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1 Self-Organization of Networks

Self-organization denotes “the process by which individual subunits achieve, through their coop-

erative interactions, states characterized by new, emergent properties transcending the properties

of their constitutive parts.” (Biebricher et al., 1995) Whether these emergent properties occur

or not depends of course not only on the properties of the subsystems and their interactions,

but also on suitable external conditions, such as global boundary conditions, the in/outflux of

resources (free energy, matter, or information). A description that tries to include these condi-

tions is given by the following heuristic definition: “Self-organization is defined as spontaneous

formation, evolution and differentiation of complex order structures forming in non-linear dy-

namic systems by way of feedback mechanisms involving the elements of the systems, when these

systems have passed a critical distance from the statical equilibrium as a result of the influx of

unspecific energy, matter or information.” (Teichmann and Wilke, 1996)

In this sense, the self-organized structure formation can be considered as the opposite of a hier-

archical design of structures which basically proceeds from top down to bottom: here, structures

are originated bottom up, leading to an emerging hierarchy, where the structures of the “higher”

level appear as a new quality of the system (Darley, 1994; Haken, 1978). For the prediction of

these global qualities from local interactions fundamental limitations exist which are discussed

e.g. in chaos theory. Moreover, stochastic fluctuations also give unlikely events a certain chance

to occur, which in turn affects the real history of the system. This means, the properties of

complex systems cannot be determined by a hierarchy of conditions, the system creates its com-

plexity in the course of evolution with respect to its global constraints. Considering that also the

boundary conditions may evolve and new degrees of freedom appear, coevolutionary processes

become important, and the evolution may occur on a qualitatively new level.

The self-organization of network structures, i.e. the emergence of links between a set of nodes

is of crucial importance in many different fields. In electronic engineering, for instance, one

is interested in the self-assembling and self-repairing of electronic circuits (Cui and Lieber,

2001; Mange and Stauffer, 1994; Wang, 2001), while in biology models for the self-wiring of

neuronal networks are investigated (Segev and Ben-Jacob, 1998, 2000). On the social level, the

self-organization of human trail networks between different destinations is a similar problem

1This paper was finished December 2005
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(Helbing et al., 1997). Also the establishment of connections on demand in telecommunication

or logistics is related to the problem discussed here.

In general, the self-organized formation of a network is rather different from drawing lines

between a set of nodes. Often no a priori information about the network structure is provided,

i.e. the network has to self-organize itself not only regarding the links but also regarding the

nodes. This is the case for instance if the nodes to be linked to the network are “unknown” in

the sense, that they first have to be discovered and only then can be connected.

A common biological example is the formation of a trail system in ants (cf also Secs. 6, 7) to

connect a nest to a set of food sources that first have to be found (Crist and Haefner, 1994;

Schweitzer et al., 1997). Such networks are known to be rather flexible and adaptive. After

food sources are exhausted, they are “disconnected” from the existing network, because they

are no longer visited and the respective trail is no longer maintained, but newly found food

sources can be linked to the existing network as well. Hence, adaptivity is a desirable feature

of self-organized networks. This means that new nodes can be linked to the existing network or

linked nodes can be disconnected from the network if this is required, e.g. by the change of some

external conditions.

Noteworthy, such a behavior should be not governed by a “supervisor” or “dispatcher”, it should

rather result from the adaptive capabilities of the network itself. In the self-wiring of neural

structures, for example, a neuron grows from the retina of the eye towards the optic tectum

(or superior colliculus) of the brain, without “knowing” from the outset about its destination

node in the brain. Hence it has to navigate through an unknown environment in order to detect

and to reach the appropriate area. It is known that gradients of different chemical cues play a

considerable role in this navigation process. They provide a kind of positional information for

the navigation of the growth cones (Gierer, 1983). But in the very beginning, this positional

information has to be generated interactively, and only in later stages may lead to established

pathways.

This points to the questions that shall be discussed in this chapter: Is it possible to link a set of

nodes without using preexisting positional information or any kind of long-range attraction of

the nodes? Can the process of generating positional information, i.e. the detection of “unknown”

nodes and the estabishment of chemical gradients, and the process of network formation, i.e.

the establishment of links between nodes, occur in parallel, on a comparable time scale, as a

process of co-evolution?

In the following, we will discuss a model where the generation of relevant information for estab-

lishing the links between nodes results from the interaction of many agents, i.e. subunits of the

system that are capable of performing some activities. Their collective interaction is based on

(indirect) communication, which also includes memory effects and the dissemination of infor-

mation in the system. The relevant (“pragmatic”) information that leads to the establishment

of the links then emerges from an evolutionary interplay of selection and reamplification. In the
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next section, we will introduce the general framework for modeling such processes, while in Secs.

3-7 two different applications of the model will demonstrate its suitability.

