internal version of the emergent.”

3. This internalization process is not deterministic and can result in each
agent having a slightly different representation.”

We believe that L1 and L2 are of significant interest to clarify this issue.
It sounds natural to us to consider that everything with causal powers in an
artificial system lies in the L1 design language as it must live within algorithm.
Thus even if a data structure exists out of the agents at a macro level, it
belongs to the design language. Then L2 to L1 causal power is impossible.

Until here we might have mixed design/observation with micro/macro as
it is often the same: We conceive agents and we are very happy to show their
collective behavior to colleagues. However, it can be interesting to distinguish
the micro/macro from design/observation.

Sawyer’s definition is based on the existence of a macro entity external
to micro agents. This existence might provide causal powers to this entity on
agents. Therefore it allows a macro to micro causation we can consider as
downward as scale decreases. However, this is different from O’Connor’s view
as agents do not constitute the macro entity.

17

“

“

“

“

“

“

Joris Deguet et al.

Emergence Based Engineering’s Implications

Downward causation” applied to code and behaviour means that the code/
algorithm is determined by the behaviour, not the programmer/designer. In
others words, we give to the machine” a description of the expected behaviour
and we get some code. . . That is not usual software design process (again), but
kind of machine learning.

2.5 Grammar emergence

This last definition of emergence is specific as its scope is limited to systems
expressed in a particular grammar model. This model provides intuitive defi-
nitions for micro/macro and design/observation distinctions.

Kubik [16] has proposed an approach based on the whole is more than
the sum of its parts” as inspiration and grammars as a modelling tool.

The key idea is to define a whole” language and a sum of the parts”
language. From an initial configuration, a language is obtained by rewriting
using production rules. For a given set of rules Pi, the corresponding language
is noted L(Pi).

We can sum up the proposal as follows:

L(
⋃
i

Pi)︸ ︷︷ ︸
Whole

⊃︸︷︷︸
More

superimpositioni︸ ︷︷ ︸
Sum

(L(Pi))︸ ︷︷ ︸
Parts

We do not give the definition of the superimposition operator here.
Emergence is the case of a configuration being in the whole language but

not in the sum of parts. The first is obtained by putting all parts together
and deriving configurations, the last by deriving configuration for every part
separately and putting results together afterward. Putting together is the way
we get a macro entity from micro ones, and derivation is the way to get the
language (L2) we observe from the rules (L1) we designed.

When someone hears the whole is more than the sum of its parts”, he or
she might reply very fast that a system is composed of its parts and there-
fore cannot be more. To go beyond this triviality, Kubik’s elegant idea is to
switch micro/macro with design/observation. This makes things comparable
as Kubik defines his gap between two set of configurations (similar to L2 and
a L′

2), at the observation level.
Kubik’s idea is close to an informal definition of emergence from [10] stated

in the vowels framework [9] for multi-agent systems (MAS). This framework
suggests a description of such systems as agents (A) in their environment (E),
using interactions (I) forming an organization (O). Then the pseudo equation
from [10]:

18

“

“

“

“ “

“

Emergence and Software development

MAS = A + E + I + O + Emergence

can be seen as:
L(MAS)︸ ︷︷ ︸

Whole

⊃︸︷︷︸
More

∑
v∈vowels︸ ︷︷ ︸

Sum

(L(v))︸ ︷︷ ︸
Parts

with vowels as an alternate micro partition of a macro MAS.

Emergence Based Engineering’s Implications

The whole is more than the sum of its parts.” Usually the design of a complex
system is based on its decomposition by the designer to decrease the relative
complexity of its subparts. However, it seems that based on that emergence
definition when we decompose the system we add a new global complexity
that is bigger than what we get by designing the subparts.

Also, usual software development is strongly based on incremental testing
which consist in testing first small parts of code (unit testing), then larger
parts, then the complete integration of modules. Here, the general behaviour
of the system will radically be different than the behaviour of its parts, in-
validating their individual validations. So, again, usual software development,
which is heavily based on decomposition, is not well suited for the kind of
emergent” system we would like to produce.

3 What are the Emergence Based Engineering

alternatives?

Based on what we saw in the last chapter, it is not possible to achieve clas-
sical” emergent programming. To summarize that chapter, when a software
developer design and code a system that produces phenomena, if she under-
stands how such phenomena will be produced they cannot be qualified as
emergent. At the opposite if she does not know what she achieves, she also
does not know what behaviour her program will exhibit. . . In other words,
lack of causality understanding, which is recurrent in emergence definitions,
is in opposition with usual programming methodologies.

So, to design a system that will produce a given but also emergent phe-
nomenon, we have to employ different methodologies than usual software de-
velopment. The main idea is to implement or generate the system without
knowing how it works”. We can achieve that goal by at least three ap-
proaches:

• By imitating phenomena usually considered as emergent. For example,
by implementing the mechanisms of an ants foraging like algorithm” we
could expect the same global behaviour for our system, without having to
understand why that behaviour appears;

19

“

“

“

“

“

Joris Deguet et al.

