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Abstract Based on experimental observations in Daphnia, we introduce an agent-
based model for the motion of single and swarms of animals. Each agent is de-
scribed by a stochastic equation that also considers the conditions for active bi-
ological motion. An environmental potential further reflects local conditions for
Daphnia, such as attraction to light sources. This model is sufficient to describe
the observed cycling behavior of single Daphnia. To simulate vortex swarming of
many Daphnia, i.e. the collective rotation of the swarm in one direction, we extend
the model by considering avoidance of collisions. Two different ansatzes to model
such a behavior are developed and compared. By means of computer simulations
of a multi-agent system we show that local avoidance—as a special form of asym-
metric repulsion between animals—leads to the emergence of a vortex swarm. The
transition from uncorrelated rotation of single agents to the vortex swarming as a
function of the swarm size is investigated. Eventually, some evidence of avoidance
behavior in Daphnia is provided by comparing experimental and simulation results
for two animals.

Keywords Active motion · Swarming · Zooplankton · Brownian agents

1. Introduction

Swarming is a prominent example of complex behavior in biological systems. This
form of collective motion may emerge from the interplay of individual behavior
and local interactions of a large number of individuals (agents). Swarms (also called
herds, flocks, schools) can often be observed in certain mammals, fish, insects,
and birds for various benefits, such as enhanced feeding and mating as well as
more successful predator avoidance (see e.g. Huth and Wissel, 1992, 1994; Parrish
and Hamner, 1997; Parrish and Edelstein-Keshet, 1999; Couzin and Krause, 2001);
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(Parrish et al., 2002; Okubo and Levin, 2002). This has been reported for several
prey animals, e.g. in planktivore fish (Partridge, 1982; Hall et al., 1986), in some
species of birds (Caraco et al., 1980), as well as in zooplankton (Jakobsen et al.,
1994; Kvam and Kleiven, 1995).

Detailed experimental investigations on swarming, however, are rare, either be-
cause of the size of the animals or because well defined conditions for experiments
are difficult to realize. Earlier chance observations were reported for horizontally
circling zooplankton in the field (Lobel and Randall, 1986). They triggered fur-
ther experiments with Daphnia relevant for the current paper (see also Sections 2
and 6). It has been shown that under certain circumstances single Daphnia circle
horizontally around a vertical artificial light shaft to which they are attracted. For
high Daphnia densities a swarm emerges, where all Daphnia circle in the same
randomly chosen direction (Ordemann, 2002; Ordemann et al., 2003a,b).

The physical, biological, and chemical reasons for swarming in Daphnia in
particular and in prey animals in general are not completely understood. Bio-
logical considerations suggest that circling is the least energy consuming motion
for permanently moving animals to stay as a group at a certain local position
without frequently bumping into each other. Recent studies concentrated on the
response of individuals as well as groups to various external influences, such as
available food, food gradients and predator threat (Jakobsen and Johnsen, 1987;
Larsson and Kleiven, 1995; Kleiven et al., 1996; Larsson, 1997; Jensen, 2000).
In particular, Øien (2004) used methods from plasma kinetic theory to derive
macroscopic equations—so-called fluid-dynamic equations—for the density of
Daphnicle (Daphnia-like particle) swarms as a function of food-concentration,
food saturation of Daphnia and a threat field of predators. The advantage of this
approach is, that these equations can be solved analytically by approximations
in linear space. However, it is difficult to compare these results for swarming to
rotating real Daphnia swarms, as we are interested in.

While Øien (2004) concentrates his description on the macroscopic level (den-
sity ond velocity destributions of the swarm), we aim at understanding swarm-
ing from a “microscopic” approach. That means, we derive equations of motion
for individual entities—so-called agents—and investigate the collective motion by
means of a multi-agent system. This allows us to understand the behavior at the
system level from the interactions of the entities comprising the system.

Individual-based or agent-based modeling has turned out to be a very useful tool
for modeling biological phenomena at various levels of organization (Grünbaum
and Okubo, 1994; Deutsch, 1999; Flierl et al., 1999; Kunz and Hemelrijk, 2003).
Thus, recently different computer architectures have been developed to simulate
the collective behavior of interacting agents in distributed artificial intelligence
(see e.g. http://www.swarm.org/). However, due to their rather complex sim-
ulation facilities many of these simulation tools lack the possibility to investigate
systematically and in depth the influence of specific interactions and parameters.
Instead of incorporating only as much detail as is necessary to produce a certain
emergent behavior, they put in as much detail as possible, and thus reduce the
chance to understand how emergent behavior occurs and what it depends on.
Therefore, in this paper, we follow a different multi-agent approach, based on
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Fig. 1 Daphnia, Courtesy of Stephen Durr.

Brownian agents (Schweitzer, 2003) (see Section 3), that—in addition to its compu-
tational suitability—can be also investigated by means of analytical methods from
statistical physics and mathematics.

The objective of the present study is to investigate the requirements on the mi-
croscopic level that lead to the formation of a vortex swarm on the macroscopic
level. A swarm is called vortex swarm if animals cycle around an imaginary axis
in the same rotational direction. On the global level (i.e. in three dimensions) one
observes the emergence of a cone. As the main (cycling) motion takes place in
the horizontal plane, we have restricted both the experimental observations and
our simulation to two dimensions for simplicity. To find out more about physical
reasons for vortex swarming, we first summarize some experimental observations
previously reported, and then set-up a “minimalistic” multi-agent model to test
some biologically relevant assumptions that may lead to the observed swarming
behavior.

2. Experimental observations on Daphnia motion

In this section, we summarize some biological facts about Daphnia animals and
their collective movement which have been reported in the literature. This infor-
mation shall be used to motivate our swarming model in the following sections.

The water flea or Daphnia (see Fig. 11) is a member of the crustacea and are
found in most fresh water ponds. Their body is enclosed within a carapace and
their length is about 1mm to 3mm. Daphnia swims with a jerky motion through
the water as the powerful 2nd antennae are thrust downward.

