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Abstract. This paper investigates the statistical properties of within-country gross domestic product
(GDP) and industrial production (IP) growth-rate distributions. Many empirical contributions have re-
cently pointed out that cross-section growth rates of firms, industries and countries all follow Laplace
distributions. In this work, we test whether also within-country, time-series GDP and IP growth rates
can be approximated by tent-shaped distributions. We fit output growth rates with the exponential-power
(Subbotin) family of densities, which includes as particular cases both Gaussian and Laplace distributions.
We find that, for a large number of OECD (Organization for Economic Cooperation and Development)
countries including the US, both GDP and IP growth rates are Laplace distributed. Moreover, we show
that fat-tailed distributions robustly emerge even after controlling for outliers, autocorrelation and het-
eroscedasticity.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management – 89.90.+n Other
topics in areas of applied and interdisciplinary physics – 02.60.Ed Interpolation; curve fitting

1 Introduction

In recent years, empirical cross-section growth-rate distri-
butions of diverse economic entities (i.e., firms, industries
and countries) have been extensively explored by both
economists and physicists [1–10].

The main result of this stream of literature was that,
no matter the level of aggregation, growth rates tend to
cross-sectionally distribute according to densities that dis-
play tails fatter than those of a Gaussian distribution.
From an economic point of view, this implies that growth
patterns tend to be quite lumpy: large growth events, no
matter if positive or negative, seem to be more frequent
than what a Gaussian model would predict.

For example, at the microeconomic level, growth rates
of US manufacturing firms (pooled across years) appear
to distribute according to a Laplace [1,4]. This result ro-
bustly holds even if one disaggregates across industrial
sectors and/or considers cross-section distributions in each
given year [5,6]. Moreover, in some countries (e.g., France)
firm growth rates display tails even fatter than those of
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a Laplace density [9]. Interestingly, similar findings are
replicated at higher aggregation levels: both growth rates
of industrial sectors [7,10] and countries [2,3,7] display
tent-shaped patterns.

Existing studies have been focusing only on cross-
section distributions. In this paper, on the contrary, we
ask whether fat-tailed distributions also emerge across
time within a single country. More precisely, for any given
country, we consider gross domestic product (GDP) and
industrial production (IP) time series and we test whether
their growth-rate distributions can be well approximated
by densities with tails fatter than the Gaussian ones.

Our analysis shows that in the US both GDP and IP
growth rates distribute according to a Laplace. Similar re-
sults hold for a large sample of OECD (Organization for
Economic Cooperation and Development) countries. In-
terestingly enough, this evidence resists to the removal of
outliers, heteroscedasticity and autocorrelation from the
original time series. Therefore, fat-tails emerges as a in-
herent property of output growth residuals, i.e. a fresh
stylized fact of output dynamics.

Our work differs from previous, similar ones [2,3,7]
in a few other respects. First, we depart from the com-
mon practice of using annual data to build output growth-
rate distributions. We instead employ monthly and quar-
terly data. This allows us to get longer series and
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better appreciate their business cycle features. Second,
we fit output growth rates with the exponential-power
(Subbotin) distribution [11], which encompasses Laplace
and Gaussian distributions as special cases. This choice
allows us to measure how far empirical growth-rate distri-
butions are from the Normal benchmark. Finally, we check
the robustness of our results to the presence of outliers,
heteroscedasticity and autocorrelation in output growth-
rate dynamics.

The paper is organized as follows. In Section 2 we de-
scribe our data and the methodology we employ in our
analysis. Empirical results are presented in Section 3. Fi-
nally, Section 4 concludes.

2 Data and methodology

Our study employs two sources of (seasonally adjusted)
data. As far as the US are concerned, we use data
drawn from the FRED database. More specifically, we
consider quarterly real GDP ranging from 1947Q1 to
2005Q3 (235 observations) and monthly IP from 1921M1
to 2005M10 (1018 observations). Analyses for the OECD
sample of countries are performed by relying on monthly
IP data from the “OECD Historical Indicators for Indus-
try and Services” database (1975M1− 1998M12, 288 ob-
servations).

