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We analyze a model of interacting agents (e.g. prebiotic chemical species) which are
represented by nodes of a network, whereas their interactions are mapped onto directed
links between these nodes. On a fast time scale, each agent follows an eigendynamics
based on catalytic support from other nodes, whereas on a much slower time scale the
network evolves through selection and mutation of its nodes-agent. In the first part of
the paper, we explain the dynamics of the model by means of characteristic snapshots
of the network evolution and confirm earlier findings on crashes and recoveries in the
network structure. In the second part, we focus on the aggregate behavior of the network
dynamics. We show that the disruptions in the network structure are smoothed out, so
that the average evolution can be described by a growth regime followed by a satura-
tion regime, without an initial random regime. For the saturation regime, we obtain a
logarithmic scaling between the average connectivity per node 〈l〉s and a parameter m,
describing the average incoming connectivity, which is independent of the system size
N .
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1. Introduction

Many evolutionary processes in physical, biological or economic systems involve

elements of self-reproduction and catalytic interactions. In his pioneering work,

Eigen3 pointed out their relevance for the prebiotic evolution of macromolecules,

which leads to the theory of the hypercycle (see also Ref. 4). The hypercycle can be
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seen as a paragon of a network of cooperating agents7 (e.g., chemical or biological

species), which counterbalances the effect of aggressive self-replication. While the

latter just leads to the survival of only one species — “survival of the fittest” —

the dependence on catalytic interaction with other species also ensures the sur-

vival of the others and, hence, a coexistence of agents with very different “fitness”

levels.

Recently, the hypercycle concept has been investigated in a modified setting,

which combines the original idea of catalytic interactions with an external dynamics

of the network representing the interaction structure. Inspired by earlier work5,26

Jain and Krishna9 have focussed on the emergence of so-called autocatalytic sets

(ACS) among agents, which do not self-replicate individually, but only replicate by

means of the help of others. An ACS is then a cooperative structure, where different

agents interact in such a way that the links representing these interactions form a

closed cycle in terms of the network structure. Once an ACS appears, it boosts the

replication of the agents involved, which leads to a larger growth or “output” of

those agents involved in the ACS. It further allows other agents not directly part

of the ACS but only linked to it, to still benefit from it as freeloaders.

Because such a catalytic replication dynamics eventually leads to a stationary

state, Jain and Krishna9 have added a disturbance of the interaction network in

terms of a so-called “extremal dynamics”.1 There, the least performing agent, i.e.,

the one with the lowest output, is — together with its links to other agents —

replaced by a new agent that is linked to the existing interaction network in a

random way. This network dynamics occur on a much slower time scale compared

to the agent dynamics itself. It ensures (i) that the dynamics of the system of agents

does not get stuck in an equilibrium state, and (ii) may allow for “evolutionary”

scenarios towards a better performance of the whole system.

Our work, discussed in the following, is based on the model of Jain and Kr-

ishna (JK) described above (see also Ref. 10). In Sec. 2 we explain the dynam-

ics and our numerical implementation of the JK model in more detail. In Sec. 3

we reproduce some important features of the model behavior, such as the emer-

gence of the ACS and the crashes and recoveries in the network structure, by

means of computer simulations that elucidate the network evolution. In Sec. 4 we

extend our investigations to the aggregate behavior of the system, which to our

knowledge was not investigated before. In particular, we show that the crashes

and recoveries in single network realizations are smoothed out, so that the av-

erage evolution can be described by a saturation dynamics. We further obtain,

by means of computer simulations, a logarithmic scaling function for the average

connectivity per node dependent on the average incoming connectivity (which is

a measure for the catalytic interaction). In Sec. 5 we summarize these findings

and point to further interesting extensions of the model. In particular, we already

mention the relation to recent network models for social and economic applica-

tions.8,12,14,18,22
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2. The Model

2.1. Population and network dynamics

The model discussed in the following was originally developed in the context of the

“origin of life problem”: the observation that something as structurally complex as

a living cell was able to form, parting from a random mix of chemical components

in a prebiotic “broth”3,26 on earth four billion years ago.

