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Preface 

Some economic phenomena are predictable and controllable, and some are impos­
sible to foresee. Existing economic theories do not provide satisfactory answers as 
to what degree economic phenomena can be predicted and controlled, and in what 
situations. Against this background, people working on the financial front lines in 
real life have to rely on empirical rules based on experiments that often lack a solid 
foundation. "Econophysics" is a new science that analyzes economic phenomena 
empirically from a physical point of view, and it is being studied mainly to offer 
scientific, objective and significant answers to such problems. 

This book is the proceedings of the third Nikkei symposium on ''Practical Fruits 
of Econophysics," held in Tokyo, November 9-11, 2004. In the first symposium 
held in 2000, empirical rules were established by analyzing high-frequency finan­
cial data, and various kinds of theoretical approaches were confimied. In the second 
symposium, in 2002, the predictability of imperfections and of economic fluctua­
tions was discussed in detail, and methods for applying such studies were reported. 
The third symposium gave an overview of practical developments that can immedi­
ately be applied to the financial sector, or at least provide hints as to how to use the 
methodology. 

The workshop was supported by: The Economic and Social Research Institute, 
Cabinet Office, Government of Japan; The Japan Center for Economic Research; 
The Physical Society of Japan; and The Japan Association for Evolutionary Eco­
nomics. On behalf of all participants, I would like to thank those supporters, as well 
as the following companies without whose financial support the workshop would 
not have been possible: Mizuho Corporate Bank, Ltd.; Hitachi, Ltd. Business Solu­
tion Systems Division; Dresdner Kleinwort Wasserstein; Sompo Japan Insurance 
Inc.; and Sony Computer Science Laboratories, Inc. 

As the chief organizer, I am grateful for the cooperation of the organizers, H.E. 
Stanley (Boston University), Hiroyuki Moriya (Sumisho Capital Management Co.), 
Toshiaki Watanabe (Tokyo Metropolitan University), Tsutomu Watanabe 
(Hitotsubashi University). I also express my thanks to the members of the confer­
ence secretariat, as represented by K. Suzuki, for their kindness and efficiency, and 
to the staff members of Springer-Verlag Tokyo, for editorial support. Finally, I would 
like to thank all the authors for their contributions to this volume. 

H. Takayasu 

Tokyo 2005 
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1. Market's Basic Properties 



Correlated Randomness: Rare and 
Not-so-Rare Events in Finance 

H. E. Stanley^ Xavier Gabaix^, Parameswaran Gopikrishnan^, and 
Vasiliki Plerou^ 

^ Center for Polymer Studies, and Department of Physics, Boston University, 
Boston, MA 02215 USA 

^ Department of Economics, MIT, Cambridge, MA 02142 and National Bureau of 
Economic Research, Cambridge, MA 02138 

Abstract . One challenge of economics is that the systems treated by these sciences 
have no perfect metronome in time and no perfect spatial architecture—crystalline 
or otherwise. Nonetheless, as if by magic, out of nothing but randomness one finds 
remarkably fine-tuned processes in time. To understand this "miracle," one might 
consider placing aside the human tendency to see the universe as a machine. Instead, 
one might address the challenge of uncovering how, through randomness (albeit, 
as we shall see, strongly correlated randomness), one can arrive at many tempo­
ral patterns in economics. Inspired by principles developed by statistical physics 
over the past 50 years—scale invariance and universality—we review some recent 
applications of correlated randomness to economics. 

1 Introduction 

The title I have given to this talk, "Correlated Randomness," I owe in part to 
interactions with economists, biologists, and medical researchers. Some think 
that randomness means uncorrelated randomness. They learn that statistical 
physics deals solely with random phenomena, so they imagine that our field 
cannot possibly yield any insights into the real world as they correctly know 
that no system in which they are interested corresponds to simple uncorre­
lated randomness. Hence we found using the adjective "correlated" helped 
persuade our collaborators that what we do may possibly be applicable to 
systems in which they are interested. 

To help educate our collaborators, as well as ourselves, we have learned to 
present simple visual examples of the concept of correlated randomness. One 
example we found useful was comparing a simple, unbiased random walk in 
two dimensions (uncorrelated randomness) and a simple, self-avoiding ran­
dom walk in two dimensions (correlated randomness). In the case of the 
uncorrelated walk, the spread of a 10^ step path is 10^. In the correlated ran­
dom walk, the spread of a 10"* step path is on the order of 10^ steps, an order 
of magnitude larger (Fig. 1). A second simple example of correlated random­
ness that people from other fields can appreciate is critical opalescence, first 
discovered and interpreted—in terms of correlated randomness—by Andrews 
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Fig. 1. (a) The trail of a random walk of 10^ steps, compared with (b) the trail 
of a self-avoiding random walk of the same number of steps. The "correlated ran­
domness" of the latter results in drastically different behavior. Specifically, the 
characteristic diameter jumps by a factor of 10, from approximately (10'*)̂ '̂ ^ = 100 
to approximately (10̂ )̂ "̂* = 1000, where we have used the fact that the fractal 
dimensions (defined as the exponent to which the length is raised to obtain the 
mass) are 2 and 4/3 respectively. This figure is courtesy of S. V. Buldyrev. 

in 1869 [1]. The concentrations of the two components and the temperature 
have been adjusted so that the system is near its consolute point. The cor­
related fluctuations observed at that consolute point are so strong that their 
length scale has become comparable to the wavelength of visible light and 
one sees a scattering of that visible light in the form of an opalescent glow. 

In this talk, I will discuss recent applications of correlated randomness 
to one area of science for which statistical physics is proving to be useful: 
economics. I organize this talk around three questions: (i) what is the question 
or problem that has emerged from this area of inquiry? (ii) why should we 
(practically and scientifically) care about this question or problem? and (iii) 
what have we actually done in response to this question or problem? The 
"we" involves a sizable set of collaborators, three of whom have consented to 
join me as co-authors of this opening chapter in the Nikkei Proceedings. The 
list of all my econophysics collaborators appears at the end of this chapter. 

Our overall "take-home" message today sounds pretty general. In general 
systems that display correlated randomness cannot be solved exactly. Not 
even the simple self-avoiding random walk can be solved! Nonetheless, there 
are two unifying principles that have organized many of the results we will 



be presenting today—scale invariance and universality. The key idea is that 
scale invariance is a statement not about algebraic equations of the form 
x~^ = 1/8 with a numerical solution {x = 2) but about functional equations 
of the form /(Ax) ~ AP/(X) and its relevant generalizations. These functional 
equations have as their solutions functional forms, and the solution to this 
homogeneous functional equation is a power-law form. 

2 What is the phenomenon? 

One quarter of any newspaper with a financial section is filled with economic 
fluctuation data. Most economic graphs look approximately like the one we 
get when we plot the S&P 500 stock index as a function of time over 40 
years We can compare this empirical data with that generated by a simple 
uncorrelated biased random walk, a model first used over 100 years ago by 
Bachelier. At first it seems that there is little difference, but looking more 
closely we see events in the real data that do not have counterparts in the 
random walk. Black Monday in October 1987 is refiected in the real data, 
which shows a loss of 30 percent of the total value of the market in just 
one day. In the random walk we do not see fiuctuations anywhere near this 
magnitude because the probability of taking n steps in the same direction of 
a random walk is (1/2)^—it decreases exponentially with n. 

Economists nevertheless have traditionally used this uncorrelated biased 
Gaussian random walk to describe real economic data, relegating events such 
as Black Monday to the dustbin category of "outliers" [2-6]. 

3 Why do we care? 

We physicists do not like to do things this way. We do not take Newton's law 
seriously part of the time, and then—if we suddenly see an example of what 
appears to be levitation—simply call it an "outUer." We like to find laws that 
describe all examples of a phenomenon. All agree that understanding rare 
events is an unsolved problem, which is a strong motivation for us physicists 
to step in and try our hand—we smell a delicious scientific challenge. Also, 
practically speaking, catastrophic economic events such as Black Monday 
have extreme societal impacts; widespread suffering is the usual outcome, 
especially among the poor. The ability to predict economic crashes (and 
other large-scale risks) would have an obvious utility. 

4 What do we do? 

We return to our two graphs, the S&P 500 stock index as a function of 
time over 40 years and the simple uncorrelated biased random walk, and 
plot not the absolute value of the index but instead the change in the index 
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Fig. 2. The S&P 500 index is the sum of the market capitalizations of 500 compa­
nies. Shown is the sequence of 10-min returns for the S&P 500, normalized to unit 
variance, compared with sequence of i.i.d. Gaussian random variables with unit 
variance, which was proposed by Bachelier as a model for stock returns. The large 
fluctuations seen in 1987 is the market crash of October 19. Note that, in contrast 
to the top curve, there are no "extreme" events in the bottom curve. 

(the numerical derivative, the "return"). We normalize that by the standard 
deviation. We look over a 13-year period rather than our original 40-year 
period (Fig. 2) and see, e.g., that on Black Monday the fluctuations were 
more than 30 standard deviations (both positive and negative) for the day, 
and we also see a very noisy signal. The striking thing is to look at the other 
curve, the uncorrelated random walk, and see the Gaussian distribution for 
the fluctuations—which rarely display fluctuations greater than five standard 
deviations. The "outliers" that the economists are content to live with are any 
fluctuations of the actual data that are greater than five standard deviations. 
In this 13-year period there are exactly 64, i.e., 2^. If we count only those 
fluctuations of the actual data that are greater than ten standard deviations, 
we get exactly 8, i.e., 2^. If we count only those that are greater than 20, we 
get one, i.e., 2^: Black Monday. Each time we double the x-axis we change 
the 2/-axis by a power of 2^. At the top of this presentation we made reference 
to a power law of the form / (x) = a;"^, which corresponds to a functional 



equation, a scaling equation, with p = —3. The possibility that economic 
data obey such a scaling was pointed out in 1963 by Mandelbrot in his study 
of cotton price fluctuations [7]. 
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Fig. 3. Cumulative distributions of the positive and negative tails of the normalized 
returns of the 1000 largest companies in the TAQ database for the 2-year period 
1994-1995. The solid line is a power-law regression fit in the region 2 < x < 80. 

If we replace our visual examination of these two graphs with a close 
computer analysis of not just the the S&P 500 stock index but every stock 
transaction over an extended time period (approximately one GB of data), 
we find [8-10] that the actual graph giving the number of times a fluctuation 
exceeds a given amount as a function of that amount is perfectly straight on 
log-log paper out to 100 standard deviations (Fig. 3). The slope of the line, 
a, is indistinguishable from the value a = 3 that we deduced from visual 
inspection. Note that this slope is significantly larger (by almost a factor of 
two) than the slope found by Mandelbrot in his research on cotton prices. 
Note also that our slope is outside the Levy stable regime [11]. 

This is how we find laws in statistical physics, but finding them is only the 
first part—the empirical part—of our task. The second part—the theoretical 
part—is understanding them. 

When we studied critical phenomena, the empirical part was a very im­
portant contributor toward our ultimate understanding of phase transitions 
and critical phenomena. The massing of empirical facts led to the recognition 



Fig. 4. Log-log plot of the autocorrelation function of the absolute returns. The 
soHd line is a power-law regression fit over the entire range, which gives an estimate 
of the power-law exponent, 77 « 0.3. Better estimates of the exponent 7/ can be 
obtained from the power spectrum or from other more sophisticated methods. 

of regularities to which certain approaches could be applied, e.g., the scal­
ing hypothesis and the Wilson renormalization group. So also in economics 
we can perhaps first discover empirical regularities—e.g., the inverse cubic 
law—that will prove useful in ultimately understanding the economy. I wish I 
could say that we already have an explanation for this inverse cubic law, but I 
can't. We have the beginnings of an explanation, but it is only the beginning 
since the current theory explains the inverse cubic law of price changes, as 
well as the "half cubic law" of trade volume [12,13] but does not explain the 
strange nature of the temporal correlations. The autocorrelation function of 
price changes decays exponentially in time so rapidly that after 20 min it is 
in the level of "noise". However the autocorrelation function of changes in 
the absolute value of the price (called the "volatiUty") decays with a power 
law of exponent approximately 0.3 [14] (Fig. 4). 

5 Quantifying fluctuations in market liquidity: analysis 
of the bid-ask spread 

The primary function of a market is to provide a venue where buyers and 
sellers can transact. The more the buyers and sellers at any time, the more 



efficient the market is in matching buyers and sellers, so a desirable feature 
of a competitive market is liquidity, i.e., the ability to transact quickly with 
small price impact. To this end, most exchanges have market makers (eg., 
"specialists" in the NYSE) who provide liquidity by selling or buying accord­
ing to the prevalent market demand. The market maker sells at the "ask" 
(offer) price A and buys at a lower "bid" price B; the difference s = A- B 
is the bid-ask spread. 

The ability to buy at a low price and sell at a high price is the main com­
pensation to market makers for the risk they incur while providing liquidity. 
Therefore, the bid-ask spread must cover costs incurred by the market maker 
[15-21] such as: (i) order processing costs, e.g., costs incurred in setting up, 
fixed exchange fees, etc., (ii) risk of holding inventory, which is related to the 
volatility, and (iii) adverse information costs, i.e, the risk of trading with a 
counter-party with superior information. Since the first component is a fixed 
cost, the interesting dynamics of liquidity is reflected in (ii) and (iii). Ana­
lyzing the statistical features of the bid-ask spread thus also provides a way 
to understand information flow in the market. 
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Fig. 5. Log-log plot of the cumulative distribution of the bid-ask spread SAt which 
is normalized to have zero mean and unit variance, for all 116 stocks in our sample 
for the two-year period 1994-1995. A power law fit in the region x > 3 gives a value 
for the exponent Cs = 3.0 ± 0.1. Fits to individual distributions give similar results 
for the exponent values. Adapted from Ref. [22]. 
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Fig. 6. (a) The autocorrelation function {S(t)S(t + r)) displays peaks at multi­
ples of one day for Exxon Corp. (b) The detrended fluctuation function F{T) for 
the same stock displays long-range power law correlations that extend over almost 
three orders of magnitude, (c) Histogram of slopes obtained by fitting F{T) = T^' 
for all 116 stocks. We find a mean value of the exponent Us = 0.73 ± 0.01. The 
error-bar denotes the standard error of the mean of the distribution of exponents, 
which, under i.i.d. assumptions, is estimated as the ratio of the standard devia­
tion of the distribution to the square-root of the number of points. In reality, the 
i.i.d. assumptions do not hold, so the error bar thus obtained is likely understated. 
Adapted from Ref. [22]. 

The prevalent bid-ask spread reflects the underlying liquidity for a par­
ticular stock. Quantifying the fluctuations of the bid-ask spread thus offers a 
way of understanding the dynamics of market liquidity. Using quote data for 
the 116 most-frequently traded stocks on the New York Stock Exchange over 
the two-year period 1994-1995, Plerou et al. [22] have recently analyzed the 
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Fig. 7. Equal-time conditional expectation {S)Q of the bid-ask spread for a given 
value of Q averaged over all 116 stocks over a time interval At = 15 min. Here 5 
is normalized to have zero mean and unit variance, and Q = QAt{t) is normalized 
by its first centered moment. The solid line shows a logarithmic fit to the data 
extending over almost two orders of magnitude, (b) Adapted from Ref. [22]. 

fluctuations of the average bid-ask spread S over a time interval At. They 
find that S is characterized by a distribution that decays as a power law 
P{S > x} ~ x~^^, with an exponent Cs ^ 3 for all 116 stocks analyzed 
(Fig. 5). Their analysis of the autocorrelation function of S (Fig. 6)shows 
long-range power-law correlations, {S{t)S{t-\-T)) ~ r"'*, similar to those pre­
viously found for the volatiHty. They also examine the relationship between 
the bid-ask spread and the volume Q, and find that 5 ~ log Q (Fig. 7). They 
find that a similar logarithmic relationship holds between the transaction-
level bid-ask spread and the trade size. They also show that the bid-ask 
spread and the volatility are also related logarithmically. Finally they study 
the relationship between S and other indicators of market liquidity such as 
the frequency of trades N and the frequency of quote updates U, and find 
5 - l o g i V a n d 5 - l o g [ 7 . 

6 Unifying the power laws: a first model 

There has recently been progress in developing a theory for some of the 
power-law regularities discussed above. For example, based on a plausible set 



of assumptions, we proposed a model that provides an explanation for the 
empirical power laws of return, volume and number of trades [12]. In addition, 
our model explains certain striking empirical regularities that describe the 
relationship between large fluctuations in prices, trading volume, and the 
number of trades. In our model, large movements in stock market activity 
arise from the trades of the large participants. Starting from an empirical 
characterization of the size distribution of large market participants (mutual 
funds), we show that their trading behavior when performed in an optimal 
way, generates power-laws observed in financial data. 

Define pt as the price of a given stock and the stock price "return" rt 
as the change of the logarithm of stock price in a given time interval At^ 
rt = Inpt — Inpt-^f The probability that a return is in absolute value larger 
than X is found empirically to be [10,23] 

P{\rt\ >x)^ x-^- with Cr « 3 . (1) 

Empirical studies also show that the distribution of trading volume Vt obeys 
a similar universal power law [25], 

P{Vt > x) - x"^^ with Cv »1.5 , (2) 

while the number of trades Nt obeys [26] 

P{Nt >x)^ x-<^ with CN «3.4. (3) 

The "inverse cubic law" of Eq. (1) is "imiversal," holding over as many 
as 80 standard deviations for some stock markets, with At ranging from one 
minute to one month, across different sizes of stocks, different time periods, 
and also for different stock market indices [10,23]. Moreover, the most extreme 
events—including the 1929 and 1987 market crashes—conform to Eq. (1), 
demonstrating that crashes do not appear to be outliers of the distribution. 
We tested the universality of Eqs. (2) and (3) by analyzing the 35 million 
transactions of the 30 largest stocks on the Paris Bourse over a 5 yr period. 
Our analysis shows that the power laws (2) and (3) obtained for US stocks 
also hold for a distinctly different market, consistent with the possibility that 
Eq. (2) and (3) are as universal as (1). 

We develop a model that demonstrates how trading by large market par­
ticipants explains the above power laws. We begin by noting that large market 
participants have large price impacts [27-30]. To see why this is the case, ob­
serve that a typical stock has a turnover (fraction of shares exchanged) of 
approximately 50% a year, which implies a daily turnover of approximately 
50%/250 = 0.2%—i.e., on average 0.2% of outstanding shares change hands 
each day. The 30th largest mutual fund owns about 0.1% of such a stock 
[31]. If the manager of such a fund sells its holdings of this stock, the sale will 
represent half of the daily turnover, and so will impact both the price and the 
total volume [32-34]. Such a theory where large individual participants move 



the market is consistent with the evidence that stock market movements are 
hard to explain with changes in fundamental values [35]. 

Accordingly, we perform an empirical analysis of the distribution of the 
largest market participants—mutual funds. We find, for each year of the 
period 1961-1999, that for the top 10% of distribution of the mutual funds, 
the market value of the managed assets S obeys the power law 

P{S > x) - x-^^, with Cs = 1.05 ± 0.08. (4) 

Exponents of w 1 have also been found for the cumulative distributions city 
size [36] and firm sizes [37-39], and the origins of this "Zipf" distribution are 
becoming better understood [40]. Based on the assumption that managers of 
large funds trade on their intuitions about the future direction of the market, 
and that they adjust their speed of trading to avoid moving the market too 
much, we will see that their trading activity leads to Cr = 3 and Cv = 1-5, 

In order to proceed, we (A) present empirical evidence for the shape of 
the price impact, (B) propose an explanation for this shape, and (C) show 
how the resulting trading behavior generates power laws (l)-(3). 

6.1 Empirical evidence for the square root price impact of trades 

The price impact Ap of a trade of size V has been established to be increasing 
and concave [41,42]. We hypothesize that for large volumes V its functional 
form is 

r = Ap::^kV^/^. (5) 

for some constant A;. 
A direct statistical test of this hypothesis can be performed by analyzing 

E [r^ I V]. Performing this regression using r and V calculated over 15 min 
intervals, we find 

E [ r 2 | F ] r^V. (6) 

This regression is however not definitive evidence for Eq. (5). This regression 
is performed in fixed At so is exposed to the effect of fiuctuations in the 
number of trades - i.e., if N denotes the number of trades in At, r^ »-^ N and 
V ^ N so Eq. (6) could be a consequence of this effect. 

Since relation (5) implies P {r > x) ^ P {kV^^'^ > x) = P {V > x^/k^) -
x~^^^, it follows that 

Cr = 2Cv. (7) 

Thus, the power law of returns, Eq. (1), follows from the power law of vol­
umes, Eq. (2), and the square root form price impact, Eq. (5). 

Recent work by Farmer and Lillo [43] reports an exponent « 0.3 for the 
price impact function. Apart from the quality of scaling and the limited data, 
one possible problem with this estimation is that large trades are usually 
executed in smaller traunches [44]. Ref. [43] also reports that the volume 
distribution is not a power-law for the LSE. Further work by Ref. [44] has 
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made it clear that the finding of Ref. [43] of a non-power-law distribution of 
volume is an artifact arising from incomplete data due to the exclusion of 
upstairs market trades. 

We next develop a framework for explaining Eq. (2) and Eq. (5). 

6.2 Explaining the square root price impact of trades, Eq. (5) 

We consider the behavior of one stock, whose original price is, say 1. The 
mutual fund manager who desires to buy V shares offers a price increment 
Ap, so that the new price will become 1 -h Ap. Each seller i of size Si who 
is offered a price increase Ap supplies the fund manager with qi shares. El­
ementary considerations lead us to hypothesize qi ~ SiAp. The number of 
sellers available after the fund manager has waited a time T is proportional 
to T. So, after a time T, the fund manager can on the average buy a quantity 
of shares equal to kT{s)Ap for some proportionality constant k. The search 
process stops (and the trades are executed simultaneously) when the desired 
quantity V is reached—i.e., when kT(s) Ap = V, so the time needed to find 
the shares is 

V V 
^^{s)kAp ^ ^ ' ^̂ ^ 

Hence there is a trade-off between cost Ap and the time to execution T; if 
the fund manager desires to realize the trade in a short amount of time T, 
the manager must pay a large price impact Ap ~ V/T. 

Let us consider the manager's decision problem. Managers trade on the 
assumption that a given stock is mispriced by an amount M, defined as the 
difference between the fair value of the stock and the traded price [30,45,46]. 
The manager wants to exploit this mispricing quickly, as he expects that 
the mispricing will be progressively corrected, i.e. expects that the price will 
increase at a rate fj.. Hence, after a delay of T, the remaining mispricing is 
only M - fiT. The total profit per share B/V is the realized excess return 
M — fiT minus the price concession Ap, which gives 

B^ViM-fiT-Ap). (9) 

The fund manager's goal is thus to maximize B, the perceived dollar 
benefit from trading. The optimal price impact Ap maximizes B subject to 
Eq. (8), T — aV/Ap, i.e., Ap maximizes V(M - fiaV/Ap - Ap), which we 
will see gives Eq. (5). 

The time to execution is T '̂ ^ V/Ap ~ K^/^, and the number of "chunks" 
in which the block is divided is N ^ T ^ V^^^, These effects have been 
qualitatively documented in [27,28,42]. The last relation gives 

CN = 2Cv (10) 

which in turn predicts CAT = 3, a value, approximately consistent with the 
empirical value of 3.4 [26]. 



Thus far, we have a theoretical framework for understanding the square 
root price impact of trades Eq. (5), which with Eq. (2) explains the cubic law 
of returns Eq. (1). We now focus on understanding Eq. (2). 

6.3 Explaining the Power Laws. 

Next we show that returns and volumes are power law distributed with tail 
exponents 

Cr = 3,Cv=3/2 (11) 

provided the following conditions hold (i) the power law exponent of mutual 
fund sizes is Cs = 1 (Zipf's law); (ii) the price impact follows the square root 
law (5); (iii) funds trade in typical volumes V ^ S^ with J > 0; (iv) funds 
adjust trading frequency and/or volume so as to pay transactions costs in 
such a way that defining 

. ̂ . _ Annual amount lost by the fund in price impact . . 
~ Value S of the assets under management 

then c{S) is independent of S for large 5. 
The empirical validity of conditions (i) and (ii) was shown above, while 

condition (iii) is a weak, largely technical, assumption. Condition (iv) means 
that funds in the upper tail of the distribution pay roughly similar annual 
price impact costs c{S) reaches an asymptote for large sizes. We interpret this 
as an evolutionary "survival constraint". Funds that would have a very large 
c{S) would have small returns and would be eliminated from the market. The 
average return r{S) of funds of size S is independent of S [47]. Since small 
and large funds have similarly low ability to outperform the market, c{S) is 
also independent of S. 

For each block trade V{S) a fund of size S incurs a price impact propor­
tional to VAp which, from condition (ii), is V^^^. If F{S) is the fund's annual 
frequency of trading, then the annual loss in transactions costs is F{S) • V^/^, 
so 

c(5) = F{S) • [V{S)]^/yS, (13) 

Condition (iv) impUes that either V{S) or F{S) will adjust in order to satisfy 

F(5) -5• [V^(5) ] -^ /^ (14) 
Condition (i) implies that the probability density function for mutual 

funds of size S is p{S) = —dG/dS ^ 5~^. Since condition (iii) states that 
V ^ S^ > x^ and since they trade with frequency given F{S) in Eq. (14), 

P(V>x)^ [ F{S)p{S)dS - / 5^-3^/25-2^5 - x-^/^. (15) 

which leads to a power law distribution of volumes with exponent Cv = 3/2. 
Moreover, from Eq. (7), it follows that (r = 3. In addition, the above result 
does not depend on details of the trading strategy, such as the specific value 
of J. 
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Fig. 8. (a) Conditional expectation (G>o averaged over all 116 stocks studied, 
over a time interval zlt = 15 min, where i? is defined as the difference in number 
of shares traded in buyer and seller initiated trades. We normalize G to have zero 
mean and unit variance. Since 17 has a tail exponent C, = 3/2 which implies divergent 
variance, we normalize Q by the first moment (|I7 — (i?)|). We calculate G and Q 
for At — 15 min. The solid line shows a fit to the function BQ tanh(ßiß) . (b) {G)n 
on a log-log plot for different At. For small i?, {G)n c:^. Q^^^. For At = 15 min 
find a mean value 1/6 = 0.66 ± 0.02 by fitting {G}n for all 116 stocks individually. 
The same procedure yields l/S = 0.34 ±0.03 at At = b min (interestingly close to 
the value of the analogous critical exponent in mean field theory). The solid curve 
shows a fit to the function BQ tanh(Bi Ü). For small 17, Bo tanh(i5i i7) ^ 17, and 
therefore disagrees with {G}n, whereas for large 17 the fit shows good agreement. 
For At = 195 min ( | day) (squares), the hyperbolic tangent function shows good 
agreement. 
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7 Concluding Remarks 

One reason the economy is of interest to statistical physicists is that, Hke 
an Ising model, the economy is a system made up of many subunits. The 
subunits in an Ising model are called spins, and the subunits in the economy 
are buyers and sellers. During any unit of time these subunits of the economy 
may be either positive or negative as regards perceived market opportunities. 
People interact with each other, and this fact often produces what economists 
call "the herd effect." The orientation of whether we buy or sell is influenced 
not only by our neighbors but also by news. If we hear bad news, we may be 
tempted to sell. So the state of any subunit is a function of the states of all 
the other subunits and of a field parameter. 

On a qualitative level, economists often describe a price change as a 
hyperboHc-tangent-like function of the demand. The catch is that "demand" 
is not quantified. So one of the first things we had to do was quantify demand 
[41]. 

We did this by analyzing huge databases comprising every stock bought 
or sold—which gives not only the selling price and buying price, but also the 
asking price and the offer price. If we go to the open market to buy presents 
we will often be given an asking price we are not willing to pay, and we may 
counter with a much smaller offer. Ultimately when the sale is struck, the 
price may be above the midpoint between the asking price and the offer—and 
we assign a variable a» = -hi to the sale—if below the midpoint, a, = —1. If 
we sum all these indices ô  over a time interval At 

N f 

i - 1 '̂  

[Big Demand] 
[Small Demand] 

N = ^At = Number of sales in At^ 

then we can calculate the analog of a magnetic field, which provides a way of 
quantifying demand. If most of the o» are positive, the field will be positive, 
and vice versa. A hint that this definition of magnetic field makes sense is 
the fact that a plot of price change as a function of the "magnetic field" 
variable defined above remarkably resembles a plot of the magnetization of a 
magnet as a function of the magnetic field [41] (Fig. 8). The full implications 
of the remarkable observation that a plot of price change as a function of 
the "magnetic field" resembles a plot of the magnetization in a magnet are a 
challenging problem. 
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Summary. Complex systems comprise a large number of interacting elements, whose dy­
namics is not always a priori known. In these cases - in order to uncover their key features 
- we have to turn to empirical methods, one of which was recently introduced by Menezes 
and Barabasi. It is based on the observation that for the activity fi{t) of the constituents there 
is a power law relationship between the standard deviation and the mean value: CTJ OC (fi)". 
For stock market trading activity (traded value), good scaling over 5 orders of magnitude with 
the exponent a = 0.72 was observed. The origin of this non-trivial scaling can be traced 
back to a proportionality between the rate of trades (N) and their mean sizes {V). One finds 
{V) oc {N)^'^^ for the ~ 1000 largest companies of New York Stock Exchange. Model inde­
pendent calculations show that these two types of scaling can be mapped onto each other, with 
an agreement between the error bars. Finally, there is a continuous increase in a if we look at 
fluctuations on an increasing time scale up to 20 days. 

Key words: econophysics; stock market; fluctuation phenomena 

1 Introduction 

Although there is no generally recognized definition of complex systems, one of their 
widely accepted properties is that they comprise a large number of interacting con­
stituents (or nodes) whose collective behavior forms spatial and/or temporal struc­
tures. Some of them are labeled "physical" because they are treated in the regular 
framework of physics. Nevertheless, the above scheme itself applies to a much wider 
range of systems, including the world economy consisting of companies that trade 
and compete. Human agents can interact with each other, e.g., by social networks 
or on the trading floor. We have little or no a priori knowledge about the laws gov­
erning these systems. Thus, very often our approach must be empirical. Recently, an 
increasing number of such systems have become possible to monitor through mul­
tichannel measurements. These offer the possibility to record and characterize the 
simultaneous time dependent behavior of many of the constituents. On the ground of 
these new datasets, an emerging technique (de Menezes and Barabasi 2004a) seems 
to be able to grasp important features of the internal dynamics in a model indepen­
dent framework. 



2 Scaling of fluctuations in complex systems 

The method is based on a scaling relation that is observed for a growing range of sys­
tems: The standard deviation cr̂  and time average (/j) of the signal fi{t) capturing 
the time dependent activity of elements i = 1,... ,N follows the power law 

aioc(/,r, (1) 
where we define 

^i = yj{{fi - {fi)f), (2) 

and (•) denotes time averaging. 
This relationship is not unmotivated from a physicist's point of view. The con­

stant a - while not a universal exponent in the traditional sense - is indeed the finger­
print of the microscopic dynamics of the system. Applications range from Internet 
traffic through river networks to econophysics. The latest advances (Menezes and 
Barabasi 2004b, Eisler and Kertesz 2005) have shown several possible scenarios 
leading to various scaling exponents: 

1. The value a = 1 always prevails in the presence of a dominant external driving 
force. An example is web page visitation statistics. Here the main contribution 
to fluctuations comes from the fluctuating number of users surfing the web: a 
factor that is not intrinsic in the structure of the network. The situation is very 
similar for networks of roads or rivers. 

2. There are systems, where the different mean activity of constituents comes ex­
clusively from a different mean number of events. Individual events have the 
same mean contribution (impact) to a node's activity, only for more active nodes 
more of these events occur. When the central limit theorem is applicable to the 
events, a = 1/2. This behavior weis observed for the logical elements of a com­
puter chip and the data traffic of Internet routers. 

3. Two mechanisms have been documented so far that can give rise to an interme­
diate value 1/2 < a < 1: 
a) Because of the competition of external driving and internal fluctuations, it 

is possible that cr's measured for finite systems display a crossover between 
a = 1/2 and a = 1 at a certain node strength (/). Then there exists an 
effective, intermediate value of a, but actual scaling breaks down. 

b) The other possibility is related to a very distinct character of internal dynam­
ics: when elements with higher activity do not only experience more events, 
but those are also of larger impact. We call this property impact inhomo-
geneity. Stock market trading belongs to this third group with a î 0.72 for 
short time scales (see also Eisler et al. 2005). 

In a recent model (Eisler and Kertesz 2005), the effect of impact inhomogeneity 
has been studied. Tokens are deposited on a Barabäsi-Albert network (Albert and 
Barabasi 2002) and they are allowed to jump from node to node in every time step. 
Activity is generated when they arrive to a site. Every token that steps to a node i 
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generates an impact Vi whose mean depends on the node degree ki'. (Vi) oc kf. This 
gives rise to a scaling relation: 

( V ; ) o c ( i v / . (3) 

The result of Eisler and Kertesz (2005) can then then be generalized as 

Simulation results shown in Fig. 1(a) are in perfect agreement with formula (4). This 
is an example that the value of a is basically determined by this impact inhomogene-
ity. If/5 = 0, i.e., the mean impact generated on all nodes is equal regardless of their 
degree, one recovers a = 1/2. When /? > 0, the events on more frequently visited 
nodes are also larger on average. Correspondingly, a > 1/2. 

3 Application to stock market data 

Let us now turn to the case of the stock market. Data for the period 2000-2002 
was taken from the TAQ Database (New York Stock Exchange 2003). We define the 
activity fi{t) of stock i as the capital flow in time windows of size At. In window 
t, fi{t) is the sum of Ni(t) trading events. If we denote the value exchanged in the 
n'th trade of time window t by Vi{t] n), then the total traded value of stock i is 

N^it) 

Mt)= 5^K(^,n). (5) 
n=l 

Then, {V) is the mean value per trade, while {N) is the mean rate of trades. 
As we wish to calculate the mean and the standard deviation of this activity, it is 

essential that these quantities at least exist. Traded volumes and consequently traded 
values fi{t) are ofl;en considered to have a power law tail (Prob{f > x) ex x~^) 
with an exponent Â  ~ 1.5 - 1.7 (Gopikrishnan et al. 2000). This would imply, that 
the standard deviation is already divergent. Recent measurements, however, indicate 
that both of these quantities exist and that there is no unique Xi for a stock (Eisler 
and Kertesz unpublished). 