The main object of our analysis are output growth
rates g(t), defined as:

g(t) =
Y (t) − Y (t − 1)

Y (t − 1)
∼= y(t) − y(t − 1) = dy(t), (1)

where Y (t) is the output level (GDP or IP) at time t in a
given country, y(t) = ln[Y(t)] and d is the first-difference
operator.

Let Tn = {t1, ..., tn} be the time interval over which
we observe growth rates. The distribution of growth rates
is therefore defined as GTn = {g(t), t ∈ Tn}. We study
the shape of GTn in each given country following a para-
metric approach. More precisely, we fit growth rates with
the exponential-power (Subbotin) family of densities [32],
whose functional form reads:

f(x) =
1

2ab
1
b Γ (1 + 1

b )
e−

1
b | x−m

a |b , (2)

where a > 0, b > 0 and Γ (·) is the Gamma function. The
Subbotin distribution is thus characterized by three pa-
rameters: a location parameter m, a scale parameter a and
a shape parameter b. The location parameter controls for
the mean of the distribution. Therefore it is equal to zero
up to a normalization that removes the average growth
rate. The scale parameter is proportional to the standard
deviation.

The shape parameter is the crucial one for our aims,
as it directly gives information about the fatness of the
tails: the larger b, the thinner are the tails. Note that if
b = 1 the distribution reduces to a Laplace, whereas for
b = 2 we recover a Gaussian. Values of b smaller than one
indicate super-Laplace tails (see Fig. 1 for an illustration).
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Fig. 1. The exponential-power (Subbotin) density for m = 0,
a = 1 and different shape parameter values: (i) b = 2: Gaussian
density; (ii) b = 1: Laplace density; (iii) b = 0.5: Subbotin with
super-Laplace tails. Note: Log scale on the y-axis.

In our exercises, we fit empirical distributions GTn with
the Subbotin density (2) by jointly estimating the three
parameters by a standard maximum likelihood procedure
(see [12] for details).

3 Empirical results

In this section we present our main empirical results. We
begin with an analysis of US growth-rate distributions.
Next, we extend our results to other OECD countries.
Finally, we turn to a robustness analysis of growth resid-
uals, where we take into account the effects of outliers,
heteroscedasticity and autocorrelation.

3.1 Exploring US output growth-rate distributions

Let us start by some descriptive statistics on US output
growth rates. Table 1 reports the first four moments of US
time series. Standard deviations reveal that after World
War II growth rates of industrial production and GDP
have been characterized by similar volatility levels. The
standard deviation of IP growth rates becomes higher if
the series is extended back to 1921. Skewness is close to
zero: −0.09 for GDP and ≈0.33 for IP. Notice that both
the Jarque-Bera and Lilliefors normality tests reject the
hypothesis that our series are normally distributed. Fur-
thermore, the relatively high reported kurtosis values sug-
gest that output growth-rate distributions display tails
fatter than the Gaussian distribution. In order to better
explore this evidence, we fit US output growth-rate distri-
bution with the Subbotin density (see Eq. (2)).

Consider GDP first. In the first row of Table 2, we
show the maximum-likelihood estimates of Subbotin pa-
rameters and their standard errors [33]. Estimates indi-
cate that GDP growth rates seem to distribute according
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Table 1. US output time series: summary statistics. P -values in parentheses.

Series Mean Std. Dev. Skewness Kurtosis Jarque-Bera Lilliefors
test test

GDP 0.0084 0.0099 −0.0891 4.2816 15.4204 (0.0000) 0.0623 (0.0279)
IP (1921) 0.0031 0.0193 0.3495 14.3074 5411.7023 (0.0000) 0.1284 (0.0000)
IP (1947) 0.0028 0.0098 0.3295 8.1588 784.0958 (0.0000) 0.0822 (0.0000)

Table 2. US output growth-rate distribution: estimated sub-
botin parameters.