2 Brownian Agents

Recently, different computer architectures in distributed artificial intelligence have been devel-

oped to simulate the collective behavior of interacting agents (cf. for instance the Swarm project

at http://www.swarm.org/). However, due to their rather complex simulation facilities many

of the currently available simulation tools lack the possibility to investigate systematically and

in depth the influence of specific interactions and parameters. Instead of incorporating only as

much detail as is necessary to produce a certain emergent behavior, they put in as much detail

as possible, and thus reduce the chance to understand how emergent behavior occurs and what

it depends on.

Therefore, it would be feasible to have multi-agent systems (MAS) that can be also investigated

by means of analytical methods (from statistical physics or mathematics) – in addition to their

computational suitability. The concept of Brownian agents (Schweitzer, 2003) is one of the

possible approaches to serve for this purpose. It denotes a particular class of agents that combines

features of reactive and reflexive agent concepts. A reflexive agent has an (internal) model or

at least some knowledge about its environment that allows its to draw conclusions about some

certain actions in a given situation. The reactive agent, on the other hand, simply “reacts” to

signals from the environment without referring to internal knowledge. This signal-response type

of action implies the same reaction to the same signal. From this perspective, the reactive agent

is a rather simplex or minimalistic agent, while the reflexive agent is a rather complex agent.

The Brownian agent (Schweitzer, 2003) is more advanced than the reactive agent but not yet of

the internal complexity of the reflexive agent. It can be described by a set of state variables u
(k)
i .

The index i = 1, ..., N refers to the individual agent i, while k indicates the different variables.

These could be either external variables that can be observed from the outside, or internal

degrees of freedom that can only be indirectly concluded from observable actions. Important

external variables are u
(1)
i = ri, which denotes the space coordinate (mostly a vector in the

two-dimensional physical space), or u
(2)
i = vi, which is the individual velocity in the case of a

moving agent. Both are assumed as continuous variables.

The internal degrees of freedom, on the other hand, cannot be directly observed. They could

be continuous or discrete variables. For instance, the state variable u
(3)
i = θi ∈ {−1, 0,+1} may

distinguish between three different responses to certain environmental conditions or to incoming

information. For example, agents with θ = −1 may not be affected by a particular signal, while

agents with θ = +1 may respond to it. An important continuous state variable in the context

of Brownian agents is the internal energy depot u
(4)
i = ei, which determines whether agent i

may perform a certain action or not. This includes the assumption that all actions – be it active
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motion or communication or environmental changes – need to use “energy”. In general, this

term describes not just the physical free energy that is dissipated e.g. during active motion, it

intends to cover also other resources needed to perform a certain action.

Noteworthy, the different (external or internal) state variables can change in the course of time,

either due to impacts from the surrounding, or due to an internal dynamics. Thus, in a most

general way, we may express the dynamics of the different state variables as follows:

du
(k)
i

dt
= f

(k)
i + F stoch

i (1)

For the Brownian agents, it is assumed that the causes for the temporal change of ui may

be described as a superposition of deterministic and stochastic influences, imposed on agent i.

This picks up the ingenious idea first used by Langevin in early 1900 to describe the motion of

Brownian particles – and is basically the reason why this agent concept is denoted as Brownian

agent. A Brownian particle moves due to the impacts of the surrounding molecules whose motion

however can be observed only on a much smaller time and length scale compared to the motion

of the Brownian particle. Thus, Langevin invented the idea to sum up all these impacts in a

stochastic force with certain statistical properties.

For the Brownian agent, we will exploit Langevins idea in a similar manner, i.e. we will sum

up influences which may exist on a microscopic level, but are not observable on the time and

length scale of the Brownian agent, in a stochastic term F stoch
i , while all those influences that

can be directly specified on these time and length scales are summed up in a deterministic term

f
(k)
i . Such a distinction basically defines the level of coarse-grained description for the multi-

agent system. The “cut” may prevent us from considering too much “microscopic” details of the

MAS, while focussing on particular levels of description. The summed up stochastic influences

might result from a more fine-grained deterministic description – but instead of taking this into

detailed account, just some specific statistical (gross) properties are considered on the coarse-

grained level. Notheworthy, the strength of the stochastic influences may also vary for different

agents and may thus depend on local parameters or internal degrees of freedom.

The deterministic part f
(k)
i contains all specified influences that cause changes of the state

variable u
(k)
i . This could be non-linear interactions with other agents j ∈ N , external conditions

- such as forces resulting from external potentials, or the in/outflux of resources etc. or even an

eigendynamics of the system that does not depend on the action of the agents. In the example

of an ecosystem this eigendynamics may describe day/night or seasonal cycles, or the agent-

independent diffusion of resources within the system.