Ecologically, Daphnia is extremely important in the food chains of ponds and
lakes. So a systematic investigation of their individual and collective behavior is

1The photograph is reprinted with the permission of Stephen Durr, http://www.
btinternet.com/˜stephen.durr/photographthree.html. For more detailed informa-
tion about Daphnia, see e.g. http://www.lander.edu/rsfox/310DaphniaLab.html,
http://ebiomedia.com/gall/classics/Daphnia/

http://www.
btinternet.com/~stephen.durr/photographthree.html
http://www.lander.edu/rsfox/310DaphniaLab.html
http://ebiomedia.com/gall/classics/Daphnia/
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Fig. 2 Sketch of the Daphnia experiments carried out by Ordemann et al. (Ordemann, 2002;
Ordemann et al., 2003b,a).

of great interest. Ordemann et al. (Ordemann, 2002; Ordemann et al., 2003a,b)
have experimentally investigated the motion of Daphnia close to a vertical light
shaft in both low density and high density Daphnia swarms, as we summerize in
the following.

Using the experimental outline shown in Fig. 2, it was found that a single Daph-
nia is attracted to the light and starts to cycle (i.e. rotate) around the artificial light
source, keeping its cycling direction for quite a while. In repeated experiments,
however, the cycling direction may change to the opposite, which leads to the con-
clusion that single Daphnia, while rotating around the light beam, do not have a
preferred direction of motion.

The same behavior has been observed for Daphnia swarms of sufficiently low
animal density, where individual animals close to the light shaft cycle in both di-
rections around the light shaft, frequently changing their cycling direction.

Interestingly, the situation changes if instead of single or few Daphnia a large
number of animals is put in the water tank. In this case, the Daphnia start again
with their cycling motion, but then all tend to move into the same direction of mo-
tion. From a physical perspective, a symmetry break is observed, i.e., the symmetry
between the two possible cycling directions (left, right rotation) is clearly broken
toward one of the possibilities (left or right rotation). Both of these possibilities
have the same chance to occur, but only one of them is eventually realized. The
vortex formation as well as the symmetry break in the cycling direction are clearly
self-organized phenomena that result from the collective interaction of many ani-
mals. In order to understand this in more detail, we derive a multi-agent model in
the following.

3. Agent model of biological motion in an environmental potential

Our modeling approach is based on active Brownian particles or Brownian agents,
respectively (Schweitzer, 2003). Each of these agents is described by three state
variables: spatial position r i , velocity vi and internal energy depot ei . The first two
state variables describe the movement of the agent and can be observed from the
outside. The agent’s energy depot, however, is an internal variable that considers
the take-up of energy from the environment, the storage of energy and conversion
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of stored energy into energy of motion (Schweitzer et al., 1998). Provided a su-
percritical supply of energy from the environment, the Brownian agent is capable
of active movement, e.g. in a preferred direction. The term “Brownian” refers to
the fact that the agents may still be subject to fluctuations that are described by a
stochastic force.

The model of Brownian agents was widely discussed in different publications
(Schweitzer et al., 1998; Ebeling et al., 1999; Tilch et al., 1999; Erdmann et al., 2000;
Ebeling and Schweitzer, 2003). Therefore, only the basic dynamics are summarized
here. For the external variables r i and vi , we find the equations of motion in the
form of a generalized Langevin equation:

d
dt

r i = vi ;
d
dt

vi = −γ (v2
i ) vi − ∇U(r)

∣
∣
ri

+
√

2Dξ i (t). (1)

Here, for the mass m = 1 is used. Causes for the change of the variables are sum-
marized on the right-hand side of the equations. The change of the agent’s posi-
tion, r i is caused by the movement of the agent, described by the velocity vi , that
in turn can be changed by three different forces, explained in the following. The
first term, γ (v2

i ), is a non-linear friction function (Erdmann et al., 2000; Ebeling
and Schweitzer, 2003):

γ (v2
i ) = γ0 − d2 ei (t) = γ0 − d2 q0

c + d2v
2
i

, (2)

which considers the active motion of the agent. γ0 is the friction coefficient known
from passive Brownian motion, whereas the other terms describe the influence of
the internal energy depot ei (t), which mainly compensates this friction. Assuming
that the internal energy depot relaxes very fast into a quasi-stationary equilibrium
(adiabatic approximation), we derived an expression for the quasi-stationary en-
ergy depot dependent on the characteristic parameters describing its dynamics: q0

is the influx of energy into the internal depot, which is assumed as constant here.
c describes the loss of energy due to internal dissipation (metabolism), whereas d2

describes the conversion rate of internal energy into kinetic energy. The nonlinear
friction function has a zero for

v2
0 = q0

γ0
− c

d2
. (3)

Active motion, i.e. |v0| > 0 becomes possible only for a certain supercritical take-up
of energy from the environment, q0 > cγ0/d2.

The second term in Eq. (1), ∇U(r), is used to describe the influences of the
environment. The actual motion of the agent is a compromise between its active
motion—which eventually would lead it everywhere, as long as internal energy is
provided—and the environmental conditions which set some restrictions on this
motion. The experiments described above have used a vertical beam of light that
causes an attractive force on the Daphnia, which tend to cycle around it. In order
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to cope with this, we may choose the very simple assumption of an environmental
potential of the form

U(r) = a
2

r2, (4)

which generates an attractive force F = −∇U(r) = −ar towards the center,
r = 0.

Eventually, the last term in Eq. (1) is a stochastic force ξ (assumed to be Gaus-
sian white noise) of strength D, which describes the influence of random events on
the agent’s motion.

The equation of motion for the Brownian agents, Eq. (1), is formulated by using
two dynamical variables, r i (t), vi (t), as originally proposed by Langevin for the
motion of Brownian particles. In this description, fluctuations in the environment
are summarized in a stochastic force that changes the acceleration of the particles
(according to Newton’s law of motion). In the so-called overdamped case, one
can derive from this equation the overdamped Langevin equation by assuming a
quasistationary velocity, v̇ ≈ 0. This results in only one equation for ṙ , where the
stochastic term appears with a different prefactor,

√
2Dr , Dr being the spatial diffu-

sion coefficient. While such an approximation is convenient for further theoretical
investigations, in the following we use Eq. (1) for our computer simulations.