Then, it is possible to test the scaling relation (1) and one finds good scaling over 
more than 5 orders of magnitude in (/) with a ^ 0.72. This is a value which can be 
- at least partly - explained in terms of impact inhomogeneity. We found ^ that for the 
stocks of the ~ 1000 largest companies of NYSE, p = 0.69 ± 0.09 (see Fig. 1(b)). 
Substituting this into (4) we expect a = 0.71 ±0.01, which is very close to the actual 
result seen from Fig. 2(a). Note that although large error bars prevent us from testing 
(4) for smaller stocks, we still find that the scaling law (1) holds. The exponent is 
unchanged, but this can only be explained by a detailed analysis of fluctuations. 

^ The result is qualitatively similar to those of Zumbach (2004) for the FTSE 100. He shows 
that both (N) and {V) scale as power laws with company capitalization for large compa­
nies. Capitalization dependence can be eliminated to recover (3). 
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Fig. 1. (a) The value of a as a function of/? for the random walk model introduced by Eisler 
and Kertesz (2005). Circles give simulation results, while the solid line corresponds to (4). 
The inset shows actual scaling plots for various values of ^. (b) Plot of mean value per trade 
(V) versus mean rate of trades (N) for NYSE. For smaller stocks there is no clear tendency. 
For the top ^ 1000 companies, however, there is scaling with an exponent ß = 0.69 ± 0.09. 
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Fig. 2. (a) The scaling a oc ( / )" for fluctuations of traded value at NYSE, At = 5 sec. 
Dots show raw results for each stock (shifted vertically for better visibility), the fitted slope is 
ctraw = 0.733 ± 0.004. Diamonds show average cr's for muhiple stocks in a range of log {/). 
This method corrects for bias that comes from the large number of stocks with low ( / ) , one 
finds abinned = 0.720 di 0.007. (b) The dependence of a on the time window At for the 
NYSE data. One finds that up to At = 1 min, a » 0.72, as expected from independent 
approximations. Then by increasing At, the value of a increases. This is due to the presence 
of strong autocorrelations in the activities f{t) stemming from the clustering of trades. 

The mechanism leading to non-trivial a via the scaling (3) can be considered 
dominant only if the events are not strongly correlated. This condition is satisfied 
for short time windows At, when {N) <^ 1. Interestingly, the value of a does not 
change noticably up to At ^ 1 min. There is, however, another effect that is rele­
vant to the value of a for longer time windows. For the NYSE data, a{At) increases 
continuously with At (see Fig. 2(b)). Previously (Eisler et al. 2005) this was at­
tributed to the growing influence of external news: a kind of "driving". With longer 
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time given for information to spread, the system was assumed to converge to the 
externally driven limit a = 1. That mechanism would, however, lead to a crossover 
to a = 1 with increasing At (Menezes and Barabasi 2004b). What is observed, is 
in fact not a crossover. There is no breakdown of scaling as a function of (/) for 
intermediate AVs as one would expect between the regime of the two limiting expo­
nents (Menezes and Barabasi 2004b). On the other hand, it is well known (see, e.g., 
Gopikrishnan et al. 2000), that the number of trades Ni{t) is correlated. Individual 
trades tend to cluster together and this causes enhanced fluctuations in Ni{t), This 
mechanism sets in at time windows for which the probability for two trades to coin­
cide is no longer negligible. The scaling law (1) itself is preserved, but the exponent 
a is strongly affected. 

4 Conclusions 

In the above we have outlined a recent type of scaling analysis for the fluctuations of 
activity in complex systems. We have shown that systems can be classified according 
to the scaling exponents a. Then we have discussed how impact inhomogeneity and 
long range correlations give rise to non-trivial scaling exponents. Further research 
should clarify the interplay between fluctuations in the number of trades and in traded 
volumes/values in order to deepen the understanding of the market mechanism. 
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Summary. Analysis of tick data of yen-dollar exchange using random walk meth­
ods has showed that there exists a characteristic time scale approximately at 10 
minutes. Accordingly, for time scales shorter than 10 minutes the market exhibits 
anti-persistence, meaning that it self-organizes so that to restore a given tendency. 
For time scales longer than 10 minutes the market approaches a behavior appro­
priate to pure Brownian motion. This property is explored here to elucidate the 
predictability of this type of data. We find that improvement in predictability is 
possible provided that the data are not "contaminated" with noise. 

Key words. Econophysics, Fractals, Anti-Pesristence, Brownian Motions 

Introduction 

In an earlier paper (Tsonis et al., 2001) we analyzed two tic data sets of dollar-yen 
exchange rates using random walk methods. The data were collected by 
Bloomberg from representative dealers. The dealers report their prices to 
Bloomberg whenever they trade and then Bloomberg announces immediately the 
prices to the rest of the world. As a result the sampling of these data is not con­
stant but it varies from 0 to 20 minutes with the mean interval being about 7 sec­
onds. Data set 1 covers the period from 26 October to 30 November 1998 
(267,398 values) and data set 2 covers the period from 4 January to 12 March 
1999 (578,509 values). In the analysis the data were assumed as having been sam­
pled at a constant time step. The effect of the non-uniformity in the sampling time 
is discussed in Tsonis et al. (2001). 

For each data set the root mean square fluctuation F(t) about the average dis-
2 2 2 

placement, F ' ( 0 = [Ay(/)]' - [A(; ;( / )] was estimated. Hare the bars indicate 
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an average over all positions to in the walk and Ay(/) = yit^ + 0"" >'(̂ o ) • ̂ ^^ 

derivative of this function is shown in figure 1 for data set 1 (top) and data set 2 
(bottom). The derivative is used to delineate scaling regimes in the data where F(t) 

varies as F{t) oc t (Triantafyllou et al., 1994). Both plots indicate that in the 

range 2<log|ot<4 (which would approximately correspond to time scales between 

10 minutes and 20 hours), F{t) oc t with //=0.5. An interesting feature in this 

figure is that for time scales less than 10 minutes the exponent H is clearly less 
than 0.5 indicating negative correlations (anti-persistence). This is an important 
resuh because it implies a tendency to restore trends in the data. The only differ­
ence is that for data set 2 there is more fluctuation in the derivative, which could 
be due to several factors (see below for more details). 

Fig. 1. Log-log plot of the derivative of function F(t) versus / for data set l(top) and for 
data set 2 (bottom). 

The statistical significance of the scaling properties derived in figure 1 has been 
investigated in Tsonis et al. (2001). There, it is shown that the characteristic time 
scale of 10 minutes is statistically significant and not the result of the uneven sam­
pling interval. Note that, using other variants of the method (such as detrended 
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fluctuation analysis [DFA]) yields very similar results. Similar analyses using 
other type of economic time series have reported other values for H. For example, 
Podbnik et al. (2000) have analyzed stock market prices and found a characteristic 
time scale of 30 minutes separating persistence from pure Brownian motion. Also, 
Vandewalle and Ausloos (1998) have applied DFA for various financial time se­
ries and have reported various values for H. Dynamically speaking, different types 
of financial time series may not exhibit similar characteristics. The demand and 
trading characteristics are different and as such different exponents should be ex­
pected. 

The above results are important because they suggest that for some time 
(though short) the market (in this case the dollar-yen exchange rate) acts to restore 
a given past tendency. In this case, the behavior of the data for time scales less 
than 10 minutes may be modeled as a fractional Brownian motion with //<0.5, 
whereas for longer time scales it should be modeled as a pure Brownian motion 
(//=0.5). Also, it suggests that monitoring local trends may improve short-term 
predictions, since any given tendency will have to be reversed. 

This is investigated next. In order to address the issue of predictability we first 
considered data set 1 and divided it into non-overlapping windows of 20 values 
and estimated the trend in the first 10 values (trend 1) and the trend in the second 
10 values (trend 2) in each window, and plotted trend 1 versus trend2 (figure 2, top 
left panel). The period covered by 10 values (on the average about 70 seconds) 
corresponds to a time scale in the anti-persistence region. On the top right panel, 
the same is shown, but now the windows are 500 values wide and the trends are 
calculated over 250 values (which corresponds to a time scale of about 30 minutes 
in the pure Brownian motion region). On the top right panel the points are distrib­
uted in a rather circular pattern, indicating that a given trend over a period of 30 
minutes is likely to be followed, with equal probability, by a trend in the next 30 
minutes that can be either of the same sign or the opposite sign. The pattern on the 
top left panel, however, is markedly different. Even though a positive (negative) 
trend over a period of 70 seconds is not always followed by a negative (positive) 
trend in the following 70 seconds, clearly a large positive (negative) trend 1 is as­
sociated with a much smaller positive (negative) or a negative (positive) trend2. 
This is consistent with the theoretical expectations. 

Thus, monitoring local trends may improve short-term predictions. One, how­
ever, must be careful of possible noise or other effects that may act as added noise. 
As we can see in figure 1, while the scaling behavior is very similar in both plots, 
there exists more variation superimposed on the bottom plot. This may indicate 
added noise or some other problem in the data. How does this affect predictabil­
ity? To answer this question we considered data set 2 and repeated the analysis. 
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Fig. 2 Top left: Data set 1 is used and divided into non-overlapping windows of 20 values. 
For each window we estimate the trend in the first 10 values (trend 1) and the trend in the 
second 10 values (trend 2). This figure shows trend 1 versus trend2. The period covered by 
10 values (on the average about 70 seconds) corresponds to a time scale in the anti-
persistence region. Top right: Same as top but the non-overlapping windows are 500 values 
wide and the trends are calculated over 250 values (which corresponds to a time scale of 
about 30 minutes in the pure Brownian motion region). Bottom left: same as top left but for 
data set 2. Bottom right: Same as top right but for data set 2. 

The results are shown on the bottom panels of figure 2. Now we observe that, 
while the noise has not affected the results in the pure Brownian motion region (as 
one might expected), it has affected the results in the anti-persistence region. Even 
though we still see that the pattern is not circular, we observe that now the pattern 
is somewhere between the pattern in the top right and the pattern in the top left. 
Thus, while some of the predictability shown in the top left panel still exists it has 
been affected by the noise. We conclude that, while improvements in predictabil­
ity might be possible in the anti-persistence regime, one must be careftil with data 
that may include some kind of influences "acting" like noise. It is interesting to 
note here that in the period covered by data set 2, the euro was introduced to the 
market. Apparently, such an introduction might have created uncertainty, thus in­
troducing an effect acting as noise compared to the data before its introduction. 

Conclusions 
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A characteristic time scale in a certain type of finance data has been documented. 
This characteristic time scale corresponds to about 10 minutes and separates anti-
persistence from pure randomness. This is an important finding as it suggests that 
for some time (though short) the market (in this case the dollar-yen exchange rate) 
acts to restore a given past tendency. In this case, the behavior of the data for time 
scales less than 10 minutes may be modeled as a fractional Brownian motion with 
//<0.5, whereas for longer time scales it should be modeled as a pure Brownian 
motion (//=0.5). Also, it suggests that monitoring local trends may improve short-
term predictions, since any given tendency will have to be reversed. Indeed, we 
show here that improvements in prediction are feasible provided that the data do 
not include effects which may introduce uncertainty and act as noise. 
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Summary. 
We firstly introduce an optimal moving average for Yen-Dollar tick data that 
makes the residual term to be an independent noise. This noise separation is 
realized for weight functions decaying nearly exponentially with characteristic 
time about 30 seconds. We further introduce another moving average applied to 
the optimal moving average in order to elucidate underlying force acting on the 
optimal moving average. It is found that for certain time scale we can actually 
estimate potential force that satisfies a simple scaling relation with respect to the 
time scale of moving average. 

Key words. Foreign exchange market, optimal moving average, 
potential force, scaling relation. 

1. Introduction 

In the first Nikkei symposium we showed that the statistics of trade intervals is 
well characterized by a Poisson process with its mean given by a moving average 
of trade intervals for about two minutes [1]. Such type of stochastic process is 
named as the self modulation process and its basic properties have been analyzed 
theoretically [2]. Although the moving average covers only a short time scale the 
self modulation can cause a large time scale effect such as the 1/f power spectrum 
or long tails in the autocorrelation function of trade intervals [3]. 
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As known from this example clarification of the meaning of moving average is 
one of the most important tasks in econophysics. In this paper we pay attention to 
Yen-Dollar exchange rates and report quite non-trivial behaviors derived from a 
combination of moving average analysis of different time scales. 

2. The optimal and super moving averages 

We introduce so-called the optimal moving average that can separate 
uncorrelated noises from the market data. Denoting the tick data of Yen-Dollar 
rate by P(t) the moving average procedure is given by the following equations: 

p{t+\)=m+m, (1) 
W) = T.l,^ik)P(t-k), (2) 

where {w(k)} give the optimal weight factors that make the residue f(t) almost 
an independent random noise [4, 5]. The estimated weight factors generally decay 
exponentially such as w (k)oz exp(-0.3 )t). 

In order to elucidate potential forces acting on p(t) we introduce another 
moving average called the super moving average of scale M: 

We observe the time difference of optimal moving averages, P(t +1) — P(t), 
versus the price difference of optimal moving average and super moving average 
at time t, P(t)-P^(t) for various values of M ranging from 4 to 2000 ticks. In 
Fig. 1 we can confirm the following linear relation approximately. 

Pit + \)-Pit)ccP(t)-P^it) (4) 

Fig.l Price difference vs Temporal Fig.2 Potential forces observed in 
change the Yen-Dollar market 
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The potential function can be calculated by integrating along the horizontal 

axis of Fig. 1 as shown in Fig.2. In this case the estimated potential functions are 

always parabolic for various values of A/. It should be noted that this type of non-

trivial potential function can not be found if the market price change follows a 

simple random walk. 

3. Scaling relation of the potential force 

The M-dependence of the parabolic potential functions is analyzed by plotting 

the coefficient of the quadratic term (P{f)-P^(t)f as a function of Min Fig.3. It is 

found that the coefficient generally decays proportional to 1/(M-1), therefore, all 

the potential functions observed for different values of M collapse into one 

parabolic function as shown in Fig.4. 
Applying these results we have the following dynamics as for the optimal 

moving average: 

P(t +1) - P{t) = -^U(P{t) - P^ (/)) (5) 
ar 

where 

1 bit) 
u{P{t)-p^{t))=---^.{P{t)-p^{t)y . (6) 

The value oib{t) changes slowly and it takes both positive and negative values. 

Fig.3. Potential coefficient vs the Fig.4. Scaled potential functions 
size of super moving average 
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4. Discussion 

The underlying potential force in the market we observed in this paper is 
expected to be closely related to the "God's invisible hand" proposed by Adam 
Smith about 200 years ago. In the case of positive b{t) the attractive force is 
considered to be realized by "demand and supply". On the other hand a negative 
value of b(t) implies that the market is quite unstable. Real time characterization 
of market stability in terms of b(t) will be of practical use in the near future. 
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Summary. In foreign exchange markets monotonic rate changes can be observed 
in time scale of order of an hour on the days that governmental interventions took 
place. We estimate the starting time of an intervention using this characteristic 
behavior of the exchange rates. We find that big amount of interventions can shift 
the averaged rate about 1 yen per 1 dollar in an hour, and the rate change 
distribution becomes asymmetric for a few hours. 

Key words. Intervention, Foreign exchange market, Econophysics. 

1. Introduction 

The central banks intervene in foreign exchange markets in order to stabilize the 
currency exchange rates. The amount of one transaction is typically several 
million dollars in the yen-dollar market, while the amount of intervention by the 
bank of Japan sometimes exceeds 10 billion dollars in one day. Due to such 
extraordinary big amount the intervention is generally expected to show 
remarkable influence on the market. For the basic study of foreign exchange 
markets it is important to clarify the influence of interventions quantitatively and 
statistically. 

33 



Among various studies on foreign exchange markets the effects of interventions 
have been investigated by using the daily data [1][2]. In order to clarify the 
response of markets to an intervention in more detail, we investigate average rate 
shifts after the intervention in the time scale of several minutes. 

As the intervention starting times of the Bank of Japan are not announced, we 
first estimate the starting time using characteristics of rate changes on intervention 
days. By analyzing the yen-dollar market's tick data for 10 years comparing the 
information of intervention about amounts and dates, we find statistical laws of 
rate changes for typical intervention influences. 

2. Asymmetrical rate changes on intervention days 

In Fig.l we show yen-dollar fluctuations on 2/11/1994 as a typical example of an 
intervention day. It is announced that the United States' governmental bank 
intervened in the foreign exchange market fi-om 11:00AM on this day. Right after 
the start of the intervention the exchange rate went up nearly monotonically for 
about 30 minutes. We can find similar rate changes also on other intervention 
days. The monotonic rate changes cause an asymmetric probability density 
distribution of rate changes on the intervention day. 

We investigate the skewness of rate changes on intervention days. Denoting 
yen-dollar rate at a time / by P(t) and its change with time interval T by 
dP(t,T) = P{t + T)-P{t) the skewness is defined by the following formula: 

{{dP{t,T)-{dP{t,T))y) 
Skewness = "̂̂  -^ (i) 

a 

where a is the standard deviation of the rate change. We plot the skewness as a 
function of time scale T in Fig.2. White diamonds ( O ) denote the averaged 
skewness on non-intervention days. The rate change distributions on the non­
intervention days are nearly symmetric as known from the value of the skewness 
being around zero [3]. Black diamonds ( • ) show the averaged skewness on days 
of "yen-selling intervention". Within the time scales between 10 and 60 minutes, 
non-zero skewness is clearly observed on the intervention days. Namely, the rate 
change distribution on intervention days is asymmetric in this time scale. 

3. Intervention starting time estimation 

The number of Japanese interventions is much larger than that of any other 
country. For example, in the yen-dollar exchange market fi'om 1991 to 2004, the 
total number of Japanese interventions was 342, while that of the United States' 
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Fig.l An example of intervention in the yen-dollar exchange market. The figure 
shows the rate in 2/11/1994. America intervened at 11:00AM. 
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Fig.2 Skewness of the rate change on a time scale between 1 minute and 3 hours. 
O is the averaged skewness by non-intervention days and • is the averaged 
skewness of days of "yen-selling intervention" more than 200 billion yen. Error 
bars are estimated by the standard deviation of the skewness for non-intervention 
days. 

interventions was only 10. In order to analyze statistical properties we focus on 
Japanese interventions. The dates of Japanese interventions are now announced 
and each amount is also announced, however, the starting times are never 
announced. Therefore, we have to develop a method of estimating the starting 
time of Japanese intervention from given rate change data. 

On an intervention day a large rate change can often be found in the time scale 
between 10 to 60 minutes as mentioned. We assume that such a large rate change 
occurs due to the intervention and define a characteristic time to that gives the 
starting time of the largest rate change smoothed over time scale of 60 minutes on 
each intervention day as indicated in Fig.l. In Table. 1 we show a relationship 
between the intervention time and the characteristic time to through the period in 
which the starting times of the United States' interventions were announced. We 
find that the actual intervention starting time is given to + 20 minutes. We apply 
this estimation method for the estimation of starting times of Japanese 
interventions. 
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Table.l The United States' interventions from 1994 to 2000. The table shows 
intervention dates, intervention times, characteristic times to, and the intervened 
market. The characteristic time to is defined during a time when the largest rate 
change for 60 minutes occurred as shown in Fig.l. 

Date 
29-Apr-94 
4-May-94 
24-Jun-94 
2-NOV-94 
3-NOV-94 
3-Mar-95 
3-Apr-95 
5-Apr-95 
17-Jun-98 
22-Sep-OO 

time 
11:30 
8:30 
9:30 
11:00 
11:00 
9:10 
11:20 
10:20 
7:55 
7:11 

to 
11:20 
8:20 
9:20 
10:40 
10:40 
8:30 
13:50 
10:00 
7:35 
7:10 

^o+20minutes 
11:40 
8:40 
9:40 
11:00 
11:00 
8:50 
14:10 
10:20 
7:55 
7:30 

Market 
Yen-Dollar 
Yen-Dollar 
Yen-Dollar 
Yen-Dollar 
Yen-Dollar 
Yen-Dollar 
Yen-Dollar 
Yen-Dollar 
Yen-Dollar 
Dollar-Euro 

4. Influence of intervention 

We introduce a conditional average: (p(tQ + dt)-P(tQ)\I^^<I<I,2)' ^̂ ^̂  ^̂  ^̂ ^ 

average of rate changes P(tQ{n)-\-dt)-P{tQ(n)) for yen-selling intervention of 

which amount is in the range of Ici<I<Ic2' Here, tQ^n) denotes the characteristic 

time of the n-th intervention. We show the results /p(f +(iA_ph)\i^ <l<h ) ^^^ 

three ranges of the intervention amounts in Fig.3. The time dt = 20 minutes is 
expected to give the starting of interventions. For big size interventions of 
/ > 200 billion yen the average rate shifts monotonically for about an hour and it 
becomes nearly flat after that. From Fig.3 we find that the average rate shift 
depends on the amount of intervention. Although the shift is within the error bars 
for / < 200 billion yen, the over all rate shift due to the intervention is 
approximated by a linear function. 

{p{t, + dt)-P(t,)\l) = Ix\0-\ (2) 

where, dt = 190 minutes and a unit of tiie intervention price / is one billion yen. 
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1 
dt [hours] 

Fig.3 Average rate change after intervention times. The top (solid) line indicates 
cases in which the interventions are larger than 600 billion yen, the middle line 
represents cases of interventions from 200 billion yen up to 600 billion yen, and 
the bottom line indicates cases in which interventions are less than 200 billion yen. 
Error bars are standard deviations of a rate change on non-intervention days. 

5. Discussion 

We introduced an estimation method of intervention times and clarified influences 
of the intervention on a foreign exchange market. The exchange rate drifts for 
about an hour after the start of an intervention time. After an hour the rates 
fluctuate randomly with no drift. The shift of the averaged rate is approximated by 
a linear ftinction of the intervention price. For example, typically an intervention 
of size 1 trillion yen can shift 1 yen in the yen-dollar exchange rates. 
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Summary. 

We study here the behavior of the eigenvalues of the covariance matrices of 
returns for emerging and mature markets at times of crises. Our results appear to 
indicate that mature markets respond to crashes differently to emerging ones and 
that emerging markets take longer to recover than mature markets. In addition, the 
results appear to indicate that the second largest eigenvalue gives additional 
information on market movement and that a study of the behavior of the other 
eigenvalues may provide insight on crash dynamics. 

keyword. Covariance Matrix, Eigenvalues and Stock Crashes. 

Introduction. 

Recently, several studies have applied the concepts and methods of physics to the 
areas of economics and finance, particularly to the study the covariance (or 
correlation) between price changes (returns) of different stocks [e.g. Meric and 
Meric (1997), Kwapien et al. (2002), Keogh et al. (2003) and Kwapien et al. 
(2004)]. Thus far, the magnitude of the maximum eigenvalue of the correlation (or 
covariance) matrices for different sectors in one stock market index only, has 
predominantly been studied with no attention paid to the other eigenvalues. The 
differences in the current work are twofold; firstly, to highlight the information 
obtained from the subdominant eigenvalue as well as the dominant eigenvalue and 
study their behaviour. Secondly, to compare this for stock market indices for two 
different classes, namely emerging and mature markets. 

Our objectives in this article are thus; (a) To study the distribution of the 
eigenvalues of the Covariance matrices for equal-interval sliding windows, 
including the week before the Crisis, together with those of Covariance matrices 
for windows, including both the week of the Crisis and a week after. This, in order 
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to see the qualitative difference between emerging and mature markets to crashes 
in term of the eigenvalues (the X s). (b) To study the distribution of the ratio of 
the largest to the second largest eigenvalue of the Covariance matrices for sliding 
windows of equal sizes. This, we believe, a measure of the degree of agreement 
(or coherence) in agent views of the market. 

The remainder of this paper is organized as follows: The method of estimating the 
Covariance matrices is described briefly below (Section 2), with data and results 
presented in Section 3. Our brief discussion and conclusions form the final 
section. 

Covariance matrix estimation. 

The Variance-Covariance matrix can be computed easily, using the following 
formula, (full details see Litterman and Winkelmann (1998)): 

T T 

CT, ( ^ ) = ( Z 0)T-S r^.T-. rjj-s) / ( Z COT-) (" 
Where r(i T) is the return on the i**̂  market at date T and coj is the weight applied 

at date T over horizon M. In our study, we use weekly returns of stock market 
indices (i=13 indices and T=20 for emerging and i=14 indices and T=20 for major 
markets for our data) and each week, previous to the current, receives 90% of the 
weight of the following week (where (ÖT=1) as suggested in e.g. Litterman and 
Winkelmann. 

Data and Results. 

The data used in the following analysis consists of the weekly prices of a set of 
thirteen emerging market indices and a set of fourteen mature market indices 
during the period from the second week of January 1997 to the third week of 
March 2003. As each market uses its local currency for presenting the index 
values, we use the weekly returns instead of the weekly prices, where the 
following formula applies: Weekly Return = Ln(Pt/Pt.i), where Pt and FM are 
the closing prices of the index at week t and t-1 respectively. The Variance-
Covariance matrices for overlapping windows of size 20 weeks have been 
calculated using Equation (1). 

Empirical results. 

Figures 1 and 2, for the emerging and mature markets respectively, show the 
distribution of the eigenvalues of the Covariance matrices for overlapping 
windows of size 20, before and after the Asian Crisis in July 1997, the Global 

39 



Crisis in October 1998, the Dot-Corn Crash in March 2000 and the September the 
11'^ Crash in 2001. 

<•) li.ytCynn Cra>*li ( f j ) Si>;«ni.»M-r th«' 1 1 " * <'m.-*!! 

Fig. 1. The distribution of the eigenvalues of the covariance matrices before (Solid line) 
and after (Dashed line) the crash for Emerging markets ̂  

(<•) l).,x<:\,x,i C i a ^ l U,' 1 1 " ' Ctn-Hh 

Fig. 2. The distribution of the eigenvalues of the covariance matrices before (Solid line) 
and after (Dashed line) the crash for Mature markets^ 

* In figures 1 and 2, the Eigenvalues are given on the y-axis while their Ranks are given on 
the X-axis. 
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Figures 1(a) and 2(a) show that the value of the maximum eigenvalue (k\) 
increased, for emerging markets, after the Asian Crisis, which began in July 1997 
in Thailand, but did not change markedly for developed markets. This implies that 
the crisis mainly affected emerging markets but not the mature ones. However, 
Figures 1(c) and 2(c) show that the Dot-Com Crash influenced major markets but 
not emerging ones and took longer than a week to show a strong effect. 

From Figures 1(b) and 2(b), we can see that the Global Crisis in 1998 affected 
emerging and mature markets comparably in the same week. 

Figures 1(d) and 2(d) show that the value of Xi after the September 11̂ *" crash, 
which could not have been predicted by most people, hugely increased for both 
emerging and mature markets. This implies that stock markets around the world 
were hit very hard and that the markets moved in coordination to make a recovery 
after falling so sharply or being oversold. 

The ratio of the Largest (ki) to the Second Largest (ki) eigenvalues of the 
Co variance matrices for emerging and mature markets are shown in Figures 3(a) 
and 3(b) respectively. These show a qualitative difference in the way emerging 
and mature markets deal with crises, (especially unexpected ones). For major 
markets, there are three highly significant points in the distribution of this ratio 
representing the third week of October 1999 (the 12̂*" anniversary of the October 
19 stock market crash)}, the second week of September 2001 (9/11 crash) and the 
third week of March 2004 (Madrid Bomb) respectively. However, for emerging 
markets, there is only one highly significant point representing the second week of 
September 2001 (9/11 crash). 
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Fig. 3. The distribution of ratio of Dominant {X\) to Subdominant (X2) eigenvalues of 
covariance matrices for equal overlapping time windows 

The results also show that the mature markets move together immediately after 
the crash to bounce back faster than emerging markets. In other words, the 
recovery time fi-om crisis for developed markets is shorter than that for developing 
ones. 
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Conclusion. 

Our aims were to study the distribution of the eigenvalues of covariance matrices 
for emerging and mature markets at crisis points (namely, the Asian Crisis, Global 
Crisis, Dot-Com Crash and September the 11*̂  Crash). In particular, we wished to 
distill the information from the ratio of the Largest to the Second Largest 
eigenvalues of these covariance matrices. Our findings can be summarized as 
follows: (i) The Asian Crisis in 1997 disproportionately affected the emerging 
markets compared to the major ones while the Dot-Com Crash influenced major 
markets but affected emerging ones far less, (ii) The Global Crisis in 1998 
affected developing markets as much as developed ones in the same week, (iii) 
The September 11̂ *̂  Crash hit both emerging and mature markets very hard 
because it was totally unpredictable, (iv) The distribution of the ratio of Xi to 2̂ 
appears to show that emerging and mature markets deal with crashes differently 
especially unexpected ones. This means that mature markets move together 
immediately after the crash to bounce back faster than emerging markets. In other 
words, the recovery time from crisis for emerging markets is longer than that for 
mature ones. 
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Summary. We study the statistics of the return intervals Tq between two consecu­
tive return losses below a threshold —g, in various stocks, currencies and commodi­
ties. We find the probability distribution function (pdf) of Tq scales with the mean 
return interval fq in a quite universal way, which may enable us to extrapolate 
rare events from the behavior of more frequent events with better statistics. The 
functional form of the pdf shows deviation from a simple exponential behavior, sug­
gesting memory effects in losses. The memory shows up strongly in the conditional 
mean loss return intervals which depend significantly on the previous intervcd. This 
dependence can be used to improve the estimate of the risk level. 

K e y words: re turn loss intervals, scaling, universality, value-at-risk 

1 INTRODUCTION 

A common indicator of risk in the financial world [1, 2] is the value-at-risk 
(VAR) indicator, which is defined by the risk at a level of loss A 

— yj 

/ 
PA{r)dr = p* (1) 

where p* is the probabihty of loss and p^i^') is the probability density of re­
turn r{t) = \og\p{t)/p{t - zA)], which depends on the time interval A. Here 
we propose a simple method which enables us to improve the estimate of 
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VAR using historical information. We study the statistics of the return inter­
vals T = Tq between two consecutive losses below a threshold — ̂ , in various 
stocks, currencies and commodities (for illustration, see Fig. 1). We find scal­
ing and memory effects—similar to those found in stock and currency market 
volatilities [3] and in climate fluctuations [4]—that can be used to improve 

2002 

Date 
2003 

Fig. 1. Schematic illustration of the loss intervals Tq{l), for three threshold val­
ues q = —1, —2 and —3 for the return losses of IBM stock prices. The return is 
normalized by its standard deviation a. 

2 SCALING 

We study the pdf of the return loss intervals, Pq{r), of three daily stocks 
in NYSE, three daily currencies and three daily commodities. Our results in 
Fig. 2 suggest that Pq (r) is not a function of two independent variables r and 
q, but depends only on the scaled parameter r/fq, 

P,{r) = ^ / (2) 
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where the ^-dependence is contained in the mean return loss interval 

1 "'' 

^ 7 — 1 

and 7V̂  is the total number of return loss intervals for a given q. Similar scaling 
has been also found in earth(iuakes[5, 6, 7] and in the volatility of stocks and 
currencies [3] as well as in various phenomena, such as climate fluctuations, 
that exhibit long term memory [4]. 

Figure 2 shows both scaled and unsealed Pqir) of IBM's stock returns 
(11700 days). Curves of the data for diff'erent q values collapse to a single 
curve, consistent with the scahng relation, Eq. (2). 

Figure 3 shows the scaled pdf Pq{T)fq of stocks, currencies and commodi­
ties as functions of the scaled return loss intervals r/fq. Note that the scaling 
function f{x) in Eq. (2) does not depend explicitly on q, a result that is sup­
ported by this figure. This result may be useful if Pqir) is known for one 
value of q, one can estimate it for other q—in particular for very large q (rare 
events), which are difficult to studv due to lack of statistics. 

3 UNIVERSALITY 

Our results in Fig. 3 also indicate that the scaled pdf Pq{T)fq is very similar 
for diff'erent stocks, currencies, and commodities, suggesting universality of 
f{x) for the economic fluctuations. The universality is more easily seen when 
we include stocks, currencies, and commodities in the same plot. It is more flat 
for smaller values of r/fq and faster for large values of r/fq. Figure 4 shows 
the scaled pdf Pg(r)rg of three stocks, three currencies, and three commodities 
with ^ = 1.0 and 2.0. We can see nine curves of scaled data for each q that 
collapse to an approximated single curve. Note the similarity of these results 
to the analogous results for the volatility [3]. 

The scaled function f{x) includes more information than just the return 
intervals distribution, since shuffled data with the same return distribution has 
an f{x) function that diff'ers from that of the unshuffled return data. As seen 
in Fig. 3, curves of the data from diff̂ erent stocks, currencies and commodities 
respectively collapse to a single function form, while after shuffling the original 
return records the function is modified. The function is more fiat for small 
values of r/fq and falls more rapidly for large values of r/fq compared to the 
unshuffled graph. 

4 ESTIMATION OF VAR 

It is easy to see that fq and VAR are related by 
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Fig. 2. Scaled and unsealed P<j(r) of IBM's stock returns are shown. While system­
atic derivation occur for Pqir), the curves collapse to a single curve when plotted in 
the scaled form Pq{T)fq vs. r/fq. 