3 Basic Agent Model of Network Formation

In order to set up a Brownian multi-agent model for the formation of networks we need to specify

(i) the relevant state variables u
(k)
i and (ii) the dynamics for changing them, i.e. u̇

(k)
i . For the
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application considered, we may assume that each Brownian agent is characterized by three state

variables: spatial position ri, (discrete) internal state θi and (continuous) internal energy depot

ei. For the change of the agent’s position we may assume an overdamped Langevin equation:

dri

dt
= fi +

√
2εi ξi(t) (2)

The second term denotes the stochastic influences, where ξi(t) is white noise with 〈ξi(t)〉 = 0

and 〈ξi(t) ξj(t
′)〉 = δij δ(t − t′). The strength of the stochastic force εi could be in general an

individual parameter to weight the stochastic influences, this way it can for example measure

the individual sensitivity ηi ∝ 1/εi of the agent. The deterministic influences in the first term,

fi, are in the considered case assumed to result from the the (direct or indirect) interaction

between the agents, as specified below.

The internal degree of freedom θi(t) should have one of the following values: θi ∈ {0,−1,+1}.
Initially, θi(t0) = 0 holds for every agent. The variable θi can be changed in the course of time

by an interaction between the moving agents and the nodes. To be specific, we consider a two-

dimensional surface, where a number of j = 1, ..., z nodes are located at the positions r
z
j (cf.

Fig. 1). A number of z+ nodes should be characterized by a positive potential, Vj = +1, while

z− = z − z+ nodes have a negative potential, Vj = −1. We note explicitely, that the nodes

do not have any long-range effect on the agents, such as attraction or repulsion. Their effect is

restricted to their location, r
z
j .

Figure 1: Example of a regular distribution of 40 nodes on a lattice of size A = 100 × 100.

For the computer simulations, periodic boundary conditions have been used. z+ = 20, z− = 20.

{x} indicates nodes with a potential Vj = −1, {+} indicates nodes with a potential Vj = +1.

(Schweitzer and Tilch, 2002)

It is the (twofold) task of the Brownian agents, first to discover the nodes and then to link nodes

with an opposite potential, this way forming a self-organized network between the set of nodes.
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If an agent hits one of the nodes, its internal degree of freedom is changed due to the following

equation:

∆θi(t) =

z
∑

j=1

(Vj − θi)

∫

A

1

A
δ
(

r
z
j − ri(t)

)

dr (3)

The delta function is equal to 1 only for r
z
j = ri and zero otherwise. So, eq. (3) indicates, that

an agent can change its internal state, θi, only if it hits one of the nodes. Then it takes over the

value of the potential of the respective node, Vj, which means θi remains constant if Vj = θi,

and θi → Vj , if Vj 6= θi. We note that the probability for a (pointlike) agent to hit a (pointlike)

node is almost vanishing. However, the computer simulations discussed in the following section

are carried out on a discrete lattice, so the agent and the node both have a finite extension, in

which case Eq. 3 makes sense.

Eventually, we have to describe the dynamics of the internal energy depot, ei, of the agent. In

this specific application, it is assumed that every time tin+, tin− when Brownian agent i hits one

of the nodes n+ or n− its internal energy depot ei is filled up to a maximum value emax. Then,

the agent is in an active state that allows for certain actions. In our case, the agent is able to

produce a chemical, either component (−1) or (+1). Which kind of chemical is produced depends

on the actual value of the internal parameter θi(t) of the agent as specified below, whereas the

amount of chemical produced depends on the actual value of the internal energy depot ei(t).

For simplicity, we assume for the amount of the production rate

si ∝ ei → si(θi, t) = β ei(t) (4)

The internal energy depot can only be charged when hitting one of the nodes and can be filled

only to a maximum emax. On the other hand, it is decreased by the production of the chemical.

Hence, in the general balance equation

d ei

dt
= qi(ri, t) − pi(ri, t) (5)

the space and time dependent influx of energy into the internal depot is given by:

qi(ri, t) =
(

emax − ei(t)
)

δ(rz
j − ri) δ(t − tin±) (6)

wheras the “outflux” of energy from the agent’s depot, pi(ri, t), reads accordingly:

pi(ri, t) = si(θi, t) (7)

We note that in previous investigations (Ebeling and Schweitzer, 2003; Ebeling et al., 1999;

Schweitzer et al., 1998) an additional term for the active (accelerated) motion of the agent was

included in Eq. 7. Further, a dissipative loss, −cei, of the internal energy depot was considered.

Both terms are neglected here.

6/20

http://www.sg.ethz.ch


Frank Schweitzer: Multi-Agent Approach to the Self-Organization of Networks
in: F. Reed-Tsochas, N. F. Johnson, J. Efstathiou: Understanding and Managing Complex Agent-Based

Dynamical Networks, Singapore: World Scientific (2007)

see http://www.sg.ethz.ch for more information

Considering Eq. (4), we can deduce from Eq. (5) the time-dependence of the production rate

as si(θi, t) ∼ exp {−βt}. The dependence on θi, however, involves specific assumptions of our

network model:

si(θi, t) = smax
θi

2

[

(1 + θi) exp{−β (t − tin+)}

− (1 − θi) exp{−β (t − tin−)}
]

(8)

Eq. (8) means that the agent is not active, as long as θi = 0, which means before it hits one of

the nodes the first time. After that event, the agent begins to produce either component (+1)

if θi = +1, or component (−1) if θi = −1, at a rate that exponentially decreases with time.

