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1 Decision making and herding effects 

Decision making, in a simple sense, means a selection among alternatives. It 
is one of the fundamental processes in economics but also in social systems. 
If these systems consist of many interacting elements - which we call agents 
here - the system dynamics may be described on two different levels: the 
microscopic level, where the decisions of the individual agents occur and the 
macroscopic level where a certain collective behavior can be observed. 

From the utilitaristic perspective of an individual agent, a decision should 
be made in a way that the result increases her private utility. This approach 
is often related to the rational agent model, one of the standard paradigms 
of neoclassical economic theory. It assumes that the agent is able to calculate 
her utility function based on (i) the complete knowledge of all possible actions 
and their outcomes, and (ii) the common knowledge assumption, i.e. that the 
agent knows that all other agents know exactly what he/she knows and are 
equally rational. 

This implicitely requires an infinitely fast, loss-free and error-free dissemi­
nation of information in the whole system. A more realistic assumption would 
be based on the bounded rationality of agents, where decisions are not taken 
upon complete a priori information, but on incomplete, limited knowledge 
distributed with finite velocity. This however would require to model the in­
formation flow between the agents explicitely. A possibile approach to this 
problem is given by the spatio-temporal communication field [5]. It models the 
exchange of information in a spatially extended system with finite velocity, 
considering also the heterogeneous creation of information and memory effects 
due to the finite lifetime of information. 

Based on incomplete information, how does an agent make her decision 
on a particular subject? A "simple'1 utility maximization strategy may fail 
because in many social situations, for example in public votes, the private 
utility cannot be easily quantified, i.e., agents do not exactly know about it. 
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Moreover, in multidimensional problems decisions often lead to ambiguous so­
lutions which do not satisfy all needs. So, agents have to involve supplemented 
strategies to make their decisions. 

In order to reduce the risk of making the wrong decision, it seems to be 
appropriate just to copy the decisions of others. Such an imitation strategy 
is widely found in biology, but also in cultural evolution. Different species 
including humans imitate the behavior of others of their species to become 
successful or just to adapt to an existing community.When agents only ob­
serve the decision of other agents and tend to imitate them, without complete 
information about the possible consequences of their decisions, this is com­
monly denoted as herding behavior. It plays a considerable role in economic 
systems, in particular in financial markets, but also in human and biological 
systems where panic can be observed. 

Herding behavior is based on a non-linear feedback between the decisions of 
agents, where sometimes different kind of information is involved. In this short 
contribution, we will entirely focus on the role of such non-linear feedbacks 
on the decision of agents, while leaving out the possible influence of some 
private utility maximization. This restriction allows us to pass by most of the 
problems in defining social utilities; it further makes more clear to what extent 
the outcomes of decisions is already determined by these feedback processes. 

When focussing on collective decisions, we are interested in the aggregated 
outcome of many individual decisions. As is known from a large body of 
research in the field of complex systems, the interaction of agents on the 
microscopic level - mentioned above - may lead to the emergence of new 
systems qualities on the macroscopic scale. While these emergent properties 
cannot be reduced to the dynamics of the agents, it is also important to 
notice tha t many of the individual agent features do not play a crucial role in 
establishing the macrofeatures because they are simply averaged out. So, it 
seems possible to derive a collective dynamics tha t sufficiently describes the 
aggregated outcome without depending on all details of the microscopic agent 
configurations.1 

Suitable examples of a collective decision processes are public polls [2]. 
In many cases, these are based on binary decisions, i.e. in favor or against 
a given proposal, either for candidate A or B, etc. So, there are only two 
alternatives (or opinions), {0 ,1}. Real examples from the year of 2005 include 
the French vote for/against the European constitution on May 29 - the result 
was 45% in favor and 55% against this proposal, or the Swiss vote for/against 
the Schengen treaty on June 5 - the result was 54.6% in favor and 45.6% 
against this proposal. Other well known examples are the two most recent 
US presidential elections, where voters had to decide between two candidates. 
Common to most of these examples, there is no simple utility maximization 

1 I am aware that I am selling here the methodological approach of statistical 
physics to social scientists. After all, this was a very fruitful research program 
with a lot of impact on the theory of complex systems. 
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involved. Further, the winning opinion in these collective decisions was always 
hard to predict, as it was in many cases about 50/50. 

If the collective decision process results in the exclusive dominance of only 
one opinion, the system has reached consensus. If more than one opinion 
remain, the system state is characterized by coexistence - in the binary case 
of two (opposite) opinions. Both opinions most likely have a different share x 
(in percent), thus, if an opinon - in the binary case - has a share of x > 0.5, 
it is the opinion of the majority, and with x < 0.5 it is the opinion of the 
minority. 

Our aim is now to find a minimalistic agent model that may describe the 
generic dynamics of collective decision processes as mentioned above. This 
model shall focus on the non-linear interaction of the agents rather than mak­
ing assumptions about their individual utility maximization. In particular, we 
concentrate on the role of local and neighborhood effects on the aggregated 
outcome. Our aim is to derive a dynamics for a macroscopic parameter, such 
as the share x of a particular opinon, not to predict individual decisions. 

2 Nonlinear Voter Models 

Let us assume a population of agents (i = 1,..., N) where each agent i is char­
acterized by two individual variables: (i) her spatial position i (for simplicity 
just consecutively numbered) and (ii) her "opinion" 9i{t) which is either 0 or 
1. In this setting, "decision" simply means to keep or change opinion 9i(t) in 
the next time step, i.e. 

fli(*+i)=(/i(iL krp a) 
lV } \l-9i{t) change v ) 

The rate (number of events per time unit) to change the opinion shall be 
denoted by w(\ — 9i\9i). It remains to specify what the decision of agent i 
depends on. In social systems, this may depend on the many (internal or 
external) interdepencencies of an agent community that push or pull the in­
dividual decision into a certain direction, such as peer pressure or external 
influences. The social impact theory [3] that intends to describe the transition 
from "private attitude to public opinion" has covered some these collective 
effects in a way that can be also formalized within a physical approach. 