Estimated parameters
̂b â m̂

Series Par. Std. Err. Par. Std. Err. Par. Std. Err.
GDP 1.1771 0.1484 0.0078 0.0006 0.0082 0.0006
IP (1921) 0.6215 0.0331 0.0091 0.0004 0.0031 0.0002
IP (1947) 0.9940 0.0700 0.0068 0.0003 0.0030 0.0003

Fig. 2. Binned empirical densities of US GDP growth rates
(emp) vs. Subbotin fit (fit).

to a Laplace: the shape parameter ̂b is equal to 1.18, very
close to the theoretical Laplace value of one. Therefore,
US output growth rates display tails fatter than a normal
distribution. This can be also seen from Figure 2, where
we plot the binned empirical density vis-à-vis the fitted
one.

Next, we employ monthly industrial production (IP) as
a proxy of US output [34]. Notice that, by focusing on IP
growth, we can study a longer time span and thus improve
our estimates by employing a larger number of observa-
tions. During the period 1921–2005, the IP growth-rate
distribution displays tails much fatter than the Laplace
distribution (see Fig. 3 and the 2nd row of Tab. 2), an
outcome probably due to the turmoils of the Great De-
pression.

Moreover, in order to better compare IP growth-rate
distribution with the GDP one, we also carry out an
investigation on the post war period only (1947–2005).
Notwithstanding this breakdown, our results remain un-
altered. In the post-war period, the IP growth-rate dis-
tribution exhibits the typical “tent-shape” of the Laplace
density (cf. Fig. 4). This outcome is confirmed by a ̂b very
close to one (see the third row of Tab. 2). As pointed out

Fig. 3. Binned empirical densities of US IP growth rates vs.
Subbotin fit. Time period: 1921M1 – 2005M10.

Fig. 4. Binned empirical densities of US IP growth rates vs.
Subbotin fit. Time period: 1947M1 − 2005M10.

by the lower standard error, the estimate of b is much more
robust when we employ IP series instead of the GDP one.

To perform a more precise check, one might also com-
pute the Cramér-Rao interval [̂b− 2σ(̂b),̂b+ 2σ(̂b)], where
σ(̂b) is the standard error of ̂b (Tab. 2, second column).
A back-of-the-envelope computation shows that, for all
the three growth-rate series, normality is always rejected.
Moreover, one cannot reject the Laplace hypothesis for
both GDP and IP-1947 series, whereas tails appear to be
super-Laplace for IP-1921 [35].

Albeit Cramér-Rao intervals are valid only asymptoti-
cally, all the above results are confirmed by both standard
goodness-of-fit (GoF) tests (e.g., Kolmogorov-Smirnov,
Kuiper, Cramér-Von Mises, Quadratic Anderson-Darling)
and likelihood ratio tests [36].
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Fig. 5. US output growth rates: estimated subbotin b parameter for different time lags. Error bars (Cramér-rao bounds):

±2σ(̂b). Top panel: GDP data; bottom panel: IP data.

Finally, in line with [14] we inspect the distributions
of output growth rates computed over longer lags. More
precisely, we consider growth rates now defined as:

gτ (t) =
Y (t) − Y (t − τ)

Y (t − τ)
∼= y(t) − y(t − τ) = dyτ (t), (3)

where τ = 1, 2, ..., 6 when GDP series is employed, and
τ = 1, 2, ..., 12 when IP series is under study. In line with
[14], we find that the shape parameter estimated on GDP
data becomes higher as τ increases (cf. the top panel of
Fig. 5). When we consider IP series, the ̂b first falls and
then starts rising (see the bottom panel of Fig. 5). There-
fore, as the “growth lag” increases, tails become thinner
(see [15] for similar evidence in the contest of stock re-
turns). Nevertheless, estimated shape coefficients almost
always remain statistically smaller than two.

3.2 Cross-country analyses

In the previous section we have provided evidence in fa-
vor of fat-tailed (Laplace) US output growth-rate distri-
butions. We now perform a cross-country analysis in order
to assess whether this regularity pertains to the US out-
put only, or it might also be observed in other developed
countries. Our analysis focuses (in addition to the US) on
the following OECD countries: Canada, Japan, Austria,
Belgium, Denmark, France, Germany, Italy, The Nether-
lands, Spain, Sweden, and the UK.