The maximum production rate smax depends on the maximum amount emax, after the internal

energy depot was charged at one of the nodes.

The spatio-temporal concentration of the chemicals shall be described by a chemical field hθ(r, t)

consisting of the two components (+1) or (−1), which obeys the following dynamics:

∂hθ(r, t)

∂t
= −kh hθ(r, t) +

N
∑

i=1

si(θi, t) δθ;θi
δ
(

r − ri(t)
)

(9)

The first term describes the exponential decay of the existing concentration due to spontaneous

decomposition of the chemical, where kh is the decomposition rate. The second term denotes

the production of the field by the agents. Here, δθ;θi
means the Kronecker Delta used for discrete

variables, indicating that the agents only contribute to the field component that matches their

internal parameter θi. The Delta function δ(r − ri(t)) means that the agents contribute to

the field only locally, at their current position, ri. Diffusion of the chemical substances is not

considered here.

As a last step, we have to specify how the existence of the two different chemicals affect the

motion of a Brownian agent, described by Eq. (2). We assume that the interaction term fi results

from an indirect communication among the agents. By producing one out of two chemicals at

its current position, each agent generates local information that is stored outside the agent, i.e.

the environment acts as a kind of external memory. This information should be accessible to

other agents in the vicinity. Specifically, we assume that the agent is sensitive to local gradients

in these two chemical components dependent on its current internal state θi:

fi = α
θi

2

[

(1 + θi)
∂h−1(r, t)

∂r

∣

∣

∣

∣

ri

− (1 − θi)
∂h+1(r, t)

∂r

∣

∣

∣

∣

ri

]

(10)

Here, α is a dimensional constant only, but it could also act as an individual response parameter

weigthing the importance of the information received (Schweitzer, 1997).

This way, by producing and responding to two different local information in the system, the

Brownian agents communicate with each other. The chemical field plays the role of an order

parameter. It does not exist from the outset, but is generated by the agents. Once it is established,
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generates

influences

influences

generates

C

h (r,t)

C+1-1

+1

h (r,t)
-1

Figure 2: Circular causation between the Brownian agents in the different internal states, C−1,

C+1, and the two-component chemical field, hθ(r, t)

it reduces the “freedom” of the moving agents by guiding their motion using the information

generated by other agents.

Fig. 2 summarizes the non-linear feedback between the two-component chemical field and the

agents, as given by the Eqs. (8), (10). Our model assumes, that agents with an internal state

θi = 0 do not contribute to the field and are not affected by the field. They simply move like

Brownian particles. Agents with an internal state θi = +1 contribute to the field by producing

component +1, while they are affected by the part of the field that is determined by component

−1. On the other hand, agents with an internal state θi = −1 contribute to the field by producing

component −1 and are affected by the part of the field, which is determined by component +1.

Moreover, if the agent hits one of the nodes, the internal state can be switched due to Eq. (3).

Hence, the agent begins to produce a different chemical, while affected by the opposite potential.

Precisely, at one time the agent does not respond to the gradient of the same field, which it

contributes to via producing a chemical.

As the result of this nonlinear feedback between the Brownian agents and the chemical field

generated by them, we can observe the selforganized formation of a network shown in the

following section.

4 Computer Simulations of Network Formation

For the computer simulations, a triangular lattice with periodic boundary conditions has been

used. The agents start initially at random positions. For the evolution of the network, we evaluate

the sum ĥ(r, t) of the two field components generated by the agents. For the plots, however, we

have to match these values with a grey scale of 256 values, which is defined as follows:

c(r, t) = 255

[

1 − log

(

1 + 9
ĥ(r, t) − ĥmin(t)

ĥmax(t) − ĥmin(t)

)]

ĥ(r, t) = h+1(r, t) + h−1(r, t) (11)
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This means that the highest actual value, ĥmax(t), always refers to black (c = 0), whereas the

actual minimum value, ĥmin(t) encodes white (c = 255). Both extreme values change of course

in time, therefore each snapshot of the time series presented has its own value mapping.

Figure 3: Formation of links between 4 nodes: (a) initial state, (b) after 100, (c) after 1.000, (d)

after 4.500 simulation steps. Lattice size 30 × 30, 450 agents. Parameters: smax = 25.000, kh =

0.01, β = 0.2, kh = 0.01. (Schweitzer and Tilch, 2002)

As a first example, we show the evolution of the connections between four nodes.Fig. 3 would

suggest that in the course of time all nodes with an opposite potential should be connected. This

however is not true because the existing connections cause a screening effect, which forces the

agents to move along existing connections rather than making up new ones. This screening effect

becomes more obvious, when the number of nodes is increased. Fig. 4 shows the time evolution

of a network which should connect 40 nodes, as shown in the setup of Fig. 1. Here, we see that

in the course of time the agents aggregate along the connections, which results in higher agent

concentrations and in higher fields along the connections.†

Figure 4: Time series of the evolution of a network after 10, 100, 1.000 simulation steps. Lattice

size 100× 100, 5.000 agents, 40 nodes, z+ = 20, z− = 20. Parameters: smax = 10.000, kh = 0.03,

β = 0.2. (Schweitzer and Tilch, 2002)

In Figs. 3,4, the connections between the nodes exist as a two-component chemical field generated

by the Brownian agents. This self-assembling network is created very fast and remains stable after

the initial period. We note that the network formation is not restricted to regular or symmetric

distributions of nodes. Fig. 5 shows a simulation, where different nodes are connected with a

† A video of these computer simulations can be found at http://intern.sg.ethz.ch/fschweitzer/until2005/network.html.