Here, we follow a much simpler modeling approach by just assuming that 
the rate to change the opinion depends on other agents in the neighborhood 
in a nonlinear manner: 

w(l - dtfi) = K(f) ft-e> (2) 

where 0 < /-1_ ' < 1 denotes the frequency of agents with opposite opinions 
in "neighborhood" of agent i and K,(f) means a nonlinear response to the fre­
quency of other opinions. This model class of frequency dependent processes is 
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known as voter models [4, 6]. In the most simple case, n{f) = 1, the transition 
rate towards the opposite opinion is simply proportional to the frequency of 
agents with that particular opinion, this is known as the linear voter model 

In order to determine /$, we have to specify the meaning of neigborhood. 
For the simulations described below, we use a regular grid, where each agent 
has four nearest neighbors and eight next-nearest neighbors. In a more general 
setting, the neighbors are defined by the the social network of agent z, i.e., 
two agents are direct neighbors if there is a link between them. The structure 
of the social network can then be described by an adjacency matrix C which 
contains as entries all the existing links between any two agents. So, there is no 
principle limitation to set up the dynamics for any kind of networks. Only for 
visualization purposes, we restrict ourselves to the regular grid, which means 
a specific form of the matrix C. 

We further have to specify the nonlinear response function «( / ) , which 
gives a weight to the influence of agents with opposite opinions on the decision 
process of agent i. Figure 1 shows some possible cases. 

0 0.2 0.4 0.6 0.8 1 fl-0 

Fig. 1. Different (non)linear depencencies for the transition towards the opposite 
opinion. 

The linear voter model, n(f) = 1, where the decision rate of changing 
towards the opposite opinion directly increases with the frequency of the other 
opinion, is an example of majority voting, i.e., agent i tends to follow the 
majority of agents in the neighborhood. However, it can be also possible that 
agent i tends to follow the minority in his neighborhood. This means the 
more agents have the opposite opinions, the less agent i is convinced to follow 
them. Eventually, there is also the possibility to decide against the trend, i.e. 
agent i switches to the opposite opinion only as long as it is not the opinion 
of the majority. Note that various other nonlinear responses to the frequency 
of opposite opinion are possible. 

In the following, we investigate some special cases of the nonlinear response 
function regarding their impact on the collective decision outcome. The linear 
voter model, «( / ) = 1, is used here as a reference case. Our computer simula­
tions always start from a random initial distribution of opinions, i.e. agents get 
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randomly assigned either a black or a white label. As the simulations in Figure 
2 show, the individual decisions of agents result in the formation of spatial 
domains of like-minded agents. This is based on the herding effect mentioned 
above. Any configuration with more than two agents in the neighborhood 
having the same opinion results in a positive feedback towards the decisions 
of the other agents to adopt that "majority" opinion. On medium time scales, 
we observe the local coordination of decisions visible in the emergence of do­
mains, and the coexistence of the two different opinions. On large time scales, 
however, one of these opinions takes over and the collective decision process 
converges to the consensus state. 

Fig. 2. Spatial distribution of opinions in the case of the linear voter model (top) 
and a nonlinear voter model (bottom) for different time steps: t = 101, 102, 103, 
104. [4] 

Such a collective dynamics is nice, but also boring because the time until 
the system reaches consensus, r, is the only interesting feature. Many investi­
gations on the voter model have concentrated on r(N), i.e., how the consensus 
time depends on the system size [6]. The results show that r for the regular 
two-dimensional lattice scales as r ~ iVTniV, whereas for regular lattices with 
dimension d > 2 r ~ TV holds. This scaling is also observed for small-world 
networks. 

More interesting are scenarios which would lead to the coexistence of the 
two opinions even on large time scales. This can be obtained by choosing 
nonlinear response functions K,(f) similar to the case of minority voting, shown 
in Figure 1. It means that every local majority trend is immediately teared 
down, and consensus is never reached. However, this case is boring again, 
because such a nonlinear feedback alone just reenforces the random equal 
distribution of opinions. While there is an ongoing dynamics, it does not allow 
for spatial coordination of decisions. What we are really intersted in, is the 
coordination of decisions together with non-stationary coexistence of opinions 
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- even on large time scales. This can be indeed observed for certain choices of 
the nonlinear response function ft(/), as Figure 2 demonstrates. It should be 
noted that the spatial domains of opposite opinions continue to coexist while 
slightly changing in size and shape over time. 

A closer inspection of the problem allowed us to derive a phase diagram 
in the parameter space of «( / ) that distinguishes settings leading to random 
(trivial) coexistence from those leading to nonstationary coexistence with co­
ordination of decisions (domains formation) and from those leading to coor­
dination of decisions on medium time scales, but only to consensus on large 
time scales. 

3 Conclusions 

The nonlinear voter model used here as a framework for modeling collec­
tive decision processes follows the KISS principle, as it is simple and stupid 
enough to allow also for analytical investigations. This is, however, not the 
end of the story, because we extended this model gradually towards more 
realistic scenarios. A major step, not discussed in this short paper involves 
the heterogeneity of the agents, i.e. agents may have a different nonlinear re­
sponse functions, Ki(f) dependent on individual attitudes. A variant of this 
heterogeneity includes memory effects, i.e. the past experiences of agents in 
their local neighborhood are taken into account. Further, we have considered 
ageing effects which affect the rate at which agents make a decision, and have 
also included dependency on the second-nearest neighbors [1]. 
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