For a modeling approach, we consider a set of N prebiotic chemical species, each

of them characterized by a population yi ≥ 0 (i = 1, . . . , N). The dynamics of the

variables yi shall be governed by the following equation:

ẏi =

N
∑

j

cijyj − φyi . (1)

φ is assumed to be a constant dilution flux, resulting, e.g., from a natural movement

of raw materials out of the system (say through flood or tides). The cij are the

kinetic coefficients that describe the replication of species i resulting from binary

interactions with other species j. For simplicity, only cij ∈ {0, 1} is assumed. cij = 1

represents a growth process of species i due to the presence of species j that acts

as a catalysor only. Negative values of cij would indicate inhibitory processes that

are neglected here. Further, self-replicating species are not allowed, which means

cii = 0 for all i.

In a first approximation φ can be set to zero. This results in a linear dynamical

system of coupled first-order differential equations in the populations yi. In vector

notation this reads:

ẏ = C · y (2)

where C is the matrix containing all kinetic coefficients cij . The solution of the set

of Eq. (2) depends on the properties of the matrix C and has the general form:

y(t) = eCty0 (3)

representing an exponential increase in time of the population vector. To avoid the

problem of exploding populations we consider the vector of relative populations

xi =
yi

∑

j yj

;
∑

j

xj = 1 . (4)

Rewriting Eq. (1) by means of Eq. (4) gives us the relative population dynamics :

ẋi =
N

∑

j

cijxj − xi

N
∑

k,j

ckjxj . (5)

Equation (5) has the property of preserving the normalization of x. Henceforth we

will always refer to the population vector as x and refer to the corresponding pop-

ulation dynamics of Eq. (5). The dilution flux φ disappears in this transformation
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Fig. 1. A directed graph consisting of 4 nodes (species) and 5 links (interactions). Left: the
corresponding interaction matrix.

(as long as it is assumed to be equal for every species) which gives us another reason

to set it arbitrarily to zero in Eq. (1).

So far, we have discussed the dynamics of interacting species, where the inter-

action is described by the matrix C that contains the elements cij in terms of 0

and 1. This dynamics can be interpreted as a catalytic network 11,13,20,21 where the

different species i are represented by nodes, and their interaction by links between

these nodes, cf. Fig. 1. More precisely,

cij =

{

1 → species j catalyzes species i

0 → nothing happens
(6)

The matrix containing the catalytic interactions cij is called the adjacency ma-

trix. The network of interactions is modeled on a directed graph, which means that

the adjacency matrix is not generally symmetric: cij 6= cji. It should be noted that

the matrix C represents a linear dynamical system in Eq. (1), and, simultaneously

a directed graph of interactions. This means that C acquires both structural and

dynamical significance.

So far, the dynamics given by Eq. (5) are considered for a fixed configuration

of the matrix C, which translates into a fixed network structure. In the following,

we want to introduce a dynamics for the network itself, which means an additional

element in our model, where the population dynamics is given by Eq. (5). In agree-

ment with Ref. 9, our main assumption here is that the two different dynamics, the

population dynamics and the network dynamics, occur on two different time scales.

More precisely, it is assumed that the population dynamics is fast and relaxes into a

quasi-stationary state (or attractor) soon, whereas the network dynamics occurs on

a much slower time scale, and only happens after the population dynamics has

reached its attractor. Hence, we are able to separate these two different time scales

in our computer simulations, described below, and will measure time as “network

time”, i.e., in steps n of the network modification.

For the network dynamics, we assume that the initial network of chemical re-

actions is a randomly generated graph: each cij (i 6= j) equals 1 with probability

p and 0 with probability (1 − p). Each node contributes on average m = p(N − 1)
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links to the network, and average total connectivity is N · m. The parameter m is

called average incoming connectivity.

The rules for the network evolution are the following:

• After a given time T at which the population dynamics Eq. (5) is expected to

have relaxed to its attractor configuration, the least fit species, i.e., the one with

the smallest xi(T ), is determined and removed from the network along with all

its links. If there are different species with the same smallest values, then from

these one species is chosen at random.

• A new species is added to the network with some small initial population x0.

The new species will take the place of the old one (it gets the same label), and is

randomly rewired to the network with the same probability p for establishing links

that have been used in the initial network distribution. Incoming and outgoing

nodes are statistically similar.

• Finally, the vector of relative populations x is re-normalized with the new node.

These rules for the network evolution are intended to capture two key features:

natural selection, in this case, the extinction of the weakest; and the introduction

of novelty. Both of these can be seen as lying at the heart of natural evolution.