9/20

http://www.sg.ethz.ch
http://intern.sg.ethz.ch/fschweitzer/until2005/network.html


Frank Schweitzer: Multi-Agent Approach to the Self-Organization of Networks
in: F. Reed-Tsochas, N. F. Johnson, J. Efstathiou: Understanding and Managing Complex Agent-Based

Dynamical Networks, Singapore: World Scientific (2007)

see http://www.sg.ethz.ch for more information

center. An extension of the model has been applied to simulate the trunk trail formation in ants

connecting a nest to different food sources (Schweitzer et al., 1997) and will be discussed in Secs.

6, 7.

Figure 5: Formation of links between a center (z− = 1) and surrounding nodes (z+ = 7) after

10.000 simulation steps. Lattice size: 50×50, 2.000 agents. Parameters: smax = 20.000, kh = 0.02,

β = 0.2. (Schweitzer and Tilch, 2002)

Patterns like the networks shown in Figs. 3,4,5 are intrinsically determined by the history of

their creation. It means that irreversibility and early symmetry breaks play a considerable role

in the determination of the final structure. These structures are unique due to their evolution,

and therefore can be understood only within a stochastic approach, as provided for example by

the Brownian agent approach.

5 Estimation of the Network Connectivity

In order to characterize a network, one of the most important questions is, whether two nodes

k and l are connected or not. In the model considered, a connection is defined in terms of the

chemical field ĥ(r, t) produced by the agents. In the beginning, however, the agents randomly

visited almost every lattice site before their motion turned into a bound motion between the

nodes. Therefore, the field ĥ(r, t) has a non-zero value for almost every r, which exponentially

decays, but never vanishes. Hence, in order to define a connection in terms of ĥ(r, t), we have

to introduce a threshold value hthr, which is the minimum value considered for a link. More

precisely, a connection between two nodes k and l should only exist, if there is a path s ∈ A

between k and l on which the actual value of the field is larger than the treshold value:

ĥ(s, t) > hthr for s ∈ A (12)
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Such a definition does not necessarely assumes that the connection has to be a direct link.

Instead, it could be any path s, which may also include other nodes, as long as the value ĥ(s, t)

along the path is above the threshold.

We want to define the local connectivity Elk as follows:

Elk =











1 if k and l are connected by a path s ∈ A,

along which ĥ(s, t) > hthr

0 otherwise

(13)

We note that the connectivity Elk does not change, if two nodes k and l are connected by more

than one path.

If we consider a number of z nodes, then the global connectivity E which refers to the whole

network, is defined as follows:

E =

z
∑

k=1

z
∑

l>k

Elk

z
∑

k=1

z
∑

l>k

1

=
2

z(z − 1)

z
∑

k=1

z
∑

l>k

Elk (14)

Dependent on the configuration of nodes, there may be numerous different realizations for the

connections, which result in the same connectivity E.

In order to use the definition for the connectivity to evaluate the simulated networks, we first

have to define the threshold value hthr. This should be the minimum value of ĥ(r, t) along a

stable connection between two nodes. Based on this definition, we have derived in a recent paper

Schweitzer and Tilch (2002) an estimate for hthr:

hthr = n̄
smax

kh

(

smin

smax

)1/4

(15)

Provided the set of parameters, used for the simulations, we find for the threshold the value

hthr = 1.7 × 104, which is approximately hthr ≈ 2smax. We note, that this is an estimate, which

might give a rather high value and thus ensures, that values for ĥ(s, t) above the threshold really

represent a stable connection s.

In a recent paper Schweitzer and Tilch (2002), we have investigated how the global connectivity

E evolves in the course of time and how it changes in dependence on the density of agents, n̄.

In agreement with the visible evolution of the network presented in Fig. 4, three different stages

can be clearly distinguished: (i) an initial period (t < 102), where no connections yet exist,

(ii) a transient period (102 < t < 104), where the network establishes, (iii) a saturation period

(t > 104), where almost all nodes are connected, and only small fluctuations in the connectivity

occur.