We start by analyzing the basic statistical properties
of output growth-rate time series (cf. Tab. 3). In order to
keep a sufficient time-series length, we restrict our study
to industrial production series only. The standard devia-
tions of the IP series range from 0.0073 (US) to 0.0404
(Japan). In half of the countries that we have analyzed,
the distributions of IP growth rates seem to be slightly
right-skewed, whereas in the other half they appear to be

slightly left-skewed. The analysis of the kurtosis reveals
that in every country of the sample the IP growth-rate
distribution is more leptokurtic than the Normal distri-
bution. Indeed, apart from Spain and Canada, standard
normality tests reject the hypothesis that IP growth series
are normally distributed.

Given this descriptive background, we turn to a
country-by-country estimation of the Subbotin distribu-
tions. Estimated coefficients are reported in Table 4.

The results of the cross-country analysis confirm that
output growth rates distribute according to a Laplace
almost everywhere [37]. Excluding Canada, estimated
“shape” coefficients are always close to 1. If one con-
siders the Cramér-Rao interval [̂b − 2σ(̂b),̂b + 2σ(̂b)], the
only country where output growth-rate distribution does
not appear to be Laplace is Canada, whose ̂b-interval lies
above one [38].

3.3 Robustness checks: outliers, heteroscedasticity,
and autocorrelation

The foregoing discussion has pointed out that within-
country output growth-rate distributions are markedly
non-Gaussian. The evidence in favor of Laplace (or super-
Laplace) densities robustly arises in the majority of OECD
countries, it does not depend on the way we measure
output (GDP or IP), and it emerges also at frequencies
more amenable for the study of business cycles dynamics
(i.e. quarterly and monthly). Notice also that our analysis
does not show any clear evidence in favor of asymmet-
ric Laplace (or Subbotin) growth-rate distributions [39].
Hence, almost all OECD countries seem to exhibit (with
a probability higher than we would expect) large, positive
growth events with the same likelihood of large, negative
ones.

This “fresh” stylized fact on output dynamics must
be however scrutinized vis-à-vis a number of robustness
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Table 3. Cross-country analysis of IP time series: summary statistics. P -values in parentheses.

Series Mean Std. Dev. Skewness Kurtosis Jarque-Bera Lilliefors
test test

Canada 0.0021 0.0113 −0.2317 3.5631 5.9848 (0.0400) 0.0391 (0.3556)
USA 0.0026 0.0073 −0.1505 4.6337 31.6281 (0.0000) 0.0705 (0.0000)
Japan 0.0027 0.0404 −0.2250 4.6895 35.0981 (0.0000) 0.0944 (0.0000)
Austria 0.0024 0.0253 0.1707 5.7806 90.8554 (0.0000) 0.0565 (0.0279)
Belgium 0.0013 0.0401 −0.5689 5.9446 115.6987 (0.0000) 0.0884 (0.0000)
Denmark 0.0025 0.0340 0.1214 7.2748 213.3210 (0.0000) 0.0958 (0.0000)
France 0.0013 0.0130 0.1525 3.7251 6.9217 (0.0300) 0.0740 (0.0007)
Germany 0.0015 0.0212 0.0098 9.2312 453.1891 (0.0000) 0.0875 (0.0000)
Italy 0.0017 0.0321 0.0453 5.8380 93.3429 (0.0000) 0.0692 (0.0021)
The Netherlands 0.0015 0.0285 −0.0350 6.5731 148.3145 (0.0000) 0.0741 (0.0007)
Spain 0.0017 0.0401 0.2559 4.0067 14.5026 (0.0000) 0.0469 (0.1310)
Sweden 0.0016 0.0302 −0.2955 37.0700 13627.2129 (0.0000) 0.1153 (0.0000)
UK 0.0012 0.0140 −0.1631 8.4090 342.3813 (0.0000) 0.0712 (0.0013)

Table 4. Cross-country analysis of IP time series: estimated subbotin parameters.