Figure 3 shows computer simulations for the active movement of a single agent,
bound by an environmental potential, Eq. (4), as described by Eq. (1). The result
clearly indicates the cyclic motion round the center, which has been also observed
in single Daphnia motion, as explained above. Running the computer simulations
for single agents with different initial conditions eventually results in the same

Fig. 3 Trajectory of a single Brownian agent moving in an environmental potential, Eq. (4),
after t = 200. Parameters: γ = 5.0, d2 = 1.0, q0 = 10.0, c = 1.0, D = 0.005, a = 0.5, i.e. supercrit-
ical take-up of energy, q0 > cγ0/d2. Initial conditions: {x(0), y(0)} = {0, 0}, {vx(0), vy(0)} = {0, 0},
e(0) = 0.
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Fig. 4 Angular momentum distribution ρ(L) of N = 1000 Brownian agents after t = 150. The
positive or negative sign of L indicates the right- or lefthanded rotation. Parameters: q0 = 10.0,
c = 1.0 γ = 20.0, d2 = 10.0, D = 0.001, a = 1.0.

kind of cyclic motion, but with different rotational directions, i.e. left-handed or
right-handed rotations. Due to stochastic influences, also changes of the direction
of motion become possible. Thus, we may conclude that our model of Brownian
agents sufficiently describes the observed behavior of single Daphnia.

We now turn to the case of many, i.e. i = 1, . . . , N Brownian agents, which
is of importance for swarming. The dynamics of the multi-agent system is then
described by 2N coupled (stochastic) equations of the form (1). In this case, the
computer simulations shown again the characteristic rotational motion where,
however, about half of the agents rotate clockwise, while the other half rotates
counterclockwise. The two different cyclic directions can be clearly observed
when looking at the angular momentum distribution, ρ(L), where L (for m = 1) is
defined as L = r × v. As Fig. 4 shows, this is a bimodal distribution of about equal
height, indicating the both left- and righthanded rotational directions with the
same probability. This is not surprising as long as independent random processes
with a certain symmetry are considered. But we use this graph here for comparison
with the results of the elaborated model, presented in the next section.

The simulation result also does not quite agree with the observation of high den-
sity swarms of Daphnia, which apparently cycle into one, i.e. the same direction.
The reasons for this mismatch are quite obvious: in our model, we have so far only
considered “point-like” agents without any kind of mutual interaction, whereas in
real biological systems the coherent motion of the swarm is certainly based on lo-
cal interactions between the entities. The results of the present model can be com-
pared to the case of Daphnia at low density, where cycling around the light shaft
in both directions is observed (Ordemann et al., 2003b) (compare Fig. 3 with Fig.
3 of Ordemann et al. (2003a) and Fig. 4 with Fig. 1a of Ordemann et al. (2003b)).
Thus, the question arises, which kind of interaction may lead to the break in the
rotational symmetry, as observed in the Daphnia experiments for high animal den-
sity.
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4. Modeling swarming with avoidance behavior

4.1. Interaction

So far, different forms of global or local interactions have been introduced into
swarming models. We mention

1. local interactions via a self-consistent field that has been created by the agents
and in turn influences their further movement and/or “behavior” (Helbing et al.,
1997; Schweitzer et al., 1997; Stevens and Schweitzer, 1997; Couzin and Franks,
2003; Erdmann and Mikhailov, 2005)—chemotactic response is a prominent ex-
ample here.

2. local interactions based on the coupling of the agent’s individual velocity to
a local average velocity (Toner and Tu, 1995; Vicsek et al., 1995; Czirok and
Vicsek, 2000; Levine et al., 2000; Grégoire et al., 2001; Couzin et al., 2002;
Grégoire and Chaté, 2004).

3. global interactions, such as the coupling of the agent’s individual orientation
(i.e. direction of motion) to the mean orientation of the swarm (Czirok et al.,
1996; Czirok and Vicsek, 2000), or the coupling of the agent’s individual
position to the mean position (center of mass) of the swarm (Mikhailov and
Zanette, 1999; Ebeling and Schweitzer, 2001; Schweitzer et al., 2001), further
couplings via the mean momentum or mean angular momentum or a combined
set of invariants of motion (Czirok et al., 1996; Schweitzer et al., 2001).

4. interactions based on hydrodynamic coupling between agents (Erdmann and
Ebeling, 2003).

Despite the fact that some of these models simulate coherent swarm behavior
or even rotation of the swarm in the same direction, there is evidence that the
underlying assumptions especially for global interactions can hardly be satisfied
by biological observations, thus their biological relevance is rather questionable.
Therefore, in the following section, we introduce local interactions between the
agents that indeed match with biological reality. In particular, we focus on a spe-
cial form of repulsive force between agents, which models avoidance maneuvers
between the agents.

Experiments on Daphnia swarming (Section 2) have shown that these animals
tend to cycle into the same direction for high Daphnia densities. We argue that
the reason for this may be that animals try to avoid as much as possible collisions
with other animals—which would occur much more frequently if different animals
cycled into opposite directions at the same time. Thus, a biologically satisfactory
assumption is to include avoidance behavior in our model of swarming, in order
to test whether this would lead to the observed break in the rotational symmetry
described above.

Daphnia are able to sense their environment to a certain degree using their sen-
sitive mechanoreceptors (Gries et al., 1999) and their vision, i.e. they can detect
animals approaching them from the fore, and then try to avoid collisions. In our
models, we account for this by assuming that there is a short-ranged repulsive force
between agents, to prevent their collisions. A similar idea was used by Couzin and
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Franks (2003) to describe collective motion in ants but, different from our ap-
proach, they assume a hard-core repulsion in a fixed area around each agent.

In our model, the repulsive force results from an interaction potential V(ri )
around each agent i that depends on its actual position, r i , and implicitly on both
its actual velocity and the velocity of the approaching agent. In the following, two
different ansatzes for such an avoidance potential shall be introduced. The first
one discussed in the next section, has the advantage of mathematical simplicity,
while the second one discussed in Section 4.3, gives smoother trajectories of the
agents. Both ansatzes, however, lead to the same dynamic behavior of the swarm
and therefore can be used equivalently.