1 f~^ 
— = pA{r)dr = 
'^Q J-OO 

number of days with r < —q 

total number of days 

where Tq is defined in (3), 

No 

y j Tq{i) « total number of days, 

(4) 

(5) 

and 
Nq -\-l = number of days with r < —q. (6) 

Thus f~^ represents the probabiHty of loss for a risk level of loss —q. 
As discussed above, Pq{r) includes more information than pz^(r) and there­

fore more than the VAR. In the following we suggest the use of this information 
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Fig. 3. The scaled pdf Pq{T)fq of three stocks as functions of the scaled return loss 
intervals r/fq with q = —1.0, —1.5, —2.0, —2.5, and —3.0 are shown. Curves of the 
data from different q collapse to a single curve. Note that curves of the data from 
different stocks also collapse to a single curve. The lower plots represent the scaled 
Pq{T)f VS. r/f after shuffling the return records, thereby removing the correlations. 
The lower plots were divided by a factor of 10, i.e., P^(r)f/lO. 
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Fig. 4. Scaled pdf, Pq(T)fq, of 3 stocks, 3 currencies and 3 commodities with q — 
— 1.0 (upper plots) and q — —1.7 (lower plots). The lower plots were divided by a 
factor of 10, i.e., PQ(r)f/10. We can see nine curves clearly collapse to a curve in 
each q value. 

to improve the estimation of the risk level of loss —q. First we estimate the 
conditional mean return loss interval fg(ro) which depend on the previous 
return interval TQ- We also expect tha t 

VA{r\T^)dr. (7) 

Here Pz\(r|To) is the probability tha t a return r will follow a return interval 
To- Figure 5 shows the conditional mean of interval fg(ro) of IBM. It can be 
approximated by 

log ( ^ ) = 0.25log ( ^ ) 

From the inset of Fig. 5, f~^ can be estimated by 

(8) 
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— =0.21^-^-^ ^ > l - 5 (9) 

Equations (8) and (9) enable us to estimate fg(ro) for large values of ^. Figure 6 
shows Tg(ro), which is the inverse of a certain probability of loss p*. Thus, if 
we want to know the risk level corresponding to 1% probability of loss within 
the time interval of A — one day, we only look at intersections between the 
horizontal Hue of Tg(To) = 100 and lines with fixed q in Fig. 6. The condition 
To which is the previous intervals of losses below —q, is changing every day. 
So the risk level is changing every day and can be estimated in this way. Thus 
our method provides a simple practical tool for estimation of risk. 

5 CONCLUSION 

We study the statistics of the return loss intervals Tq between two consecutive 
losses below a threshold — ̂ , in various stocks, currencies and commodities. 
We find that the pdf of the return loss intervals, Pqir), is not a function of the 
two independent variables r and q, but depends only on the scaled parameter 
r/fq. This scaling allows us to extrapolate rare events from the behavior of 
frequent events, with therefore good statistics. 

A universal feature of the scaled pdf, Pq{T)fq, is that shapes are almost 
the same for diff'erent stocks, currencies, and commodities. We show a relation 
between fq and VAR and use it to estimate the conditional mean return loss 
interval, fq{ro), which enables us to improve the risk estimate of loss —q. 
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(3) suggests tha t fg(ro) is the inverse of a certain probability of loss p*. To estimate 
the risk level corresponding to 1% probability of loss within the time interval of A, 
one must look at the intersections between the horizontal line of fq(To) = 100 and 
lines with fixed q. The condition ro, which represent the previous intervals of losses 
below —g, changes with time. Thus the risk level changes and can be estimated from 
such a figure. 
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Summary. Recurrence Plot (RP) and Recurrence Quantification Analysis (RQA) 
are signal numerical analysis methodologies able to work with non linear dynamical 
systems and non stationarity. Moreover they well evidence changes in the states of 
a dynamical system. It is shown that RP and RQA detect the critical regime in 
financial indices (in analogy with phase transitions) before a bubble bursts, whence 
allowing to estimate the bubble initial time. The analysis is made on NASDAQ daily 
closing price between Jan. 1998 and Nov. 2003. The NASDAQ bubble initial time 
has been estimated to be on Oct. 19, 1999. 

K e y words: Endogenous crash, Financial bubble. Recurrence Plot, Recur­
rence Quantification Analysis, Nonlinear Time Series Analysis, NASDAQ 

1 Introduction 

Recent papers have shown some analogy between crashes and phase transi­
tions [1, 2, 3]; like in earthquakes, log periodic oscillations have been found 
before some crashes [4, 5]. It was proposed that an economic index y{t) in­
creases as a complex power law, whose first order Fourier representation is 

y{t) = A-\-B \n{tc -t){l-\-Ccos[cc; \n{tc - t)-\-cp]} (1) 

where A^ B^ C , oj, (j) are constants and tc is the critical time (rupture time). 
An endogenous crash is preceded by an unstable phase where any informa­

tion is amplified; this critical period takes the name of 'speculative bubble'. 
Recurrence Plots are graphical tools elaborated by Eckmann, Kamphorst 

and Ruelle in 1987 and are based on Phase Space Reconstruction [6]. In 1992, 
Zbilut and Webber [7] proposed a statistical quantification of RPs and gave 
it the name of 'Recurrence Quantification Analysis' (RQA). RP and RQA are 
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good in working with non stationarity and noisy data, in detecting changes 
in data behavior, in particular in detecting breaks, Uke a phase transition [8], 
and in informing about other dynamic properties of a time series [6]. Most of 
the apphcations of RP and RQA are at this time in the field of physiology and 
biology, but some authors have already applied these techniques to financial 
data [9, 10]. We have used RP and RQA techniques for detecting critical 
regimes preceding an endogenous crash seen as a phase transition and whence 
estimating the initial bubble time. 

After simulating an arbitrary log periodic signal for preliminary RP anal­
ysis, a similar one is made on the NASDAQ, taken over a time span of 6 years 
including the known crash of April 2000 [5]. The series is also divided into 
subseries in order to investigate local changes in the evolution of the signal. 
Then the RPs of all time series are observed, compared and discussed. This 
work is extracted from [12]. 

2 Recurrence Analysis 

The changing state of a dynamic system can be indeed represented by 
sequences of 'state vectors' in the phase space. Each unknown point of 
the phase space at time i is reconstructed by the delayed vector y{i) = 
Xi, Xi^d^ •'", ^i+{m-i)d ill Ĵ ii m-dimensional space. 

Recurrence Plot 

The Recurrence Plot (RP) is a matrix of points (i, j ) where each point is said 
to be recurrent and marked with a dot if the distance between the delayed 
vectors y{i) and y{j) is less than a given threshold e. As each coordinate 
i represents a point in time, RP provides information about the temporal 
correlation of phase space points [6]. 

Therefore RPs can be used to test a system deterministic behavior through 
the percentage of recurrent points belonging to parallel lines. In fact for a 
periodic or a deterministic signal patterns like parallel lines appear. In so 
doing, RPs are useful tools for the preprocessing of experimental time series 
and provide a comprehensive image of the dynamic course at a glance [8]. 

Recurrence Quantification Analysis 

RQA quantifies the presence of patterns, like parallel lines of RPs, with 5 
RQA variables: the percentage of recurrent points (%REC); the percentage of 
recurrent points forming line segments parallel to the main diagonal (%DET); 
the longest line segment measured parallel to the main diagonal (MAXLINE); 
the slope of line-of-best-fit through %REC ais a function of the displacement 
from the main diagonal (excluding the last 10% range) (TREND); the Shan­
non entropy of the distribution of the length of line segments parallel to the 
main diagonal (ENT). 
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3 Analysis and Conclusions 

In order to study the crash from the point of view of a phase transition with 
log periodic precursors, a log periodic signal, generated by equation (1), has 
been simulated; its RP is shown in Fig. l(lhs). The 'arrow' shape is due to 
the trend, the not smooth border ('color') lines are due to the log periodicity. 
It has been also considered as a phase transition signature. In Fig. 2(lhs) 
an arbitrary signal is plotted before and after a peak, taking into account 
the anti-bubble phenomenon after a crash [11]. The RP aspect of Fig. 2(rhs) 
reveals a feature far from the normal signal evolution; note the well marked 
black bands corresponding to the crash time. 

The whole NASDAQ time series data has been divided into subseries of 
200 days, overlapping each other by almost 5 months, in order to further 
analyze whether and how the data changes. 

Fig. 3(rhs) is the RP of NASDAQ between Jan. 05, 1998 and Nov. 21, 
2003. Of interest is the dark grey vertical band surrounded by a lighter grey 
area, delimited by horizontal coordinates x = 452 and x = 690 corresponding 
to Oct. 19, 1999 and Sept. 27, 2000. In the period during which the bubble 
grows, RQA variables take the highest absolute values [12]. 

It is worth to note the same RP shape for the phase transition signature 
in Fig. 2(rhs). Considering that each coordinate in RP is linked with the 
time series, the border line of a grey or black band reveals the time when 
the data behavior starts to change. Noting that the dates here above fall in 
the same time interval as the bubble and the subsequent crash, it can be 
supposed that the initial bubble time occurs at x = 452 (Oct. 19,1999). We 
can thus deduce that on such a day the evolution of the system changes, i.e. 
the evolution passes from a normal regime to a critical regime. This is an a 
posteriori estimation of the initial bubble time, but through the analysis of 
the subseries one can argue that one is able to recognize the beginning of the 
bubble with some delay before the bubble grows. In fact, while the RPs of the 
first (I), the second (II) and of the third (III) subseries do not present any 
remarkable pattern [12] (they are quite homogeneous except for some local 
maximum reached by the index) the fourth subseries presents an interesting 
pattern: the RP in Figure l(rhs) shows the characteristic shape typical of a 
strong trend in a speculative bubble as studied and pointed out in Fig. l(lhs). 
The trend starts to be significant in the middle of Oct. 1999. This indicates 
that the RP has changed indeed when the bubble has started. Even the RQA 
variables, in Table 1, evidence in this period their highest values. It has to be 
underlined that this IV period does not include the crash time, but stops in 
Dec. 1999 before the bubble bursts. Even in the fifth (V) subseries RP, the 
bubble beginning is not so evident as in the fourth subseries. 

In conclusion it has been shown that, with some delay as respect to the 
beginning but enough time before the crash (3 months in this particular case), 
a crash warning could be given, RP and RQA techniques do detect a difference 
in state and recognize the critical regime. 
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Fig. 1. (Ihs) RP of a log periodic signal as generated by equation (1). The arrow 
shape on the Ihs plot is the sign of a strong trend; the curve lines are due to the log 
periodicity, (rhs) RP of the NASDAQ subseries (IV) from Jan., 1999 to Dec, 1999. 
It is worth to note the similarity between these two RPs 

Fig. 2. (rhs) the RP of a simulated phase transition of a signal (Ihs) following the 
law (1) before and after the critical event. 

Fig. 3. (Ihs)daily closing price of NASDAQ from Jan. 05, 1998 to Nov. 21, 2003; 
(rhs) RP of NASDAQ from Jan. 05, 1998 to Nov. 21, 2003. The dark grey band 
delimited by horizontal coordinates x = 504 and x = 566, encircled by a grey area 
delimited by horizontal coordinates x = 452 and x = 690, is the 'image' of the crash 
of April 2000. It is a 'strong event' but afterwards the normal regime is restored 
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Table 1. RQA variables for the 5 NASDAQ subseries, each of 200 days long. 

Subseries 
periods 

%REC 
%DET 
MAXLINE 
ENT 
TREND (units/1 OOOpoints] 

I II III IV V 
Jan. 1998 June 1998 Oct. 1998 Feb. 1999 July 1999 
Oct. 1998 Feb. 1999 

6.075 9.141 
35.980 36.119 
125 158 
2.522 3.547 

) -105.125 -155.824 

July 1999 Dec. 1999 May2000 

5.513 17.146 9.246 
29.079 45.018 54.511 
83 179 166 
2.585 4.054 3.301 
-97.808 -273.775 -138.501 
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Summary. We introduce an autoregressive-type model with self-modulation 
effects for a foreign exchange rate by separating the foreign exchange rate into a 
moving average rate and an uncorrected noise. From this model we indicate that 
traders are mainly using strategies with weighted feedbacks of the past rates in the 
exchange market. These feedbacks are responsible for a power law distribution 
and characteristic autocorrelations of rate changes. 

Key words. Foreign exchange market, Self-modulation effect, 
Autoregressive (AR) process, Econophysics. 

1. Introduction 

The probability densities of rate changes of foreign exchange markets generally 
have fat tails compared with the normal distribution and the volatility always 
shows a long autocorrelation [1]. In order to clarify the mechanism of these 
nontrivial behaviors, we introduce an auto-regressive type model with self-
modulation effects for the exchange rate by using the new technique of separating 
moving average rates and residual uncorrected noises [2,3]. We are going to show 
that these nontrivial behaviors are caused by traders' strategies with weighted 
feedbacks of the past rates. In this paper we use a set of tick-by-tick data provided 
by CQG for the yen-dollar exchange rates from 1989 to 2002. 
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Fig.l Weight factors w^(k) of the absolute value \s(t)\ of the yen-dollar rate. 
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Fig.2 Autocorrelations of the absolute value |^(0| and the factor b{t) . 

2. The best moving average 

Traders are generally predicting future exchange rates using various types of 
moving averages. We first introduce so-called the best moving average rate that 
separates uncorrelated noises from the market data. 

A foreign exchange rate P(t +1) is generally separable into a moving average 
rate P(t) and its residue £{t), 

P(/ + l) = P(0 + ̂ (0. (1) 

(2) 

where Wp(k) gives the weight factors where the time is measured by ticks. By 
tuning the weight factors we tried to find the best set of weights that makes the 
autocorrelation of the term e(t) almost zero. It is found that such condition is 
satisfied generally by weights which decay nearly exponentially with a 
characteristic time about a few minutes. 

Although the correlation of £(t) is nearly zero, its absolute value shows a long 
autocorrelation [2]. In order to characterize this stochastic dynamics we also 
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separate the absolute value |6'(̂  + 1)[ into a moving average (k(0|/ ^̂ ^ ^̂  
uncorrelated noise term, b{t) . We apply an autoregressive process to log|f(^ + l)| 
as follows, 

log\s(t +1)1 = log(|f (/)|> + logb(t), (3) 

iog(k«l>=Z^^,H'.w-iogk('-^+i)|. (4) 

where W^(k) is the weight factor which is estimated from the foreign exchange 
data. The weight factors W^{k) of the yen-dollar rate decay according to power 
law W^ {k) oc k with a characteristic time about a few minutes as shown in 
Fig.l. The autocorrelation of the term b(jt) becomes nearly zero as shown in 
Fig.2. Namely, the fluctuation of the logarithm of absolute value of s{t) can be 
approximated by an autoregressive type stochastic process. 

From these results, we find that the characteristic time of the best moving 
average is generally about a minute, namely, most traders are expected to be 
watching only very latest market data of order of a few minutes. 

3. Self modulation process for foreign exchange rate 

As a mathematical model of foreign exchange market that is directly compatible 
with the tick-by-tick data, we now introduce an auto-regressive type model with 
self-modulation effects as follows, 

\p(t + \) = P(t) + e(t) (5) 

\e(t + l) = a(tybit)-{\s(t)\) + m' (6) 

where the moving averages P{t) and (k(0|) ^̂ ^ given by Eqs.(2) and (4), a{t) 
is chosen randomly from 1 or -1 with probability 0.5. We introduce an additive 
term / ( / ) independent of (k(0|) ^^ ^^^^^ ^^ take into account effects such as 
sudden big news or interventions by the central banks or other uncertain events. 

We simulate the rate changes numerically by using Eqs.(5) and (6). In the 
simulation the noise b{t) is chosen randomly from the observed probability 
density for " b " in Eq.(3). As for the weight function in the moving average in 
Eq.(5), we apply an exponential function, Wp(k)=0A3e^^^. The external noise 
factor f(t) is given by a Gaussian noise with the average value 0 and its standard 
deviation 0.001. 
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Fig.5 Autocorrelations of volatility. 

We compare the simulated rates to the real yen-dollar rates. In Fig.3 the 

cumulative distribution of rate changes |P(/ + l t ick)-P(/) | by our simulation is 

plotted together with the real data. The two graphs fit quite nicely both showing 

power law behaviors as indicated in the figure. 

This power law property can be understood theoretically from the view point of 

self-modulation process that is a stochastic process of which basic parameters 

such as the mean value are modulated by the moving average of its own traces 

[4,5,6]. According to the results of self-modulation processes it is a natural 

consequence that the resulting market rates show power law properties when the 

multiplicative factor b{t) in Eq.(6) fluctuates randomly. 

The autocorrelation of rate changes and that of the volatility are plotted in Fig.4 

and Fig.5, respectively. In both cases the simulation results fit with the real data 

quite nicely. It should be noted that the functional form of the autocorrelation 

functions depend on the weight factors Wp(k) and w^(k), and the interesting 

point is that the weight factors work quite well, namely, the principle of making 

the residue terms independent is effective. 
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4. Discussion 

We introduced a new type of foreign exchange rate equation that describes very 

short time characteristics of markets consistent with the real data. It is well-known 

that traders are generally using moving average methods for predicting the future 

rates. Our model represents this general property of traders by introducing the best 

weight factors of the moving averages Wp(k), W^(k) and the noise factors 6 ( / ) 

that expresses responses of dealers to the past market rate changes. From our 

model it is confirmed that this feedback of information is responsible for the 

power law distribution of rate changes and characteristic autocorrelations of rate 

changes and volatility. 
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Abstract . We introduce a weighted-moving-average analysis for the tick-
by-tick data of yen-dollar exchange market: price, transaction interval and 
volatility. The weights are determined automatically for given data by apply­
ing the Yule-Walker formula for autoregressive model. Although the data are 
non-stationary the resulting moving average gives a quite nice property that 
the deviation around the moving-average becomes a white noise. 

1 Moving-average analysis 

Prom the viewpoint of physics one of the interesting features of market is that 
prices look quite stochastic in general, however, in some cases especially at 
the time of large fluctuations such as crashes or bubbles, they show rather dy­
namical behaviors. To clarify such behaviors we try to extract the component 
of white noises from the data by introducing a moving-average analysis [1]. 

For the time series x{t) with mean zero, the moving-average model is given 
by the following well-known linear autoregressive form: 

n 

X{t) = Y^ Wi X{t - 0 + ^(0 • (1) 
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Here, Wi are the weights, n is the total number of weights and e(^) denotes 
a random noise. We determine the values of wi by minimizing the averaged 
square prediction error: 

E = ( (x{t) - ^ W i x{t -i)] \ , (2) 

where (•) denotes average over period studied. Hence, Wi can be obtained by 
the Yule-Walker equations: 

n 
Ri = ^ Rj_i Wj , (3) 

j=i 

where i = 1 ,2, . . . , n and the autocovariance Rr is defined as Rr = R-T = 
{x{t) x{t + r ) ) . The weights are determined automatically for given data by 
applying this formula. The resulting moving average gives a quite nice prop­
erty that the deviation around the moving-average becomes a white noise. 

It should be noted that the Yule-Walker method is rigorous only for sta­
tionary time series, however, the market time series are generally not station­
ary. Therefore, the validity of this method must be checked carefully in this 
case. For this purpose we separate the tick data into two time zones and com­
pare the results. In the following section, we analyze the time series of Price, 
transaction interval and volatility by this method. 

2 Price 

We analyze tick-by-tick data of yen-dollar exchange rate, P{t), of data size 
291,215 ticks [2]. We define the zero-mean price by 

x{t) = P{t) - {P{t)) . (4) 

n 

Fig. 1 shows the obtained cumulative amount of weights defined by Y ^ Wj 
j=i 

for two time zones. The weights decay exponentially in all cases. It is quite 
interesting that the weights vanish around 2 minutes which coincide to the 
known results of transaction intervals [3, 4]. Hence, we believe that our method 
can capture a feature of dealers' action. The weight distribution indicates the 
property of price fluctuation. Actually, the weights for daily data become 0 
immediately, namely, the daily data is quite close to an ideal random walk. 

In Fig. 2 we show the autocorrelation functions of the residue of fluctua­
tions, e(^). The correlation is almost 0 as expected for a white noise, that is, 
the prices go up and down randomly around the moving-averaged value. As 
illustrated in Fig 3 optimal weighted-moving-average vary with time so that 
it may take the value near the actual price. 
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Fig. 3. Time series of price, simple moving-average and optimal weighted-moving-
average. 

3 Transaction interval 

We consider the transaction interval T which can be given by Ti = ^j+i — 
ti, where ti is the time transaction occurs. It is recently reported that the 
transaction interval can be modeled by self-modulation process: 

T{t) = e{t)-Y,T{t-i), 
1=1 

(5) 

where n is the maximum integer that makes 2_. '^(^ ~ 0 > '^ ^^^ ^(0 denotes 
1=1 

a random noise. The parameter r have to be determined by the trial and 
error. In the case of r = 150 seconds, e(^) appears to be almost no correlation 
as shown in Fig. 4 [3, 4]. 

We apply the moving-average analysis to the transaction interval by defin­
ing the zero-mean transaction interval as 

x{t) = hiT{t) - (InT(O) . (6) 
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Fig. 4. Autocorrelation function of e(i) for the self-modulation process (r = 150). 

Then, T{t) is described as the geometric mean type of the self-modulation 
process: 

T{t) = const • n ^ ( ^ ~ '̂̂ "̂ ^ • exp(6(0) (7) 
i = l 

As shown in Fig. 5 and Fig. 6 the obtained weights decay exponentially and 
e(^) has no correlation. Differing from original model, this model has the 
superiority that the weights are determined automatically and the correlation 
can be completely eliminated. 
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4 Volatility 

Fig. 7 and Fig. 8 give the results for volatility calculated as 

x{t) = \nV{t) - {lnV{t)) , (8) 
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where the volatihty V{t) is given by V'(^) = \P{t-^l) - P{t) |. The weights 
show power law decay and e{t) has no correlation. The reason for power weight 
distribution is not apparent but may be related to the long-range volatility 
correlations. 
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5 Conclusion 

In this paper we showed that by using Yule-Walker method we can separate 
the yen-dollar market data into the dynamical component described by the 
weighted-moving-average and noise component. As a future work we are in­
vestigating the dynamical component which would serve to clarify the market 
dynamics at time scale more than a few minutes. 
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We study non-Gaussian behaviour of logarithmic returns of the U.S. S&P500 
index from a stochastic point of view. The non-Gaussian behaviour indi­
cates an unexpectedly high probability of a large price change, which is of 
the utmost importance in risk analysis and a central issue in understanding 
the statistics of price changes [1, 2, 3, 4, 5]. We assess the temporal depen­
dence (evaluated in sliding time intervals) of the non-Gaussian behaviour, and 
demonstrate as an empirical fact that a precursor of the October 1987 crash 
can be observed in the index fluctuations at a relatively short time scale ~ 10 
minutes. 
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Fig. 1. (a) Semilog plot of the S&PSOO index time series over the period 1984 -
1995. (b) The 2-min log returns of the S&P500 index: AZ = (In Z{t -f s) - InZ(t)), 
where s = 2 min. 

Figure 1(a) shows the S&P 500 index Z{t) from 1984 to 1996 in semi-log 
scale, and figure 1(b) shows time series of the 2-min log return, i.e. AsZ(t) = 
\nZ{t H- 5) — InZ(t) , where s = 2 min. Here we investigate the probability 
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density function (PDF) of the detrended log returns at different time scales, 
where the non-stationarity of the data has been eliminated by local detrending 
[6]. To eliminate the trends present in the time series {B{t)}, where B{t) = 
InZ(^), in each subinterval [1 4- s{k — 1), s{k + 1)] of length 2s, where k is the 
index of the subinterval, we fit B{t) using a linear function, which represents 
the exponential trend of the original index in the corresponding time window. 
After this detrending procedure, we define detrended log returns at a scale s 
as AsB{i) = B*{i + s) - B*{i), where I + s{k - I) < i < sk and B*{i) is a 
deviation from the fitting function. 

After this procedure, we obtain the standardized P D F (the variance has 
been set to one) of the detrended log-returns, as shown in Fig. 2(a). In ad­
dition, we also study a truncated Levy flight as a representative example of 
non-Gaussian fluctuations, as shown in Fig. 2(b). We can see a non-Gaussian 
PDF with heavy tails at small scales s (~ min), and its convergence to a 
Gaussian, as the scale s increases. 

It has been demonstrated that a non-Gaussian P D F with fat tails can 
be generated by assuming random multiplicative processes [7, 8, 9, 10]. For 
instance, let us assume phenomenologically that the increment is represented 
by the following multiplicative form: 

Ä,B{i) = Ui)^^'^'\ (1) 

where ^5 and Ug are both Gaussian random variables and independent of each 
other. The PDF of AsB{i) has fat tails depending on the variance of uJs{i), 
and is expressed by 

PsiAsB) = j F, ( ^ ) ^G,( lnc7)d(lna) , (2) 

where Fg and Gs are both Gaussian, 

In this case, Pg converges to a Gaussian when A -^ 0. The equation (2) is the 
same as that for a log-normal cascade model, which was originally introduced 
to study fully developed turbulence. 

For a quantitative comparison, we fit the data to the above function 
[Eq. (2)] and estimate Â  in Eq. (3) [7]. As shown in Fig. 2(a) and (b) in 
solid lines, the PDF's of detrended log returns and the truncated Levy flight 
are approximated by Eq. (2). Strictly speaking, the function of the P D F for 
the truncated Levy distribution is not exactly the same form of the approx­
imated PDF based on Eq. (2). However, through the convergence process to 
the Gaussian, the diflPerence between the truncated Levy distribution and the 
approximated PDF becomes much smaller according to a power law decay. 
This means that in practical applications, it is impossible to distinguish be­
tween the truncated Levy distribution and the approximated PDF. So we use 
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Fig. 2. Continuous deformation of increment PDF's, across scales; (a) the S&;P500 
index, (b) a truncated Levy flight. Standardized PDF's at scales (from top to bot­
tom) s = 8,16,32,64,128,256,512,1024,2048,4096. In the solid line, we have su­
perimposed Castaing's equation with the normal self-similarity kernel. The scale 
dependence of the fitting parameter of Castaing's equation for the S&P500 index, 
its surrogate and the models is plotted as Â  vs. logs (c), and logA^ vs. logs (d). 

a single parameter Â  in Eq. (3) in order to characterise the non-Gaussian PDF 
of detrended log returns. The scale dependence of A"̂  for the detrended log 
returns shows the existence of a power law scaling, rather than a logarithmic 
decay like cascade models (compare Fig. 2(d) with Fig. 2(c)). 

An important point is that the large value of Â  indicates a high probability 
of a large price change. The probability of a large price change shows a sharp 
increase. For instance, if the value of Â  has doubled from 0.2 to 0.4, the 
probability of a large change greater than lOcr, where cr is a standard deviation, 
is about twelve times (P\2=o.4(l^l > lOcr) ~ 10~^), and if the value of A"̂  has 
doubled from 0.4 to 0.8, the probability of large change greater than 20cr is 
about 18 times ( P A 2 = O . 8 ( I ^ | > 20a) « 5 x 10"^). To date, the volatility of 
stock price changes has been used as a measure of how much the market is 
liable to fluctuate, which is of interest to traders because it quantifies the 
risk and is the key input for the option pricing model of Black and Scholes 
[11]. Therefore, the statistical properties of the volatility have been intensely 
studied by economists and recently by physicists. As we will see, it is necessary 
for a risk analysis to quantify not only the volatility, but also the non-Gaussian 
nature of the price fluctuations at a relatively short time scale (~ 10 min). 
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Fig. 3. (a) Log-log plot of the scalewise dependence of Â  for five consecutive time 
intervals before the Black Monday crash. A gradual, systematic increase of A'̂  at 
s = 10 is evident on approaching the crash date, together with an abrupt transition 
of Â  scaling just before the Black Monday crash, (b) The temporal dependence of 
the Â  over a large time span of index evolution shows two instances, in '87 and '90, 
of apparent tuning towards a critical state. 

Here we assess the temporal dependence (evaluated in sliding time in­
tervals) of the A^, together with the volatility defined as the local standard 
deviation of ABg at scale 5 over N data points, i.e. 

\ 
];^J2AB^S^t), (4) 

i=\ 

where At is the sampling time interval. 
The local temporal variation of criomin and Afomin ^^^^ ^ one-year period 

before the Black Monday crash in '87 shows a gradual, systematic increase 
on approaching the crash date [Fig. 3(a)]. Because the large Â  and as mean 
a high probability of occurrence of extremely large fluctuations, our obser­
vation suggests that, through the internal dynamics, the system gradually 
approached a "critical" state with large fluctuations, which might result in a 
crash. In addition, we observe an abrupt transition of Â  scaling in the peri­
ods including the Black Monday crash, as shown in Fig. 3(b). The scaling law 
after the transition also suggests that the market was in a state with a high 
probability of occurrence of large fluctuations at various time scales. 

After the Black Monday crash in '87, another increase of Â  and CFS is 
observed before '90, although the crash transition like the Black Monday crash 
is not observed. It is well known that Iraq's attack on Kuwait, which began in 
August 1990, and the Persian Gulf War (1991) led to declining and sluggish 
stock prices (see Fig. 1(a)). Our findings might suggest that the market was 
approaching a 'critical' state with a high probability of the occurrence of 
extremely large fluctuations before the attack by Iraq, but the external factor 
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of the war brought about a radical change in the internal dynamics of the stock 
market, which prevented a crash transition like the Black Monday crash. 

To summarize, we have characterised the non-Gaussian nature of the de-
trended log-returns of the U.S. S&P500 index from 1984 to 1995 by introduc­
ing a simple multiplicative model, and have found the empirical fact that the 
temporal dependence of fat tails in the P D F shows a gradual, systematic in­
crease of the probability of the appearance of large increments on approaching 
Black Monday in October 1987. Our finding suggests the importance of the 
non-Gaussian nature for risk analysis. 
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Summary. We analyze the trades and quotes database of the TSE (Tokyo Stock 
Exchange) to derive the average price response to transaction volumes.Through the 
analysis, we point out that the assumption of the independence of the amplitude 
of returns on the size of transactions cannot fully explain the profile of the average 
price response . 

1 Introduction 

The understanding of the market impact (or price impact), that is the price 
reaction to a transaction volume, is of a practical importance in order to 
avoid the risk of paying a large transaction cost, when individual investors or 
brokerage firms place a large size of order. Prom many prior works about this 
subject, it seems to be established that the functional form of the average price 
impact is monotonically increase and concave. Especially, in the recent work of 
Gabaix et al[l], a square root law has been proposed as a specified functional 
form of the price impact in the context of a theory of power law distribution 
of returns, based on the analysis of the 35 million transaction records of the 
30 largest stocks on the Paris Bourse over the 5 years period 1994-1999. In 
their paper, the functional form appeared as the relation between the optimal 
price change and the volume intended by fund managers for maximizing the 
benefit of trading, when they place large size of orders. 

On the other hand, in the very recent work by Farmer et al[2], an en­
tirely different interpretation has been proposed about the origin of large 
price changes. They has argued that large returns are not caused by large or­
ders, while the large gaps between the occupied price levels in the orderbook 
lead to large price changes in each transaction, and actually showed that the 
gap distribution closely matches the return distribution, based on the analysis 
of the orderbook as well as the transaction records of 16 large stocks on the 
LSE (London Stock Exchange) in the 4 years period 1999-2002. They have 
also showed by the experiment of the virtual market orders of a constant size 
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that non-intelligent manner of market order placement produces the actual 
fat tail of return distribution, in contrast to the claim of Gabaix et al. As 
another work in this direction, Weber and Rosenow analyzed the Island ECN 
(Electronic communications network), which is automated ATS ( Alternative 
Trading System) of NASDAQ, and derived the conclusion that large price 
changes are mainly caused by the lack of liquidity [3]. 

In this paper, we analyze the trades and quotes database of the TSE (Tokyo 
Stock Exchange) to derive the average price response to transaction volumes, 
and consider the origin of the profile. We also study the price changes caused 
by the block of trades as well as each trade. In the study of the block of trades, 
we deal with the price change and the volume over a successive sell or buy 
market orders. The aggregated price change roughly corresponds to the price 
change for a fixed time interval analyzed by Gabaix et al[l] or the virtual price 
change by virtual market order by Farmer et al[2]. Through the analysis, we 
point out that the assumption of the independence of the amplitude of returns 
on the size of transactions cannot fully explain the profile of the average price 
response. In section 2, we empirically derive the average price response to 
transaction volume of each trade. In section 3, the analysis of the aggregated 
price change caused by successive trades is given. Section 4 is devoted to 
conclusion. 

2 Market impact by each trade 

The TSE has two trading sessions per day. The morning session starts at 9:00 
A.M. and ends at 11:00 A.M. Trading resumes as the afternoon session at 12:30 
A. M. and ends at 3:00 A. M. The opening and closing prices for each session 
are determined by a single price auction called Itayose. The continuous auction 
called Zaraba follows Itayose. We can place two kind of orders throughout 
sessions. One is market order, which does not indicate the specific price, and 
are executed at the best available price. Second is limit order, which indicate 
the price as well as the size that a trader want to sell or buy. Limit orders are 
stored in orderbook, if the immediate transaction is impossible. The market 
mechanism is fully computerized and there are no designated market makers 
for the TSE. The situation is the same as in the Paris Bourse, the downstairs 
market of the LSE and the Island ECN of NASDAQ analyzed in the papers 
[1], [2] and [3] respectively. 

We analyze all transactions and quotes for the 21 stocks listed on the first 
section of the TSE over one year period from Nov. 1999 through Oct. 2000. 
Those are the most frequently traded stocks during the period concerned and 
consist of 10 electric companies, 4 communication companies, 3 security firms, 
3 information service companies and 1 game company. This study deal with 
the logarithmic returns of the best quote (ask or bit price) occurred by the 
trades during Zaraba. All trades are divided into four classes according to the 
price p(t) at which the trade is executed at the time t, that is, the trade are 
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Fig. 1. Conditional average of the return of the best quote. The result shown here 
is for the ask price, and the result for the bit price is very similar. We normalized 
the return by the average of the absolute value of the price return of each stock, 
and normalized the volume by the average transaction volume of each stock. Circle 
represents the average of returns under a given transaction volume vt, and box the 
average of returns conditioned by r > 0 besides a given transaction volume. Triangle 
gives an approximation which is explained in the text. 

executed at the ask price a(t) (the best available sell price), the bit price b(t) 
(the best available buy price), inside spread {b{t) < p{t) < a{t)) or inside book 
{p{t) < b(t) or a{t) < p{t)). In our data, 99.9% of trades are executed at the 
best bit or offer price. In this paper, we will concentrate on those trades. 

First of all, we show the conditional average of the return of the best quote 
by a given transaction volume Vt in Fig. 1. 