Here, we focus on the question, how the connectivity changes in dependence on stochastic in-

fluences. According to Eq. (1), in the Brownian agent approach the different state variables of
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the agent are changed both by deterministic and stochastic influences. In our agent-based model

of network formation, stochasticity influences are explicitely considered only in the equation of

motion of the Brownian agents, Eq. (2). There, it was assumed that the strength of the stochas-

tic force εi could be in general an individual parameter. This idea will be used in Sec. 6, here

we want to assume for the moment that εi = ε is equal for all agents and can be further related

to the temperature T , which is a physical measure of fluctuations in the system, independent

of the agents. It was Einstein, who derived in 1905 a relation between the temperature and the

diffusion of simple Brownian particles, D = (kB/γ0)T , where the proportionality is given by the

Boltzmann constant kB and the friction coefficient γ0. Identifying ε = D, which is correct for the

physical interpretation of the overdamped Langevin Eq. (2), we can now express the strength

of the stochastic force by the temperature T , which as a global parameter acts as a boundary

condition for the dynamics of the multi-agent system.

From the physics perspective, network formation – as other processes of dissipative structure

formation in non-equilibrium systems (Biebricher et al., 1995) – should become possible only

below a certain critical temperature Tc. Above Tc, fluctuations in the system rather destroy the

structures emerging. With respect to Eq. (2), this means that for T > Tc, the agents cannot

pay sufficient attention to the determinstic influences given by fi and thus behave more or less

as simple Brownian particles. The delicate balance between the stochastic and deterministic

influences of course depend on the current value of fi, which in turn results from the history of

the indirect communication process described by Eqs. (9), (10). However, in a so-called mean-

field approximation for the agent density and the dynamics of the field components (Schweitzer,

2003) we were able to derive an expression for the critical temperature Tc below which the

network formation becomes feasible:

Tc =
α

2

s̄ n̄

kB kh
(16)

This equation relates Tc to the mean density of agents, n̄ = N/A, and an average production

rate of the chemicals s̄, derived in (Schweitzer, 2003) as:

s̄ =
smax − smax

ln smax − ln smax
(17)

By varying the stochasticity, expressed by the parameter T relative to the reference value Tc, we

are now able to investigate the connectivity by means of computer simulations, carried out for

the same setup as used for Fig. 4. Fig. 5 shows the connectivity, averaged over 200 simulations,

as a function of the reduced temperature T/Tc, whereas Fig. 7 shows some simulated realizations

of the networks for different reduced temperatures.

Fig. 5 clearly indicates that an optimal range of temperatures, 0.3 ≤ T/Tc ≤ 0.5, exists where

the average connectivity reaches a maximum. For the given setup of nodes and the given set

of parameters, within this optimal range in the average more than 90 percent of the nodes are

connected. For T > 0.5 Tc, the connectivity breaks down drastically, which means that the

motion of the agents is mainly determined by the stochastic forces, and no attention to the

gradient of the field is payed.
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Figure 6: Network connectivity E, Eq. (14), averaged over 200 simulations vs. reduced temper-

ature T/Tc Eq.( 16). For the setup see Fig. 4. (Schweitzer, 2003)

T = 0.2 Tc T = 0.4 Tc T = 0.6 Tc

Figure 7: Network formation dependent on the reduced temperature T/Tc, Eq. (16). Shown is

the value c(r, t), Eq. (11) after 5.000 simulation steps. Other parameters see Fig. 4. (Schweitzer,

2003)

On the other hand, for T < 0.3 Tc, the connectivity decreases because during the transient pe-

riod of establishing the network, the agents have payed too much attention to the gradient, and

therefore are trapped in the first established links, instead of moving around. In this range of

temperatures, the average connectivity 〈E〉, Fig. 5, displays large fluctuations, so almost every

realization between E = 0.5 and E = 1 has a certain likelyhood. Here, the early history in creat-

ing the network plays an important role for the eventual pattern and the connectivity. However,

in the optimal range of temperature, the effect of the early symmetry breaks is weakened to a

certain extent, thus leading to smaller fluctuations in E.

We also want to note, that in the range of smaller temperatures, of course less connections

between the nodes occur, but these connections provide a much stronger link in terms of the

field ĥ(r, t). One of the reasons for the breakdown of the connectivity for T > 0.5Tc in Fig. 5

results from the fact, that many of the links established have a value below the threshold, hthr,
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and therefore are not considered as stable connections. This can be seen by comparing the

pictures in Fig. 7. Here, the nodes still seem to be connected for T = 0.6 Tc, the value of the

related field however is below the threshold, hthr.

6 Modeling Trail Formation in Ants

In this section, the network model introduced above is extended to simulate the formation of

directed trails, as observed in group-raiding ants. So, the nodes are given now by a nest and

different food sources, and the links are given by the directed trails between nest and food.

These connections do not exist from the very beginning; they have to be generated by the

agent community in a process of self-organization. Hence, the agents have to perform two quite

different tasks, which are referred to each other: first, they have to detect food places - unknown

to them, and then they have to link these places to their original starting point by forming a

trail, with local chemical orientation as the only tool provided.

For our model, we assume that initially all agents are concentrated in one place, the “nest”.