• By using an incremental design process. First step, we implement a generic
system that will produce a behaviour. Based on such behaviour, we try to
adapt the system to make it producing a behaviour that will be closer to
the behaviour we ultimately expect. Then, we analyse again the produced
behaviour, try to adapt the system, etc. ;

• By developing self-adaptive systems. In that case, we could understand
how the (meta-)system will be able to modify itself to generate new be-
haviours when the context changes, but we cannot know in advance what
solutions it will produce.

4 Conclusion and perspectives

We have seen that Emergence Based Engineering needs new software de-
velopment approaches. To do so, we suggest to use 1) insights provided by
definitions and mechanisms suggested by widely accepted emergence exam-
ples (social animals, markets), or 2) machine learning techniques (off-line or
embedded).

However, still then remains a lot of issues. How to apply those approaches
so to generate in fact emergent phenomena? What will be the differences
between non emergent” machine learning and emergent” machine learning?

But before going further, we need an unified and computable definition
of computer science emergence” to validate the emergenceness” of such
methodologies. In [8], we have isolated a minimal setting, small as definitions
are significantly different.

By going through the definitions [8], we have noticed that emphasis is
usually put on the criterion proposed. However, for a computational definition,
we think the following points should be refined:

• How do we apply levels on existing systems?
• Can we tag a phenomenon as emergent in a computable way?

We might also explore to what extent a specific definition of emergence is
linked with definitions of self-organization or complexity and other terms we
usually meet in the field of complex agent networks.

Nonetheless, the reason we wanted a Emergence Based Engineering is the
much from little” idea that Holland has associated to emergence [15]. Indeed,

since software systems, in particular multi-agent systems, are going bigger and
more complex, reducing the size or the complexity of what is needed to build
those systems will become more and more essential. Therefore, Emergence
Based Engineering (EBE) sounds like an appealing research track.

5 Aknowledgements

We thank the French Government’s Direction Générale de l’Armement (DGA)
for supporting the research reported in this paper.

20

“ “

““

“

Emergence and Software development

References

1. P. Angeline. Advances in Genetic Programming, chapter Genetic Programming
and Emergent Intelligence. MIT Press, 1994.

2. A. Barabasi and R. Albert. Emergence of scaling in random networks. Science,
1999.

3. C. Bernon, M. Gleizes, S. Peyruqueou, and G. Picard. Adelfe, a methodology
for adaptive multi-agents systems engineering. In ESAW 2002, 2002.

4. E. Bonabeau and J. Dessalles. Detection and emergence. Intellectica, 2(25),
1997.

5. E. Bonabeau, J. Dessalles, and A. Grumbach. Characterizing emergent phe-
nomena. Revue Internationale de Systémique, 1995.

6. E. Bonabeau, G. Theraulaz, J. Deneubourg, N. Franks, O. Rafelsberger, J. Joly,
and S. Blanco. A model for the emergence of pillars, walls and royal chambers
in termite nests. Philosophical Transactions: Biological Sciences, 1998.

7. V. Darley. Emergent phenomena and complexity. In R. Brooks and P. Maes,
editors, Artificial Life 4, pages 411–416, 1994.

8. J. Deguet, Y. Demazeau, and L. Magnin. Elements about the emergence is-
sue, a survey of emergence definitions. ComPlexUs, International Journal on
Modelling in Systems Biology, Social, Cognitive and Information Sciences, 2006.

9. Y. Demazeau. Steps towards multi-agent oriented programming. In 1st Inter-
national Workshop on Multi Agent Systems, 1997.

10. Y. Demazeau. Voyelles. Technical report, CNRS, 2001.
11. Y. Demazeau and J. Muller. From reactive to intentional agents. In Decentralized

Artificial Intelligence 2. Elsevier, 1991.
12. J. Deneubourg, A. Lioni, and C. Detrain. Dynamics of aggregation and emer-

gence of cooperation. Biol. Bulletin, 2002.
13. J. Deneubourg, G. Theraulaz, and R. Beckers. Swarm-made architectures. In

Toward a practice of autonomous systems, 1992.
14. N. Gilbert. Emergence in social simulation. In Artificial societies: The computer

simulation of social life. UCL Press, 1995.
15. J. Holland. Emergence: From Chaos to Order. Perseus Books, 1997.
16. A. Kubik. Toward a formalization of emergence. Artificial Life, 9, 2003.
17. G. Lewes. Problems of Life and Mind. Trubner and Company, 1874.
18. J. Mill. System of Logic. John W. Parker, 1843.
19. J. Muller. Emergence of collective behaviour and problem solving. In ESAW,

2003.
20. T. O’Connor. Emergent properties. American Philosophical Quaterly, 1994.
21. E. Ronald and M. Sipper. Surprise versus unsurprise: Implications of emergence

in robotics. Robotics and Autonomous Systems, 2001.
22. E. Ronald, M. Sipper, and M. Capcarrère. Design, observation, surprise! a test

of emergence. In Artificial Life 5, pages 225–239, 1999.
23. R. Sawyer. Simulating emergence and downward causation in small groups. In

MABS, 2001.
24. R. Standish. On complexity and emergence. Complexity International, 2001.
25. L. Steels. Towards a theory of emergent functionality. In From Animals to

Animats SAB, 1992.

21