The conditional probability density function for the return r by a given 
transaction volume Vt is decomposed into two parts as the following equation, 

p{r\vt) = P{r = 0\vt)6{r) + P{r > 0\vt)p{r\vt,r > 0)l9(r), (1) 

where 6{r) and 6{r) are the Dirac delta function and the step function, that 
is, 6{r) = 0,r < 0 and 0{r) = l , r > 0. Using this equation, the conditional 
average is factorized as, 

E{r\vt) = P{r > 0\vt)E{r\vt,r> 0), (2) 

where E{r\vtyr > 0) is the conditional average by the conditional probability 
density function p{r\vt,r > 0). The first factor P{r > 0\vt) represents the 
probability that the best price shifts by the trade with the transaction volume 
Vt^ and is coincident with the probability that the integrated amount Vai'^b) of 
limit orders stored at the ask(bit) price is cleared by the market order Vt. On 
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Fig. 2. Conditional average of the aggregated return of the best quote. The result 
shown here is for the ask price, and the result for the bit price is very similar. Circle 
represents the average of aggregated returns under a given aggregated transaction 
volume Vt, and the error bar gives the 95% confidence interval. Box represents an 
approximation which is explained in the text. Solid line gives the power law fit by the 
regression ln{E{R\Vt)) = aVf^b. The parameter estimation gives a = 0.46(0.01),6 = 
-0.32(0.03) and R'^ = 0.98 

the other hand, P{r\vt, r > 0) represents the probability that the gap between 
the best and the second best price is r. The dependence of this quantity on 
the transaction volume Vt means that the trader change the size of order 
according to the gap in the limit orderbook. In our data, this dependence is 
not negligible. The approximation E{r\vi, r > 0) = const, cannot fully explain 
the profile of E{r\vt) as shown in Fig. 1. 

3 Market impact by the block of trades 

In this section, we study the price changes caused by the block of trades. We 
deal with the price change and the volume over a successive sell or buy market 
orders, for example, the ask price change over the 3 successive buy market 
orders. The aggregated price change is considered to roughly correspond to 
the price change for a fixed time interval analyzed by Gabaix et al[l]. or the 
virtual price change by virtual market order by Farmer et al[2]. The result for 
our data and its power law fit are shown In Fig. 2. 

The conditional average of aggregated return is given by the equation, 

EiR\Vt) = Yl RPWVi) = E ^ E 
P{R,Vt\n)P{n) 

(3) 
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where n is the number of successive trades. If we put the ansatz 

P{R,Vt\n) = P{R\n)P{Vt\n) (4) 

which indicates that the aggregated return is irrelevant to the aggregated 
transaction volume, we have an approximation, 

E{R\Vt) = Y,EiR\n)P{n\Vt). (5) 
n 

As we can see in Fig. 2, the ansatz fails especially in the region of large 
transaction volume. 

4 conclusion 

The claim that a large transaction volume does not cause a large return fails 
in the TSE in the period from Nov. 1999 through Oct. 2000. This period 
coincide with the period of IT bubble and its crash in Japan. I am not sure 
how the nature of the period enhances the relevance between price changes 
and transaction volumes. However, it is true that the correlation between the 
market order size and the limit orderbook should be taken into account in 
general, when we model the trade in stock markets. 
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Summary. Commodity prices act as leading indicators and have important 
implications for output and business fluctuations, but their dynamics are not well 
understood. We used some econophysic tools to evaluate five agricultural 
commodities traded at the NYBOT (cocoa, coffee, cotton, frozen orange juice and 
sugar), both in price and volume. Results show important differences between 
price and volume fluctuations and among the commodities. All commodities have 
high volatile but non-random dynamic, the less so the larger their market. 

Keywords. Econophysics, Non linear dynamics. Derivative, Agricultural 
commodity. Futures 

Introduction 

Some economists look at commodity prices as leading indicators to anticipate 
economic processes in the sectors affected by the commodity. This can be viewed 
as a sort of reversal from the usual direction of causation, as commodity markets 
are known to have important implications for output and fluctuations in business. 
Their assessment is particularly important for less-developed-countries that 
depend on agriculture exports and that spend a lot of resources regulating this 
sector. Some studies assume commodity markets follow a random walk (Brennan 
and Schwartz 1985; Paddock et al. 1988) and others consider a mean-reverting 
price behavior hypothesis (Laughton and Jacoby 1993; Dixit and Pindyck 1994). 
Both perspectives have elements of truth, while the unpredictability, volatility and 
instability of commodity market are still a major concern in economics. 

There are basically two ways to cope with this problem: increasing the stability 
of the cash market through artificial controls of volume and price supports -
which means the investment of significant amount of resources on the regulation 
of the agricultural sector and their regulation boards - or through the derivative 
markets. 
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Derivative markets serve a risk-shifting function, and can be used to lock-in 
prices instead of relying on uncertain price developments. Being a vehicle for risk 
transfer among hedgers and speculators, futures markets also play a role in price 
discovery, as well as in price information. The risk transfer function allows to 
match risk exposure of the cash market price with its opposite in the same market 
or at the future market as a profit opportunity. 

Following the expectations theory hypothesis, the current fiiture price is a 
consensus forecast of the value of the spot price in the future. So, future prices 
give necessary indications to producers and consumers about the likely future 
ready price and demand and supply conditions of the commodity traded. 

Commodity derivatives have a crucial role to play in the price risk management 
process in any economy, especially in agriculture dominated countries and even 
more in less developed agricultural commodity exports dependent countries. 
Agricultural prices depend on specific circumstances and many commodity 
exchanges fail to provide an efficient hedge against the risk emerging from 
volatile prices of many products in which they carry out futures trading. Some 
recent studies with new insights have shown that complex structures of financial 
time series may reveal its fundamentals (Mantegna and Stanley 1999; Gabaix et 
al. 2003). 

The fiindamental hypothesis explored here is that there are underlying non 
linear mechanisms of the market, which provide it with some structure. These 
structures in market behavior might be revealed with the use of tools from 
econophysics, by studying the series of commodity derivatives either in price 
and/or volume transacted. 

Data and methods 

We worked with the volume and close price of the first nearby contract of the 
agricultural commodities futures traded daily in the New York Board of Trade, 
NYBOT^ (cocoa, coffee, cotton, frozen concentrated orange juice and sugar). 

We used the nearby future contracts as these are the contracts closest to 
expiration and represent the benchmark for the spot (or cash) market, and the first 
nearby contract is the closest one to expire and theoretically with the smallest 
basis (difference between the price of a future contract and the underlying commodity's 
spot price). It's important to remark that there is a substantial variation across 
futures markets in the pattern of open interest with respect to contract maturity: in 
currency and financial indexes most of open interest is highly concentrated in the 
first two nearby contracts (80%), in metals and agricultural, open interest tends to 
be less concentrated and in energy markets is evenly distributed among nearby and 
distant futures (Hong 2001). 

^ www.nybot.com/library/cocoa.xls., www.nybot.com/library/coffee.xls, www.nybot.com 
/library/cotton.xls, www.nybot.com/library/fcoj.xls, www.nybot.com/Iibrary/sugarl l.xls. 
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The data series used were from June 01, 1999 to May 28, 2004 in a daily basis, 
exhibiting series of 1243 records. Time series were analyzed using program 
facilities of Excels, Minitab®, and the analysis software Chaos Data Analyzer 
(Sprott and Rowlands 2003). 

Main results 

statistical Analysis 

Data series of the different commodities have their particularities and similarities. 
The commodity series do not follow a typical Gaussian distribution, but show a 
asymmetric distribution or a multimodal one with specific fi^equency 
concentrations and leptokurtic distributions. As data series were neither random 
nor stationary, there was evidence of an underlying model. Volume series showed 
an apparent cyclical behavior. 

Cottom Orange Coffee Cocoa Sugar 

l^^^ikillyiiiJiLjii^ililltoii 

A 
Ä'^V' 

A A A A 
Fig. 1. Dynamics of VOLUME traded. First row: Time path (x: time; y: R/S: 0-10 times the 
average value). Second row: Difference, time vs. change at t+l(-10,10 sd). Third row: 
Return map v(t) vs v(t+l) (4-4). Forth row: Phase space (-5:5). Fifth row: Histogram, log of 
observations vs sd (-8:9). 

Bivariate outcome and Portraits 

Price and volume showed weak linear correlations, nevertheless, it is important to 
clarify that they seemed to have some kind of relationship as the data was not 
distributed randomly in the phase space, suggesting some non linear association or 
presence of attractors and clusters. The presence of attractors was most relevant 
for cacao. On the other hand, cotton showed an apparent cyclical behavior with 
change of levels in the time path. The difference plot and the phase-space plots 
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showed that Orange juice had much less variance that the rest, and that the 
patterns of the two commodities causing addiction (cocoa and coffee) were more 
similar among them than the rest. Variance in volume series was about two times 
that of price series. Each commodity showed a unique characteristic temporal 
pattern in the variance of volumes traded. This particularity was not evident in 
price fluctuations. 

Cottom Oranqe Coffee Cocoa Sugar 

A A A A A 
Fig. 2. Dynamics of PRICE. First row: Time path (x: time; y: R/S: 0-10 times the average 
value), Second row: Difference, time vs. change at t+l(-5,5 sd). Third row: Return map p(t) 
vs p(t+l) (0.2-2). Forth row: Phase space (-5:5). Fifth row: Histogram, log of observations 
vs sd (-8:8). 

Hurst exponent 

The Hurst exponents of both volume and price series showed they were not 
independent, and carry memory. The fat tails of the distributions shown in the 
histograms confirm this. Their value -minor than 0.5- showed antipersistence, 
indicating that past trends tends to reverse in the future. 

Commodities 

Cocoa 
Orange juice 
Coffee 
Sugar 
Cotton 

Hurst exponent 

Volume 

0.168 
0.079 
0.182 
0.275 
0.178 

Price 

0.265 
0.079 
0.183 
0.291 
0.178 

Lyapunov exponent 

Volume 

0.541 (0.086) 
0.653 (0.056) 
0.504 (0.090) 
0.548 (0.090) 
0.551 (0.073) 

Price 

0.214 (0.046) 
0.215 (0.052) 
0.\97 (0.047) 
0.246 (0.043) 
0.311 (0.045) 
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Conclusions 

Our results show that the dynamics of prices and volume traded in the future 
commodity markets differ, and that each commodity market shows particular 
dynamics in the trade of futures. The dynamics of these markets seem to depend 
on both, the structure of the market itself and economic factors affecting demand. 
These results call for caution when insights from one market are extrapolated to 
another. That is, the use of leading indicators to understand a sector of the 
economy might be misleading. 

Price and volume of the futures of the commodities traded at the NYBOT, 
show a deterministic non-lineal path with the presence of strange attractors. The 
underlying mechanisms producing those particular behaviors may be revealed by a 
deeper understanding of the trade system of each market and the economic 
variables affecting the demand of each commodity. 

The clear antipersistence (Hurst exponent <0.5) of the time series studied 
contrast with the persistence found in stock markets (Peters 1996). This 
antipersistence seems to be a common character of commodities (Levy-Carciente 
et al. 2004). A more detailed analysis of specific commodity markets should 
reveal more about the economics underlying these dynamics. 
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A characteristic t ime scale of tick quotes on 
foreign currency markets 

Aki-Hiro Sato 

Department of Applied Mathematics and Physics, Graduate School of Informatics, 
Kyoto University, Kyoto 606-8501, Japan 

Summary. This study investigates that a characteristic time scale on an exchange 
rate market (USD/JPY) is examined for the period of 1998 to 2000. Calculating 
power spectrum densities for the number of tick quotes per minute and averaging 
them over the year yield that the mean power spectrum density has a peak at high 
frequencies. Consequently it means that there exist the characteristic scales which 
dealers act in the market. A simple agent model to explain this phenomenon is 
proposed. This phenomena may be a result of stochastic resonance with exogenous 
periodic information and physiological fluctuations of the agents. This may be at­
tributed to the traders' behavior on the market. The potential application is both 
quantitative characterization and classification of foreign currency markets. 

Key words, power spectrum density, agent-based model, stochastic reso­
nance 

1 Introduction 

Empirical analysis of high-frequency financial data have been attracting signif­
icant interest among physicists as well as economists during a decade (Man-
tegna and Stanley 2000, and Dacorogna 2001). Many features of financial 
markets have been clarified by many successive studies. 

Actually it is well-known that the markets have a characteristic time scale 
in long period (daily, weekly, and monthly). However recent studies (Takayasu 
2003, Ohnishi 2004 and Mizuno 2004) on time-series analyses in financial mar­
kets show that the market has a characteristic time scale in short period and 
propose the reason why traders are mainly using strategies with weighted feed­
backs of past prices. Furthermore using the self-modulation process Takayasu 
et al. have found that the characteristic time scale is about 2 minutes in the 
JPY/USD market (Takayasu 2003) (abbreviated as MT). 

On the other hand Baninec and Krawiech and Hoist proposed a possibility 
that stochastic resonance occurs in markets (Babinec 2002 and Krawiech 2003) 
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through an Ising-Hke agent model. They suggest that a periodicity in the 
market results from exogenous periodical information (abbreviated as BKH). 

In order to clarify the mechanism of this characteristic time I think that we 
should examine it on a different standpoint from MT and BKH. Both studies 
focus on prices or price returns. However, in this article, we focus on the 
number of tick quotes in foreign currency rates (USD/JPY) and investigate 
the statistical properties of them by utilizing the power spectrum technique. 
As the results of examining the number of tick quotes in USD/JPY market it 
is found that the power spectrum density (PSD) has some peaks at about 2 
minutes (the peak frequency depends on the currency markets). 

In order to explain this phenomena a simple agent model based on double-
threshold noisy device (Sato 2004) is proposed. Prom a result of numerical 
simulations of the model it is found that the high periodicity of the number of 
tick quotes may happen. This result leads to a hypothesis that this periodicity 
is caused by common exogenous periodical information. 

The purposes of this study are as follows: (1) to examine the number of 
high-frequency quotes lead us to deeply understand microscopic market activ­
ities. (2) this may provide useful information for market players to consider 
their trading strategy. 

2 Data Analysis 

The number of ask quotes per minute in USD/JPY is counted for a period of 
1998 to 2000. Utilizing the data we calculated three PSDs for 2,048 points in 
weekday and average them over the year. The averaged power spectrums on 
the semi-log scale are shown in Fig. 1. They all have a peak at 0.4 (1/min), 
namely 2.5 minutes. We consider that these peaks exhibit characteristic time 
scales of dealers' activities, i.e., the dealers act having the periodicity of 2.5 
minutes. 

3 Dealer model 

We introduce a simple agent model based on double-threshold noisy devices 
in order to understand the characteristic time scales found in the averaged 
power spectrum density. This model contains Â  dealers and the iih dealer has 
double-threshold {6\ ^ > 9^ ^) to decide buy(l) , sell(-l) and wait(O), and noise 
source £,i{t) to model an uncertainty in their mind. We assume that the ith 
dealer must choose a decision (output) into the three ones yi{t) = { 1 , 0 , - 1 } 
based on information (input) Xi{t) with an uncertainty ^{t) in his/her mind: 

[ i {xi(t) + ut)>el'^) 
viit) = < 0 (op) < Xi{t) + ii{t) < el'^) • (1) 
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Fig. 1. Semi-log plots of the averaged power spectrum density of the number of 
tick quotes (USD/JPY) over the year for a period of 1998 (top), 1999 (middle), and 
2000 (bottom). They all have a peak at 0.4 (1/min), i.e., 2.5 minutes. 

Here we assume that ^i{t) is identically independent Gaussian distribution, 

G{0 
sH^Oi ^""A-i^y (2) 

where cr̂  are standard deviations of the zth dealer. 
It is assumed that the input of each dealer is exogenous periodic informa­

tion s{t) = v4sin(27r/i), where A represents an amplitude, and / a frequency. 

84 



For .s{t) > 0 the dealers feel it good news and tend to decide a buy, while for 
s{t) < 0 they do it bad news and to decide a sell. 

Furthermore the number of tick quotes per unit time X{t) is defined as 

^(i) = jjJ2^yiit)l (3) 
1 = 1 

Q ( 1 ) For simplicity assume dl^^ = 9 and 61 = —6. Obviously the activity X{t) 
is always zero if cr = 0 and A < 0,so that, there is no uncertainty of the dealers 
in their mind and the exogenous information is weaker than the threshold for 
the dealers to decide their action. However if there is uncertainty a > 0 then 
the activity X{t) can exhibit periodicity despite oi A < 0 due to stochastic 
resonance (see Gammaitoni Hänggi Jung and Marchesoni (1998)). 

As shown in Fig. 2 it is found that the PSD has some peaks from numerical 
simulations of the dealer model for cr > 0 and A < 9. This peak is caused by 
stochastic resonance. 

E 
a 
T5 

1 0 " ' 

lo--» 

hp^N^ 

-J 1 L_ _l I I I I— 
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

f[1/min] 

Fig. 2. Semi-log plots of the averaged power spectrum of X{t) at cr = 0.3, 6 = 1.0, 
A = 0.4, and / = 0.2. It has a peak at 0.4. 

4 Discussion and Conclusion 

We empirically investigate the number of the tick quotes per unit time in 
foreign currency market (USD/JPY). It is found that the power spectrum 
densities of them for a period 1998 to 2000 all have a peak at 0.4 [1/min]. 
From the results it is conclude that a periodical action of dealers exists. 

In order to explain this phenomena a simple dealer model based on the 
double-threshold noisy devices is proposed. Under a hypothesis that the mech­
anism of this periodicity is stochastic resonance the market activity in the 
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model shows periodicity due to uncertainty of dealers' decision even though 
the exogenous periodical information is weaker than the threshold for dealers 
to decide their action. In fact this model is a feedforward one, however, real 
markets contains complicated (positive and negative) feedbacks. The future 
work is to consider the feedbacks to improve the dealer model. 

Moreover the source of this periodicity is open problem. One possibility 
is an endogenous feedback mechanism of dealers as shown in MT. The other 
is an exogenous periodical information as shown in this paper. More detailed 
data analyses let us clarify the mechanism of this phenomena. To consider this 
problem is expected to contribute to a deep understanding of fluctuations and 
structure in the market. 
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Order book dynamics and price impact 
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Summary. The price impact function describes how prices change if stocks are 
bought or sold. Using order book data, we explain the shape of the average price 
impact function by a feedback mechanism due to a strong anticorrelation between 
price changes and limit order flow. We find that the average price impact function 
has only weak explanatory power for large price changes. Hence, we study the time 
dependence of liquidity and find it to be a necessary prerequisite for the explanation 
of extreme price fluctuation. 

1 Introduction 

Market participants, especially those who manage a large amount of capital, 
need to know how the market price changes in reaction to their transactions 
because this price change contributes to trading costs. Generally, the influence 
of excess supply or demand on price changes is described by the price impact 
function [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Excess supply and demand can 
be described by the volume imbalance, the difference between the volume 
(number of shares) of buyer and seller initiated trades. 

The average price impact function is a concave function of volume imbal­
ance, hence one large trade seems to have a smaller price impact than two 
smaller ones. We argue that this property of the average price impact function 
can be explained by the influence of resiliency, i.e. price recovery from a ran­
dom uninformative shock. The price impact function can be used to elucidate 
the mechanism behind the occurence of large price fluctuations, which cause 
the fat tails of the distribution of stock price changes [12, 13, 14], In [15] the 
average price impact function was approximated by a square root law, and 
large price fluctuations are suggested to be due to large volume imbalances. 
This theory was criticized by the authors of [16] who argue that large gaps in 
the order book are responsible for large price changes. 

Our contribution to this discussion is an analysis of fluctuations of price 
impact. Since we find that the average price impact function can not well 



explain large price changes, we analyze fluctuations of the actual price impact, 
i. e. fluctuations of liquidity [17, 18, 19, 20, 21, 22, 23], and show that they 
must be taken into account in order to explain large price changes. 

Fig. 1. (a) The virtual price impact function /<book>(Q) (black circles) calculated 
from the average limit order book is a convex function of order volume and much 
steeper than the average price impact of market orders (grey squares). Both func­
tions are calculated for the ten most frequently traded stocks from the Island ECN 
in the year 2002. (b) Correlation function between return and signed limit order 
flow (buy minus sell orders). Limit orders preceding returns have weak positive cor­
relations with them, while equal time correlations are strongly negative. The region 
of overlapping time intervals is shaded. 

2 Price impact and resiliency 

An impatient trader who wants to buy or sell a certain number of shares at 
the best price available initiates a trade by placing a market order. In an 
electronic market place, market orders execute limit orders which indicate 
that a trader is willing to trade at a given or better price. A market buy order 
is matched with the limit sell orders offering the stock for the lowest price, 
the ask price »Sask- Similarly, a market sell order is matched with the limit buy 
orders offering the highest price, the bid price 5bici- In this analysis, we study 
midquote returns G^t{t) = \nSM{t-\-^t) — \nSM{t) where 5 M = |(5bid + 5ask) 
is the midquote price and with At = 5min. Returns can be connected with 
the volume imbalance Q in a five minute interval via the average price impact 
function 

/market(O) = (G^ t (0>Q • W 

We calculate /market (Q) using order book data from the Island ECN for the 
ten most frequently traded companies in the year 2002 [24] and find that it 
is a concave function which levels off at above average volume imbalances 
(Fig. la) . This shape is quite surprising because it would be an incentive to 
execute large trades in one step instead of splitting them into several smafler 
ones as it is done in practice to reduce trading costs. 

In order to understand the shape of /market (Q)) we compare it to the 
virtual price impact calculated from limit orders stored in the order book. 
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Limit orders are described by their density phooki'li^t) as a function of time 
and their position ji in the order book on a grid with spacing Aj. For each 
limit price S'limit, we define the coordinate 7̂  as 

r [(ln(5'iimit) - ln(5bid))/^7] ^ 7 l™it buy order . . 
^' 1 [(In(^iimit) - ln{S^^))/Aj] Aj limit sell order ' ^̂ ^ 

Here, the function [x] denotes the smallest integer larger than x. Execution 
of a market order with volume 

Qbook{G,t,k) = ^ /9book(7i,^^)^7 (3) 
7r<G 

causes a return G at time t for stock k. The inverse of this relation is the 
virtual price impact /book(Q,^, ^)- We now calculate the average order book 
density P(book) (7i) from Pbook(7n ^ k) by averaging over both time and stocks. 
Replacing Pbook(7i, t^ k) by P(book) ili) ^^ Eq. 3, we can obtain the virtual price 
impact function /<book>(Q) again by inversion. 

We find that /<book>(Q) is four times steeper than the average price im­
pact /market(Q) (Fig. la) . Besides the possible infiuence of discretionary trad­
ing, meaning that large trades are only done when price impact is low, this 
surprising discrepancy can be explained by resiliency described by time de­
pendent correlations 

c\imit[r) = (4) 

between limit order fiow and returns. The limit order flow 

00 

Qiimit(t) = E s i g n ( - 7 i ) [Q^^hi] - Qin-Ti)) ^ 7 (5) 
— 00 

is the net volume of limit buy orders minus the net volume of limit sell orders 
placed in the time interval 6t. Here, Q|f^(7i) is the volume of limit orders 
added to the book at a depth 7^, and Qs^^^ili) is the volume of orders canceled 
from the book. 

We find that limit orders are anticorrelated with returns (see Fig. lb) in 
contrast to positive correlations between returns and market orders [25]. Thus, 
rising prices produce an additional flow of limit sell orders reducing the virtual 
price impact and contributing to resiliency. These additional limit orders may 
be due to value traders selling when the price deviates from their perceived 
fair price. They could also be caused by order management systems. They 
automatically split large orders into smaller ones that are placed consecutively 
as soon as the previous one is executed and thus produce an additional limit 
order flow when prices change. In a more sophisticated analysis, one finds that 
dynamical effects provide a quantitative link between virtual and average price 
impact [25]. 
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Fig. 2. (a) Price changes larger than five standard deviations cluster in the region of 
small volume imbalance, all of them are clearly outside the error bars of the average 
price impact function /market (Q)- (b) Ratio of actual price change to predicted price 
change plotted against the normalized slope x/x of the actual price impact function 
/actual (Q, t). The data points cluster in the vicinity of a linear fit. 

3 Large stock returns and thin order book 

We now ask the question whether the average price impact function can 
shed light on the origin of large price changes. The shape of /market (Q) suggests 
that large returns should occur at large volume imbalances. In Figure 2a all 
events with returns larger than five standard deviations are compared with 
the average price impact function /market (Q)- Surprisingly, we find that large 
events cluster at quite small volume imbalances. 

Having in mind the importance of dynamical effects, we now analyze liquid­
ity fluctuations to explain the deviations of the large events from /market (Q)-
Therefor, we include dynamical eflFects in our description of order book density. 
By definition, Phook{7ijt) is an order book snapshot taken at the beginning of 
a five minute interval, but during five minutes many additional limit orders 
are placed in the order book and can also be matched with incoming market 
orders. Hence, we define another density function /9flow(7i) î ^ 0 describing 
the additional limit orders placed or cancelled within the five minute interval. 
Thus, for each time interval we can reconstruct the actual price impact func­
tion /actual (Q5 0 ^y inversion of the equation for the dynamically corrected 
order book density 

Qactual(<^,0 = X ] ^ 7 ( P b o o k ( 7 i . O + / ^ f l o w ( 7 i , ^ ^ 0 ) (6) 
7t<G 

We now use the slope x ( 0 ^^ ^^e actual price impact function /actual(Qi 0 
as a liquidity measure. In Figure 2b, the ratio of actual return G to the return 
^pred predicted by the average price impact function /market (Q) is plotted 
against x ( 0 normalized by the slope x of '̂he average price impact function. 
The large correlation coefficient /?^ = 0.79 suggests that extreme returns 
can be explained quantitatively by taking into account both order flow and 
liquidity [26]. Our analysis suggests that an unusually large slope of the time 
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varying price impact function is a necessary ingredient for the explanation of 
extreme stock price changes. 

In summary, we find that the virtual price impact calculated from the 
limit order book is much steeper than the average one. This discrepancy can 
be explained by strong anticorrelations between returns and limit order flow, 
indicating that rising prices induce an additional flow of limit sell orders re­
ducing the price change. Since the explanatory power of the average price 
impact function for large events is weak, we analyze the influence of time 
varying liquidity. Using the slope of the actual price impact function as a liq­
uidity measure we are able to quantitatively explain the deviations of actual 
returns from the predictions of the average price impact function. 
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Summary. A phenomenon of the financial log-periodicity is discussed and 
the characteristics that amplify its predictive potential are elaborated. The 
principal one is self-similarity that obeys across all the time scales. Further­
more the same preferred scaling factor appears to provide the most consistent 
description of the market dynamics on all these scales both in the bull as 
well as in the bear market phases and is common to all the major markets. 
These ingredients set very desirable and useful constraints for understanding 
the past market behavior as well as in designing forecasting scenarios. One 
novel speculative example of a more detailed S&P500 development until 2010 
is presented. 

K e y words. Financial physics, critical phenomena, log-periodicity 

The concept of financial log-periodicity is based on the appealing assumption 
that the financial dynamics is governed by phenomena analogous to criticality 
in the statistical physics sense (Sornette et al. 1996, Feigenbaum and Freund 
1996). Criticality implies a scale invariance which, for a properly defined func­
tion F(x) characterizing the system, means that 

F(Ax) = ^F{x). (1) 

A constant 7 describes how the properties of the system change when it is 
rescaled by the factor A. The general solution to this equation reads: 

F{x) = x''P{ln{x)/ln{\)), (2) 
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where the first term represents a standard power-law that is characteristic of 
continuous scale-invariance with the critical exponent a — ln(7)/ln(A) and 
P denotes a periodic function of period one. This general solution can be in­
terpreted in terms of discrete scale invariance. It is due to the second term 
that the conventional dominating scaling acquires a correction that is periodic 
in ln(x) and may account for the zig-zag character of financial dynamics. It 
demands however that if x = |T - Td, where T denotes the ordinary time 
labeling the original price time series, represents a distance to the critical 
point Tc^ the resulting spacing between the corresponding consecutive repeat-
able structures at Xn seen in the linear scale follow a geometric contraction 
according to the relation {xn^-\ — ^n)/(^n+2 — ^n+i) — A. The critical points 
correspond to the accumulation of such oscillations and, in the context of the 
financial dynamics, it is this effect that potentially can be used for prediction. 

An extremely important related element, for a proper interpretation and 
handling of the financial patterns as well as for consistency of the the­
ory, is that such log-periodic oscillations manifest their action self-similarly 
through various time scales (Drozdz et al. 1999). This applies both to the log-
periodically accelerating bubble market phase as well as to the log-periodically 
decelerating anti-bubble phase. Furthermore, more and more evidence is col­
lected that the preferred scaling factor A «i 2 and is common to all the scales 
and markets (Drozdz et al. 2003). These two elements, self-similarity and 
universality of the A, set very valuable and in fact crucial constraints on pos­
sible forms of the analytic representations of the market trends and oscillation 
patterns, including the future ones as well. 

A specific form of the periodic function P in Eq. 2 is as yet not provided by 
any first principles which opens room for certain, seemingly mathematically 
unrigorous assignments of patterns. This, on the other hand, allows to correct 
for frequent market 'imprecisions' when relating its real behavior versus the 
theory. Very helpful in this respect is the requirement of self-similarity which 
greatly clarifies the significance of a given pattern and allows to determine 
on what time scale it operates. Since in the corresponding methodology the 
oscillation structure carries the most relevant information about the market 
dynamics, for transparency of this presentation, we use the first term of its 
Fourier expansion, 

P( ln(x) / ln(A)) = A^B c o s ( ; ^ ln(x) -h 0). (3) 
271 

This imphes that a; = 27r/ln(A). Already such a simple parametrization al­
lows to properly reflect the contraction of oscillations, especially on the larger 
time scales. On the smaller time scales just replacing the cosine by its modu­
lus often, even quantitatively in addition, describes departures of the market 
amplitude from its average trend. 

One particularly relevant and special, for several reasons, example is shown 
in Fig. 1. The upper panel (a) illustrates a nearly optimal log-periodic rep­
resentation of the S&P500 data over the most extended time-period of the 
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Fig. 1. (a) Logarithm of the Standard Sz Poor's 500 index since 1800 
(http://www.globalfindata.com). The thick solid line displays its optimal log-
periodic representation with A = 2. The thin solid line represents the inflation 
corrected S&PSOO expressed in 2004 US$. It significantly shifts the third minimum 
to the early 1980s and improves agreement with the theoretical representation, (b) 
Logarithm of the S&P500 from 1997 till the end of 2002, which corresponds to the 
magnification of the small rectangle in (a). The solid lines illustrate the log-periodic 
accelerating and decelerating representations with A = 2, modulus of the cosine used 
in Eq. (3), and a common Tc = 1.9.2000. 

recorded stock market activity as dated since 1800. As already pointed out 
(Drozdz et al. 2003) this development signals in around 2025 a transition of 
the S&;P500 to a globally declining phase as measured in the contemporary 
terms. The magnification of the small rectangle covering the period 1997-2002 
is displayed in the lower panel (b) of the same Fig. 1. It thus illustrates the 

95 

http://www.globalfindata.com


nature of the stock market evolution on a much smaller time scale of resolu­
tion. An impressive log-periodicity with the same A = 2 on both sides of the 
transition date (September 1, 2000) can be seen. 

The next stock market top from the perspective of the largest time scale 
(Fig. la) can be estimated to occur in around the years 2010-2011. In the spirit 
of the log-periodicity its neighborhood is to be accompanied by the smaller 
time scale oscillations - similar in character to those in Fig. lb . Of course, 
when going far away from those large scale transition points such pure log-
periodic structures - representative to the one level lower time scale - must get 
dissolved. A particularly interesting related question then is what character­
istics are to govern the stock market dynamics in the transition period when 
going from 2000 to 2010. The most natural and straightforward way is to view 
this process as schematically is indicated in Fig. 2. This whole period is thus 
covered by the two main components represented by the thin lines and the 
market dynamics is driven by the superposition of of these two components 
whose phases, slopes and weights are adjusted such that the overall global 
market trend up to now is reproduced. 

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 

Fig. 2. A hypothetical log-periodic scenario, represented by the thick solid line, for 
the S&PöOO development until 2010. This solid line is obtained by summing up the 
two A = 2 components (thin lines): log-periodically decelerating since 1.9.2000 and 
log-periodically accelerating toward 1.9.2010. 

In this scenario, close to the two large-scale transition points (Septem­
ber 2000 and, as provisionally estimated here based on Fig. la, September 
2010) the market is driven, as needed, essentially by the single log-periodic 
components, decelerating and accelerating one, correspondingly. More com­
plicated is the situation in the middle of this time interval where the two 
components contribute comparably. Most interestingly, it indicates that the 
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period of the stock market stagnation may extend even into the year 2008, 
before it seriously starts rising. It also demonstrates a possible mechanism 
that generates modulation structures responsible for the apparent higher or­
der corrections (Johansen and Sornette 1999) to Eq. (3). The changes in the 
frequency relations observed in the transition period between the bear and 
the bull market phases originate here from the interference between the two 
components, both of the simple form as prescribed by Eq. (3) and with the 
same A = 2. Of course, similar effects of interference may occur on the whole 
hierarchy of different time scales. 

There is one more element that from time to time takes place in the finan­
cial dynamics and whose identification appears relevant for a proper interpre­
tation of the financial patterns with the same universal value of the preferred 
scaling factor A. This is the phenomenon of a "super-bubble" (Drozdz et al. 
2003) which is a local bubble, itself evolving log-periodically, superimposed 
on top of a long-term bubble. Two such spectacular examples are provided by 
the Nasdaq in the first quarter of 2000 and by the gold price in the beginning 
of 1981 (Drozdz et al. 2003). 

1— Oil-Pric« incraase until 
1. November 2004 

longterm analysis from 16.9.2004 

\ ^ ^ 

Fig. 3. The New York traded oil futures since 1998 and the corresponding log-
periodic A = 2 representation in terms of Eq. (3). 

In connection with this second case it is important to remember that the 
same value of A as for the stock market turns out appropriate. That such 
its value may be characteristic to the whole commodities market as well, is 
shown in Fig. 3 which displays the New York traded oil futures versus the best 
log-periodic (A = 2) representation. In fact, this scenario has been drawn by 
the authors on September 15, 2004, insisting on using A = 2, even though one 
local minimum (in the beginning of 2004) in the corresponding sequence did 
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not look very convincing. Designed this way it was indicating a continuation 
of the increase until the end of October and then a more serious reverse of the 
trend. Subsequent development of the oil futures provides further arguments 
in favor of this way of handling the financial log-periodicity. 
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Abstract. Considering the effect of economic agents' preferences on their actions, 
relationships between conventional summary statistics and forecasts' profit are 
investigated. Analytical examination demonstrates that investors' utility 
maximization is determined by their risk attitude. The computational experiment 
rejects the claims that the accuracy of the forecast does not depend upon which 
error-criteria are used. Profitability of networks trained with L<jloss function 
appeared to be statistically significant and stable. 