The internal parameter, θi = ±1, describes whether an agent has found food yet or not. If the

agent starts from the nest, the internal parameter is always set to θi = +1. Only if the agent has

detected a food source, θi is changed to θi = −1. Dependent on the value of θi, the agent is able

to produce one of two different chemicals with a rate si(θi, t), which was already described in

Eq. (8). I.e., the agent produces chemical of component (+1), when it leaves the nest (θi = +1)

at time tin, and starts to produce chemical of component (−1) instead, after it has found food

(θi = −1) at time tif . The dynamics of two chemical components is again given by Eq. (9).

Further, the agents are affected by the different kind of chemicals as described by Eqs. (2)(10).

On could argue that for the simulation of foraging trails of ants, the most simple assumption

could be that only individuals which found food create a pheromone trail, while turning straight

back to the nest. These trails could then be used by other ants to find the food sources, once

they found the trails. However, those simulations have to overcome the problem where the

first ant which found food got the information from to find its way back home. In biological

systems, geocentric or egocentric navigation could provide this additional information needed

for successfully returning to the nest. Since our model simulates the formation of trunk trails

without counting on navigation and internal storage of information, our main assumption is

that a simple chemotactic response would be sufficient to generate trails between the nest and

the food sources. However, we have to distinguish trails which have been created during the

(unsuccessful) search for food from trails which really lead to a food source. In our model, this

additional information is encoded by assuming that the agents produce, and respond to, two

different chemical fields.

For the computer simulations, we have to address an additional problem that results from

obvious differences in complexity between biological entities and Brownian agents. It is known
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from central foragers like ants that they are able to leave a place where they don’t find food

and reach out for other areas. This indicates that they have at least a certain ability to increase

their mobility since they have a certain aim, finding food. Agents in our model however do not

have aims and do not reflect a situation. So, they stick on their local markings even if they they

did not find any food source. In order to increase their mobility in those cases, we assume that

every agent is described by an additional internal variable, its individual sensitivity ηi to follow a

chemical gradient. As long as the agent does not hit a food source, this sensitivity is continuously

decreasing via an increase of the stochasticity εi in Eq. (2), i.e. we assume here ηi = α/εi, where

α is the response parameter to weight the influence of the gradients. Increasing the individual

stochasticity then means that the agent more and more ignores the chemical detected and thus

becomes able to choose also sites not visited so far.

However, if the agent does not find any food source after a certain number of steps, the sensitivity

ηi becomes negligible, and the agent only behaves like a Brownian particle. From the utilitarian

perspective, such a agent becomes “useless” for the exploitation of food sources, if its individual

noise level, εi, exceeds a maximum value, εmax (which could be related to the critical temperature,

discussed above). So we simply assume that the agent “dies” at this level and is removed from

the system. On the other hand, if the agent hits a food source, its sensitivity is set back to the

initial high value and is kept constant to increase the chance that the agent finds its way back

along the gradient. The switch of the level of sensitivity is accompanied with the use of the two

different chemical markers, and in this particular sense reminds on chemokinesis (Dunn, 1983),

where the level of activity can be changed due to chemical conditions in the surrounding.

Using the internal parameter θi again, we may assume that the sensitivity ηi of the agent changes

according to:

α

ηi(t)
= εi(t) =

θi

2

{

(1 + θi)
[

ε0 + δε (t − tin)
]

− (1 − θi) ε0

}

(18)

Here, δε is the increase of the individual noise level, εi, per time step if the agent has not found

any food source.

This way, we have completed our model for the trail formation in ants. The basic ingredient

is the chemotactic response to a chemical gradient which has been produced by the agents

themselves. Hence, the basic equations are given by the equation of motion for the agents,

Eq. (2), which is coupled with the equations for the two chemical fields, Eq. (9). We note that,

with respect to biology, there are different parameters which may influence trail following in

addition to sensitivity, such as trail fidelity, traffic density, detection distance, endurance of

the trail, navigation capabilities etc. (Edelstein-Keshet et al., 1995; Haefner and Crist, 1994).

Contrary, our model considers only minimal assumptions for the trail formation. Here, the

formation of trail patterns is solely based on simple local chemical communication between the

agents, with no additional capabilities of orientation or navigation. The computer simulations

outlined below should prove that the simple local rules assumed for the action of the agents are

sufficient enough to solve such a complex problem.
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7 Computer Simulations of Trail Formation in Ants

Different from arbitrary non-directed tracks which are commonly used by the agents but lead to

nowhere, directed trails should link a starting point (e.g. a nest) to a destination point (e.g. a food

source) and back. In order to define start and destination, we assume on the two-dimensional

surface a center (nest) where the agents are initially concentrated, and random distribution

of five separated food sources food sources unknown to the agents. As in the network model

described before, both the nest and the food sources, do not attract the agents by a certain

long-range attraction potential, they are just particular sites of a certain size (defined in lattice

sites). It is assumed that the food sources can be exhausted by the visting agents, which are

assumed to carry part of them back to the nest.