4.2. Simple avoidance model

Our first approach is based on the assumption that the repulsion between two
agents depends inversely on the Euclidian distance ri j = ||r i j || = ||r i − r j || be-
tween two agents i and j in two-dimensional space:

V1(ri j ) = c
(ri j )n

n ∈ R
+ , (5)

where c is some constant. The force between two agents i and j can be calculated
as

f i j = −∇V1(ri j ) = c n
(r ε

i j )2+n
r i j . (6)

Here, we have added a small offset ε to the denominator, to avoid unwanted sin-
gularities if ri j → 0:

r ε
i j = √

ε + r i j · r i j . (7)

In a N agent system the total force on agent i is simply the sum over all 2 agent
forces

Fi =
∑

j �=i

f i j . (8)

The consideration of the avoidance behavior leads to a modified equation of mo-
tion, i.e. Eq. (1) now reads

d
dt

r i = vi ;
d
dt

vi = −γ
(

v2
i

)

vi − ar i +
∑

i �= j

f i j +
√

2Dξ(t). (9)

Again, we have assumed a linear superposition of all these forces, which seems to
us the most simple assuption to start with. Other assumptions for multiple interac-
tions are of course possible, but hardly motivated at the current stage.
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Fig. 5 Visualization of the vectorial quantities associated with the agents.

Simulations of Eq. (9) with f i j defined by Eq. (6) show a swarming behavior
with an angular momentum distribution as in Fig. 4. That means, we still find left-
and righthanded rotation at the same time and no symmetry break. This is due
to the fact that in Eq. (5) the avoidance behavior only depends on the distance
between the two agents, i.e. the repulsion is the same to the front and the rear
for equal distances. This assumption, however, can hardly be satisfied for Daphnia
because they can mainly detect animals in front of them using their eye and the
mechanoreceptors at their swimming antennas. That means that the direction of
motion given by the velocity vi is crucial.

To account for this, we extend Eq. (6) by multiplying our force with an asym-
metry factor ωi j that depends on the positions r i , r j and the velocities vi , v j of the
two agents i and j as explained in the following.

The prefactor ωi j has to reflect two circumstances: (i) it must increase with in-
creasing relative velocity

vrel ≡ vi j = vi − v j , (10)

(see Fig. 5), because the agents would reach the point of presumable collision
faster and therefore the force to avoid this has to be stronger; (ii) it has to con-
sider whether two agents detect each other or not. This is determined by the scalar
product of the relative velocity, vrel, and the unit vector r̂ i j = r i j

||r i j || pointing from
agent i towards agent j (see Fig. 5). Two agents i and j detect each other only if

vrel · r̂ i j > η ≥ 0, (11)

where η accounts for the angle of perception, i.e. η = 0 would mean a visual angle
of 180◦ and η > 0 corresponds to a smaller one. To avoid singularities in r̂ i j , we
eventually replace ||r i j || by Eq. (7). Then, the prefactor ωi j reads in its final form:

ωε
i j =

{

vrel · r̂ ε
i j , if (vrel · r i j ) ≥ η, η ≥ 0,

η, else
(12)
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where

r̂ ε
i j = r i j

r ε
i j

, (13)

Considering the prefactor, the avoidance term f i j , Eq. (6) reads now:

f i j = ωε
i j · c n

(r ε
i j )2+n

r i j . (14)

The equations of motion are still given by Eq. (9). Computer simulations of this
extended model Eqs. (9), (14), (12) will be shown in Section 5.

4.3. Advanced avoidance model

Our second approach is motivated by the observation that computer simulations of
the previous model, while showing the correct dynamic behavior, have the visual
disadvantage of abrupt turning maneuvers of the agents. In order to improve the
visual appearance, we adopt an ansatz for the avoidance potential that has been
originally used to model the movement of pedestrians (Molnár, 1995):

V(Ri ) = p · exp
(

− Ri (r i j , vi , v j )
σ

)

, (15)

p denotes the strength and σ the range of the potential, the latter being a measure
of the range of detection. Ri is a specific function of the distance between agents,
as explained in the following. Since all agents are moving, agent i needs to account
for the space that will be occupied by all other agents j in the vicinity during the
next time step. This space needed, depends both on the agent’s positions r j and
their velocity of motion, v j , so Ri is a function of these. For further specification,
we introduce the unit vector in the direction of motion of agent i , n0

i = vi/||vi ||;
n0

j is defined similarly. This allows to define a new velocity-dependent coordinate
system for agent i , namely yi and xi defined by:

yi = vi n 0
i − δv j n 0

j

||vi n 0
i − δv j n 0

j || ; xi ⊥ yi and 〈xi , xi 〉 = 1. (16)

If δ > 0, the direction of motion of agent j is also taken into account for agent
i . The xi can be constructed by the orthonomalization algorithm by GRAM-
SCHMIDT. Using this coordinate system, the dependence of Ri on the position and
velocity of agent j is now given as

Ri =
√

〈r i − r j , xi 〉2 + β2〈r i − r j , yi 〉2, (17)

with a velocity-dependent function:

β =

⎧

⎪⎨

⎪⎩

β ′ : 〈r i − r j , yi 〉 ≥ 0

β ′

1 + λ · vi
: 〈r i − r j , yi 〉 < 0.

(18)
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Fig. 6 Equipotential lines of the repulsive potential V(ri ), Eq. (15) for different parameters δ

and λ. Left: δ = 0, λ = 1.8, Middle: δ = 0, λ = 3, Right: δ = 0.4, λ = 1.8. The black arrow (in the
center) indicates the agent in the origin, having a velocity of v = {0, 1}. The two red (gray) arrows
represent other agents with the same absolute value of the velocity (1) and point towards the
origin. In the left, middle and right part of the figure, the equipotential lines shown correspond to
the same values for the potential.

In order to understand the meaning of the parameters β ′ and λ we note that, if
〈r i − r j , y〉 ≥ 0 then agent i is moving away from agent j . This means that increas-
ing the value of β ′ also means increasing Ri . Therefore, for both cases mentioned
in Eq. (18), β ′ > 1 will lead to a reduction in the repelling force between agents i
and j . On the other hand, an increase in λ · vi means that the repelling force be-
tween agents i and j will increase if agent i is moving towards j . We note that
these assumptions lead to an asymmetric repulsive potential V(ri ) around each
agent. The potential defined by Eq. (15) with Eq. (17) can be seen in Fig. 6 for
different parameters.

Eventually, with the known repulsive interaction potential V(ri ), the force be-
tween any two agents i and j is given as:

f i j = −∇V(Ri ) = p
σ · Ri

exp
(

− Ri

σ

)

(r i − r j ). (19)

The dynamics of this model is also described by Eqs. (2), (9).