Keywords: Artificial Neural Network; Loss Functions; Risk Preferences 

Introduction 

The relationship between agents' utility functions and optimal investment 
decisions (portfolio and saving rules) is a long-standing issue in financial research. 
This research is motivated by the results of (Chen and Huang 2003), where 
constant relative risk aversion (CRRA) traders without the best portfolio rules are 
the best long-term survivors through their saving decisions. In this paper I take a 
few steps aside. First of all, I examine a mapping of traders' risk attitude into their 
predictions. Secondly, bearing in mind that stock trading models' time horizons do 
not typically exceed one-two years, I limit my investigation to short-medium term 
analysis. Thirdly, considering an environment with agents possessing an 'optimal' 
stable saving rate (e.g. locked-up saving contracts), allows me to focus on trading 
decisions, examining the profitability of actions over short and long terms. 

The second motivation for this paper comes from (Leitch and Tanner 2001), 
arguing that traditional summary statistics are not closely related to a forecast's 
profit. As I consider the effect of agents' risk attitude on their actions' profitability 
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through loss functions minimization, this relationship is particularly important. If 
agents' preferences have impact on their wealth, there should be a statistically 
significant relationship between forecasts' errors and actions' profitability, in 
order to investigate it with ANN under supervised learning, where the network 
training is based on a chosen statistical criterion, but when economic performance 
is sought. 

Methodology 

For my experiment, I build ANN forecasts and generate a posterior optimal rule. 
The rule, using future information to determine the best current trading action, 
returns a buy/sell signal (B/S) today if prices tomorrow have increased/decreased. 
A posterior optimal rule signal (PORS) is then modeled with ANN forecasts, 
generating a trading B/S signal. Combining a trading signal with a strategy 
warrants a position to be taken. Note that my approach is different from the 
standard B/S signal generation from a technical trading rule. In the latter, it is only 
a signal from a technical trading rule that establishes that prices are expected to 
increase/decrease. In my model, I link a signal's expectations of price change 
(given by PORS) to a time-series forecast. 

To apply my methodology, I develop a dual network structure. The forecasting 
network feeds into the acting network, from which the information set includes the 
output of the first network and PORS, as well as the inputs used for forecasting, in 
order to relate the forecast to the data upon which it was based. It is an effort to 
relate an action's profitability to forecasting quality, examining this relationship in 
a computational setting. The model is evolutionary in the sense that it considers a 
population of networks (individual agents facing identical problems/instances) that 
generate different solutions, which are assessed and selected on the basis of their 
fitness. Backpropagation is used in the forecasting net to learn to approximate the 
unknown conditional expectation function (without the need to make assumptions 
about a data-generating mechanism and beliefs formation). It is also employed in 
the acting net to learn the relationship between the statistical characteristics of the 
forecasts and the economic characteristics of the actions. 

A single hidden layer ANN is deemed to be sufficient for my problem, 
particularly considering the universal approximation property of feedforward nets. 
Finally, agents discover their optimal settings with a genetic algorithm (GA). GA 
enhances ANN generalization, and adds additional explanatory power to the 
analysis. Selecting candidates for the current stage with a probability proportional 
to their contributions to the objective function at a previous stage, GA reproduces 
the Tittest individuals' from a population of possible solutions. As a result, the best 
suited to performing specific task settings are identified. 
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Experimental Design 

A loss function, L: R-> IR̂  related to some economic criteria or a statistical 
measure of accuracy, takes a general form: 

L(/7, a, <?) = [« + (!- 2a)\{€ < 0)]^', (1) 

where ;? is a coefficient of absolute risk aversion (related to a coefficient of 
relative risk aversion, p through some function h,p = h(p)); £ is the forecast error; 
a e [0,1] is the degree of asymmetry in the forecaster's loss function, and 1 in 
1(£<0) is the indicator function. L{p, a, s) is !fj-measurable and also presented as 

L{p, a, ^) ^ [a + (1. 2a)\{Y^^, - fc^^.iO) < 0)]\Y^^, - fc,^,(Of , (2) 

where a and /^ (p) are shape parameters of a loss function; vector of unknown 
parameters, 6 e 0. Order of the loss function is determined by /̂ . Setting agents 
attitude towards risk, /̂  to different values allows me to identify the main loss 
function families. Consider some families and their popular representatives: 
1. L(l, [0,JJ, 6) - piecewise linear family *Lin-Lin' or Tick' Function. 

- L(l, 1/2,6) = \Yt+i - fct^i\ - absolute value loss function or mean absolute 
error (MAE) loss function, Lfe+/̂  = | e/+y|. This loss function determines the 
error measure, defined as 

2. L(2, [0,1], 9) - piecewise quadratic family *Quad-Quad'. 
- L(2, 1/2, 9) = (T/+/ -fct^if - squared loss function or mean squared error 

(MSE) loss function, Lfst+j) = eV/- Appropriate for this loss function error 
measure is defined as 

MS£ = r ' X > , l . (4) 

The choice of a loss function is influenced by the object of analysis. In this 
paper, loss functions that are not directly determined by the value of risk aversion 
coefficient are limited out. For given values of/^ and a, an agent's optimal one-
period forecast is 

minE[L(p, a, 0)] = £ [ L ( r , - / c , J ] = E[L(e,J]. (5) 

Traders' utility maximization depends on their attitude towards risk (given by a 
coefficient of risk aversion) and the attitude towards costs of +/- errors (given by a 
degree of asymmetry in the loss function). Note that a degree of asymmetry is 
itself a function of a coefficient of risk aversion. Therefore, economic agents' 
utility maximization is uniquely determined by their attitude towards risk. 
Training ANN with different loss functions allows me to examine how agents' 
statistical and economic performances relate to their risk preferences. 
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Performance Surface 

Loss function determines optimality on the performance surface, given by errors 
versus weights. As long as gradient descent is used, the output errors injected into 
the network depend upon a chosen loss function: 

where Yj is a desired response, 0/ is the network's output and / is the number of 
observations. The function L is minimized when Yj = 0i=^i^p(i, where Xt is the 
input vector, y/ij weights connecting / inputs of the input layer with J neurons of 
the hidden layer. 

The measure of ANN performance is given by the sensitivity of a loss function 
with respect to the network's output: 

öC/ao^ = f ^ y - O . (7) 

Recall the Ip norm of a vector x € Ip, defined for the class of measurable functions 
II II ^ ^ oo I \P \\l n 

by pil = ( / , _, \^i I ) ' /^^ 1 < /? < 00 and consider a loss function of order/?: 

where /> is a user-defined constant. Since ANN weights' modification depends on 
the order of a loss function, different values of/? produce dissimilar learning and 
solutions to the optimization problem. By examining a slow step increase in the 
value of p, the behavior of the model with different objective functions is 
investigated. For comparison I consider L«, loss function in the nonlinearly 
constrained min-max problem. 

At p value equal to 1 and 2 common L/ and L2 loss functions are observed. Lj, 
absolute value or MAE loss function takes the form: 

1=1 

The error function used to report to the supervised learning procedure is the sign 
of the difference between the network's output and desired response: 
6:. = - s g n ( K - 0 ) . The cost returned is the accumulation of the absolute 

differences between the ANN output and the desired response. 1/ gives equal 
weights to large and small errors, weighting the differences proportionally to their 
magnitude. Learning under Lj loss function de-emphasizes outliers and rare large 
discrepancies have less influence on results than learning under its main 
competitor, L2 function. For that reason L/ sometimes viewed as a more robust 
norm, comparing to L2. 

L2, quadratic or MSE loss function takes the form: 

k=^'TM-'^.y- (10) 
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The error function is the squared Euclidean distance between the network's output 

and the target: €. = - ( 7 - O. )^. The cost returned is the accumulation of the 

squared errors. Quadratic performance surface is particularly appropriate for linear 
systems. With L2 loss function the equations to be solved for computing the 
optimal weights are linear for the weights in linear networks, giving closed form 
solutions. L2 function is also attractive for giving probabilistic interpretation of the 
learning output, but might be inappropriate for highly non-Gaussian distributions 
of the target. Minimizing quadratic loss function corresponds and would be 
particularly appropriate for agents with a quadratic utility function. Minimizing 
the error power, L2 weights significantly the large errors. ANN trained with L2 
function will assign more weight to extreme outcomes and will focus on reducing 
large errors in the learning process. 

Under MSE and MAE loss functions all errors are considered symmetrically. 
Since conventional investment behavior implies putting more effort into avoiding 
large losses, i.e. pursuing an asymmetric target, Li and L2 loss functions might be 
less appropriate for agents with these risk preferences. ANN trained under 
symmetry tends to follow risky solutions. 

Generally, for /? > 7, the cost will always increase at the faster rate than the 
instantaneous error. Thus, larger errors receive progressively more weight under 
learning with higher order Lp functions. The upper limit here is given by L«, 
function, where all errors are ignored, except the largest. The L«, loss function is 
an approximation of the /«, norm, ||x||oo = sup{|xi|,...,|Xn|,...}. Notice that l^ norm 
is essentially different from /p norm in the behavior of its tails. L^ allows me to 
minimize the maximum deviation between the target and the net's output: 

^«=Zl,Mr-o,)|. (11) 

Loo locally emphasizes large errors in each output, rather than globally searching 
the output for the maximum error. The error function is the hyperbolic tangent of 

the difference between the network's output and the target: £". = |tan(f - O ) | . The 

cost returned is the accumulation of the errors for all output neurons. 

On another extreme the performance surface with /? = Ö is presented. 
Considering only the sign of the deviations, it is viewed as equivalent to the 
performance surface optimized solely for directional accuracy (DA). In this 
research, IGJIOSS (a variant of the L2 function that weight various aspects of time-
series data differently) is considered: 

where xn is the weighting factor. Errors are scaled according to the following 
criteria: DA, recency of observations and magnitude of change. 
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Performance Measures 

Although ANN is trained to minimize the internal error, testing and optimization 
of its generalization abilities are arrived at by comparing its performance with the 
results of a benchmark, an efficient prediction (EP). In forecasting prices, EP is 
the last known value. For predicting strategies, it is the buy/hold (B/H) strategy. 
The degree of improvement over efficient prediction (lEP) is calculated as an error 
from a de-normalized value of the ANN and a desired output, then normalizing the 
result with the difference between the target and EP value. 

I use profitability as a measure of overall success. I examine the following 
forms of cumulative and individual trade-return measures: non-realized simple 
aggregate return; profit/loss factor; average, and maximum gain/loss. To assess 
risk exposure, I adopt common 'primitive' statistics and the Sharpe ratio^ To 
overcome the Fisher effect, I consider trading positions with a one-day delay. 

TC is assumed to be paid both when entering and exiting the market, as a 
percentage of the trade value. TC accounts for broker's fees, taxes, liquidity cost 
(bid-ask spread), as well as costs of collecting/analysis of information and 
opportunity costs. According to (Sweeney 1998), TC reasonably range from a 
minimum of 0.05% for floor traders to somewhat over 0.2% for money managers 
getting the best prices. Since TC would differ for heterogeneous agents, I report 
the break-even TC that offsets trading revenue with costs leading to zero profits. 

Heterogeneous traders in the experiment use different lengths of past and 
forward horizons to build their forecasts/strategies. In this paper three memory 
time horizons, [6; 5; IVi] years are adopted. The simulation is run with a one year 
testing horizon, as it seems to be reasonable from the actual trading strategies 
perspective and is supported by similar experiments. Lastly, such forward horizon 
allows me to investigate trading rules without explicit consideration of saving 
decisions (made on annual basis). Both long and short trades are allowed in the 
simulation. Investing total funds for the first trade, subsequent trades (during a 
year) are made by re-investing all of the money returned from the previous trades. 
If the account no longer has enough capital to cover TC, trading stops. 

Empirical Application 

I consider daily closing prices for the MTMS share index. The time period under 
investigation is 01/01/97 to 23/01/04. There were altogether 1575 observations in 
row data sets. ANN with GA optimization was programmed with various 
topologies. Over one year testing period 19 trading strategies were able to 
outperform the B/H strategy in economic terms, with an investment of $10,000 
and TC of 0.2% of trade value. The average return improvement over B/H strategy 

' Given by the average return divided by the standard deviation ofthat return. 
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was 20%, with the first five outperforming the benchmark by 50% and the last 
three by 2%. The primary strategy superiority over B/H strategy was 72%. GA 
model discovery reveals that Multilayer Perceptron (MLP) and Time-Lag 
Recurrent Network (TLRN); numbers of neurons in the hidden layer in the range 
[5, 12] and Conjugate Gradients learning algorithm generate the best performance 
in statistical and economic terms for forecasting and acting nets. For the five best 
performing strategies, the break-even TC was estimated to be 0.275%; increasing 
to 0.35% for the first three and nearly 0.5% for the primary strategy. Thus, the 
break-even TC for at least the primary strategy appears to be high enough to 
exceed actual TC. 

ANN minimizing L^ function performed satisfactory and consistently for all 
memory horizons. For instance, the annualized return of MLP minimizing Le 
function for 1997-2004 data series outperformed L2 counterpart by 12.91% and Li 
function by 6.65%; for 1998-2004 return with Le function minimization was 
superior to L2 minimization by 1.32% and Li function by 20.63%. Return of 
TLRN minimizing L^ function for 2000-2004 series outperformed L2 minimization 
by 57.17% and ly function by 27.35%. 

If returns of MLP with L2 and Lj functions minimizations were losing to B/H 
strategy (by 10.85% and 4.59% respectively), the performance of Le loss 
minimization has beaten B/H strategy by 2.06% for 7 years series. Returns of 
TLRN with L2 and Li functions minimizations were inferior to B/H strategy by 
50.67% and 20.87% respectively, where performance oiLe loss minimization was 
superior to B/H by 6.48% for 3.5 years series. For the same time horizons and 
ANN topologies, strategies developed with Le loss minimization were less risky 
than strategies created with L2 and Li functions. For instance, SR of strategies with 
Le minimization were superior to their competitors in all cases, except one, where 
risk exposures were equal. Profitability of ANN trained with Le loss function 
seems to be stable for multiple independent runs with different random seeds. 
Table 1, comparing profitability of strategies developed with Le, L2 and Ly loss 
minimization for three ANN and training periods, demonstrates that strategies 
with Le loss minimization generally perform better than those obtained with L2 or 
Ly functions. 

Table L Profitability of strategies developed with Le, L2 and Lj functions 
Measures/Settings 1997-2004 ML? 1998-2004 ML? 2000-2004 TLRN 

Loss Functions Le L2 Lj Le L2 Lj Le L2 Lj 

Annual Return (%) 76.75 63.84 70.10 62.09 60.77 41.46 81.17 24.02 53.82 
Sharpe Ratio 0.16 0.12 0.15 0.12 0.12 0.10 0.14 0.06 0.12 

Regarding statistical accuracy of trading strategies, the results were different 
depending on the ANN topology. MLP with seven (six) years of data, minimizing 
Le function, produce results superior to L2 function by 16.66% (0.43%) and to Lj 
function by 14.76% (10.73%). Accuracy of TLRN with 3.5 years of data, 
minimizing Le, was inferior to L2 function by 22.51% and L/ function by 22.95%. 
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Considering price forecasts, accuracy with minimizing I<j function is on 
average among the best 5%. In fact, a forecast based on L<j loss minimization was 
the only one that was used in a trading strategy superior to B/H benchmark. 
Forecasts with L2 minimization slightly underperforms, but is still among the best 
performing 20%. At the same time Lj function minimization produces top 
accuracy, as well as being one of the worst performers. If the accuracy of forecast 
of MSE loss minimization is on average superior to the accuracy of MAE loss 
minimization, annualized return of trading strategies, based on those forecasts are 
close to each other. Furthermore, performance surface based only on Lj or L2 loss 
minimization does not generate profitable strategies. 

The results produced with the L^ loss minimization are close to the average. At 
the same time, the detailed examination of the performance surface demonstrates 
that Loo minimization might be appropriate for multi-objective optimization. A 
natural path for future work is to apply multi-objective GA for this kind of 
problem. The results of the experiment do not support (Leitch and Tanner 2001) 
hypotheses that the accuracy of the forecast does not depend upon which error-
criteria is used. Unlike L2 and Li loss minimizations, models with I^loss functions 
display strong relationship with the profitability of the forecast. 

Conclusion 

The mapping of economic agents' risk preferences into their predictions reveals 
strong relationships between the value of risk aversion coefficient in loss function 
minimization and stock trading strategies' economic performances, as well as 
moderate relationships between a loss function's order and statistical 
characteristics. Unlike L2 and Lj loss functions minimization, models with Le 
error-criterion demonstrate robust relationships with profitability. Traders with 
CRRA display superior fitness in the short term through their portfolio rules. 

ANN and GA have proven to be useful tools in financial data mining, capable 
of learning key turning points of price movement with the classification of the 
network output as different types of trading signals. Learning the mapping of 
forecasts into strategies establishes the predictive density that determines agents' 
actions and utility of wealth associated. 
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We find prominent similarities in the features of the time series for the overlap 
of two Cantor sets when one set moves with uniform relative velocity over the 
other and time series of stock prices. An anticipation method for some of the 
crashes have been proposed here, based on these observations. 

1 Introduction 

Capturing dynamical patterns of stock prices are major challenges both episte-
mologically as well as financially [1]. The statistical properties of their (time) 
variations or fluctuations [1] are now well studied and characterized (with 
established fractal properties), but are not very useful for studying and an­
ticipating their dynamics in the market. Noting that a single fractal gives 
essentially a time averaged picture, a minimal two-fractal overlap time series 
model was introduced [2, 3, 4]. 

2 The model 

We consider first the time series 0{t) of the overlap sets of two identical 
fractals [4, 5], as one slides over the other with uniform velocity. Let us consider 
two regular cantor sets at finite generation n. As one set slides over the other, 
the overlap set changes. The total overlap 0{t) at any instant t changes with 
time (see Fig. 1(a)). In Fig. 1(b) we show the behavior of the cumulative 
overlap [4] Q°{t) = /^ 0{i)dt, This curve, for sets with generation n = 4, 
is approximately a straight Une [4] with slope (16/5)^*. In general, this curve 
approaches a strict straight line in the limit a —>̂  oo, asymptotically, where the 
overlap set comes from the Cantor sets formed of a — 1 blocks, taking away 
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the central block, giving dimension of the Cantor sets equal to ln(a — l ) / lna . 
The cumulative curve is then almost a straight line and has then a slope 
[(o— l)^/a] for sets of generation n. If one defines a 'crash' occurring at 
time ti when 0{ii)-0(f>i^\) > ^ (a preassigned large value) and one redefines 
the zero of the scale at each t^, then the behavior of the cumulative overlap 
Q\{fy = /^._ 0{i)di, i < ti, has got the peak value 'quantization' as shown 
in Fig. 1(c). The reason is obvious. This justifies the simple thumb rule: one 
can simply count the cumulative Qi{t) of the overlaps since the last 'crash' 
or 'shock' at U-i and if the value exceeds the minimum value (QO), one can 
safely extrapolate linearly and expect growth upto aqo here and face a 'crash' 
or overlap greater than A (= 150 in Fig. 1). If nothing happens there, one 
can again wait upto a time until which the cumulative grows upto a^qo and 
feel a 'crash' and so on (a = 5 in the set considered in Fig. 1). 

Fig. 1. (a) The time series data of overlap size 0{t) for a regular Cantor set of 
dimension In4/ln5 at generation n = 4. (b) Cumulative overlap Q^{t) and (c) the 
variation of the cumulative overlap Qi{t) for the same series, where Q is reset to 
zero after any big event of size greater than A = IbO. 
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We now consider some typical stock price time-series data, available in the 
internet [6]. In Fig. 2(a), we show that the daily stock price S{t) variations 
for about 10 years (daily closing price of the industrial index') from January 
1966 to December 1979 (3505 trading days). The cumulative Q^{t) = JQ S{t)dt 
has again a straight line variation with time t (Fig. 2(b)). We then define 
the major shock by identifying those variations when SS{t) of the prices in 
successive days exceeded a preassigned value A (Fig. 2(c)). The variation of 
Qi{t) = J^^_^ S{i)di where U are the times when öS{ti) < - 1 show similar 
geometric series Uke peak values (see Fig. 2(d)). 

Fig. 2. Data from New York Stock Exchange from January 1966 to December 
1979: industrial index [6]: (a) Daily closing index S{t) (b) integrated Q^{t), (c) daily 
changes 6S{t) of the index S{t) defined as 6S{t) = S{t + 1) - 5(t), and (d) behavior 
of Qi{t) where SS{ti) > A. Here, A = -1.0 as shown in (c) by the dotted line. 
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A simple 'anticipation strategy' for some of the crashes may be as follows: 
If the cumulative Qf (t) since the last crash has grown beyond qo c:i 8000 
here, wait until it grows (Unearly with time) until about 17,500 (c:̂  2.2qo) and 
expect a crash there. If nothing happens, then wait until Q|(t) grows (again 
linearly with time) to a value of the order of 39,000 (cf (2.2)^^o) and expect 
a crash, and so on. 

3 Summary 

The features of the time series for the overlap of two Cantor sets when one set 
moves with uniform relative velocity over the other looks somewhat similar to 
the time series of stock prices. We analyze both and explore the possibilities of 
anticipating a large (change in Cantor set) overlap or a large change in stock 
price. An anticipation method for some of the crashes has been proposed here, 
based on these observations. 

References 

1. Sornette D (2003) Why Stock Markets Crash? Princeton Univ. Press, Prince­
ton; Mantegna RN, Stanley HE (1999) Introduction to Econophysics. Cam­
bridge Univ. Press, Cambridge 

2. Chakrabarti BK, Stinchcombe RB (1999) Physica A 270:27-34 
3. Pradhan S, Chakrabarti BK, Ray P, Dey MK (2003) Phys. Scr. T106:77-81 
4. Pradhan S, Chaudhuri P, Chakrabarti BK (2004) in Continuum Models and 

Discrete Systems, Ed. Bergman DJ, Inan E, Nato Sc. Series, Kluwer Academic 
Publishers, Dordrecht, pp.245-250; cond-mat/0307735 

5. Bhattacharyya P (2005) Physica A 348:199-215 
6. NYSE Daily Index Closes from http://www.unifr.ch/econophysics/. 

110 

http://www.unifr.ch/econophysics/


Short Time Segment Price Forecasts Using 
Spline Fit Interactions 

Ke Xu\ Jun Chen^ Jian Yao\ Zhaoyang Zhao^ Tao Yu\ Kamran Dadkhah^ 
and Bill C. Giessen^ 

'Department of Chemistry and Chemical Biology and Bamett Institute, Boston, 
MA 02115, USA 
^Department of Economics, Northeastern University, Boston, MA 02115,USA 
^Bloomberg LP, 499 Park Ave, New York, NY 10022, USA 

Summary. Empirically, correlations are seen to exist between market action in 
specific, short market periods such as the AM, PM and overnight (ON) periods 
for different days of the week on the one hand and market trends (on various 
time scales) on the other hand. We use real-time spline fits with tunable 
smoothness parameters and their signs to obtain signals for these market periods 
and show that they are stationary (and tradable) for S&P 500 futures. 

Key words. Intraday periods. Overnight periods, S&P 500 Futures, Price 
prediction. Spline fits 

Introduction 
As part of a futures market analysis research program centering on the 
identification and optimization of nonrandom futures market features, *' ^ price 
movements (local movement (LM) in the following) occurring in suitable, well-
defined intra-day periods [such as morning (AM) and afternoon (PM)] and 
overnight periods (ON) were studied. We have investigated whether LM's 
follow non-random and possibly tradable patterns, either by themselves or afler 
sorting by suitable criteria. 

Fig. 1. Percentage of up-move price changes for S&P 500 during the 15 LM periods, 
defined in the text, a) up-move percentages in the training period 01/2001-01/2004; b) 
up-move percentages in the testing period 01/2004-01/2005. 

The five week days (designated A-E) will yield a total of 15 such defined 
time periods, designed as A(AM), A(PM) etc., as shown on the abscissa of Fig. 
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1. Since the asymmetry of price changes (up-moves, APu or down-moves, APd) 
during these periods is the substance of the study, the percentage of up- move 
price changes (APu / (APu +APd)) is obtained and plotted in Fig la for the three-
year period. Considerable variations are seen in these percentages which would 
be tradable if they were stationary. However, data for a subsequent test period 
01/2004-01/2005 (Fig lb) shows that this is not the case; thus, a suitable sorting 
procedure is required to obtain consistency through time. 

Based on the insight that both long-term and short-term market movements 
will influence the LM's and might do so in a stationary way, we present a 
sorting procedure based on spline fits with selected, optimized smoothness 
combinations. 

Methodology 

Splines: Dual spline fits (using the Matlab toolbox^) were made; optimization of 
the smoothness parameters of the fits is described below. The signs of the two 
fits at the beginning of each of the 15 LM periods for S&P 500 were recorded 
during the training period (01/2001-01/2004), It is emphasized that the spline 
fits used in this stage of the study utilized the total historic database, thus 
including the "fiiture" at each fime point of decision; therefore, the results are 
valid only to establish the correlation of LM price action with the signs of the 
spline fit combination, but have only limiting forecasting value. 

Fig. 2. Differentiation of S&P 500 up-moves and down-moves during LM periods after 
sorting by double spline fit signs. Spline fits are idealized, a) Results during training 
period 01/2001-01/2004. b) Results during testing period 01/2004-01/2005. 

Fig. 2 summarizes the total of the market price changes of all 15 LM's 
occurring during the learning period, afi;er sorting by these spline fit sign 
combinations. It is seen that the sorting procedure (with the proviso given above 
concerning the real-time validity of the spline fits) produces an extremely strong 
separation of directional movement in the 15 LM's. 

Parameter optimization: Fig. 3 shows the process and result of optimizing the 
spline fit parameters combinafion used; the optimum for this dataset is seen to 
occur for fits with smoothness parameters of -9 and -6 (on a log scale). A 
comment on this result is given in the discussion section. 
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Fig. 3. Optimization of smoothness parameter combinations for spline fits used to control 
LM trade direction. The area of a circle stands for the magnitude of CPL (=P-|L|). 

Furthermore the selection threshold can be tuned so as to include more or less 
strongly discriminating spline combinations for specific LM's, as shown in Fig. 
4. Return is measured by the cumulative profit-loss, CPL=P-|L|, and risk 
avoidance is measured by a stand-in, the figure of merit, FOM= P/ (P+|L|); it is 
seen that, compared to a relatively unselective threshold (e.g. thr = 0.55), a more 
selective threshold (e.g. thr = 0.65) would increase the FOM from 0.63 to 0.71 
but reduce the CPL fi-om 2,200 to 1,100 S&P units. 

Fig. 4. Dependence of net profit (CPL, squares, right scale) and risk avoidance (FOM, 
triangles, left scale) on the rejection ratio (thr). 

Results 

Training period: Table la-c summarizes the results obtained for the period 
01/2001-01/2004, using it both as a training and a "self-testing period. It is 
realized, of course, that this procedure has no probative value concerning 
stationarity; however, it is used to demonstrate the existence of correlations 
within the data which is a precondition for a successful stationary test. 

Table la shows quantitatively the existence of market action differences 
within the 15 LM periods ("global" result) without the additional benefit of the 
sorting procedure proposed here; however, as shown below, this result is not 
stationary. 

Table lb shows the effect of sorting by an idealized spline fit (i.e., a fit using 
the local future to smoothen the fit). The resulting differentiation of long and 
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short trades is extremely strong, as expressed by the large CPL and FOM values; 
however, the idealized spline fits used here can not be obtained in real time. 

Table Ic shows the results obtained with real-time (i.e., noisy) spline fits as 
sorting method. These results are good, but still not realistic in that the 3-year 
learning and testing periods have been identical. 

Table 1: Annualized trading results by CPL and FOM for 15 LM periods during the 
training period 01/2001-01/2004. 

a) Results without further sorting 

CPL 
Long 209.8 
Short 272.1 

b) Results with idealized spline fit sorting 

CPL 
Long 1227.9 
Short 1290.2 

c) Results with real-time spline fit sorting 

CPL 
Long 322.1 
Short 356.3 

FOM 
0.55 
0.55 

FOM 
0.77 
0.77 

FOM 
0.61 
0.63 

% Ideal 
11.5 
10.0 

% Ideal 
55.1 
55.9 

% Ideal 
22.9 
25.8 

Testing period: We now focus on the last and major capstone of our study, 
the demonstration of stationarity, i.e., the usefulness of the sorting approach 
presented here, tested by using sorting rules learned in the training period, and 
applying these rules to a more recent testing period. 

Table 2: Results of forecasting price movements for the 15 LM periods during the 
testing period 01/2004-01/2005, using trading signals derived from the training period, as 
documented in Table 1. 

a) Results without further sorting 

CPL 
Long 1.1 
Short -56.6 

b) Results with idealized spline fit sorting 

CPL 
Long 607.6 
Short 503.2 

c) Results with real-time spline fit sorting 

CPL 
Long 164.3 
Short 29.2 

FOM 
0.50 
0.35 

FOM 
0.71 
0.68 

FOM 
0.58 
0.51 

% Ideal 
0.1 
-6.4 

% Ideal 
42.7 
36.9 

% Ideal 
17.1 
3.3 

Table 2a-c is organized analogously to Table la-c and compares learned 
global trading and learned sorted trading for this testing period (01/2004-
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01/2005). Global trading (without sorting) is carried out using learning from the 
previous 3-year training period, i.e., using sorting into the 15 LM periods only 
(without using spline fits); the results appears to be random, demonstrating non-
stationarity of these data. However, spline fit sorted trading, using the 
parameters and decision algorithms derived fi-om the learning period gives the 
second set of results, in Table 2b, and trading by realistic spline fits (as 
described above), provides the third data set, Table 2c. 

Discussion 

Bearing in mind that the market had an upward bias of 107 points during the test 
period (reflected in the much larger "long" revenue) the results (TableIc) for 
real-time spline fit sorts in the testing period are excellent, yielding a CPL total 
of 193 S&P points (annualized), again without commission and slippage. The 
ability to obtain an average FOM of 0.55 by a procedure as automated and 
reproducible as this one confirms the fact that the spline fits used indeed tap into 
real market dynamics which are reflected by the price action in the 15 LM's; at 
the same time the returns confirm that the individual LM's have different 
characters and behaviors in the market. This aspect is under further study, 
parficularly with respect to possible correlations between successive LM's. 

We also observed that sorting the LM data according to market cycle phase 
combinations produces similar, outstanding results (cycles and their analysis are 
discussed in a companion paper in this volume^). The spline fitting procedure 
used here in fact simulates these cycles, but was preferred for this presentation 
because of the transparency of the process and the ready reproducibility of the 
spline fits. 

We thank Cambridge Market Analysis Corporation (CMAC) for financial 
support. 
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Summary. Basing on the perceived stationary internal structure of market 
movements on appropriate time scales, a series of interrelated pattern recognition 
programs was designed to compare specific features of current cycle "legs" with a 
selected universe of analogous prior market features periods which are then 
queried to obtain a prediction as to the future of the current cycle leg. Similarities 
are determined by a K-Nearest-Neighbor (KNN) method. This procedure yields 
good results in simulated S&P futures trading and demonstrates the hypothesized 
stationary of market responses to stimuli. 

Key words. Pattern Recognition by KNN method, Stationarity of market 
structure. Semi weekly cycle in S&P Futures, Prediction price turning point 

Introduction and Rationale 

Technical analysis of fixtures markets over various time scales, as generally 
described, postulates that the market has a memory for past events that affect its 
future. The analyst's task then is to locate which aspects of past market action 
have relevance in terms of future price action. 

In the following, we focus on two specific aspects that we demonstrate in this 
paper to have predictive qualities if used in conjunction: 

• Recent market movements (as explained below); 
• Patterns of market response to similar stimuli. 

Of these, the former refers to short-term chart patterns such as weekly or 
semiweekly cycles (In a companion paper\ the important role of price cycle 
analysis^ in our research program on non-random aspects of futures pricing was 
discussed, relevant cycles^ were listed and a generic method for forecasting cycle 
extrema ("tops and valleys") was presented and shown to produce profitable 
trades). Specifically, the most recent such market cycle is seen as relevant to 
cyclic market action in the immediate future. 
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The second, deeper and more fundamental aspect of market predictability is 
based on the notion that market dynamics represent the collective behavior of 
multiple decision makers, and can be viewed as a natural phenomenon (analogous 
to the subjects of the physical sciences), with a statistical internal response 
structure amenable to analysis and use. 

Thus, a current cycle (the "now"-cycle in the parlance of the present paper) can 
be placed into the context of its historical analogs; from this database, those 
analogs most "like" the now-cycle in terms of relevant, short-term contexts 
(discussed in the following) and other aspects of market history can then be 
identified by pattern recognition methods. In this paper, we choose to use the Vz-
week cycle (C2), which bisects the fundamental weekly cycle (C5) and which we 
observe to occur fairly reliably in oscillating markets, being "washed out" only in 
the most strongly trending markets. 

Methodology 

We briefly sketch the market analytical procedure applied and refer to the KNN 
method of pattern analysis as it is used, e.g., in chemometric practice"̂ . 

As short-term memory-bearing classification parameters of the present market, 
we use characteristics (price changes and lengths in time) of cycle "leg" market 
periods immediately preceding the present point in time. For classification, we 
have designed a family of pattern recognition algorithms designated as TFX. The 
members of the TFX family of algorithms differ in the specific characteristics 
chosen (the "markers"), the manner of pattern analysis, and the forecast values 
sought; as a demonstration, we describe and demonstrate here the use of a specific 
method, named TF3. 