The particular form of selection used in this model has been inspired by the “ex-

tremal dynamics” of Bak and Sneppen.1 In the usual setting of a mutation/selection

scheme, one has to realize that the two parts of the dynamics act on different levels:

selection occurs on the level of the agents — i.e., removal of the least fittest prebi-

otic species, whereas mutation occurs on the level of the agent interaction, i.e., in

terms of a random rewiring of a new node.

2.2. Numerical implementation

For the numerical implementation we have to deal with two different time scales of

the model, introduced above. Here, we exploit the fact that the population dynamics

occurs on a short time scale and relaxes fast into an attractor, whereas the network

dynamics occur on a much slower time scale and can thus be separated.

The key insight leading to the numerical implementation of the population dy-

namics is to see that the fixed points of the system described by Eq. (5) correspond

to the eigenvectors of the adjacency matrix C. Since C is a real non-negative ma-

trix, the Perron–Frobenius Theorem tells us that the largest eigenvalue of C is real

and positive.2 Furthermore, the corresponding Perron–Frobenius eigenvector is the

only eigenvector with purely positive entries, and represents the unique asymptoti-

cally stable attractor of the population dynamics. One way to see this is to imagine

our initial population vector x0 as a linear combination of all eigenvectors of C.

Then Eq. (2) tells us that for large times t, the component of x0 corresponding to

the largest eigenvalue will dominate all others as x(t) = eλ1txλ1
where xλ1

is the

Perron–Frobenius eigenvector.
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In order to find the attractor configuration of the population dynamics, we

adopt the power method, meaning that the vector of initial populations x0 can

be expanded in terms of eigenvectors of C: x0 = a1x(λ1) + · · · + aNx(λN ) with

|λ1| > |λ2| · · · > |λN |. Then

Cx0 = a1λ1xλ1
+ · · · + aNλNxλN

(7)

and repeated iteration of this process yields

Ckx0 = ak
1λ

k
1xλ1

+ · · · + ak
Nλk

NxλN
. (8)

It is clear that for large k, the largest eigenvalue will dominate all others and

thus Ckx0 will approach xλ1
. One obvious problem persists though: if C has an

eigenvalue that is equal in magnitude to λ1 but with the opposite sign, then this

method will give us incorrect results if the number of iterations is even. To be certain

that we have reached the eigenvector corresponding to the positive eigenvalue, we

add a N ×N unit matrix to C. This increases all the eigenvalues of C by one while

leaving the corresponding eigenvectors unchanged. In this way we can be sure that

the attractor we have reached is the correct one.

We point out that this method allows us to find the attractor configuration

of Eq. (5) directly by exploiting the algebraic properties of the adjacency matrix

C. This greatly reduces the costs in computation time and resources compared to

a standard numerical method for solving systems of differential equations like the

Runge–Kutta method. A number ∼ N of iterations usually suffices to get reasonably

close to the attractor. The number of operations for reaching the attractor is thus

of order O(N2).

The numerical implementation of the network dynamics is straightforward with

respect to the rules given in Sec. 2.1. At each time step n on the network time

scale, we have to determine the smallest element, say j, from the population vector

characterizing the attractor (using standard algorithms). The respective node is

rewired at random with a linking probability p. This happens in two stages: first,

node j attempts to link itself to all other nodes i 6= j, which determines the outgoing

links, secondly, the incoming links of node j are set by each node i 6= j attempting to

link to j. The rewiring of node j, which involves ∼ 2N steps, changes the adjacency

matrix C that will then feed back to the population dynamics. That is, after the

rewiring, we have to determine the new attractor of the population dynamics as

explained above. Since we know that the population dynamics always converges to

the unique attractor, the initial conditions for that process do not matter, so we

always choose x0 as the starting point.

For the computer simulations discussed in the following, the time scale of the

model is given by the time scale of the network dynamics only, i.e., abbreviated by

n.
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3. Results of Computer Simulations

3.1. Evolution of network structure

In Figs. 2–4 we show, by means of single snapshots, three phases of development

of the network according to the dynamics described above. In the example given,

the network consists of 100 nodes and was generated using an average random

connectivity value m = 0.25. The structural properties in each of these phases will

be discussed in the following chapters.