5. Results of computer simulations of both models

5.1. Simulation of vortex formation

The computer simulations of both, the simple avoidance model (Section 4.2) as well
as the advanced avoidance model (Section 4.3) show indeed the expected symme-
try break for the swarming behavior in agreement with the biological observations.
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Fig. 7 Spatial snapshots (left) and distribution of angular momentum ρ(L) (right) for a multi-
agent system (N = 20) at three different times: (a) t = 0 (b) t = 8 and (c) t = 55. The length of
the arrows indicates the velocities. Initial conditions: {xi (0); yi (0)} ∈ [−1.5; +1.5], {vx

i (0), vy
i (0)} =

{0, 0}, ei (0) = 0, parameters: γ = 20.0, d2 = 20.0, q0 = 10.0, c = 1.0, D = 0.005, a = 1.0 p =
0.8, σ = 0.1, δ = 0.0, λ = 10.0, β ′ = 2. A video of the computer simulations can be viewed at
http://intern.sg.ethz.ch/publications/2005/web-ms.html.

Spatial snapshots of a computer simulation of the multi-agent system with respect
to avoidance behavior, together with the respective distribution of the angular mo-
menta ρ(L) are shown in Fig. 7. The results of both models can be concluded as
follows:

1. On the spatial level, we observe the emergence of a coherent motion of the
multi-agent swarm out of a random initial distribution. This collective motion is
characterized by a unique cycling direction (either left- or righthanded rotation).

2. We further observe the formation of a vortex which is rather similar to the
Daphnia swarm cycling round the light beam.
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3. While in one simulation all agents cycle in the same direction, we note that in
different simulations the cycling direction can be also opposite, i.e. there is no
preferred cycling direction for the swarm, which also agrees with the observa-
tions of the Daphnia swarm.

The computer simulations for the simple avoidance model, while showing the
correct dynamic behavior, have the visual disadvantage of abrupt turning maneu-
vers of the agents. To this end, the advanced avoidance model was introduced in
Section 4.3. From the computer simulations of the advanced avoidance model the
following improvements can be seen:

1. The movements of the agents look smoother, more Daphnia like.
2. Although cycling in the same direction, there are some agents that come near

the center.
3. For certain parameters a spontaneous change in the rotating direction can be

observed. This occurs in particular if agent i takes strongly into account (δ ≈
0.5) the movement of agent j .

In order to demonstrate the influence of the avoidance interaction on the col-
lective motion of the swarm, we have conducted a computer simulation where the
interaction between agents is “switched on” at time t = 150. Thus, in the begin-
ning, the swarm consists of non-interacting agents as described in Section 3. In
Fig. 8 the evolution of the angular momentum distribution in time is shown. In the
very beginning, we find a broad distribution of ρ(L) centered around L = 0. This
distribution evolves towards a clear bimodal distribution as also shown in Fig. 4,
indicating the complete symmetry between lefthanded and righthanded rotational

Fig. 8 Density plot (indicated by the gray scale) of the angular distribution ρ(L) versus time. The
interaction between agents is turned on at t = 150 (compare to Fig. 4). For the parameters and
the setup see Fig. 7.
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direction. When the interaction potential becomes effective at t = 150, the agents
start to avoid collisions and thus tend to move into the same direction. This can
be clearly seen in Fig. 8 where ρ(L) transforms from a bimodal into an unimodal
distribution after t > 150. The transformation period (
t ≈ 30) is characterized by
large fluctuations that sometimes even give the less frequent rotational direction a
chance to take over.

The symmetry break towards one cycling direction can be also interpreted as a
process of consensus formation in groups of animals as discussed by Couzin et al.
(2005). They have developed a model to investigate the effective leadership and
decision making in animal groups in detail. To this end, it was assumed that a small
portion of the animals is informed and therefore has a desired direction of motion.
The model is based on a mechanism with different tunable parameters, namely the
number of informed group members and the weight they give to their preferred
direction. Through extensive computer simulations the authors find that (a) for a
given group size the accuracy of group motion increases asymptotically as the pro-
portion of the informed individuals increases, and (b) the larger the group size, the
smaller the proportion of informed individuals needed. Couzin et al. (2005) also
investigate how individuals achieve consensus about the majority direction in case
of different informed groups with competing directions. A feedback mechanism
about adjusting the weights is proposed, to resolve this conflict.

We like to point out that our model does not need such tunable model param-
eters to achieve consensus about the moving direction. In fact, each individual in
our model, while moving, has only the desire to avoid collisions with other animals.
Thus, the collective motion emerges as a self-organized phenomenon. To show
that the transition from bimodal to unimodal motion is inherent in our model, in
the following section we show how this transition occurs with increasing swarm
size.

5.2. Swarm size dependence of vortex formation

So far, we have shown that our model can in fact reproduce the observed cycling
behavior of Daphnia swarms. This means our proposed avoidance behavior on the
microscopic scale indeed leads to the symmetry break on the macroscopic scale,
whereas for single agents a symmetric distribution of the angular momentum is
found, in agreement with the biological observation of Daphnia.

This leads us to the question whether there is a critical swarm size at which the
emergence of a vortex can be observed. In order to investigate this, we have con-
ducted extensive computer simulations of our model with a fixed set of parame-
ters, but different swarm sizes. We point out that the realization of a vortex swarm
strongly depends on the parameters of the model, in particular how much the sym-
metry break is enforced by the avoidance potential. Thus, any conclusion about a
critical swarm size for vortex formation, drawn in the following, is valid only for
the particular parameter setting. This holds also for the scaling relation discussed
below.

Secondly, we note the strong dependence of the vortex formation on stochastic
influences. I.e., whether or not a vortex is formed, how long it takes for the estab-
lishment of a common cycling direction, and what this direction will be, is affected
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Fig. 9 Mean fraction of agents with positive angular momentum FL+(N), Eq. (20), vs. swarm
size N. The results are averaged over 80 simulations for each data point. The fitted curves are
given by Eqs. (21), (22) (black) and Eqs. (23), (24) (red: saturation curve). Parameters: q0 = 10.0,
c = 1.0 γ0 = 20.0, d2 = 10.0, D = 0.001, a = 1.0, p = 0.1, σ = 0.1 , δα = 0.01, λ = 10.0.

by stochastic fluctuations, which play a considerable role especially for small num-
bers of agents.