Prsent Time 

Fig. 1.Present time (A) and cycle extrema (B-D) used in TF3 Analysis 

Market Markers Used: Fig. 1 describes the specific market situation to be 
analyzed and the markers used in the TF3 analysis. The present point in time, the 
"now" point, is marked as A; recent market action in a two-day cycle is idealized 
as an "up-leg" DC from a market bottom D to a top C, and a subsequent "down-
leg" CB. It is assumed that both points D and C have been confirmed by 
subsequent market movements and can be considered to be known at the time tA. 
It is further assumed that a small upturn BA has taken place, moving the market 
back up to A from a possible bottom B. 
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The objective of the analysis to be described is to obtain guidance from historic 
analogs as to whether BA is merely a fluctuation in the down-leg that began at C 
(which would then again resume its downward slope beyond B) or whether B was 
indeed the bottom point of the cycle begun at D, which would mean that the up-
leg of a new cycle has begun at B. 

KNN Method Used: In the TF3 type of analysis, the price changes in the cycle 
leg DC, the leg CB, and the segment BA are combined to form two dimensionless 
ratios X and Y, where X = AP(AB)/ AP(CB) and Y = AP(CB)/ AP(CD). These 
ratios are then used as coordinates of an X-Y plot (Fig. 2). This plot contains 
analogous ratios for analogous cycles from a historic database. As mentioned, we 
are then seeking guidance from this database for an optimal exit from a short trade 
which was in progress since point C (or some point before or after C). 

Fig. 2. TF3 plot of historic X, Y ratios and current ratio with KNN selector ellipse 

The meaning of the points in this plot is as follows: historic cycles which at this 
point (at B) of their history have already passed their "bottom" are marked in 
closed circles; those cycles for which this event still lies in the fiiture are marked 
in open circles. It is seen that open and closed circles are clustered in specific, 
different regions of the plot, indicating that similar histories predict similar 
üitures, i.e. implying predictivity of the method. The "present-case" point is 
shown in the plot by a solid rectangle; a surrounding larger circle (shown in Fig. 2, 
scaled, as an ellipse) is drawn so as to enclose K neighbors (the cohort). 

The market histories of these K analogs (here K = 10, see optimization 
procedure, below) are then retrieved and plotted against time; in this plot (not 
shown) the times are marked when these analogs either have already reached their 
last bottom (closed circles in Fig.2) or will reach their next one (open circles). 
Averaging these historic analogous time periods provides the time signal to 
terminate the current trade (a "short" in the present instance) and to initiate the 
reverse trade; the current trade is terminated when the computed time period 
average passes from a positive value through zero. 

The averaged time period (still positive in the case shown) is also indicated by 
a box in a chart segment (Fig. 3) given here as an example. This chart segment 



provides a three-week sample of trades conducted by the rule cited (solid 
lines=correctly predicted long or short trades, dashed lines = incorrect 
predictions). 

Fig. 3. S&P futures charts segment 04/14/03 to 05/01/03 showing program-initiated trades 
(solid lines, correct longs and shorts; dash lines, incorrect long and shorts) and prediction 

point (at right) 

Refinement of Cohort Size K: It is obvious that the value of K, the cohort 
size, plays a crucial role: too small a value of K will give poor statistics while too 
large a value will include too many dissimilar points, i. e., past points with 
inconsistent, non-comparable histories. This is borne out by the results of the 
refinement study presented here. 

Fig. 4. Optimization of CPL (a) and POM (b) for TF3 

Repetition of the total study procedure, with values of K varied from 5 to 15, 
yields the plots, Fig. 4a (for the cumulative profit/loss, CPL = Profit-|Loss|) and 
Fig. 4b (for the figure of merit, FOM=Profit/(Profit+|Loss|)) (see caption of Table 
1 for these terms) and shows a consistent broad maximum of these optimized 
quantities at K=l 1; a value of K=10 was used in this study. 

Results and Discussion 

Results: Testing as described above was applied in a simulated trading mode (i. 
e., with a "now"-point moving in simulated time as it would in real time, i.e. with 
a fiiture unknown to the program). 

Table l(a, b) shows a total return (CPL) of 39L9 S&P points resulting from 
183 trades (before commissions and slippage), obtained with high consistency, as 
measured here by the figure of merit (FOM). Comparison of the CPL to that from 
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an idealized two-day cycle trading process (using after-the-fact information for 
this comparison process) shows a profit of 26.5% of the maximum achievable by 
such trading. In order to establish the consistency of results that can be obtained 
by the TF3 method, (i.e., stationarity), another, most recent six-months period was 
chosen for a recheck by the same approach, with results shown in Table l(c, d). 
Discussion: The results presented in Tables l(a, b) and, to a lesser degree, those in 
Table l(c, d), are truly remarkable, if it is considered that no other input was used 
than the algorithm presented and a cycle database resetting program analogous to 
that described in Ref 1. 

Table 1. TF3 Trading results 04/03-01/04: a, b; 09/04-02/05: c, d. 

a. Long 
b. Short 
c. Long 
d. Short 

CPL 
297.3 
94.6 
93.8 
6.3 

FOM 
0.80 
0.58 
0.68 
0.51 

CPL/Ideal Profit 
29.03% 
12.31% 
19.76% 
1.65% 

During both test periods, the market strongly and consistently rises by 250 S&P 
points, suggesting that long trades will fare better during this period, as indeed 
observed. It is especially satisfying that the program does not lose money (but 
achieves a small profit) even in the short trade "counter-trend" direction. While 
the return on the long side is not appreciably better than the result of a correctly 
executed buy-and-hold strategy, the procedure shown here achieves this result 
without the inherent speculation and high risk of such a strategy. 

In assessing these results, it should also be borne in mind that the TF3 method 
described is, intrinsically, a trailing indicator and can therefore not deliver the 
optimal results we believe the fiill family of TFX signals is capable of capturing. 

The results of this study show that the internal market structure is, to a 
remarkable degree, stationary, and, with tools amenable to ftirther refinement as 
shown, can be sensed successfiilly. 

We thank Cambridge Market Analysis Corporation (CMAC), Cambridge, MA for 
sponsorship. 
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Summary. The fractal nature of financial data has been investigated through 
literature. The aim of this paper is to use the information given by the detection of 
the fractal measure of data in order to provide support for trading decisions when 
dealing with technical analysis signals that can be used to trigger buy/sell orders. 
Trendlines are considered as a case study. 
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Introduction 

Market operators often address their buy/sell orders on the basis of decision 
support systems. Technical analysis methods concern the detection of signals that 
involve particular patterns of mean reversion of data. To determine the best 
trading strategy still remains an art, but it can be improved by a deeper knowledge 
of market phenomena, like the occurrence of brownian motion and of fractional 
brownian motion that is been widely evidenced through the literature. Whilst the 
efficient market hypothesis can be validated as a good approximation across 
markets it concerns an idealized system and residual inefficiences are always 
present, especially on financial quantities on time scales longer than a month, and 
not only in high frequency data (Mantegna and Stanley 2000). 
This can explain the fact that the estimated degree of long memory of the Dow 
Jones time series (Ausloos and Ivanova 1999) fall into a range that could 
comprehend brownian motion as well as persistent and antipertistent behavior. 
However there exist cases like Gold and of BGL-USD (Ausloos and Ivanova 
1999) that show persistence, whilst the analysis of Italian share FIAT (Menna et 
al. 2002) exhibits antipersistence over a long period. 
It has been shown that speculative bubbles due to endogenous causes are 
characterized by a super exponential growth with log-periodic corrections to 
scaling (Johansen and Sornette 2004), thus allowing to perform forecast, in 
contrast with the brownian motion settings. 
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During the arise and the deflate of endogenous bubbles it is possible to determine 
the main growing trend and to detect the causality in the log-periodic part that 
leads to the reversion to the main trend. 
The aim of this paper is to explore the reliability of some technical analysis signals 
by estimating the probability to get some particular configurations that are used by 
market operators to trigger the buy/sell signals in the case that data obey a 
fractional brownian motion measured through the exponent of Hurst H. The 
attention is about the occurrence of the crossing of trendlines over periods that 
have a time length that can range from a minimum of three weeks to a maximum 
of several months. Trends of this duration are called intermediate trends and can 
be useful for future markets. The analyses are performed over closure values of a 
market index, as assessed by the Dow's theory. The occurrence is examined during 
the ascent phase of a speculative bubble. The exponent of Hurst can be measured 
as a global feature of time series and the brownian motion is included in the 
treatment as a particular case and as a comparison term. 

Theoretical probability bounds for fBM 

Let Bf^{t) be the fractional brownian motion (fBM) with parameter H. For 

1 / 2 < / / < ! , the fBM exhibits long term persistence and memory, whilst 
antipersistence is characterized by 0<H <l/2 . The particular case / / = 1 / 2 
corresponds to brownian motion. Let X{t) be either a a fBM Bff (/) or a scaled 

brownian motion Sfj (t) = B{t^"), and define A{X, c) = sup {X(t) -ct'J>0}. 

The following results hold (D^bicki et al. 1998): 
P(A(BH,c)>u)<P{AiS^,c)>u) Vw>0, l / 2 < / / < l 

P{A(B^,c)>u)>P(A(SH,C)>U) VM>0, 0 < / / < 1/2 

The distribution of the suprema of a brownian motion with drift obeys the law 
P(A(By2,c) >u) = exp(-2cw) Vw > 0 (Borodin and Salminen 1996) 

An analogous resuh holds for the scaled brownian motion (D^bicki et al. 1998) 

PiAiSf, ,c)>u)> Qxpi-lau'-'"') Vw > 0, a = - ( c / Hf" (l / (l - H)f~''' 

that allows to provide bounds for the probability that a fractional brownian motion 
with drift crosses a fixed level. 

Technical analysis signals: trendlines 

Technical analysis studies the reaction of financial agents to market conditions 
than can be detected through the study of charts (Murphy 1986). Several signals 
were pointed out as good indicators for the triggering of buy/sell orders, the most 
simple of them being the crossing of a fixed level. Automatic trading running 
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overnights without control and relying on the simple rule of selling when a lower 
threshold is crossed sometimes led to big and dangerous drops, and so it is 
important to analyze the probability of the occurrence of signals. 
One of the most easy technical instrument is the trendline. A upward trendline is a 
straight line that joints successive minima. A downward trendline is a straight line 
that joints successive maxima. Thus at least two successive minima or maxima are 
needeed. In order to identify a minimum [maximum] a technical analyst must be 
sure that a reaction low has been reached, thus he has to wait for a significant 
increase [decrease] to start. A trendline is more important as more it lasts and its 
breaking will be more significant. For short time trendline can be considered 
broken if prices go under or over it for more that 3% over the closure price. 

Numerical results 

In this paper the NASDAQ index is examined during the raise of the bubble that 
started since the beginnings of 1997 and ended in the large crash of April 2000. 
The behavior of the logarithm of the index can be approximated by several 
function. The following approximation 

y(0 = A + B(t-O'" 
is considered for the main trend. The values for the parameters ^ = 9.36, 

^ = -1.60, m = 026 and /^corresponding to April 11*'', 2000 are obtained by the 

minimum least squares method (Rotundo 2004). In order to proceed with the long 
term memory degree estimate it is necessary to deal with a stationary series, thus 

the logarithm of the NASDAQ has been detrended. Let { x ( 0 } be the detrended 

series. It is worth noting that persistence is not due to a global growth but to the 
internal order on the values of the series. It is well known that the spectrum of 
stationary processes with long range memory can be approximated in the 

neighborhood of the zero frequency as *S'(/) oc f~", 1 < or < 3, / -> 0^ . 
The exponent a measures the fractality of the system and it is connected to the 
Hurst exponent H that describes the degree of dependence among the increments 
of the analyzed process. The relation H = ( a - 1 ) / 2 holds. These statistics detect 
the frequency of trend inversion. On the detrended time series it results that 
/ / = 0.51 since Jan. r \ 1997 till Dec. 15^ 1998, then H = 0.46 till Dec. 8^ 1999 
and H = 0.43 till the crash. This analysis thus reveals correctly the increase in the 
frequency of the reversion patterns. Intermediate downward trendline were 
detected over the periods characterized by different long term memory by a least 
squares method over at least three successive maxima. The analysis for upward 
trendlines can be carried on analogously. For each trendline T(t) = ct-\-d the time 
series v{t) = x{t)-T{t) is a brownian motion with drift. The trendline 7 ( 0 is 
crossed when the supremum of the process v{t) goes over the level 0 . The 
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probability estimates of the crossings are resumed in Table 1. The time is 
measured through the discrete units [1,833]. In the region in which / / = 0.51 the 
results are close to the brownian case. Thus it is possible to access to the well 
developed theory (Borodin and Salminen 1996) that estimates the probability of 
crossings also as a function of the time, hence providing a strong indication for the 
ending time of the trend. The detaching from the brownian motion evidences as 
soon as the process switches to H = 0.46, and even more in the case H = 0.43. 
P{A(S„,c)>u) thus provides a lower probability bound for P[A{Bff,c)>u), that 

is constantly lower than the brownian case, leading to the immediate comparison 
also about the estimation of crossing times. 

1997.5 1998 1998.5 1999 
trading days 

1999.5 2000 2000.5 

Fig.l. The time on the x-axis was rescaled in order to show the years. 
Lines 1-8 corresponds to the trendlines described in Table 1. 
Data range from January 1^1997 to April 11'^ 2000. 

Table LTrendlines and probability of crossing. 
N.trendline H P{A{B„^,c)>u) P{A{S^,c)>u)> 

1 
2 
3 
4 
5 
6 
7 
8 

.51 

.51 

.51 

.51 
,46 
.46 
.46 
.43 

-0.002693 
-0.001991 
-0.003015 
-0.003699 
-0.004860 
-0.002492 
-0.002777 
-0.002067 

0.999318 
0.997796 
0.993057 
0.987651 
0.994121 
0.996000 
0.991671 
0.993789 

0.999369 
0.99803 
0.993836 
0.989070 
0.991418 
0.993699 
0,986343 
0,984748 
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Conclusions 

The theory of large financial crashes can lead to the detection of mean reverting 
patterns among data and to the discover of order through random sequences thus 
revealing the presence of long term memory. This paper shows how to use the 
results over the supremum of fractional brownian motion and shifted brownian 
motion with drift in order to perform a first step towards the probability 
description for the crossing of trendlines and hence to the measure of the 
reliability of technical analysis guidelines for pratical decision support. An 
immediate further development of this research is the analysis of other linear 
barriers like reference slopes, fan lines, and channels, and of more complex 
technical analysis pattern, like flags, moving windows averages, head and 
shoulders, supported by the continuous refinement of probability results over 
fractional brownian motion. 
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Financial IVIarkets Dynamic Distribution Function, 
Predictability and Investment Decision-Making (FMDDF) 

Gregory Chemizer 

Financial Market Universal Dynamics, Ine 
6 Marlow Avenue, Manchester, New Jersey 08759, USA 

Summary. FMDDF system based on the basic scientific ideas from Physics and Economics 
involved in the procedure for the dynamic probabilistic distribution function of the state 
(PDFS) derivation for any financial market (FM). Price moving process defines dynamic FM. 
Price movement is defined by the volume imbalance V. The necessary condition for the 
dynamic FM is V ^ 0 at the same price, while the sufficient condition is defined by nonzero 
price volatility a. The total probabilisfic distribufion function of any FM is the sum of the two 
incompafible terms: the regular probabilistic distribution function (PDF) containing the mean 
value and PDFS. PDFS structured based on the adiabatic integrals of FM motion that include 
the existing or expected volume imbalance, price volatility and amount of shares or contracts. 
PDFS is not path dependable (the new trajectories' invariant principle) in the special economic 
space E{^}. This fact is important in financial engineering, risk control, quantitative FM 
predictability and investment decision-making. 

Key words. Volume excess, adiabatic constant, state composite variable, dynamic economic 
space. 

I.PDFS(Dynamic), Directional and Local Probabilities. 

Tthe cumulative volume excess (VE) and volume excess expectation (VEE) V at the 
certain price with the following corresponding volatility CT are the accumulated quantitafive 
measure of FM news and informafion. Definition: FM is (was or will be) dynamic when the 
price of its financial instrument is (was or will be) moving, otherwise FM is static. Price 
movement is defined by the volume imbalance V for supply-demand, and the existed market 
and stop orders (the dynamic orders). The last three sources, governed by the news, are 
responsible for the price movement and price volatility. Definition: the volume excess (VE) for 
the present and past fime or volume excess expectation (VEE) for the future with the common 
notation V = cumulative volume demand minus cumulative volume supply. It is clear, if V > 
0 the price will not fall, and if V < 0 the price will not rise; FM is stafic if V = 0. The 
instantaneous dynamic price volatility is equal to zero for the static FM. The necessary 
condition for a dynamic FM existence is V 9̂  0 while the sufficient condidon is defined by 
nonzero price volatility a(V) = a(l-5vo )• The supply-demand relationship is the general 
principle of causation in economic dynamics: V is the source of the dynamic price volatility at 
the certain price interval due to the non-collinear investors' opinion to the news and information. 
Assumption 1 (Al) The possible VE and VEE local extremes form the set of support and 
resistant price levels. The state of FM is defined by V, price volatility and total amount of 
contracts or issued stocks O, where a is dimensionless price volatility measured either in 
decimals or percentage for the desirable time interval. In the following computation a is 
measured in decimals. V power is the absolute value of VE or VEE. From the author's data 
observation during preparing to the report (Chemizer 2000) (Landau and Lifshits 1964), it was 
found |V| - c ~^'^ or |V|a^^^ ~ const when O was constant. It is not the universal constant: every 
stock has its own "constant" for a certain time interval. It may be compared to the adiabatic 
process in finance. The observable V^a/0 is the adiabafic constant per share, 
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^'=vVo, (1) 
^,=vW(a/0), V^G(0;+oo); ^2=V-V(a/0), V G (-00; 0), (2) 
may involve stocks split, and the explicit expressions for the positive and negative V. The new 
FM state composite variable (SCV) ^ is symmetrical to the volume imbalance, and forms the 
dynamic economic space E{^}. ^1^ ^2 may be considered as SCV separately for the price 
movement direction: V-resistance "̂̂ i = ^i(V^,) and V-support ^'2=^2(^1 states. 

The integrals of motion are the certain quantitative expressions in economic space which 
are either constant during the market motion or provides the conservation for a certain time in 
the future. Their linear combination in the basic science is the "bricks" to create an implicit 
expression for the entropy (Landau and Lifshits 1964). Eq. (1) for ^̂  integrates the dynamic 
features of FM, and may be considered as the adiabatic integral of FM motion. Another integral 
of the motion is the constant in form LnA describes FM condition at either V = 0 or G = 0, or 
both of them simultaneously. If V = 0, the supply is equal to demand, and a current price is 
unchanged. Under this condition FM is predetermined, and its dynamic price volatility a = 0, 
The closed FM is a partial price equilibrium case with V, a are equal to zero. Let us follow to 
the standard concept in the basic science (Landau and Lifshits 1964) that logarithm of the 
structured dynamic density of the probabilistic distribution function of the state (PDFS) Pd (the 
state entropy), is the linear combination of the integrals of motion, and may consists in 
economics of a constant part LnA and adiabatic constant ^^, 

Lnpd = Ln A - ^\ (3) 
Constant A>0 and ^^>0 with the negative sign in front of it ought to diminish a static FM 
entropy LnA due to the dynamic FM process when V^O. FM dynamic equilibrium includes V 
= 0 and its V two partial derivatives of the first order (with respect to volatility and amount of 
shares O) equal to zero simultaneously. Therefore, total FM PDFS density Pt consists of the 
sum of the two incompatible probabilistic densities: PDFS Pd and the static p, 
pt=p5vo+ (l-Svo)Pd, (3a) 

Kroneker's operator 5mn = 1 if m = n, and d^n =0 if m ^ n. Hence, when FM is dynamic PDFS 
v|/ ought to be normalized \}/e[0; 1], non-negative and non-decreasing function of SCV. 
From (3) dynamic PDFS density may be written as, 
Pd = Aexp(-cyV'(P)/0) (4) 
Constant A may be found from the regular procedure, Eq. (3a) in the case when FM is dynamic 
(V^O), 

00 

A|expK^)d4=l (5) 
-00 

leads to 
A = 1 / VTI, (6) 
and, therefore, 
Pd = (1 /V7i )exp( . a , ^ ^ 0 (7) 
PFDS density Pd in (7) makes sense for ^=0 also, when there is no price movements at all 
(supply is equal to demand and V = 0, or nobody executes the existing V and instantaneous o = 
0, or FM closed: V = 0, a = 0). dvj/ = Pd(^)d^ is equal to PDFS differential that the dynamic FM 
to be found in the interval ^ and ^+d^. v|/ is defined for any ^e (-00, 00 ) on the ^\|/ plane. 
Price never falls below zero, which means from the supply-demand relationship that negative 
VEE ought to be lower than any imaginative number and, furthermore, the efficient support aV 
ought to be lower than any imaginative number. Its definition is "- c»" leads to the following, 
lim aV(P) = -cx), (8) 
P->0 
and hence, 
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lim pd(0 ^ 0 

Expression (8) prohibits a negative price. In the static case (Va = 0, ^ = 0) p may be expressed 
in the dynamic space E{^} in the form of Dirac's delta function p = 5(^), where 
00 

l 5 ( 4 ) d 4 = l , (9) 
-00 

Eq. (9) confirms FM existence. The lack ^-continuity describes the reality of the market 
opportunity to jump from static to non-zero ^ dynamic FM states. \|/(Q with the expected V 
(VEE) for the projective price interval is becoming the expected PDFS for the price interval. 
From the Eqs.(7), (10) pa and p (^=0), may be written as follows: 
Pd(0 = ( l / V 7 i ) e x p ( - a , ^ ^ 0 ; (10) 
p(^) = 5(^), ^=0. (11) 
Ei{^}space defines in the certain 8-vicinity [-£, e] of ^ due to bid-, offer price uncertainty. 
pd derivation based on the integral of FM motion, and, therefore, V is related to the process 
which prohibits no cost FM arbitrage (no free lunch). 
It is a known fact the FM is path-dependent on price historical movements which are the pivotal 
part of the technical analysis. It is easy to prove that PDFS calculation in the new economic 
space E{^} does not sensitive to a trajectory of FM movement, and may be an essential tool to 
financial engineering, risk estimation and FM predictability. Therefore, path-independent 
probability calculation may be written in the simple form, 

vi/(V;a;O|0;0;O) = (0(^2) - O(0))/2 = (I/VTI) j (exp(-x^)) dx = 
0 

00 

(1 / V7i)I(-l)" ^2'"^V n!(2n+l), ^ « 1 . (12) 
n=0 

II. Dynamic PDFS Application: the Expected Dynamic Trend and Investment 
Decision-Making. 

It is important to find FM stochastic behavior between two local VE or VEE extreme levels for 
the two given direcfional accumulative variables: produced by the buyers V"^=V>0 (sellers V 
=V<0) and possible rising price P^ (declining price P'). The current price in V(P) vicinities may 
stay, pass through the VEE extreme levels or bounce out them. Let V^ and Vk.i mean VEE at 
local k VEE resistance and k-1 VEE support local extreme VEE levels with their prices Pkj, 
Pic-1,2 respectively. They are becoming critical in risk control and risk management problems at 
the considered price interval [Pk.1,2, Pk.i]- The second price subscript index 1 (2) is for resistance 
(support) level. Bullish "C ^^^ bearish ^ " SCVs mean the following, 
tk.! = ̂ \,x ( V \ (Pk );a; O); ^Vi,2 = ^ -̂1.2 (VX P^.i); a; O ) ^ (13) 
^-superscript signs in 5 \ i , 5Vi,2 are determined by the current V superscript sign at V'̂ >0 or 
V <0 respectively. 
^k"^ is the probability to find FM at the resistance V^̂  k level, ^^k,i state and its e-vicinity due to 
bid-offer price uncertainfies for V allocation and, therefore, SCV computation; k numerates V 
local extreme level which has nothing to do with the second ^-index: 1 for the resistance and 2 
for the support. v|/^(^\i) is the probability to find FM inside of the ^ interval (-oo,^\i) while 
M^*^(^\i) is the probability to find FM outside of the ^ interval (-oo,^\i). 
^k-i is the probability to find FM at the k-l-th support VVi level and state ^'k.i,2(^ subscript 
index 2 for any support with VVi^O always); ^ .̂1.2 is the V-support state with the preceding 
falling price P'>Pk.b P'€ [Pk-i; Pk)had approached support level V'k.i(Pk-i)- *̂"k-i,2 isFM state 
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"̂k-1,2 when the preceding price P< Pk-i, P-^ Pk-i was approaching support VVi level by the 
price rising to the level VVi. '̂*k-i,2 is complimentary to "̂k.1,2 state in the sense of price 
direction movement approaching k-1 support level VVi and Pk-i from the outside of the price 
interval [Pk-i; Pk). Asterisk defines a complimentary notation. The same logic description can 
be done to the state ^ \ i and its resistance Vk̂ . If a falling price P> Pkand P-^ Pk moves from 
the outside of interval (Pk-i; Pk], FM state ^*\i is complimentary to ^ \ i . The importance of 5, 
5 is essential to the dynamic FM description if it is bull or bear market in the vicinity of any 
state ^ and their accumulative quantitative market news V^ or V". 
M̂ k̂(̂ k̂,i) is the probability that expected bull market SCV 4 \ 1 on ^\\f plane does not exceed ̂ k,i 
-8, e>0, 8-^0 when ^k,i^-^^k,i,and v|/*^(^*\i) is the probability for the complimentary to ^ \ i 
event with 5*̂ k,i SCV. For the given bull and bear markets and their imbalances V"̂ , V 
iK%(^\,)=l-Vk'(Ck,i), (14) 

V*"k-l(̂ *'k-l,2) = 1 - ^f'k-ß'k-izl ^ (15) 
The sets of states ^^*ki , ^ \ i are incompatible and ^̂ *k_i fl 5 \ i = ^k.i at 8 >0 price Pk± 8 
vicinity, 8-^0 and e less than the price basic point when P—> Pk. From the same consideration 
5 k-1,2 ^ ^ k - l , 2 ' = ^k-1 ,2 ' 

Therefore, for the given market price directions "+" or "-" the probabilities to find FM at the 
resistance or support states may be written as 
^ ' (̂ k,i) = y\f\VKO W^\CKI\ W" = vi/"(^k/') =1 - v|/" ( ^ \o (16) 
n./(^k-l,2)=V|/"(^'k-1.2)vi/*'(^\l.2), V*' = V|/-(rk-l,2)= 1 -M/"(^"k-l,2) (17) 
It is obviously that in the confinuous case PDFS \|/, (which is not the local (point) probability 
W !) is defined by PDFS density Pd also. Due to that i(/ does not depend on FM trajectory in E 
from ^ = -00 up to ^̂ k̂,!« (Vk ;CTI ; Oi) the probability that FM is in the state ^ < k̂,m'̂  - e (e >0, 
e-^0 and 8 less than the price basic point) is equal to 

Sk,m Sk.m 

M/k'(W) = Jpd(4) d^ = (1 / V(n)) / (exp (-e)) d4 = (1 / V(7t)) ((V(ii)/2 )[1 + ( 0 ( 0 ) ] 
-00 -00 

= [ l + ( 0 ( ^ \ m ) ) ] / 2 , m = l , 2 ; (18) 

M/k'= ¥(5k/) , H/k • = M/(?k,2"), N/k ' ( - ^ ) = 0, 0 < M/ "(^k.m') < 1; vj/k "(+^ ) = 1, (19) 
^ ( ^ \ m ) is the probabilistic integral. It is obviously that •̂—> -00 when V - ^ -00, a ^ 0, O is 
finite number, V|/m* means either \ | / \or \\f "k depends on either ^\i"^ or "̂k 2 instead of "̂̂ km in 
(18), (19). 
Dynamic FM with no additional news leads asymptotically to static FM stability with V = 0 and 
possible minimal PDFS. Therefore the following assumption may be accepted: 
Assumption 2 (A2). FM price is more stable at state ^ with a lower dynamic probability v|/. 
Assume for the simplicity that in 8 ̂ -vicinity V and a axes are orthogonal. Assumption 3 (A3). 
Price moves with no additional V-news from the point of higher PDFS V|/h to the nearest lower 
\|;/dynamic probability point in E. 
It means that without external additional V perturbation dynamic FM system is characterized by 
\\f dissipating process and approaching to the static state. The conceivable minimal DFS is 
M d̂(̂ =0) = 0 and \|/st(5=0) = 1, describing the lack of dynamic process. Therefore, quanfitafive 
most likely price movement criteria and its rate of change is in direction of the vector r\ = -
grad\j/(^). Its norm r| determines the most likely expected FM quantitafive measure of PDFS 
movement from the current state to the fastest v|/ falling direction. In this scenario r| is equal to 
the rate of vj/j change to the lower dynamic probability state, 
11= -gradij; = - Pd(0 a{r|i; r|2; Ha}, (20) 
a{Tli; ri2; ns}, m = (^^/^V) = V(a/0); n2={d^/dü) = V/2V(aO); TI3 = (d^/dO) = -V(V(a/0)) /20, 
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It makes r\ the "macro" trend indicating predictor (TIP) valid for the interval (-00,^). This 
uncertainty does not allow yet to describe FM predictability at the chosen state ~̂ vicinity. 
When V-^0, volatility a approaches to zero also almost instantaneously (similar to its 
originating since V^O) and, therefore, ^—>0). The probability that FM is static expressed in Eqs 
(9), (11). M/ increment may be calculated by the scalar product, 
dM/ = (ii.iiod^)=-Pd(^)(V(Tii'+ri2' + n3 2))d? = -Tid^, i io=(i l /n) (21) 
If a, O are unchanged in a certain ^ interval, dy is equals to the partial differential dvH/ related 
to the increment dV, 
dvy = - Pd(0 (V(a /O)) dV = - pd(0 (V(a/0)) {dW I d?) dP (22) 
dWId? is either known function or ought to be found from independent sources. Current price 
direction determines by vectors Ho r\ and the increment of the news d^ (21) for PDFS 
increment dv|/. Eq. (22) explains why due to the unexpected V-news at FM price P sometimes 
does not achieves expected support or resistance levels for the expected price interval. 
If V, O are unchanged in a certain ^ interval, 
day = - Pd(y (V/2V(aO)) da = - pd(0 (V/2V(aO)) (5a / d?) dP (23) 
And the last TIP partial differential may be written from Eqs. (24), (25), 
cloVl/= Pd(^) (V(V(a/0)) / 20) dO (24) 
While TIP t| plays a "macro" indicator role for FM the interval (-oo,^), there still remains an 
important problem for local TIP (LTIP) in the vicinity of any current or expected state ^. For 
this purpose ^-technique will be applied to the local PDFS ^k" (̂ k 1), ^'k-i (?k-i 2) given in Eqs. 
(16), (17), 
i | '= -grad r , ( ^ \ i ) = -2^\l\^\,^) grady"(rk.i) = - [1 + (0 (^ \ , ) ) ] (Pd(Ui)) ^\^\x) (25) 
d'/^/ ( ^ \ , ) = -2y"(^V,) (Pd(rk.i)) (a"' a ^ ) d ^ \ , = - [1 + m^\M {U^\i)) a 'd^Vi, (26) 
i|-=-gradn.y(^-k.i.2)=-2y(a-i.2)grady -(^^-1.2)= -[1 + (<I>(̂ "k-i.2))] (pd(?"k-i.2)) a-(^"k-i.2); 
a^=(grady^)/pd(^') (27) 
m\^\A,2) = -2y •(^"k-i.2)(Pd(^Vi.2)) (a-a-o)dai.2 = - [1 + (^(^Vu))] * (Pd(^-k-i,2)) a-d^Vi.2 
(28) 
Expression (26), (28) are the quantitative equations for LTIP test when O = const, a = const, 
d v ^ ' k{^\x) = - [1 + m^\M Pd(^\i) (V(a/0))(aV^ / d?) dP (29) 
dv «̂  Vy (̂ -̂1,2) = - [1 + (0(^-k.i.2))] Pd(̂ -k-i,2) (V(a/0)) {dW I dV) dP (30) 
are essential for the market dynamic expectation. As it was discussed above, FM movement 
tendency to the static state leads to decreasing the dynamic probabilities (dy^jt (^k,i)^0, 
dv^^-/(^'k-1,2)^0), and, therefore, 
price increment sign based on (29), (30) ought to be found from the following WV- test, 
(aV^ (^ \ i ) / aP) dP > 0; (dy- (^Vi,2)/ ^P) dP > 0. (31) 
According to A3, price moves from the higher local probability state to the lower probability 
state. Its application to V-support and V-resistance levels (!^-test) may be written as follows. If 
A!^=!^"(^ \ ) - !^- (^-2)>0, (32) 
FM is bearish, and if 
A ! ^ = i F " ( r i ) - ^ - ( ^ - 2 ) < 0 , (33; 
FM is bullish. 
TIP (21)-(24) for the general trend, LTIP (25)-(29) for the local trend and !f^F-test (31) are 
practical tools for FM Risk predictability, quantitative trading strategy and probabilities of 
dynamic FM expected values. 
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Summary. Among the long-term stationary (although complex) behavior charac­
teristics of futures markets is a set of identifiable intermediate-length (2-21.5 days) 
price cycles. Using a two-parameter extrapolation technique, time and price objec­
tives of these cycles are determined. The valley-to-valley time differences (wave­
lengths) are more regular than those for top-to-top, with standard deviations of the 
former about 50% smaller than those of the latter. The substantial profitability in 
S&P futures trading based on these parameters can be further increased by includ­
ing additional features. 

Key words. S&P500 Futures, Optimization of N-cp Prediction Method, Price Cy­
cle Periods, Market Prediction 

introduction 

The occurrence of cyclical price patterns on various time scales '̂Ms perhaps the 
most conspicuous manifestation of nonrandom market behavior seen in price 
charts. Because of their obvious relation to dynamically driven oscillatory phe­
nomena, such patterns are also among the most intriguing potential applications of 
econophysics ^^\ as well as chaos theory ^^\ 

Although "average" cycle characteristics (periodicity, amplitude, "leg" ratio in 
time and price) can be defined and determined, individual cycles show consider­
able variability of these quantities. In line with a stated purpose of this conference 
concerning applications to real markets, we deal here with the practical issue of 
predicting the approximate locations of cycle extrema to allow their use for trad­
ing purposes. 