The first of the graphs, Fig. 2, depicts a typical network in an early stage of

evolution. The network is sparsely connected and contains many singletons. Typical

structures are long chains and simple trees. The nodes located at the end of the

longest chains will usually dominate all other nodes population-wise. In the second

graph, Fig. 3, evolution created a new kind of structure: a cycle consisting of six

nodes (dark nodes in the picture). Because they collectively catalyze each other,

the members of the cycle will always have non-zero population in the attractor

configuration. Thus, as long as there are singletons or separate chains and trees

in the system, members of the cycle remain ”immune” to selection. This immunity

extends to all sets of nodes that have an incoming link coming from the cycle. These

nodes form a parasitic periphery around the core formed by the cycle. Finally,
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Fig. 2. Network structure in the random phase (n = 800): several chains and trees exist, but no
supporting structure (i.e., autocatalytic set) has yet emerged. Parameters: N = 100, m = 0.25.
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the graph in Ref. 4 shows a fully connected network. The network is organized

around a complex core consisting of several cycles, from which the periphery sprouts

outwards. In this configuration, every node has at least one incoming link from some

other node in the network.

3.2. The autocatalytic set

The cycle of nodes present in Fig. 3 together with all the chains and trees parting

at some member-node of the cycle is an example of an autocatalytic set or ACS. An

ACS is defined as a subgraph whose every node has at least one incoming link from
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(dark nodes) consists of a six-cycle, which has different “parasitic” chains (e.g., the chain of nodes
32, 64, and 7. Parameters see Fig. 2.
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Fig. 4. Network structure after the ACS spans the whole graph (n = 1290): the core has been
expanded as well, but the original six-cycle still exists. Parameters see Fig. 2.

another node that belongs to the same subgraph. The simplest ACS is a two-cycle.

The following correspondences between ACSs and λ1 have been found:9

(i) An ACS always contains a cycle.

(ii) If a graph has no ACS then λ1 = 0 for that graph.

(iii) If a graph has an ACS then λ1 ≥ 1.

(iv) If λ1 ≥ 1, then the subgraph spanned by nodes i for which x(λ1),i > 0 is an

ACS.

Cycles and structures of interlocking cycles represent irreducible subgraphs. The

Perron–Frobenius eigenvalue of a network is equal to the Perron–Frobenius eigen-

value of its dominant irreducible subgraph. The irreducible subgraph of a network

that gives rise to the largest λ1 is called the core of the network (or alternatively

the core of the dominant ACS). The importance of the ACS in this system is the

following: once this structure appears, all the member nodes of the ACS have non-

vanishing populations in the attractor. Because of that, they dominate all other

nodes that are outside of the ACS. The ACS is thus robust against random muta-

tions of its members. A small ACS appearing randomly in this system acts like a

seed for the emerging network. It “attracts” the other nodes, since these can survive
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only by becoming members of the ACS. Finally, the fully developed network at the

end of the evolution consists of a single, giant ACS.

3.3. Network connectivity

In order to quantitatively characterize the network evolution, the average connec-

tivity per node in the network is a useful observable. We denote this observable by

〈l〉 = l/N , where l is the total number of links in the network. Typically we will

choose m to be in the range (0, 1), so in the early phase of network evolution the

graph is very sparse. For example, a network consisting of 100 nodes and m = 0.25

will have on average 2 · m = 50 links.

Figure 5 shows three typical runs for the evolution of 〈l〉 over network time n,

which confirm the findings of Ref. 9 (Fig. 1). During each time-step, the network

undergoes a transformation due to the selection and random re-wiring of a node.

In effect, we have a different network at every step, and we count and plot the

total number of links in each network divided by the number of nodes. The runs

exhibit three distinct phases. The graphs in Figs. 2–4 were chosen to exemplify each

of these phases. In the first phase (random phase) the number of links hovers around

the average expected number of 2N · m. This phase is followed by one exponential

increase in the number of links (exponential phase). Finally, the number of links

stabilizes at a much higher level (steady phase). A fundamental structural change

in the network occurs between the random phase and the exponential phase: the

emergence of an ACS. Once it appears in the network, it remains there until one by

one all remaining nodes link themselves into the ACS and it eventually spans the

whole graph. Only then will members of the ACS themselves be eligible for selection

and mutation. The steady phase is reached when all the nodes in the network are
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Fig. 5. Average number of links, 〈l〉 evolving over network time, n, for three values of the pa-
rameter m. System size N = 100.
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members of the ACS. It is characterized by the fact that the mutating node has, on

average, the same total number of links (namely 2m) as its replacement. Once the

ACS engulfs the whole set of nodes, its members become eligible for selection. When

a keystone species, i.e., a species critical to the support of the system, happens to

be selected,9 the network loses its supporting structure and larger crashes occur.