To compensate for this, we have measured the angular momentum distribution
of the swarm only after a sufficient time, t = 300, where a common cycling direc-
tion was established in all cases. This, however, does not mean that all agents fol-
low the same direction at that particular time. Further, there could still be large
fluctuations afterwards (as can be clearly observed in the computer simulation
video mentioned in Fig. 7). To account for this, we have monitored the angular
momentum distribution over the next 50 time units, i.e. between t = 300 − 350,
and have averaged over that time interval. We note that t = 300 does not mean
simulation steps, but physical time, where the simulation interval was chosen as

t = 5 × 10−4, i.e. t = 300 corresponds to 6 × 105 simulation steps and the distri-
bution was averaged over the next 105 simulation steps. It is obvious that due to
the pairwise interaction of the agents by means of the avoidance potential, the
computational effort for each simulation step also increases with N2. Further, we
have averaged the results of computer simulations over 80 runs, from which we
calculated the sample standard deviation.

Figure 9 shows a function of the mean fraction of agents with a particular angular
momentum dependent on the swarm size N,

FL+(N) = |x̄L+ − x̄L−| = |2x̄L+ − 1| ; x̄L+ = 1
s m N

s
∑

k=1

m
∑

n=0

N(k)
L+(t + n
t), (20)

where N(k)
L+(t) is the number of agents found with a positive angular momentum

in simulation (k) at time t . For the simulations s = 10, t = 300, 
t = 5 × 10−4 and
m = 105 were chosen.
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If a swarm has a bimodal angular momentum distribution as shown in Fig. 4,
x̄L+ would be 0.5 and FL+(N) = 0, i.e. no common cycling direction has been es-
tablished, that is followed by a majority of agents. On the other hand, a clear uni-
modal distribution as e.g. observed in Fig. 7, would lead to either x̄L+ = 0 or 1, i.e.
FL+(N) = 1.

As Fig. 9 indicates, the emergence of a common cycling direction occurs between
swarm sizes of 4–18 agents (for the given set of parameters). Even for large swarm
sizes, the common cycling direction is not followed by all agents, a noticeable mi-
nority fraction still cycles its own way. This, however, should be not considered as
a drawback of the model, in fact it makes it much more realistic, as the computer
simulation video also shows. This behavior also agrees with observations of Daph-
nia swarms at high density. In particular, animals at the border of the swarm still
do not follow the cycling direction of the majority.

We note that the occurence of a common cycling direction is not an abrupt tran-
sition, but a gradual one. One can argue that this resembles a kinetic phase transi-
tion analogous to the continuous phase transition in equilibrium systems (Vicsek
et al., 1995), i.e.

FL+(N) = c0 (N − Nc)κ , (21)

where Nc is the onset of the transition and κ is the critical exponent. For their
model Vicsek et al. (1995) have determined κ as 0.35. We have tested this finding
against our simulation results, as shown in Fig. 9 and found for the least square fit
and standard errors in the region N ∈ [4, 20]:

Nc = 3.240 ± 0.328; c0 = 0.422 ± 0.029; κ = 0.270 ± 0.025. (22)

On the first glimpse, there is a close similarity between Vicsek et al. (1995) and our
findings with respect to the value of the critical exponent κ . I.e., we emphasize that
vortex formation under repulsion also occurs at a critical point.

However, as Fig. 9 clearly shows, the scaling suggested by Vicsek et al. (1995)
only holds for a restricted range of N—which by the way was already the case
in the original paper (cf. Fig 2b of Vicsek et al. (1995)). A much better fit of the
observed transition is provided by the following function:

FL+(N) = κ

[

1 + exp
(

− N − Nc

τ

)]−1

, (23)

with the best-fit parameters and standard errors:

Nc = 4.496 ± 0.136; τ = 3.651 ± 0.161; κ = 0.880 ± 0.004. (24)

As shown in Fig. 9, this function fits the simulated data extremely well. The only
outlier for N = 3 is due to the fact, that for 3 agents at least 2 agents go in the same
direction. That means that the probability of breaking the symmetry is a lot higher
in this particular case.



556 Bulletin of Mathematical Biology (2007) 69: 539–562

In addition to the depencence on the swarm size or density, Vicsek et al. (1995)
also discussed a phase transition with respect to noise, η, in the alignment of the
individuals and suggested a scaling similar to Eq. (21). As the critical value, ηc,
depends on the lattice size of their computer simulations, there is no direct com-
parison with this result possible. However, we note the obvious similarities to other
types of structure formation which also occur only below a certain critical tempera-
ture. This holds also for our model where a common cycling direction can emerge
only below a critical noise level. As a difference to the investigations of Vicsek
et al. (1995), noise in our model enters the equation of motion, Eq. (9), whereas
the avoidance interaction is without noise.

6. Model testing of avoidance maneuvers

So far, reasonable assumptions about local interactions of Daphnia (such as local
repulsion) have been taken into account. But it still remains to be tested empir-
ically and theoretically whether avoidance maneuvers of Daphnia are really re-
sponsible for the symmetry break observed in high density swarms.

To gather evidence on the microscopic dynamics of our model, we used data
provided by Anke Ordemann (Ordemann et al., 2004) about avoidance maneu-
vers of pairs of Daphnia approaching each other in a horizontal plane. Snapshots
of a typical avoidance time series are shown in Fig. 10. A thorough analysis of sim-
ilar experiments would allow to determine the parameters in our model, but the
time series presented was the only data made available to us. Nevertheless, this se-
quence already enables us to qualitatively compare the experimental findings with
our theoretical model of avoidance behavior.

To this end, we have simulated the avoidance maneuver of two agents in a situ-
ation similar to the one shown in Fig. 10. From the simulation results shown in the
left part of Fig. 11 it can be clearly seen that the two agents avoid each other not in

Fig. 10 Experimental observation of an inter-animal avoidance maneuver of two Daphnia in the
horizontal plane (Ordemann et al., 2004). In our representation of the available data, each arrow
represents the spatial orientation (head and tail) of the Daphnia at successive times (every 0.2 s).
In the sequence, same arrow colors (gray scales) correspond to the same time.
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Fig. 11 Left: Simulation of an inter-agent avoidance maneuver in the horizontal plane. Each
arrow represents the spatial orientation (drawn from the velocity vector) of the agent at successive
times (every 0.2 time units). In the sequence, same arrow colors (gray scales) correspond to the
same time. Parameters: q0 = 10.0, c = 1.0 γ0 = 20.0, d2 = 10.0, D = 0.001, p = 0.2, σ = 0.2 , δα =
0.1, λ = 10.0, a = 0.1, Right: Simulation with the same setting but without avoidance interaction,
p = 0.0.

a symmetrical way, but rather similar to the experimental findings. One may argue
that this is due to the additional influence of the environmental potential which
may more affect the agent closer to the origin (0, 0). In order to test this, we have
simulated the same situation without the avoidance interaction potential, but just
the environmental potential. The result, shown in the right part of Fig. 11, clearly
indicates that the environmental potential has only very little affects the agent’s
trajectories and thus cannot be responsible for the realistic avoidance behavior
shown in the left part of Fig. 11.