As a working model ^'^\ we identify cycles with an average of 5 days (weekly 
cycle) and 21.5 days (monthly cycle) as well as important "halving" cycles of 2-3 
days and 10-11 days; the latter two add up to 5 days and 21.5 days, respectively. 
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These cycles are referred to by C2, C5, CIO and C20 in the following. We observe 
that longer cycles share minima and maxima with shorter ones in the manner 

Fig. 1. Idealized relationship of C2, C5 and CIO market cycles. 

schematically shown in Fig.l ("Concurrency").While there is no "long-range or­
der" (to borrow a term from solid state physics ^̂^ or chemistry) tying the C5 cycle 
extrema over long range to the periodicity of a specific weekday (or, analogously, 
the C20 cycle extrema to a specific day of the month), there exists in the data the 
equivalent of "short-range order", allowing local prediction of tops or valleys from 
the locations of those for the immediately preceding cycles. 

Methodology 

We focus in the following on the C5 (weekly) cycle as a paradigm. To forecast fii-
ture extrema of a C5 cycle, we use a database of prior weekly extrema (tops "T" 
and valleys "V") assigned by a variety of methods (discussed below). Fig. 2 
illustrates the use of this database for next-T or -V forecasts by a two-parameter 
process: First one or more (N) prior cycle valleys (V) are used to calculate the lo­
cation of an idealized average valley(<V>) from these N cycles. A forward count 
is then made from <V>, adding N/2 cycle lengths to simulate the position of the 
most recent valley (which may not yet be clearly expressed). Next, a time period cp 
is added to this simulated valley to produce a time count to the next valley (lying 
in the fiiture). This period cp is generally found to be roughly equal to the cycle 
period. Results are presented in the form of a cp-N diagram, a plot in which the 
minimization the time difference between a forecast top or valley and those in the 
database is given by the lightness of the shading, see Fig. 3. In advanced versions 
of this approach, the parameter choice is step-wise or continually self-adjusting 
(learning). For clarity in this demonstration, we present a simplified version, with 
parameters kept fixed throughout the study period. 

II ftm%^:ms MMmm'f 

Fig.2. Sketch of counting procedure for next-valley prediction by N-(p method. 
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Fig. 3. Optimization of N-cp cycle extremum forecasts by minimizing time difference (light 
shade) between forecast and ideal extremum, a) V-to-V, b) T-to-T, c) V-to-T, d) T-to-V. 

Results 

We studied S&P futures over the four-year period 01/2001 to 12/2004. Global ap­
plication of the cycle extremum forecasting method described above over this pe­
riod results in the cp-N plots 3a-d which shows the optimization procedure for V-
V, T-T, V-T and T-V forecasts, respectively. 

The optimal values from these plots (e.g. N=3 periods and (p=5.5 days) are 
combined and used in forecasting cycle leg end points. (The implied trading 
command is then to enter long at a valley and reverse short at a top.) 

Tabid. C5 (weekly cycle) trading results for S&P futures 
Year 2001 Year 2002 Year 2003 Year 2004 

CPL FOM CPL FOM CPL FOM CPL FOM Total 

Long 
Short 
Total 

-24.7 
123.5 
98.8 

0.49 
0.57 

18.8 
285.0 
303.8 

0.51 
0.67 

62.7 
-132.9 
-70.2 

0.56 
0.37 

193 
101 
294 

0.67 
0.63 

249.8 
376.6 
626.4 

Carrying out simulated real-time trading with these trading rules yields trading 
results for this market period summarized in the plots of Fig. 4 (separately pre­
sented for long and short trades) and the trading result data in Table 1. To 
demonstrate stationärity of the approach, trading data for 2004 using the algorithm 
established from 2001-2003 are included into Tablel. 
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Fig.4. Summary of C5 trading for Period 01/2001 too 12/2004. 

Discussion 

Trading results: The four-year trading results presented show an annualized net 
profit (CPL) of over 150 S&P points in about 52 annual C5 market en­
tries/reversals, corresponding to about $7,500 p.a. for an S&P mini contract (i.e., 
15% of contract value, without considering leverage, execution cost and slippage), 
with an average FOM=0.55, indicating acceptable risk. 

To put the data in perspective relative to the two overall market directions 
dominating this 4-year period, one sees the program profiting well on the short 
side during the declining market (till 03/20/2003, especially during 2002), and 
earning well on the long side during the rising market of 2004, showing its ability 
to trade profitably at least on one side independent of overall market direction. 

Cycle database and its characteristics: The key to the forecasting process de­
scribed above is the existence of a usable database for the cycles listed above, and 
a procedure to extend it into the ftiture, as done here. 

To predict fiitures markets in terms of cycles, a simple strategy used by market 
practitioners ^̂^ is to visually interpret price charts and to draw in appropriate cy­
clic chart divisions (coincident with price lows and highs) on specific time scales 
such that, e.g. 12 monthly (21.5-day) cycles or 52 weekly (5-day) cycles are seen 
per year. 

This manual, inspection-based approach can be systematized by optimizing a 
suitable combination of price and time premium functions, or by using spline fits 
of appropriate smoothness parameter, as shown in a companion paper ^^\ by 
measuring a "cycle shape quality index" (presently under development), or by 
considering the superposition of multiple cycles, etc. This work has led to the 
compilation of a standard database of all pertinent cycles for three major futures 
markets: S&P, EC and GC. 

Drawing on this database, we present in fig 5a-d summaries of the time inter­
vals from V to V, T to T, V to T, and T to V for C5 (S&P). These four histograms 
show that C5 cycle "wavelengths" and cycle "legs" have broad distributions; 
however, the V-V wavelength distribution is seen to be much sharper peaked 
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Fig.5. C5 cycle leg statistics for 4 year period from 01/2002 to 12/2004, a) V-V time legs, 
standard deviation a = 1.21 days; b) T-T time legs, a = 2.40days; c) V-T time legs, a = 
1.64days; d) T-V time legs, a = 1.67days. 

around its mean than the T-T distribution, with a standard deviation a for V-V 
only 50% ofthat for T-T, with a for the "legs" falling in between. Except for V-V, 
all distributions appear to be bimodal. (This would be expected for V-T and T-V 
in combinations of rising and falling markets, and for T-T at changeovers from a 
rising to a falling market mode and vice versa.) 

Outlook and Conclusion: As indicated above, the trading parameter optimiza­
tion procedure demonstrated in Fig. 2 can be made self-adjusting through time; the 
results can be further improved by adding a cycle-slope-biasing algorithm. (In 
fact, the data originally reported at the Third Nikkei conference 11/04 benefited 
from use of such an algorithm which takes the general market direction into ac­
count to bias the up/down leg time ratio; this point should have been noted in the 
extended abstract.) Positive results were also obtained for the other cycles listed, 
especially the short-term C2 cycle; multi-cycle superposition is under study for 
better market performance. 

Our results demonstrate the local predictability of cyclic price movements and 
thus, implicitly, confirm the presence of such cycles in the market data. 

We thank Cambridge Market Analysis Corporation (CMAC) for financial sup­
port of this work. 

References 

1. Murphy, J. J., Technical Analysis of Future Markets, New York: New York Institute of 
Finance (1999) 

2. Mantegna, R.N. and Stanley H.E., An Introduction to Econophysics, Cambridge: Cam­
bridge University Press (2000) 

3. Mullin, T., The Nature of Chaos, Oxford: Oxford University Press (1996) 
4. Jun Chen, Ph.D. Thesis, Northeastern University, Boston, MA (2003) 
5. Kittel, Ch., Introduction to Solid State Physics, 4th edition, New York: Wiley(1971) 
6. Bernstein, J., Cyclic Analysis in Futures Trading, New York: Wiley(1988) 
7. Xu, K., Chen, J, Yao,J, Zhao,Z., Yu,T, Giessen, B., and Dadkhah, K., Short Time Seg­

ment Price Forecasts Using Spline Fit Interactions, "Practical Fruits of Econophysics", 
editor H.Takayasu, Springer, Tokyo (2005) 

135 



3. Mathematical Models 



The CTRWs in finance: the mean exit t ime 

Jaume Masoliver, Miquel Montero, and Josep Perello 

Departament de Fisica Fonamental, Universität de Barcelona, Diagonal, 647, 
E-08028 Barcelona, Spain 

Summary. The continuous time random walk (CTRW) has become a widely-used 
tool for studying the microstructure of random process appearing in many physical 
phenomena. We here report the CTRW analysis applied to the market dynamics 
which has been recently explored by physicists. We focuss on the mean exit problem. 

K e y words: Continuous Time Random Walk, high-frequency data, waiting 
time, mean exit time 

1 The random walks: Finance and Physics 

The continuous time random walk (CTRW) was first introduced by Montroll 
and Weiss in 1965. As its name suggests, the CTRW generalizes simple random 
walk (RW) models. Although the term "random walk" was coined by Pearson 
in 1905, the formalism had been formulated in the XVIIth century in the 
context of gambling games such as the probability of ruin after betting n times 
in a coin tossing game (Weiss 1994). Financial markets have also been studied 
from the RW point of view. In fact, this formalism was the first tentative model 
known in finance having been suggested by Bachelier in 1900 to describe stock 
market dynamics (Cootner 1964). The price evolution is modelled assuming 
that prices change one unit at each time step with a probability p of going up 
and 1 — p of going down. Bachelier showed that the so-called binomial process, 
after a large number of time steps, tends to the Gaussian distribution. 

Several decades passed before there was further progress in the application 
of RW methodology to analyze different aspects of financial dynamics. In the 
book edited by Cootner in 1964, there is a chapter devoted to the reexamina­
tion of the random walk hypothesis. It is shown there that RW models should 
be applied to the price return, instead of the price itself as Bachelier asserted. 
Within these works we mention the articles by Fama and Mandelbrot which 
study an alternative to the Bachelier Gaussian RW, proposing instead the 
Pareto distribution. Later on. Cox and Ross (1976) took the Bachelier RW to 
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provide a discrete time analog to the well-known Black-Scholes option price. 
They showed that the Bachelier binomial model also gives an option price for 
the Poisson jump process. Other contributions of the RW approach extend the 
binomial model adding a third event, a crash, and observe the implications 
of it to the options (Wilmott 1999). To our knowledge, there are not other 
models exploiting the possibilities that RW analysis can offer in the study of 
many phenomena in markets. 

The RW formalism mentioned is based on the assumption that step 
changes are made at equal time intervals but this is a first approximation 
for many physical phenomena and markets. The CTRW relaxes this re­
striction since it assumes that time interval between transactions are not 
constant but random. Ticks have now, and in contrast with the RW, two 
sources of randomness: one coming from the amplitude and another one from 
the waiting times between ticks. The deepest structure corresponds to the 
transaction-to-transaction operations and the CTRW appears to be an ap­
propriate framework to describe the market microstructure (O'Hara 1995). 
Despite this promising fact, the CTRW is hardly known among financial an­
alysts. In contrast, physicists have studied some applications of the CTRWs 
to finance with interesting results. The first study was done under the per­
spective of the Levy distribution which can be obtained from the Levy walks 
(Shlesinger et al. 1995). After this contribution and from 2000, other physi­
cists have proposed CTRW models in a more general approach and deeper 
exploring their possibilities (Scalas et al. 2000, Mainardi et al. 2002, Raberto 
et al. 2002 Sabatelli et al. 2002, Kutner and Switala 2003, Masoliver et al. 
2003, Masoliver et al. in press, Masoliver et al. 2004). 

2 An overview of the CTRW formalism 

Let S(t) be a financial price and let ô be an initial time. The log-price or 
return is defined by Z{t) ~ \n S(t)/S(to). If {Z{t)} is the return mean value, 
we define the zero-mean return by 

Xit) = Z{t) - {Z{t)). (1) 

Suppose that X{t) is described by a CTRW. In this representation any tra­
jectory consists of a series of step functions as shown in Fig. 1. Therefore, 
X{t) changes at random times starting at ô̂  ̂ i, 2̂? • • • ? n̂» • ' ' r̂i<i we assume 
that sojourns or waiting times, Tn = in — tn-i {n = 1, 2, • • •, n), are indepen­
dent and identically distributed (i.i.d.) random variables described by a given 
probability density function (pdf) defined by xp{t)dt = Prob{^ < r^ < t-\- dt}. 
At the conclusion of a given sojourn the return X{t) suffers a random jump 
described by the random variable AXn = X{tn) — X{tn-i) whose pdf is de­
fined by h{x)dx = Prob{x < AXn < x + dx}. The jumps are also assumed 
to be i.i.d. random variables, and the only correlations to be considered are 
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Fig. 1. (a) A particular trajectory of the zero-mean return process along with a 
particular value of the random variable ta,b{xo)- (b) The empirical MET from high 
frequency data of the U.S. dollar/Deutsche mark futures market with several models 
specified in Tab. 1. 

those between AXn and r^. We must then guess from data (Masoliver et al. 
in press) the functional form of the joint pdf of waiting times and jumps: 

p(x,t)dxdt = Prob{x < AXn < x + dx;t < Tn < t-{- dt}. 

We will further assume that p(x, t) is an even function of x so that there is 
no net drift in the evolution of X{t). The main objective of the CTRW is 
obtaining the so-called propagator, that is, the probability density function of 
the zero-mean return X{t): 

p(x, t)dx = Prob{x < X{t) < x -f dx}. (2) 

Masoliver et al. (2003, in press) have obtained a general expression for the joint 
Fourier-Laplace transform of the propagator. In terms of the Laplace trans­
form of the waiting time distribution, ^(5), and the Fourier-Laplace transform 
of the joint distribution, p{u;, s). This expression reads 

„„,.,)=lllÄ!^ (3, 
1 - p(a;, s) 

Equation (3) constitutes the most general solution to the problem. There are 
nonetheless some general results that are independent of the p(x, t) chosen: 

(a) If the mean waiting time is finite and the jump pdf h{x) has a finite 
second moment, jU2 = {AX'^) < cx), the asymptotic distribution of returns 
for long times approaches to the Gaussian density: p{uj,t) ~ e~^^^ */2(T) 
for i > (r) . 

(b) If h{x) is a long-tailed density, i. t., h{x) ~ |x|~^~^ as |x| -^ 00. Then 
h{cü) ~ 1 — k\uj\°^ as (J —> 0 for 0 < a < 2. Moreover, if we assume that 
for (jj small {re'^^^^) Cî  (r) , then the asymptotic return pdf approaches 
to the Levy distribution: p{uj,t) ĉ  exp(—A;|a;|"i/(r)) for t :$> ( r) . 
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Table 1, Summary of the models shown in Fig. 1. All cases use (r) = 23.65 s and 
we add the value of the parameters involved in Eq. (6). The Laplace pdf takes the 
empirical standard deviation and the rest of parameters are derived automatically. 
The power-law (Masoliver et al. 2003) fits the empirical tails of h{x) bringing us 
the corresponding values for «,7/(0), and H{Q'^). The last row gives the curve with 
empirical values K and H{0) but chooses H{0^) to give the best fit. 

h(^) K X lO-'* HJÖ) H'{0+) 

Laplace 7exp(-7|a;|)/2, 7^ = 2/«^ L70 l /V^ -1 
Power-law ^^^^f-^;^, rj^ = ^ i ! i t | ) M - ) 1.25 LOT -2.81 
Fit not a model L70 4.45 x 10"^ L54 

(c) At intermediate times, t ^ (r), the behavior oi p{x,t) for large values of 
|x|, is the same as that of the jump distribution: p(x, t) ~ h{x) t/(T). 

3 The mean exit time 

We can now ask: at v^hich time interval X{t) leaves a given interval [a, 6] for 
the first time? We call this quantity the exit time out of the interval [a, b] 
and denote it by ^a,6(^o)- Obviously ta,b{^o) is a random variable since it 
depends on the particular trajectory of X{t) chosen (see Fig. 1). Our main 
objective here is to obtain, based on the CTRW formalism, the mean exit 
time (MET) Ta^ti^o) = {ta^bi^o))- The standard approach to MET problems 
requires the knowledge of the survival probability of the process in the interval 
[a, b]. Although the interest in knowing the survival probability is beyond any 
doubt, its attainment turns out to be quite involved. Masoliver et al. (2004) 
have presented a direct and much simpler derivation 

T(xo) - (r) + / h{x - xo)T{x)dx, (4) 
Ja 

where (r) is the mean waiting time between jumps. Prom a mathematical point 
of view Eq. (4) is a Fredholm integral equation of second kind. Depending on 
the kernel h{x) there are some analytical approaches which allow to get an 
exact solution. An important point should be emphasized: the fact that the 
MET does not depend on the possible coupling between waiting times and 
jumps as shown in Eq. (4). In what follows we will assume that h{x) satisfies 
the scaling condition h{x) = H{X/K)/K, where K > 0 is the standard deviation 
of h{x). Suppose now that the length interval L is small, that is: L/2K < 1. 
An approximate solution to Eq. (4) thus reads 

Tixo) « (r> 11 + H{0) (L/K) + [H'{Q+)/4 + //(0)^] [L/KY 

+H'{0+){2xo - a - 6 ) V 4 K ^ ] • (5) 
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In the symmetrical case with xo = 0 we have 

T(0) « (r) [l + H{0) {L/K) + [H'{0+)/4 + H{Of] (L/«)^] (6) 

In this way, the MET has for sufficiently small intervals a quadratic growth 
behavior. In fact, the approximate expression given by Eq. (5) becomes the 
exact solution for the Laplace jump pdf. In Fig. 1, we compare the empirical 
MET from the U.S. dollar/Deutsche mark data with several models (MasoHver 
et al. 2003). We also plot the Laplace model and the power-law model with 
the parameters obtained from data statistics of h{x) (see Tab. 1). We observe 
important discrepancies with the empirical MET so that we add a third curve 
with Eq. (6) taking the optimal value for H'{0'^). Finally, the quadratic growth 
is still observed even outside the L/2n < 1 regime. 

This work has been supported in part by Direccion General de Investi-
gacion under contract No. BFM2003-04574 and by Generalität de Catalunya 
under contract No. 2001 SGR-00061. 
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Discretized Continuous-Time Hierarchical Walks 
and Flights as possible bases of the non-linear 
long-term autocorrelations observed in high-
frequency financial time-series 

Marzena Kozlowska, Ryszard Kutner, Filip Switata 

Department of Physics, Warsaw University, Hoza 69, Pl-00681 Warsaw, Poland 

Summary. By using regular time-steps we define discrete-time random walks 
and flights on subordinate (directed) Continuous-Time Hierarchical (or 
Weierstrass) Walks and Flights, respectively. The obtained results can be 
considered as a kind of warning that indicates some persistent non-linear long-
term autocorrelations (artifacts) accompanying the recording of empirical high-
frequency financial time-series by regular time-steps, indeed. 

Key words. Non-linear long-term autocorrelations, High-fi-equency financial 
time-series, Continuous-Time Hierarchical (or Weierstrass) Walks and Flights 

Motivation 

We consider the possible reason of non-linear, long-term autocorrelations present 
in empirical and our synthetic high-frequency (HF) financial time series. The 
autocorrelations present in empirical time series, which were assumed by 
physicists as a stylized fact, were studied by them since more than one decade 
(Paul and Baschnagel 1999, Mantegna and Stanley 2000, Bouchaud and Potter 
2001, Ilinski 2001). In distinction the synthetic time-series were obtained by us 
from the recently developed one-dimensional Continuous-Time Hierarchical 
Walks (CTHW) (Kutner 2002, Kutner and Switala 2003) and analogous 
Hierarchical Flights (CTHF), (Kutner 1999). It seems that the power-law 
autocorrelations discovered by discretization of the time-series obtained within the 
CTHW and analogous log-normal ones found for the CTHF, have a persistent 
character, i.e. they seem to be unavoidable artifacts for the HF time series. 

The model 

In this section we consider the above mentioned two types of the hierarchical 
(Weierstrass) models which cover two types of representations of empirical high-
frequency financial time-series and hence two types of the corresponding non­
linear autocorrelations (power-law and log-normal in the same time-windows). 
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Hierarchical CTRW model and the main result 

The present, generalized version of the CTRW model is the combined one defined 
by the non-separable hierarchical (or Weierstrass) walk which can be 
occasionally (randomly) intermitted by momentary localizations (WWRIL); the 
localizations themselves are also described by the Weierstrass (or hierarchical) 
process. It should be noted that the steps of the walk as well as the momentary 
localizations are uncorrelated. This approach makes it possible to study by 
(hierarchical) stochastic (Monte Carlo) simulations the whole spatial-temporal 
region, while analytically it is possible to study only the initial, pre-asymptotic 
and asymptotic ones but not the very important intermediate region. 

The basic continuous-time series obtained from this stochastic simulation is 
shown in Fig.l by a sequence of vectors Ai, A2, A3, A4, A5,..., connecting the 
turning points of a single realization of a subordinate random walk trajectory 
(expanding in positive X-direction as we study only the absolute values of the 

stock price variations ' ̂ ^ •). This simulation is supported by the waiting-time 
distribution which is the main quantity of our two-state (walking-localization) 
model. The states of the model are again characterized by their own waiting-time 
distributions (which give indeed the main distribution in the form of a weighted 
sum). Each single-state waiting-time distribution is a hierarchical, geometrically 
weighted superposition of partial waiting-time distributions, describing the 
regular spatial-temporal processes (connected with single hierarchy generations) 
which are already easy to simulate. 

The synthetic (derivative), discrete time-series was obtained by discretization 
of the original (basic) continuous-time series at a fixed time horizon ^ (shown 
in Fig. 1 by the sequence of characteristic vectors Qi, Q2, Q3, Q4, Q5,...,). 

Fig.l. Plot of a single realization of a basic synthetic, subordinate (directed) continuous-
time trajectory (defined by the sequence of vectors Ai, A2, A3, A4, A5,...,) and synthetic, 
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discretized one (defined by a sequence of adequately chosen, characteristic vectors Qi, Q2, 
Q3, Q4, Q s v , ). The vertical axis denoted as Sub(X) (i.e. subordinate X) is defined as: 

Sub(X(nAt)) = Y.\AX(jAt)\ 

As it is seen, the turning points of the basic continuous-time series are, in 
general, incommensurate with the analogous points supplied by the discrete time 
series. The autocorrelation function K(t) (defined in the caption to Fig.2) has been 
studied versus time just for this discrete time-series. 

Fig.2. Autocorrelation of the centered absolute variations of the stock price (or the walker 
centered absolute variations of the single step displacement AX(t) =X(t) - <|X(t)|>, where 
time t = nAt, n=0,l,2,..., and AX(t) = X(t+At)-X(t)), defined as usual by the 
quantity 

Kit)=<\AX(,Q)•^XU)\>-<\^Xm\>•<\AXU)\> fo^ jh, ,y„,i,etic high-frequency 
time-series. This quantity was obtained by our time-discretization procedure within the 
Weierstrass walks randomly intermitted by localizations (WWRIL) for: (I) Gaussian, and 
(II) non-Gaussian regions of the stock price. The slopes of both curves (defined by 
exponent d for almost three decades) differ but slightly (viz. for case I: d=0.42, and for case 
II: d^O.45). The dynamic exponents, y\\ and r|2, define the evolutions of the second and 
fourth moments of the stock prices (displacements) X(t) (and they depend on the partial 
dynamic exponents a', a, ß ). The temporal partial dynamic exponents a' and a describe 
the localization and time-dependence of the walking state, respectively. The spatial 
exponent ß defines space penetration within the walking state. 

As it is shown in Fig.2, the autocorrelation K(t) exhibits a power-law 
relaxation over more than three decades both for the Gaussian and non-Gaussian 
processes. 

Further results and concluding remarks 
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Hitherto, we studied the representation of financial tick data by the 
continuous-

time Weierstrass walk trajectory while in this section we consider the same set of 
data points represented by the continuous-time Weierstrass flight trajectory. In the 
latter case, the displacement of the walker or the price variation is shown by the 
vertical vector (instantaneous jumps) and not by the tagent one (the walk having a 

finite velocity such as, for example, that shown by vectors Aj, j=l,2,..., in Fig.l). 
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Fig.3. The log-normal dependence of the autocorrelation function K(t) (defined in 
caption to Fig.l) vs. time within a four weeks time-window for the Gaussian (upper 
figure) and non-Gauusian (lower figure) regions of the price variations. 

As it is seen in Fig.3, the autocrrelation function K(t) exhibits log-normal 
correlations after high-frequency time discretization (at time-horizon At = 1 min.). 
It should be noted that these correlations can be mistaken locally for a power-law 
(Montroll 1984, Sornette 2000). Again the log-normal autucorrelations have a 
long-term, persistent character. 

The above considerations have shown that the obtained autocorrelations come 
from the 'domino effect' occurring within the discrete time-series (as shown, for 
example, in Fig.l). This domino effect occurs as each pair of displacements 
(obtained after the discretization) shown by vectors Qj and Qj+i, j=l,2, ... , have 
common 'bonds' given by the corresponding basic vectors Aj+i, j=l ,2, .... We 
suppose that this effect is indeed responsible for the analogous long-term 
autocorrelations commonly occurring in the empirical financial high-frequency 
time-series. 
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Summary. It is now well established that the probability distribution of relative 
price changes of stock market aggregates has two prominent features. First, in its 
central region, the distribution closely resembles a Levy stable distribution with 
exponent a = \A . Secondly, it has power-law tails with exponent v<4 . Both 
these results follow from relatively low resolution analyses of the data. In this pa­
per we present the results of a high-resolution analysis of a database consisting of 
132,000 values of the S&P 500 index taken at 10 minute intervals. We find a third 
prominent feature, a delta function at the origin the amplitude of which shows 
power-law decay over time with an exponent c = 2 / 3. We show that Continuous-
Time Random-Walk (CTRW) theory can account for all three features, but pre­
dicts subdifftision with a growth of the variance of the In(price) as the cth power 
of time. We find instead superdiffusion with an exponent c s 9/8 instead of 
2/3 . We conclude that CTRW theory must be extended to incorporate the effects 
of "Price Momentum". 

Key words. Levy Stable, Continuous Time Random Walks, Stock Price Statistics 

I. Introduction. 

The interpretation of financial time series as random walks of price over 
time has a deep history well reviewed by Mantegna and Stanley [1]. Mantegna, 
Stanley, and collaborators, via careful statistical analysis of large data sets, have 
argued that the relative changes of stock prices over a fixed time interval follow a 
Levy-stable distribution in the central region with inverse power law tails [1]. The 
index a of the Levy region is approximately 1.4 [2] and the exponent v of the de­
cay of the tails is typically somewhat less than 4 [3, 4]. Sokolov, Chechkin, and 
Klafter (SCK) have shown [5] that a suitable generalization of the diffusion equa­
tion containing a fractional "space" derivative has as its solution a distribution 
which is Levy-like in the central region and crosses over to power-law decay in 
the tails, with the remarkable feature that a + v = 5 , not inconsistent with the data. 
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For any such generalized Smoluchowski equation there is an underlying fractional 
random walk [6]. 

The problem of finding a random-walk description of financial time se­
ries encompassing all empirically established facts thus appeared close to solution. 
Accordingly, we decided to test the quality of the fit of the SCK theory to the em­
pirical yield distributions computed from 132, 000 values of the S&P 500 stock 
price index at 10 minute intervals in the period 1984 through 1996 [7]. We found a 
good fit to the tails, but a poorer fit in the central region. More precisely, we fitted 
integrals of the distribution over approximately 130 intervals chosen to contain 
approximately 100 data points each. 

We chose to fit intervals because we knew from prior unpublished work 
[8, 9] that the central region of the distribution contains a zero-yield delta function 
surrounded by gaps. In Section II, we confirm that feature in the S&P 500 data via 
a high-resolution analysis. In Section III, we argue that it would be difficuh to ac­
count for those features via fractional diffusion equations or stochastic differential 
equations but that all known features can be accounted for by Continuous Time 
Random Walk (CTRW) theory [10-12]. In Section IV, we show that because of 
the slow decay of the delta function reported in Section II, it follows rigorously 
that the In(Price) undergoes subdiffusion. Nevertheless, we find that the S&P 500 
data show superdiffiision, in direct contradiction to the CTRW theory as we have 
formulated it. We conclude in Section V, that a conceptual change is required in 
the way random walk theory is used to interpret financial time series. 

II The Delta Function. 

In our notation x{t) the natural logarithm of the price of the S&P 500 in­

dex at time /, is the basic random variable, assumed to undergo a CTRW. X{t, f) = 

x(t + T) - x(t) is the excursion in x over the interval r. K(/,r) = X(t,T)/T is the 

yield over the interval r. n{X,t) is the probability density of excursions X over the 

interval /. n(X,0) = S{X) is the initial condition on n(X,t). We have chosen to 

compile the statistics of the yield K after subtracting its mean. Note that for small 

price change or small interval r, X{t,T) is just the widely studied [1] relative 

price change. 
In the Figure we plot a yield-frequency histogram for a 10 minute inter­

val at low resolution. A prominent feature stands out. It is the spike in the box cen­
tered at zero yield. Every entry in that box corresponds to zero yield and no 
change in X, so the spike is direct evidence of a delta fiinction in n(X,t) centered 

at X = 0 similarly for n{Y,t). 

The probability distribution n{X,t) thus has the form 

n{Xj) = A{t)S{X)-\-m(X,t) where A{t) is the amplitude of the delta fiinction 

and m{X,t) is the non-singular portion of the distribution. Because 
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n{Xfi) = S(X), ^(0) = 1 and m(X,0) = 0 . We find a slow decay of A(t) with 

time which is well fitted by the form A(t) = {\-^ t / T)~ with 
Z? = 0.6665±0.0021(Z) = 2/3) and r = 0.769±0.003 seconds. All our data are in 
the asymptotic domain.; m(X,t) contains the smooth power law tails with 
v = 3.65 ±0.21. 

III. Continuous Time Random Walks. 

It is quite extraordinary that after a century of quantitative analysis of fi­
nancial time series, the existence of the delta function has not previously been re­
ported. Generalized diffusion equations can be found which give the delta function 
[14], but getting its time decay right would be difficult. On the other hand, CTRW 
theory provides a natural basis for constructing models which contain the delta 
function, the Levy-like central region, and the power law tails within a unified 
formalism. In a CTRW, a walker jumps from one point to another after a waiting 
time t. The waiting time is random with a distribution / ( / ) . It is straightforward 
to prove that a delta ftinction exists in n(X,t) and that f(t) = -dA(t)/dt. Our 
empirical form, Equation (2), and measured values of b and r thus fix f(t). The 
CTRW theory can thus yield all features of n(X,t) known at this point. 

IV. The Diffusion of the Natural Logarithm of the Price. 

It is tempting to stop at this point and say that with CTRW theory yield­
ing the known features of n{Xj), it is time to try to understand how and why the 
behavior of agents in the marketplace manifests itself as a CTRW in the natural 
logarithm of the price. It would be safer to do so, however, after confirmation of 
an actual prediction of the CTRW theory. One property simple to extract both 
from CTRW theory and the data is the time-dependence of the variance V(X,t) of 

X{t). The form for ^(t) yields V(X,t)»r for the asymptotic dependence of 
V{X,t) on t. Thus the natural logarithm of the price undergoes subdiffusion.; i.e., 
its variance changes with time with a power less than unity since Z>« 2 / 3 . We 
have measured the variance of the yield Y , V(Y,t), for which CTRW requires 

that it be asymptotically proportional to / ~ =/~ with decay exponent 

greater than unity. We do indeed get a good fit of V(Y,t) to the power law at~^ 

with a = 1.039x10"^ ±1.083x10"'^ but c = 0.877±0.082 is less than unity. 
This implies an exponent for V{X,t) o f 2 - c = 1.123 = 9/8 , which is greater than 
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unity. Thus the In(Price) undergoes superdiffusion in direct contradiction to the 
subdiffusion predicted by CTRW given the decay of the delta function found in 
the data. 

V. Conclusion. 

Despite its inability to capture the superdiffusion of the In(Price), the 
CTRW theory gets so many other features of n{X,t) correctly - the decaying 
delta function, the quasi-cusp-like behavior evident at low resolution, the power-
law tails - that it must be close to a fully satisfactory theory. An example of a 
simple stochastic model which shows superdiffusion has been given by Zumofen 
and Klafter [15]. Its import for financial time series is that it contains what is 
termed momentum in financial analysis, albeit in a highly oversimplified form. 
We conclude that our finding of superdiffusion can be reconciled with CTRW 
theory without loss of its attractive features through introduction of correlation of 
successive jumps or in the underlying dynamic yields. This would require a gener­
alization of the conceptual and formal structure of CTRW theory. 
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The purpose of this study is to examine the deterministic structure of financial 
time series of prices in presence of chaos and a low-dimensional attractor. The 
methodology used consists of transforming the observed system, typically 
exhibiting higher dimensional characteristics, into its corresponding best two 
dimensional system, via attractor or phase space reconstruction method, with 
subsequent intersection of the reconstructed attractor with the best two-
dimensional (2D) hyperplane. The 2D system resulting from this slicing operation 
can be used for financial market analysis applications, by means of the 
determination of the price equation. 

Key words. Non-Linear Dynamics, Attractor Reconstruction, Embedding 
Dimension, Dimension Reduction, Price Equation 

Phase Space and Attractor Reconstruction 

A phase or state space is a space in which each point describes the state of a 
dynamical system as a function of the non-constant parameters of the system. 
Implicit in the notion is that a particular state in phase space specifies the system 
completely; it is all we need to know about the system to have complete 
knowledge of the immediate future. 

It has been demonstrated (Packard et al. 1980) that the characteristics of the 
phase space can be derived by a plot, named return map or phase space 
reconstruction, obtained from the time series, which is the observed output of the 
dynamical system. The basic idea of phase space reconstruction is that evolution 
of any state component of a system depends on other interacting components 
within the same system, so the information of these related components is hidden 
under the evolution of the single component. In order to reconstruct an equivalent 
high dimensional space that the system embeds in, we need only to investigate the 
one component we are able to observe and measure, by utilizing some time-delay 
data of observed time series as new coordinates for the phase space. 

The observations are a projection of the multivariate state space of the system 
onto the one-dimensional axis of the phase space. The purpose of time-delay 
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embedding is to unfold the projection back to a multivariate state space that is 
representative of the original system. Suppose that the time series to be 
investigated is represented by scalar x(t), sampled at rate h, giving rise to the 
observations XI,X2,..XN. We need to reconstruct the state space by the well know 
technique of attractor reconstruction by time delays, as follows: 

The delay state vector, for every state i, is defined as 

Xi—\Xi,X{.i,X{.2x,' "^i-{m-\)i) 

Where m is the embedding dimension, T is the time lag. The notation V 
represents the transpose of the vector V. 