In Fig. 5 that is the case at n ≈ 5800 for the m = 0.12 run, and at n ≈ 2000 and

n ≈ 5000 for the m = 0.25 run. In longer runs, the number of crashes of this sort

can be quite substantial, including crashes that completely destroy the ACS forcing

the system to “start over”. It is clear that for any m > 0 an ACS will always emerge

eventually. The interesting point is that, although we start from a random graph

and introduce random mutations, the network resulting from the graph-spanning

ACS is highly non-random. We repeat here that the probability of a graph with N

nodes and an average of m links per node being an ACS is given by:10

P =

[

1 −

(

1 −

[

m

(N − 1)

])N−1
]N

(9)

which declines exponentially with N when m ∼ O(1).

4. Network Structure at the Aggregate Level

We have seen in Sec. 3 that the typical simulation run in this model exhibits three

distinct phases (Fig. 5): the random phase, the growth phase, and the saturation

phase. Over long time scales, these patterns tend to repeat themselves, as fully

developed networks (that is, graph-spanning ACSs) undergo core shifts and other

transformations10 that destroy the network supporting structure. This means that,

despite these characterizations, the long term behavior of a single run is inherently

random: the next big crash remains impossible to predict. We will refer to these

individual runs as “microscopic” realizations. Opposed to that, in the following we

will look at this system from a “macroscopic” point of view. This means that we

will be interested in the aggregate behavior of a system characterized by its param-

eter m when the simulation is repeated multiple times. Single runs ranging from

8 · 103 to 106 time steps have been created, and ensembles of 100 runs analyzed.

Each run starts from different initial conditions and random numbers. Thus, the

computational resources used in these simulations were considerable, making simu-

lations employing more than 500 nodes too time-consuming to be realized. The data

points for every instant in simulation time are averaged over the 100 microscopic

runs. As we vary the system size N , the linking probability p is rescaled inversely

to N so as to keep the average incoming connectivity m = p · (N − 1) constant.

Figure 6 depicts a set of macroscopic runs for different m values and varying system

size.

To save computing time and resources, we adjusted the network evolution time

n to our needs in each case. Thus the N = 50 system evolves over 8000 time steps,

while the N = 500 needs 40000 time steps to develop. To summarize our findings
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Fig. 6. Average connectivity per node 〈l〉 after averaging over 100 runs. The different graphs
represent different system sizes. top left: N = 50. top right: N = 100. bottom left: N = 200.
bottom right: N = 500. Evolution time is chosen according to system size.

for the aggregate level, (i) we see that all of the curves are smooth and that none

exhibit the kind of abrupt break-in that we observe in the microscopic runs. This

represents the average evolutionary process of this system. That is, after the period

of exponential growth of the average connectivity per node, the systems settle into

a statistically stable condition of high average connectivity. These observations are

valid for all of the studied system sizes and all values of m. We emphasize, (ii) that

the transient is markedly different in the macroscopic run. For m > 0.15 the initial

random phase is almost in-existent in all systems. Instead, they enter the growth

phase almost immediately, reaching saturation faster for larger m. The random

phase is visible for smaller values of m only. Eventually, we note (iii), that for large

m the saturation value of 〈l〉 is independent of system size N . That is, this system

scales well with the number of nodes. In the limit

lim

{

N → ∞

p → 0

}

p · (N − 1) = const = m (10)

〈l〉 is dependent only on m as we will see below. In Fig. 7 we plotted the averaged

values of 〈l〉 in the saturated regime as a function of m. We call this new variable

〈l〉s. The values used here were computed by taking the average of 〈l〉 from every

curve in Fig. 6 starting from a point at which saturation was deemed to have been
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Fig. 7. Saturated average connectivity per node 〈l〉s dependent on average incoming connectivity
m. System sizes are the same as in Fig. 6. The plots are fitted by the logarithmic scaling of Eq.(11).

reached. We then used a least squares method to fit a function to the data points

that best approaches the qualitative shape of the data. As one can see from the

plots, we find that 〈l〉s is a slow, monotonically increasing function of m, that can

be well approximated by a function of the form

〈l〉s(m) = a · ln(m) + b (11)

with the constants

a = 2.06± 0.021 ; b = 0.66± 0.042 .

That is, as a new finding observed on the aggregate level, we obtain a logarithmic

scaling of the saturated average connectivity per node, 〈l〉s with m. Again, this

scaling is independent of system size N : both coefficients a and b vary only very

slightly with N .