Comparing the simulation of the model with the above experimental observa-
tions in Daphnia, it becomes obvious that inter-animal avoidance maneuvers sim-
ilar to the ones incorporated in the current Brownian agent model are most likely
involved in the mechanism that causes symmetry breaking for high Daphnia den-
sity and leads to the observed vortex swarms.

7. Discussion

In this paper, we tried to understand the vortex swarming behavior observed in
Daphnia from rather minimalistic assumptions that, however, should have a clear
biological relevance. To this end, we introduced a multi-agent model based on the
concept of Brownian agents. Different from other modeling approaches which are
based e.g. on cellular automata, our model considers both continuous time and
space. Further, in addition to external and interaction forces effecting the agent’s
behavior, we consider stochastic influences resulting e.g. from random events or
fluctuations in the environment. As a difference to multi-agent models developed
in artificial life, our model further allows for a more specific discussion of the dif-
ferent parameters affecting the agent’s motion. It can be also seen as an alterna-
tive to some of the self-propelled particle models (Vicsek et al., 1995; Grégoire
et al., 2001; Grégoire and Chaté, 2004) where alignment between individuals is
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explicit. In our model, we demonstrate that vortex swarming does not require an
explicit alignment rule for individuals but can be achieved through a combination
of attraction and repulsion. This insight allows us to reduce assumptions about the
cognitive requirements of swarming organisms.

At the end, we give a critical discussion of the Brownian agent model in the
biological context of Daphnia swarming, in order to point out its limitations and
to give some hints for experimental verifications.

The equation of motion for the Brownian agents is a generalized Langevin
Eq. (1), which models the motion of the animals as continuous in space and time.
The movement of single Daphnia, however, consists of a series of jumps as can be
also observed in experimental observations. This can at least be partially covered
by using a larger time step in our simulation, resulting in larger jumps during each
time interval. We argue that this would not change the overall dynamic behavior
of our model. Thus, we kept the continuous approximation of the discrete jumps
and the small time step to avoid numerical instabilities.

Our theoretical description is based on the assumption of a quasistationary en-
ergy depot of the agents. This implies a constant take-up of energy, q0, whereas
Daphina feed in cycles while they do not move actively. Thus, a switch-like change
in behavior seems to be more appropriate. This can be covered in our model by
assuming the take-up rate of energy a time-dependent function, q(t), and replacing
the continuous acceleration term in Eq. (1), d2ei (t), by a more complex term that
reflects a switch-like change between starvation and active motion.

Response to external forces and force-based interaction between the agents are
two basic ingredients of our model of Brownian agents. Interaction of biological
entities, on the other hand, is often driven by internal and behavioral reasons.
This certainly sets the limits for our approach which is inspired by, and based of,
physical considerations using minimal assumptions. Physics, per se, has no con-
cept of “behavior” based on internalized motivations of an agent. Thus, in our
model every kind of internal “driving forces” has to be externalized by assuming
that the agent behaves as it would follow an external force that leads it to the de-
sired behavior. Such an approach does not claim that these forces really exist in
the outer world, it is rather a convenient modeling formalism that allows to apply
the concepts of physics to the much more complex behavior of animals. An alter-
native could be concepts from artificial intelligents, where the internal dynamics of
agents is modeled explicitely (the so-called BDI (belief-desire-intention) agents,
for example, can have their own internal world view).

In our model of Brownian agents, we could demonstrate the emergence of a
vortex swarm based on local asymmetric interactions of the agents. The global dy-
namic behavior was also found for other models (see also Section 4.1) exploiting
other mechanisms of symmetry breaking. We do not want to argue here about
the most simplest one—at the end, one has to find a compromise between “sim-
ple” and biologically “satisfied”. Many of the proposed mechanisms—such as the
hydrodynamic coupling—still lack an experimental justification. Our avoidance
model, on the other hand, could be at least visually tested by comparing the ex-
perimental observations of two Daphnia approaching each other with a similar
situation from the computer simulations.
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Noteworthy, in our model the emergence of a vortex swarm is not enforced by
the alignment of the agents, as used in other models. Instead, we have included
only the simple assumption of collision avoidance. The specific form of our avoid-
ance potential penalizes mainly the head-head collision and thus promotes the dis-
persion of the agents (and not the alignment). As a consequence, to obtain a vortex
swarm, an additional attraction force is needed, which in the considered case re-
sults from the environmental potential (attraction towards the center). This is not
a drawback of the model, but justified by the real experimental observation. As
shown by Schweitzer et al. (2001), under certain circumstances the effect of an
external parabolic potential is also equivalent to an attractive force between the
agents. The emergence of a vortex swarm can be seen as a dynamic compromise
between three different requirements: active motion (to keep the agents moving),
asymmetric repulsive forces (e.g. to avoid collisions) and attractive forces (either
enforced by a local agent-agent attraction, or an external potential). While the
first two requirements alone would simply lead to a dispersion, the latter one re-
sults in a compression (or confinement) of the swarm. From a physics perspective
the vortex swarm is a stable attractor of the multi-agent dynamics; from an “eco-
nomics” perspective one could think of global utility maximization balancing out
all individual requirements (such as avoiding discomfort from both collisions and
separation).

A noticeable advantage of our model is that it does not break down for small
swarm sizes, so it can be used to simulate both single animals and swarms of low
and of high density, whereas other models mainly concentrate on the dynamics
of reasonably sized swarms. This allows in particular to investigate the transition
from the uncorrelated (bi-directional) rotation of single agents to the correlated
vortex formation of the swarm, as shown in Fig. 9.