Fig. 8 shows a time series of the trail formation in terms of the spatial concentration of chemical

component (−1), which is coded again in a grey scale. In Fig. 8a, we see that two of the food

sources randomly placed on the lattice, have about the same distance to the nest, but the one,

which - by chance - has been discovered first, will also be the one linked first to the nest. This

reflects the influence of initial symmetry breaking effects.

If the food sources are exhausted by the agents carrying food to the nest, they vanish. Therefore,

the individual sensitivity of the agents coming from the nest to the food cannot be set back to the

high initial value and the agents further increase their mobility by ignoring the trail, they reach

out again, and by chance discover new food sources. But since a trail already exists, those sources

in a close vicinity to the one that disappeared have a larger probability to be discovered. Part

of the “old” trail is re-used then to link the new food source to the nest (compare Fig. 8a,b,c).

Fig. 8b shows that at the same time also more than one sources could be linked to the nest

by trails. However, all trails compete for the agents to be maintained, and the trails could

survive only if the concentration of the chemicals is above a certain critical value. Therefore, the

coexistence of different trails only lasts for a short time. Hence, the trails to the different food

sources will appear one after the other, with the old trails disappearing again by decomposition

because they are no longer maintained. After a source is exhausted, we usually observe a time

lag before the next one is exploited. This is needed for the system to “forget” about the useless

trail and to establish a new trail to the next source. Thus, we can distuingish between two

alternating dynamical stages: (i) a stage of rather random motion of the agents (exploration of

the sources), and (ii) a stage of directed motion of the agents along the trail (exploitation of the

sources).

The flexibility of the model is indicated by the fact, that even after a long period of trail formation

in the lower part of the lattice, the agents are able to link the food source on the upper left

side of the lattice to the nest (Fig. 8d) and therefore finally have detected and linked all five

sources to the nest. The desorienation stage before exploiting the last source is especially long,

because the agents could not build on any previous part of a trail into that direction, whereas
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a

b

c

d

Figure 8: Formation of trails from a nest (middle) to five randomly placed food clusters. The

distribution of chemical component (−1) (see text) is shown after (a) 2000, (b) 4000, (c) 8500,

and (d) 15000 simulation time steps, respectively. (Schweitzer et al., 1997)

the desorientation stage before exploiting the third and the fourth source is very short, because

of the trails which already exist into that area.

8 Conclusions

In this chapter, we have proposed a multi-agent approach to model the self-organization of net-

works. This approach is based on the interactions of the agents on a local or “microscopic” level,

which could lead to the emergence of the structure as a whole on the global or “macroscopic”

level. In our model, the emergence of network structures, i.e., the self-organized formation of

links results from the dynamic interaction of the agents, which is different from drawing lines

between a set of known nodes. The agents have to solve two different tasks in parallel, namely
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to discover new nodes and to link them to the network without external guidance. They also

have to ensure the adaptivity of the network.

In our model, the self-assembling of networks between arbitrary nodes is based on the nonlinear

interaction of Brownian agents. Different from a circuit diagram, for instance, which determines

the different links between the nodes in a top-down approach of hierarchical planning, the connec-

tions here are created by the agents bottom-up. The spontaneous emergence of different network

structures was characterized as a self-organizing process. As in every evolutionary game, also

for the emergence of networks critical parameters exist. As an example, we have discussed the

strength of fluctuations compared to the influence of the chemical gradients, but this also holds

for other parameters in the model. If, for instance, the decay rate for the decomposition of the

chemicals is too high, or the sensitivity of the agents is too low, they loose their local orientation

and get lost, so that no links appear. If, on the other hand, the decay rate is too low, it takes a

much longer time, before distinct links appear, because the selection pressure is too low.

The model turned out to be very flexible regarding the geometry of the nodes to be connected.

The locations of the different nodes act as a boundary condition for the structure formation,

but do not determine the way of connecting the different nodes. If, for example, a particular

link breaks down, the agents would be able to repair it by re-establishing the field, again, or

by creating a new one. It was shown (Schweitzer, 2003) that the switching behavior between a

connected and a disconneced state can be very short, which would allow the construction of a

dynamic switch.

To maintain a network, to keep it updated, to repair links, are ambitious aims for which natural

paradigms exist, e.g. in social insects or neural networks. These have also inspired the design of

our multi-agent model. Compared to the complex “individual-based” models in ecology (DeAn-

gelis and Gross, 1992; Huston et al., 1988) the agent model proposed here provides a very simple

but efficient tool to simulate a specific structure with only a view adjustable parameters. The

major difference to biology is denoted by the fact, that the agents used in the simulations do not

have individual capabilities to store and process informations about the locations of the nodes,

or to count on navigational systems or additional guidance. They rather behave like physical

particles which respond to local forces in a quite simple manner, without “implicit and explicit

intelligence” (Haefner and Crist, 1994). Noteworthy, these local forces only result from the chem-

ical markings produced by themselves. This way, we propose a kind of minimalistic approach

for the formation of networks which is build on the dynamical essence of the feedback processes

rather than on the internal complexity of the agents.
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