Estimated parameters
̂b â m̂

Country Par. Std. Err. Par. Std. Err. Par. Std. Err.
Canada 1.6452 0.2047 0.0104 0.0007 0.0020 0.0010
USA 1.2980 0.1516 0.0060 0.0004 0.0031 0.0004
Japan 0.8491 0.0901 0.0259 0.0020 0.0021 0.0014
Austria 1.2499 0.1446 0.0204 0.0014 0.0010 0.0014
Belgium 1.0202 0.1125 0.0284 0.0021 0.0011 0.0017
Denmark 0.8063 0.0847 0.0215 0.0017 0.0000 0.0012
France 1.2623 0.1464 0.0106 0.0008 0.0010 0.0007
Germany 0.9768 0.1067 0.0144 0.0011 0.0024 0.0008
Italy 1.0778 0.1204 0.0237 0.0017 0.0010 0.0015
The Netherlands 1.2133 0.1393 0.0223 0.0016 0.0019 0.0015
Spain 1.4583 0.1755 0.0352 0.0024 0.0021 0.0029
Sweden 0.8826 0.0944 0.0168 0.0013 0.0010 0.0009
UK 1.0972 0.1230 0.0103 0.0008 0.0019 0.0006

checks. More precisely, the above results can be biased
by two classes of problems. First, the very presence of
fat-tails in the distribution of country-level growth rates
might simply be due to the presence of outliers. Thus,
one should remove such outliers from the series and check
whether fat tails are still there. Second, our within-country
analysis relies on pooling together growth-rate observa-
tions over time. Strictly speaking, the observations con-
tained in GTn should come from i.i.d. random variables.
In other words, we should verify that fat tails do not char-
acterize growth rates only, but they are a robust feature
of growth residuals (also known as “innovations”). To do
so, one might remove the possible presence of any struc-
ture in growth-rate time series due to autocorrelation and
heteroscedasticity, and then fit a Subbotin density to the
residuals.

Our robustness analyses seem to strongly support the
conclusion that fat-tails still characterize our series also
after having controlled for outliers, autocorrelation and
heteroscedasticity. More precisely, in the first row of Ta-
ble 5 we have reported the estimates of the Subbotin pa-
rameters in the case of US GDP, after having removed
the most common types of outliers [16]. The estimate for

the shape parameter (̂b) still remains close to one, thus
reinforcing evidence in favor of Laplace fat-tails.

Moreover, in order to remove any structure from the
growth-rate process, we have fitted a battery of ARMA
specifications to the growth-rate time series obtained af-
ter cleaning-up outliers and we have selected the best
model through the standard Box and Jenkins’s proce-
dure. In Table 5, second row, we report — for the case of
US GDP — our Subbotin estimates for the distribution of
residuals of the best ARMA model, which turned out to be
an AR(1) without drift. In particular this model was able
to produce serially uncorrelated residuals. Indeed, none
of the Ljung-Box tests performed on the residuals of this
AR(1) model (at 9, 18 and 27 lags, respectively) rejected
the null hypothesis of absence of autocorrelation in the
residuals (both at 5% and 1% significance levels). How-
ever, the best fit for the distribution of the AR(1) residu-
als is still a Subbotin very close to a Laplace (̂b = 1.2696).
Similar results hold also for the IP growth-rate series and
are sufficiently robust across our sample of OECD coun-
tries. Finally, we ran (at 10, 15 and 20 lags, respectively)
standard Ljung-Box and Engle’s ARCH heteroscedastic-
ity tests (on the squared residuals of our best ARMA
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Table 5. US GDP growth-rate distribution: robustness checks.

Estimated parameters
̂b â m̂

After removing Par. Std. Err. Par. Std. Err. Par. Std. Err.
Outliers only 1.2308 0.1568 0.0073 0.0006 0.0000 0.0006
Outliers and autocorrelation 1.2696 0.1628 0.0071 0.0006 0.0000 0.0006

Note: Estimated Subbotin parameters after having removed outliers only (first row) and after having removed both
outliers and autocorrelation (second row) from the original output growth-rate series. Outlier removal performed using
TRAMO [17]. Autocorrelation removal performed fitting an ARMA model to outlier-free residuals. Best ARMA model:
AR(1) w/o drift.