So far, we have shown a qualitative agreement between our computer simula-
tions and some experimental observations in Daphnia. A quantitative verification,
or even a prediction of Daphnia behavior under different real conditions is still
missing. In this respect, our model is not different from other theoretical models
proposed. A first step towards verification involves the experimental determina-
tion of the parameters. In this paper, we can just propose some ideas:

� Neglecting the jump-like motion of single Daphnia and using the approximation
of a (quasi-)stationary velocity, one should be able to estimate an average veloc-
ity of cycling Daphnia. This can be directly related to the stationary velocity v0,
Eq. (3), that enters the equation of motion used in the model.

� The parameters determining the avoidance behavior may be estimated by a di-
rect comparison between the experimental observation, Fig. 10 and the com-
puter simulation, Fig. 11. Obviously, the sole event shown in this paper, is not
sufficient for that; so, we would expect further experimental investigations here.

� Another way to (indirectly) estimate the parameters of the avoidance potential
is via the local swarm density, or the (average) spatial extension of a swarm of
given size. These are determined by our model parameters and could be possibly
compared with experiments (varying both the strength of the light beam and the
swarm size).
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� By varying the swarm size, one can also experimentally test the onset of the vor-
tex swarming, and compare this to the respective computer simulations shown
in Fig. 9. As mentioned, the transition range towards the vortex formation in
the model strongly depends both on swarm size and on the parameters charac-
terizing the avoidance potential. So, in addition to the observation of avoidance
maneuvers of two animals, this yields a macroscopic verification for the param-
eters of the avoidance potential.

Eventually, we want to point out some situations where the model could make
predictions about Daphnia behavior which may be tested experimentally. The
model uses the assumption of an environmental potential, that in the current in-
vestigation results in an attraction toward the center, this way considering the in-
fluence of the vertical light beam on the Daphnia. The real influence could be
tested by producing Daphnia mutants that are insensitive to light. Then we expect
no attractive force, and hence no vortex swarming, in agreement with the expla-
nations above. Also, one could think of two different vertical light beams in the
water tank, at a certain distance. Starting from a homogeneous spatial distribution
of agents, the model would predict the occurrence of two different vortex swarms
around the two centers, each probably having its own rotational direction, as long
as the distance between the light beams is large enough. For smaller distances
(where the critical distance may be also a function of the agent density in the sys-
tem), we would expect from the model interferences at the boarder between the
two rotating swarms, which would lead to additional couplings and thus maybe to
a synchronization of the rotational directions. The situation of the two separated
vertical light beams would also allow us to test whether the attraction of the Daph-
nia is limited by some maximum local density of the swarm, as suggested by our
model. In this case, we would find in the experiments two distinct swarms, whereas
without saturation effects, one could possibly find one swarm only, with a much
higher density.

A remaining question is weather the model in the current form is also applica-
ble to other species. Vortex swarming, as we have pointed out, is a widely spread
phenomenon observed also in fish, or bacteria. We argue that the principle (quali-
tative) features of vortex swarming are covered by our model, as long as (local or
global) attraction and asymmetric repulsion (e.g. via avoidance maneuvers) play
a considerable role. This may hold for fish, but probably not for gliding bacteria
like Paenibacillus, which also show vortex formation (Ben-Jacob, 2003). In the lat-
ter case, adhesion forces may play a much more important role as one can also
deduce by looking at the sharp external boundaries of the bacterial swarm. How-
ever, it would be still possible to adapt the model of Brownian agents also for this
situation by including other terms of local interaction.
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Grünbaum, D., Okubo, A., 1994. Modelling Social Animal Aggregation. In: Levin, S.A. (Ed.),

Frontiers in Theoretical Biology. Springer, New York, vol. 100 of Lecture Notes in Biomath-
ematics.

Hall, S.J., Wardle, C.S., MacLennan, D.N., 1986. Predator evasion in a fish school: test of a model
of the fountain effect. Mar. Biol. 91, 143–148.

Helbing, D., Schweitzer, F., Keltsch, J., Molnár, P., 1997. Active walker model for the formation
of human and animal trail systems. Phys. Rev. E 56(3), 2527–2539.

Huth, A., Wissel, C., 1992. The simulation of the movement of fish schools. J. Theor. Biol. 156,
365–385.

Huth, A., Wissel, C., 1994. The simulation of fish schools in comparison with experimental data.
Ecological Modelling 75–76, 135–146.

Jakobsen, P., Johnsen, G., 1987. Behavioral response of the water flea Daphnia pulex to a gradient
in food concentration. Anim. Behav. 35, 1891–1895.

Jakobsen, P.J., Birkeland, K., Johnsen, G.H., 1994. Swarm location in zooplankton as an anti-
predator defense mechanism. Anim. Behav. 47, 175–178.

Jensen, K., 2000. Gregariousness in Daphnia: significance of food distribution and predator eva-
sion. University Bergen, Dep. of Zoology, Norway, Phd. Thesis.

Kleiven O., Larsson, P., Hobæk, 1996. Direct distributional response in Daphnia pulex to a preda-
torkairomone. J. Plankton Res. 18, 1341–1348.



562 Bulletin of Mathematical Biology (2007) 69: 539–562

Kunz, H., Hemelrijk, C.K., 2003. Artificial fish schools: collective effects of school size, body size,
and body form. Artificial Life 9, 237–253.

Kvam, O., Kleiven, O., 1995. Diel horizontal migration and swarm formation in Daphnia in re-
sponse to Chaoborus. Hydrobiol. 307, 177–184.

Larsson, P., 1997. Ideal free distribution in Daphnia? Are daphnids able to consider both the food
patch quality and the position of competitors? Hydrobiologia 360, 143–152.

Larsson, P., Kleiven, O., 1995. Food search and swimming speed in Daphnia. In: Lenz, P.H., Hart-
line, D., Purcell, J., Macmillan, D. (Eds.), Zooplankton: Sensory Ecology and Physiology.
Gordon and Breach, pp. 375–387.

Levine, H., Rappel, W.-J., Cohen, I., 2000. Self-Organization in Systems of Self-Propelled Parti-
cles. Phys. Rev. E 63, R017101.

Lobel, P.S., Randall, J.E., 1986. Swarming behavior of the hyperiid amphipod Anchylomera blos-
sevilli. J. Plankton Res. 8, 253–262.

Mikhailov, A., Zanette, D.H., 1999. Noise-induced breakdown of coherent collective motion in
swarms. Phys. Rev. E 60, 4571–4575.

Molnár, P., 1995. Modellierung und Simulation der Dynamik von Fussgängerströmen. Aachen:
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