5. Summary and Conclusion

In this paper we have analyzed a model of network evolution that was recently

introduced by Jain and Krishna9,10 as a combination of a hypercycle dynamics for

the nodes and an external network dynamics for the links representing the catalytic

interactions between the nodes. The basic concepts of the model are presented in

Sec. 2. The population dynamics is described by Eq. (4), while the directed network

of the species that catalyze each other are considered in the adjacency matrix C

in Eq. (6). The evolution of the network is then governed by the natural selection

of the weakest species and the introduction of novelty by new nodes. As such a

coupling of population dynamics with network dynamics is realized. In the first

part of the paper, we have investigated the evolution of the network by means

of single runs. The numerical implementation of the model is presented in some
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detail in Sec. 2.2. The crucial part of the Perron–Frobenius eigenvectors of the ad-

jacency matrix C in finding the attractor population for every network update step

is emphasized. This option is used in the power method based on Eq. (8). In an

iterative procedure the weakest species of the attractor is eliminated and replaced

with a newly linked node. As a result of these computer simulations, Figs. 2–4

elucidate the structural changes of the network by means of different snapshots.

They show typical cases of the phases of development of the network. Starting

from an initial random phase the network processes to highly structured configura-

tions. Complex structures evolve that can be characterized by Autocatalytic Sets

(ACS). Our simulations validate the spontaneous occurrence and time evolution

the ACSs described in Ref. 9. Additionally we have computed the total number of

links l over network evolution time n for different incoming connectivities m. In

agreement with the findings in Refs. 9 and 10 our simulations in Fig. 5 show an

increase of l for higher values of m as well as crashes and recoveries of the evolving

ACSs. The main new results are presented in Sec. 4, where the aggregate network

dynamics is investigated. We have raised the question of how the average connec-

tivity per node 〈l〉, is influenced by varying values of the incoming connectivity

m and therefore analyzed multiple simulation runs. First we observed no abrupt

break-ins in the average connectivity 〈l〉. This observance is opposite to the crashes

we have seen for the supporting structures, the ACSs, during network evolution.

After an exponential growth 〈l〉 saturates into a stable condition of high average

connectivity. Second the saturation is reached for higher values of m. And third

we have found a logarithmic scaling of 〈l〉 in Eq. (11) on m for all system sizes

N . Furthermore the saturation value of 〈l〉 is independent of N . There exist dif-

ferent ways to extend the basic model discussed in this paper. In Ref. 19 we have

studied the impact of a selection mechanism on the performance of the system and

its network structure by introducing a selection temperature and a performance

threshold selection. We already found evidence for a critical value of this selection

threshold for the global performance of the system. Moreover the threshold plays

an important role in the size and life span of the core of the ACS. Other future

investigations of the model may involve the emergence of hierarchical organization

resulting from the network evolution. Hierarchies are already discussed for differ-

ent network topologies16,23,25 and are also investigated in directed networks.17,24

The model discussed in this paper is seen as an agent-based model, where each

agent represents a prebiotic chemical species. Agents are assumed to be nodes of a

network, where the links represent the catalytic interactions between the species.

Because each node follows a deterministic eigendynamics, Eq. (5), the model can

also be regarded as a system of coupled differential equations. This, however, ig-

nores the fact that the links (i.e., the couplings between the equations) change on

a second time scale in a non-predictable way, because of the removal of the least

fittest node and the random rewiring of a new node. Thus, from a methodological

viewpoint, we rather address the model as an agent-based one. This perspective

may hold regardless of the question whether the agents represent the population of
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a species, or individual entities, such as single companies in an economic setting. In

fact, the catalytic network model discussed here, despite its simplicity, may serve as

a good starting point for the study of the relationship between network structure

and dynamics in several fields of research, in particular the economic and social

domain.8,14,18,22 For example, catalytic or hypercycle interaction can be used to

model skills in economic organizations,15 or exchange of knowledge in innovation

networks.12 Using some more realistic rules for rewiring the network, one can then

observe the emergence of a number of smaller ACS12 instead of just one giant ACS

in the current model. This affects the breakdown probabilities of the network con-

sideraby. Cooperative networks related to the ones obtained from this model are

also present in firm interactions. It was shown, for example, that financial systems

form cooperative networks of ownership relationships with scale free properties.6
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