Fig. 6. Controlling for outliers and autocorrelation in US output growth rates. Binned Empirical Densities (emp) vs. Subbotin
Fit (fit). Left: residuals after removing outliers only. Right: residuals after removing outliers and autocorrelation. Outlier removal
performed using TRAMO [17]. Autocorrelation removal performed fitting an ARMA model to outlier-free residuals. Best ARMA
model: AR(1) w/o drift.

models) without detecting evidence in favor of non-
stationary variance over time. Indeed, for US GDP growth
residuals both tests did not reject (at the 5% significance
level) the null hypothesis of absence of heteroscedasticity.

As Figure 6 shows for US GDP, fat-tailed Laplace den-
sities seem therefore to robustly emerge even after one
washes away from the growth process both outliers and
autocorrelation structure (i.e., when one considers growth
residuals as the object of analysis).

4 Concluding remarks

In this paper we have investigated the statistical proper-
ties of GDP and IP growth-rate time-series distributions
by employing quarterly and monthly data from a sample
of OECD (Organization for Economic Cooperation and
Development) countries.

We find that in the US, as well as in almost all other de-
veloped countries of our sample, output growth-rate time
series distribute according to a symmetric Laplace density.
This implies that the growth dynamics of aggregate out-
put is lumpy, being considerably driven by “big events”,
either positive or negative. We have checked this result
against a number of possible sources of bias. We find that
lumpiness appears to be a very property of the data gen-
eration process governing aggregate output growth, as it
appears to be robust to the removal of both outliers and
autocorrelation.

At a very general and rather broad level, the robust
emergence of fat-tailed distributions for within-country

time series of growth rates and residuals can be inter-
preted as a fresh, new stylized fact on output dynamics,
to be added to the long list of its other known statistical
properties [40].

From a more empirical perspective, our results
(together with the already mentioned cross-section
ones [1–10]) ought to be be interpreted together with re-
cent findings against log-normality for the cross-section
distributions of firm and country size [24–28], and on
power-law scaling in cross-country per-capita GDP distri-
butions [29]. This joint empirical evidence seems to sug-
gest that in economics the room for normally-distributed
shocks and growth processes obeying the “Law of large
numbers” and the “Central limit theorem” is much more
limited than economists were used to believe. In other
words, the general hint coming from this stream of
literature is in favor of an increasingly “non-Gaussian”
economics and econometrics. A consequence of this sug-
gestion is that we should be very careful in using econo-
metric testing procedures that are heavily sensible to nor-
mality of residuals [41]. On the contrary, testing proce-
dures that are robust to non-Gaussian errors and/or tests
based on Subbotin- or Laplace-distributed errors should
be employed when necessary.

Finally, country-level, non-Gaussian growth-rate dis-
tributions (both within-country and cross-section) might
have an important implication on the underlying gener-
ating processes. Suppose to interpret the country-level
growth rate in a certain time period as the result of the
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aggregation of microeconomic (firm-level) growth shocks
across all firms and industries in the same time period.
The emergence of within-country non-Gaussian growth
distributions strongly militates against the idea that coun-
try growth shocks are simply the result of aggregation
of independent microeconomic shocks over time. There-
fore, some strong correlating mechanism linking in a sim-
ilar way at every level of aggregation the units to be ag-
gregated seems to be in place. This interpretation is in
line with the one proposed by [2,4,7] who envisage the
widespread presence of fat tails as an indicator of the over-
all “complexity” of any growth process, mainly due to the
strong inner inter-relatedness of the economic organiza-
tions under study.

Thanks to Giulio Bottazzi, Carolina Castaldi, Giovanni
Dosi, Marco Lippi, Sandro Sapio, Angelo Secchi, Victor M.
Yakovenko, and one anonymous referee for their stimulating
and helpful comments. All usual disclaimers apply.
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