The choice of the parameter m is crucial for the efficacy of the model 
representing the system under investigation. One algorithm commonly used to 
determine m is the method of false neighbors. The proper choice of time delay T is 
also essential in reconstructing procedures, (Fräser and Liebert). Several methods 
are known and used frequently. Empirical studies discussed the determination of 
T, which should be defined by the relation m=g/T, where g is the average length of 
non-periodic cycles in the series. One method of determining T is by using the 
average mutual information function or the autocorrelation method. 

Poincare Sections 

Assume a state space of a system in 3D is x,y,z. Then, a set of points sampled at 
constant z constitute a Poincare section - in other words - a subset of state space 
that slices the attractor non tangential to the trajectories. A Poincare section has 
the property of reducing the phase space dimension by one. The Poincare section 
is defined not by a fixed time interval, but by successive times when an orbit 
crosses a fixed surface in phase space ("surface" here means a manifold of 
dimension one less than the phase space dimension, m). The placement of the 
Poincare surface is of high relevance for the usefulness of the result. An optimal 
surface maximizes the number of intersections, i.e. it minimizes the time intervals 
between them. Another aspect for the choice of the surface of section is that one 
should try to maximize the variance of the data inside the section. 

The Method 

Poincare sections would be perfect and would work quite well if the embedding 
dimension of the system under investigation were three dimensional. Most 
financial time series are high-dimensional processes and a Poincare section has the 
property of reducing the phase space dimension only by one. Since the purpose of 
this study is to reduce the dimension of the original system from a high number of 
dimensions (on the order of 10 dimensions) to two dimensions by reconstructing a 
system carrying equivalent information, or with the minimal information loss. 
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another approach needs to be used. The concept of Poicare sections is utilized in 
its essence, but the idea is extended further: let's assume that the system object of 
this investigation has been estimated of embedding dimention, m. Let's further 
assume that the delay factor has been estimated to be T; This paper presents the 
following algorithm to transform the original time series with N states or 
observations, inherently embedded in a m-dimensional (12- dimensional) space, 
into its corrisponding best two-dimensional system. The algorithm is as follows: 
1. Reconstruct the attractor by the well known procedure of attractor 
reconstruction by time delay, obtaining the delay vector, for all states 
(observations), i, of the system: Xi=(Xi,Xi.x,Xi.2T,...Xi.(m.i)x)'. 
2. Define Xi,s=(Xi,Xi.„Xi.2T,...Xi.(s.i)xCconst, x,.(s+i)x,...Xi.(n,.i),)', where l < s < m - l and 
c is the value of the ith observation for the Xi.(s)T component, kept constant (or 
defined in a small range), V i; repeat V s. 

3. V i and V s, compute v- f ir D r •nr ^^^ ^'^ components, This operation 

is equivalent to the intersection between the vector of Xj and the hyperplane H 
(vector defined by all its components equal to a constant, c [realization of state i], 
except for two components). 
4. Find / o r>, r̂  \ i where max() returns the intersection 

result vector with the maximum number of points, 
y. will yield the best two-dimensional reconstruction of the original m-
•̂ •̂ max 

dimensional system. The resulting system, being now embedded in two 
dimensions, is not an exact homoeomorphism of the original system, as the 
technique of Poincare section would have achieved. On the other hand, this 
method provides the practitioner in the financial markets analysis and trading 
industry, with a two dimensional system much easier to deal and to work with: 
that is, the system formed by the number of points left after the intersection 
operation of the original vector x; with the hyperplane H. 

The transformed two dimensional system is then best fitted to obtain an 
equation which relates the current information as a function of its corresponding T-
lagging value. 

The computational complexity of the algorithm for the determination of the 
corresponding two-dimensional system is O(N^). Improvements can be made in 
the attempt to achieve a computational complexity of 0(NLogN). Considering that 
N is relatively small, for practitioners in the financial markets, the algorithm 
should not require very intense computational efforts. 

Empirical Studies 

Three different time series are depicted below (Fig. 1). By a qualitative 
assessment, it is obvious that the financial market time series is not two-
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dimensional. Its higher dimensional dynamics projected onto a 2D plane exhibits 
non-ordered behavior (Fig. 1). 
A 3D attractor reconstruction of the Eur/Usd time series (Fig. 2.a) also exhibits a 

non-ordered pattern. It is the result of a multidimensional 
attractor being projected onto a 3D surface. However, for 
illustrative purposes only, the dimension reduction procedure is 
depicted in the 3D case, starting from a 3D reconstructed 
attractor: various slices (two dimensional planes) are selected 
from the 3D attractor (Fig. 2.b-d). It is necessary to select the 
slice containing the maximum number of point. 

Fig. 1. Non-linear systems: (from top to bottom): Logistic Equation, Standard Time Series, 
portion of Eur/Usd Time Series. Time domain plot (left); Phase space plot (right). 

Fig. 2. Eur/Usd - Example of a 2D slice of a 3D Attractor Reconstruction a. 3D Attractor 
Reconstruction; b-d different slices. 

Fig. 3. Eur/Usd (Weekly data from 10.02.1995 to 31.12.2004) - Example of a 2D slice of a 
8D Attractor Reconstruction; a. best 2D corresponding system; h, price equation. 

By using the technique of attractor reconstruction with time delay the best 2D 
corresponding system for the Eur/Usd series is calculated. Next, a best-fitting 
procedure is implemented to determine the best curve approximating the best 2D 
reconstructed system. Such curve, expressed in closed form, represents the desired 
price equation. 
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Practical Conclusions 

An instance of the price equation for the Eur/Usd is: 

y=1.3251 + 0.0021 sin(t) + 0.0032 cos(t) - 0.0025 sin(2t) + 0.0161 cos(2t) 

To illustrate: for y = 1,3093 its corresponding Eur/Usd value is 1,345 (mid 
December 2004). Recall that the y curve, deriving from Eur/Usd(t-T), is lagging 
by T units of time. This indicates a growing trend in the near term (next two o 
three weeks). By virtue of self-similarity and fractal properties, longer-term 
determinism can be achieved by changing scale and zooming out to a lower 
frequency chart (i.e. monthly chart). An important issue to be further investigated 
is whether the magnitude of loss of information derived from the application of 
the procedure of attractor reconstruction with dimension reduction to the observed 
time series can be acceptable for the financial markets money management 
industry. 
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Summary. A set of finance literature shows that asset return processes are char­
acterized by a GARCH class conditional volatility and fat-tail distributed distur­
bances, such as mixture of normal distributions and ^-distribution (Watanabe 2000; 
Watanabe and Asai 2004). This paper finds that this type of compUcated process 
arises by aggregating returns of a risky asset traded in a limit order market. The 
conditional volatility of generated return series can be modeled as a GARCH class 
since the volatility gradually diminishes as the price assimilates the new informa­
tion about the future asset return. The reason why the error term of estimated 
model is fat-tail distributed is that the return of transaction prices is distributed as 
a mixture of normals; one of the two distributions represents the drift of the price 
process, and the other represents the liquidity effect. 

K e y words. Agent model. Liquidity, Limit order market 

The model 
We consider a security market where traders exchange a risky asset. The number 

of trading days and the number of traders' arrivals on a particular trading day are 
denoted by T and J , respectively. On a trading day t, new information about the 
log return innovation arrives at the market. The stochastic innovation is given by 
the following binomial form. 

1 / X 1 / X f +cr, with probability 0 ^^. 
l o g K ) - log(p,_i) = I _^^ ^.^^ probability 1 - 4> ^^^ 

where vt is the end-of-the-day "true" asset value implied by the information, and 
Pt-i is the closing price of the previous trading day, t — I. The parameters cr(> 0) 
and (f) denote the log return innovation and the probability that the price innovation 
is upward, respectively. We assume that a and 0 are constant for all the trading 
days. Traders know the distribution of the log return process as in equation (1), but 
do not know the realization of the innovation, either H-cr or —a, until the trading 
session of the day finishes. We assume that the timing that the trading session 
finishes is stochastically determined. The session finishes when J- th trader arrives 
at the market if the following condition is first satisfied. 

ü > l - ( ^ ) ' (2) 
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where n is a random draw from the uniform distribution [7(0,1). The draw is per­
formed at every trader's arrival. F is a positive constant. Under this specification 
the number of traders arriving at the market in a trading day is expected to be high 
with a high value of F. When the trading session finishes the latest transaction price 
becomes the closing price of the day. We let pt,j denote the closing price at day t. 
On the next day t-f 1, the information is overwritten on the remaining information, 
\og{vt) — log(pt,j). This specification describes the situation that traders cannot 
trade after the closure even though the information about the return innovation 
is not completely assimilated into the price. Before the next day's trading session 
starts new information arrives and is overwritten on the previous day's remaining 
information. 

We consider that this asset is traded in a limit order market, where there is no 
intermediary to quote the bid-ask prices and to execute orders, and thus traders 
need to exchange the asset voluntarily. On a day the asset return innovation is 
positive (with probability cß) a trader arriving at j - t h is a buyer with probability 
| ( 1 + TT) and a seller with probability | ( 1 - TT). On a day the asset return innova­
tion is negative (with probability 1 — 0) a trader arriving at j-th is a buyer with 
probability | ( 1 - TT) and a seller with probability | ( 1 + TT). Each trader submits 
an order with specified trade conditions, i.e. price and quantity. The orders are 
collected and prioritized by a centerized market system. The buy (sell) order with 
a higher (lower) order price submitted earlier in the trading session obtains priority 
of execution. The prioritized orders are recorded in a limit order book and imme­
diately published. An order is executed if the order price of incoming buy (sell) 
order is not lower (higher) than the lowest (highest) order price in the limit order 
book on the sell (buy) side. When the trading session of a particular day finishes 
the book is cleared and the next day's session starts with an empty book. A main 
characteristic of this market mechanism is that a pile of already submitted orders 
play a role of liquidity suppliers for incoming traders, and incoming traders become 
either liquidity supphers if their orders are not immediately executed, or liquidity 
demanders if the orders are executed immediately. 

In such a market traders are likely to determine their order strategies conditional 
on the state of the order book. We assume in this paper that they determine the 
order price and quantity conditional on their posterior beliefs about the return 
innovation. The posterior is formed conditional on a summary statistic of the state 
of the book, n. The value of n describes the number of waiting buy orders exceeding 
that of waiting sell orders. If n > 0 the number of already submitted buy orders is 
greater than that of already submitted sell orders by n, and if n < 0 the immber of 
already submitted buy orders is less than that of already submitted sell orders by 
\n\. Then a buyer (a seller), arriving at the market when the state of the book is n, 
submits the order with following price p^(n) and quantity qt{n) (p?(r? )̂ and qfin)). 

pUn) = pt-i,j exp ( - a ) ^ ^ 1 , 9?(n) = ——Tri T (3) 
^ + \ptin) - Pt-i,j\ 
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We note that the order prices of buyers and sellers increase as n increases, and 
decrease as n decreases. This is rationalized by the fact that on the day of positive 
return, the likelihood of buyers' arrival is ^(1 + TT) and the likelihood of sellers' 
arrival is ^(1 — TT). The symmetric argument holds on the day of the negative 
return. 

Trade takes place if p^(n) is not less than the lowest order price in the order book 

proposed by sellers, denoted by p^^^^ or p*(n) is not greater than the highest order 

price in the book proposed by buyers, denoted by P * . That is, if p^(n) > P_^^^ or 

Pt ('^) ^ ^ • If these conditions do not hold the submitted orders are not executed 
and recorded in the book. 

U p^(n) > P^^ the transaction price and quantity are determined as follows. 

(P',q*) = {p'AnWiin)) \ip\{n) = £""= (5.1) 

Similarly if p^(n) < P the transaction price and quantity are determined as 
follows. 

{p\ql = {P'l{n).qt{n)) if ^ ( n ) = p''' (6.1) 

ip\qn = (P'''. — ^ ] if Ptin) < P''" (6.2) 
1 + IP I 

In practice we often observe transactions with a large quantity cleaning up all the 
waiting orders at the best quotes, P^*'^ and P . To capture this phenomena, we 
assume that when the transaction occurs a trader submits a large order cleaning 
up all the waiting orders at the best quote with probability q^^^^^^ ̂ ^^ ^^^ ordinary 
order quantity specified by equation (5.2) or (6.2) with probabihty 1 — ^^"^^^. Under 
this simple framework of the trading system and traders' behavior, we show that 
the simulated transaction price processes exhibit several important characteristics 
of asset return processes observed in practice. 

S i m u l a t i o n r e s u l t s 
This section simulates the model presented in the previous section and examines 

the characteristics of simulated asset returns. To implement the simulation we set 
the parameter values as follows; the initial value VQ = 100, the probability of return 
innovation being positive 0 = 0.55, the return innovation a = 2.5, the trading days 
T — 250, the survival rate parameter F = 5, and the parameters for order price 
and quantity TT ^ 0.03, 7 = 0.975, 9'"^^^ = 0.3. We let r denote the event time 
when the transaction occurs. Then the transaction-based log return is written as 
follows. 

^ r = l o g ( P r ) - l o g ( P r - l ) (7) 

To examine the effects of aggregation we compare the distributional characteristics 
of log return series without aggregation to those aggregating every two, five and 
ten transactions. We let P I , P2, P5 and PIO denote the log return series without 
aggregation, aggregating every two, five and ten transactions, respectively. The 
following table shows the descriptive statistics of these series. 
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Table 1. The descriptive statistics of simulated return series 

No. of observation 
mean 

standard deviation 
skewness 
kurtosis 

price 
45,789 
126.65 
12.20 
-0.18 
2.25 

Rl 
45,789 

0.00001 
0.00144 

-1.78300 
72.49700 

R2 
22,894 

0.00001 
0.00174 

-1.33550 
44.46500 

R5 
9,158 

0.00003 
0.00227 

-1.05930 
18.24700 

RIO 
4,579 

0.00007 
0.00295 

-0.69787 
9.24270 

The table shows that the log return series exhibit strong negative skewness and 
strong leptokurtosis. Interestingly the skewness and kurtosis become less significant 
as the log return is aggregated more. This observation can be explained as the 
liquidity effect. When there is a large number of waiting orders at the best quote, 
for instance at the best ask p"**^, several buy orders may successively arrive at the 
market. Then they would successively hit the waiting orders at P"^^ until all the 
waiting sell orders at that price are executed. Consequently it is possible to have 
many successive zero transaction-based returns. The frequency mass at zero return 
becomes less significant as the returns are aggregated more since zero returns are 
sumed up with non-zero returns. 

The theoretical and empirical literature suggest that the time series with these 
distributional characteristics can be modeled as a GARCH class with fat-tailed 
disturbances. Thus we examine whether the generated return series is well fit to 
the following GARCH class, AR(1)-GARCH(1, 1) with disturbances drawn from a 
mixture of normal distributions (BoUerslev, Engle and Nelson 1994). 

Rs = Po-\-piRs-i -f Cs (8) 

where s denotes s-th return of each series. The distribution of disturbances {e^} is 
a mixture of two normal distributions with mean zero and the conditional variance 
hg. The conditional variance hg is characterized as follows. 

hs = CO -\- ael_i + ßhs-i where hg = rj^o-^ + (1 

The mixture of normal distributions for the disturbances is 

'jk? (9) 

lies) = : exp 
lei_ 
2 4<T2 + (10) 

This specification suggests that the residual series is distributed as A^(0, ̂ cr^) with 
probability 77 and A/'(0, a^) with probability 1 —77. Table 2 shows the estimates of the 
model. All the estimates in the table are significant at 1% level. The results suggest 
that the process of hg is highly persistent. We can confirm this by observing that the 
persistence parameter a-\- ß is close to unity for all return series. Our agent model, 
where traders trading a risky asset in a limit order market, generates the return 
series with GARCH with fat-tail distributed disturbances, which captures several 
important characteristics of the wide range of return series observed in practice. 
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Tab le 2. The estimates of AR(1)-GARCH(1, l)-mixture of normals 

log likelihood 

omega 

alpha 

beta 

Rl 

-262,438.15 

0 

0.11406 

0.88224 

i^i^m^m^!^^^" 
rho(O) 

rho(l) 

eta 

xi 

0.00014 

-0.02129 

0.80198 

0.05558 

R2 

-122,005.92 

0 

0.15981 

0.83921 

^ - o*^Ä 
0.00013 

-0.04787 

0.80246 

0.1053 

R5 

.44,499.47 

0 

0.1974 

0.79921 

i^^^^mSkf 
0.00015 

-0.05429 

0.76302 

0.15306 

RIO 

-20,622.15 

0 

0.22278 

0.70408 

^ ^ ^ ^ 

0.0002 

-0.05121 

0.5398 

0.17486 

Conclusion 
This paper shows that the log return series of a risky asset traded in a limit 

order market can be modeled as AR(1)-GARCH(1, 1) with fat-tail distributed dis­
turbances. The conditional volatility of simulated return series can be modeled as 
the GARCH class since the volatility gradually decreases as the price assimilates 
the information about the future asset return. The reason the disturbances of the 
model is fat-tail distributed is that there are two factors driving the return series; 
one of the two distributions represents the drift of the price process, and the other 
represents the liquidity effect. These explanations are well fit to what we observe 
in practice. 

References 
Bollerslev T, Engle R F and Nelson B (1994) ARCH models, in Engle R F and McFad-

den D eds.. The handbook of econometrics, 4, North-Holland: Amsterdam, 2959-3038 

Watanabe T (2000) Excess kurtosis of conditional distribution for daily stock returns: 
The case of Japan, Applied Economics Letters, 7, 353-355 

Watanabe T, and Asai M (2004) Stochastic volatility models with heavy-tailed distri­
butions: A Bayesian analysis, COE Discussion Paper Series No.l, Faculty of economics, 
Tokyo Metropolitan University 

(Views expressed in this paper are those of the authors and do not necessarily reflect 
those of the Bank of Japan or Institute for Monetary and Economic Studies. This work is 
partly supported by the Grant-in-Aid for the 21st Century COE program "Microstructure 
and Mechanism Design in Financial Markets" from the Ministry of Education, Culture, 
Sports, Science and Technology of Japan.) 

162 



Stock price process and the long-range 
percolation 

Koji Kuroda^ and Joshin Murai^ 

^ Graduate school of Integrated basic sciences, Nihon University, Tokyo, Japan 
kurodaOmath.chs.nihon-u.ac.jp 

^ Graduate school of Humanities and Social Sciences, Okayama University, 
Okayama, Japan muraiQe.okayama-u.ac.jp 

Summary. Using a Gibbs distribution developed in the theory of statistical physics 
and a long-range percolation theory, we present a new model of a stock price process 
for explaining the fat tail in the distribution of stock returns. 

We consider two types of traders. Group A and Group B: Group A traders ana­
lyze the past data on the stock market to determine their present trading positions. 
The way to determine their trading positions is not deterministic but obeys a Gibbs 
distribution with interactions between the past data and the present trading posi­
tions. On the other hand. Group B traders follow the advice reached through the 
long-range percolation system from the investment adviser. As the resulting stock 
price process, we derive a Levy process. 

1 Group A traders 

Group A consists of N traders. The random variable ujuii) stands for the types 
of trading positions of a Group A trader ?' = 1 , . . . , A/" at time u — 1 , . . . , n. We 
denote by üüu{i) = + 1 , —1 and 0 for a buy position, a sell position and neutral 
position, respectively. Let u;J or uj~ be the number of traders in Group A who 
make a buying or selling order at time u, respectively. We define the number 
of market participants of Group A by la;^ | = u;J + u;~, and the surplus orders 
for Group A traders by < uju >= UJU ~ ^ü-

We shall define a configuration oj of Group B traders and a random interval 
In{k) C { 1 , . . . , n} in the next section. 

We define Hamiltonian of trading strategies of Group A traders at time 
uel^{k)by 

=/2(< ^^ >u^a. k/n"^) < Uu > , (1) 
y/n 
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where ßi, ß2, ßs, Ä are positive constants, a is a positive integer, LJ!^ = oju if 
u G /(A:), and (jJ^{i) = 0 otherwise, / i ( x , t ) , f2{x,t) are real valued functions 
continuous in t, and \uj^\ = J2^=i l^n-^l' "^ ^^ ^— Sl?=i < ^t-i ^- "^^^ 
first term in (1) controls the activities of Group A. The second term expresses 
the trading strategies of traders who analyse the past data {uJu-e] 1 ^ ^ ^ 
a — 1, u — £ G I!^{k)}. The third term plays a role to generate a volatility of 
the stock price process. If / i(- ,-) > 0 then the activity is increasing and a 
large volatility is obtained, otherwise the activity is decreasing and a small 
volatility is obtained. The forth term derives a drift (or trend) of the stock 
price process. If /2(-,-) > 0 then the stock price process is in an up trend, 
otherwise is a down trend. A Gibbs measure is defined by 

P-(a;)=i.exp 

where Z!^ is a normahzation constant. 

E^^'^M (2) 

2 Group B traders and long-range percolation model 

Group B traders are located in Z and an investment adviser is in its origin 
0 G Z. The random variable üu stands for the type of news the investment 
adviser receives at time u = 1 , . . . ,n . We denote by 0;-̂  = + 1 , —1 or 0, if a 
good, a bad or no news is received, respectively. 
Let B = {{x,y} ; x, y G Z} be the set of all pairs of Group B traders. We 
denote by 0)^(^5 y) — +1 or 0, if the channel between x and ij is open or closed, 
respectively. We denote a configuration of Group B traders by Cou = (^m^u)-

We say a pair {x, y} G B of traders belongs to the same open component 
at time u if there is a sequence of traders x = xo,xi , . . . ,Xfc = y G Z such that 
a)u({x£-i,x^}) = -f 1 for all ^ = 1 , . . . , A;. The event that a pair {x, y} G B of 
traders belongs to the same open component is denoted by x <-̂  y. 

At each time u = l , . . . , n , if the news is good (bad), the investment 
adviser sends an advice to buy (sell) the stocks to the traders belonging to 
the same open component with him. The set of all traders who receive the 
advice is Coo "= C'oo(O) = {x G Z ; 0 <-̂  x} . We also denote by Co© (a:) the open 
component including x G Z. 

Let Nn be a positive integer increasing in n and let Bi\f^^ = [—Nn, Nn] HZ. 
We assume that only traders in B^^ can participate in the trading, we call 
them the selected traders. A set of the selected traders who receive the advice 
is CNr, = {x e BNn ; 0 <-̂  x} . Also, we assume that each Group B trader can 
trade l/\Bj\[^ \ unit of stocks at each time. As all traders in CAT^ behave in the 
same way according to the type üu of news, the modified surplus orders for 
Group B traders is given by < CJU > = ^u\CNrM\BNrv\-

Let (̂  be a constant with | < 6 < | . Let To(ct;) = 0 and UQ{CÜ) = 0. 
We define stopping times by Tk{iü) = min{u > 1; X^^-i < uJUk-i-^c > ^ ^ ^ } ' 
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Uk{cü) = Uk-i{uj)-\-Tk{iü) for A: > 1. Let ^ = 1/2-6 (< S). We decompose the 
set of discrete times { 1 , . . . , n} into random intervals 1^(1),..., In{n^ + 1): 

"^ ^"l{ f /n '^(u; ) + l , . . . , n } , 
Uk{u;)}, for /: = l , . . . , r 

for /c = n^ + l. 

We assume that the advice from the investment adviser spreads over Group 
B via the long-range percolation model. It is known that the long-range per­
colation model exhibits the first order phase transition. We state some known 
results on this model as follows. 

Theorein 1. ([1], [3], [5]) For any 0 > I, the following statements holds. 

(1) There exists a critical value Pc{ß) G (Oj 1) such that 

W . I = 00) { = «'_./, |^<^; 
iß))-

(2) For any p > Pc{ß), there is a unique infinite cluster almost surely. 
(3) For any p < pdß), there is a constant co(p,/?) < oo such that r{x,y) < 

co{p,ß)\x — y|~^ for any x ,y G Z^, where r{x,y) = Pp{x <r^ y) is a 
connectivity function. 

We fix ^ > 1. Let 0 < po < Pc{ß)' We define the nearest neighbor percola­
tion probability {pk ] k = 1,... ,n^ -\-1} by pk = Po -\- k{pc{ß) - e{n) -po}/n^ 
for 1 < /c < n^ and Pn^+i = Pc{ß), where s{n) > 0 is decreasing in n and 
converges to 0 as n —̂  oo. 

For u e In{k), A probability distribution of Uu is given as the long-range 
percolation model, that is 

and P{CJu{{x,y}) = 0|Ü;I, . . . ,(I;^,_l) = 1 - P(u;u({^,2/}) = + l p i , . . . ,CJU- I ) . 
We assume that {ü)u,<^uix,y); i^^y) ^ B} are independent for each u. 

3 Statement of results 

A coupled probability measure P for both groups is defined by 

F{UJ,(:Ü) = F^{UJ)P{LÜ). 

When the total amount of modified surplus orders < cj^ > + < ^w > is 
positive, it is expected that there is a strong driving activity on the part of 
buyer and the stock price is going to move in upper direction. On the other 
hand, market is going to fall when < cĵ ^ > + < cj^ > is negative. We define 
the stock price change at time u by 
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"̂ ^ _ ^coi<uju>+<uj-u>) r^\ 
Su-1 

where CQ > 0 is a constant called the market depth. (Note that we think Su is 
the closing price other than opening price.) This recurrence formula implies 

u 

Su = So exp{co ^ ( < uji> -\- KiJi > ) } , (4) 

where SQ is the initial stock price at time 0. 
We consider the processes 

u u 

^=1 1=1 

Then by (4), the stock price process is described as Su = SQC^^^^'''^^''^ 
Let k{n,t) G { 1 , . . . , n^ + 1} be a unique number with [nt] G I!^{k{n, t)). Let 

I < A < i . A scaled process {H^i''^}te[o,i] of {H^n}2=i is given by W^""^ = 0 
and 

W^""^ = { Y for ^G (0,1], 
- ^ ^ c / n . + n i - ^ , if k{n,t) = n^ + 1, 

A scaled process {W^ }te[o,i] of {^it}2=i ^̂  ^^^o given in a similar way. 
We define a process by 

Let r G (0,1) be a fixed time and /3(^) > 0 be a continuous function on 
[0,1] such that 

Vo h{^^ /o /3(^) 

A continuous function s{t)^t G [0,r] is defined implicitly by 

/ — - d x = t. (5) 

Since /3(t) is a positive function, s{t) is well-defined. 

Theorem 2. For | < ( ^ < ^ , | < A < | anrf q = \ - ö, the process X^"^"^ 
converges in finite dimensional distribution to the process 

Xt= {iJ,A{v)-^ßB{v))dv-{- / aA{v)dBy^hl{t^r}. for all t e [ 0 , T ] , 
Jo Jo 

(6) 
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where Bi is a standard Brownian motion and h is a jump length. Trend terms 
and the volatility term of the limit price process are described in terms of the 
polymer functionals in the theory of cluster expansion as follows. 

ßA{t)=ßA Y. < A> f2{A,s{t))UA)eM^(A^^W)?^j^i^,(t)), (7) 

i(A)=0 

Mt) = f3{sm (8) 

-l{t)= E <^>^^o(^)e' '^^'(^'^('»^/3(.«)). (9) 
i(A)=0 

Let {ri\ i — 1,2,. . .} be i.i.d. sequence of exponential holding times with 
mean 1/c, and we write TQ = 0. When TJ < 1, the stock price is continuous 
on each random interval (ri_i,Ti), and it jumps at each random time r^, 
and jumps are i.i.d. with distribution p.The stock price process on (Ti_i,ri] 
behaves just like on (0, r i ] . Then by using the same argument in the proof of 
Theorem 2 repeatedly, we will obtain the following. 

Theorem 3. For | < ( ^ < ^ , | < A < | and q = ^ — 6, The scaled process 

X^^ converges in finite dimensional distribution to the process 

Xt= ifiAiv) + ßB{v))dv + / aA{v)dBy + Yt, for all t G [0,1], 
Jo Jo 

where the jump term Yt is a compound Poisson process, that is 

Yt= f f xNp{d.sdx), 
J[0,t] J{-oo,oo)\{0} 

where Np{dsdx) is a Poisson random measure. The Levy measure of Yt is 
ljL{dx) = cp{dx) with c > 0 and p((—oo, cx))) = 1. 
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Summary. Foundations of Flicker-Noise Spectroscopy (FNS) which is a new 
phenomenological approach to extract information hidden in chaotic signals are 
presented. The information is formed by sequences of distinguished types of signal 
irregularities - spikes, jumps, and discontinuities of derivatives of different orders 
- at all space-time hierarchical levels of systems. The ability to distinguish 
irregularities means that parameters or patterns characterizing the totality of 
properties of the irregularities are distinguishably extracted from the power spectra 
^{f) if- frequency) and difference moments Q>^\T) ( r - temporal delay) of the p^^ 
order. It is shown that FNS method can be used to solve the problems of two 
types: to show of the parameters characterizing dynamics and peculiarities of 
structural organization of open complex systems; to reveal the precursors of the 
sharpest changes in the states of open dissipative systems of various nature on the 
base of a priori information about their dynamics. Applications of the FNS for 
getting information hidden in economical data (daily market prices for the Nasdaq-
and Nikkei-Index time series) are presented. 

Key words. Time series, flicker-noise spectroscopy, information, irregularities of 
dynamic variables, power spectrum, difference moment, non-stationary process, 
daily market prices 

The image of "complexity" is introduced to underline the complex essence of 
information hidden in chaotic signals (temporal, spatial, energetic), which are 
produced by non-linear complex dissipative systems. Chaotic time series obtained 
under studying dynamics of economic phenomena (market price fluctuations, cash 
flow data, etc.), among other chaotic signals, contain much information. What type 
of information is hidden in chaotic signal? In what way this initial information 
could be extracted from the chaotic series of measured dynamic variables to be a 
base for phenomenological study of economic phenomena? Is it possible to 
propose an algorithm for taking out as much hidden information as one needs for 
solving problems under consideration? In this paper we demonstrate that the 
practical problems related to revealing the informative essence of various chaotic 
signals could be resolved by introducing a new image of information hidden in 
chaotic signals. This image is presented in Flicker-Noise Spectroscopy (FNS) 
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(Timashev 1999), (Timashev 2000a, b), (Timashev 2002), (Timashev and 
Vstovsky 2003), (Descherevsky et al. 2003), (Parkhutik et al. 2003). 

According to this phenomenological approach, the main information hidden in 
chaotic signals is formed by sequences of distinguished types of irregularities - the 
spikes, jumps, and discontinuities of derivatives of different orders at all space-
time hierarchical levels of the systems under consideration. FNS approach 
classifies the irregularities of different types by the generalized functions with zero 
carrier (compact support in {0}) expressed as a sum over (^functions and their 
derivatives for actual singularities, and functions containing various types of 
discontinuities for potential singularities (the Heaviside ^-functions and functions 
with discontinuities of the first-, second-, and higher-order derivatives). In this 
case it is possible to introduce different types of information ("colours"), and the 
ability to distinguish irregularities means that parameters or patterns characterizing 
the totality of properties of the irregularities are distinguishably extracted from the 
power spectra S(f) (f- frequency): 

\T/2 

S(f) = l{V(t)V{t + ?,))• exp(2;r///, )dt, I 
\-T/2 I 

where angle brackets are for averaging over the T interval (we refuse the ergodic 
hypothesis), and transient difference moments 0 ^ \ r ) ( r - temporal delay) of the 
p^^ order O^^(r) (p = 1, 2, 3, ...) and dimensionless "transient semi-invariants" or 
"quasi-qumulants" for/? > 3: 

O^^^r) = ([F(0 - V(t + T)Y\M ''\r) = r ^ ^ ' (2) 
P̂  (Of 

It is easy to see that O^'^r) is formed exclusively by jumps of the dynamic 
variable at different space-time hierarchical levels of the system, and S{/) is formed 
by both the spikes and jumps. The characteristic information extracted from the 
S(f) and 0^^\T) dependences represents the correlation time, the parameters 
characterizing the loss of "memory" for this correlation time, or "passport 
patterns" characterizing the sequences of spikes, jumps and discontinuities of 
derivatives of different orders (in the latter case time series for "quasi-derivatives" 
must be calculated). It means that in the FNS frame the power spectra and 
difference moments of the 2"^ order carry out different informations, which are 
complement for each other unlike the standard point of view which could be 
adequate only for smooth signals. According to FNS, the term "stationary" means 
that the every set of informative parameters is the same for each space-time level 
of hierarchical organization of the system under study in the considered range of 
time scales. 

For solving practical problems on the base of FNS we developed (Timashev 
and Vstovsky 2003) a new "relaxation procedure" to split the studied signal V{t) to 
low-frequency F/?(/) and high-frequency component Vf{t) components: V{t) = F^(0 
+ Vf{t). We can calculate S{f) and O^^r) for each of the functions Vj{t) (J=R,F 
or G), where the subscripts R, F and G refer to F/?(0, Vp{t) and V{t), respectively. 
In these cases the corresponding subscripts for SJJ) and Oy^\r ) are used. 
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The investigations carried out by now show that FNS method with getting 
information by analyzing the SjiJ) and Oy^^\r) dependences can be used to solve 
the problems of two types. 

1. Determination of the parameters or patterns characterizing dynamics 
of complex systems. As an example of using the FNS for finding passport patterns 
of chaotic series we present in Fig. 1 the results of the corresponding processing of 
the daily (open, close, high and low) market prices for the Nasdaq- and Nikkei-
Index time series. Fig. 1 demonstrates the high degree of diversity of every 
presented pattern other than the Soif) dependences which are considered usually. 

Soif) Scif) 

0%(r) 0%(r) 

J 1--

SA/) Sfif) 

1:::: 

3><''K^) O'^Mr) 
Fig. 1. Patterns for power spectra and difference moments of the 2" order for both the 
regular and high frequency parts of Nasdaq(open) and Nikkei(open)-Index (on the right 
hand) time series. 
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2. Revelation of the precursors of sharpest changes in the states of open 
dissipative systems. We introduce a new factor, which characterizes the non-
stationary character of analyzed signals. It could be considered as precursor 
signaling about forthcoming catastrophic reorganization in the system under study. 
To obtain such precursors we analyze the time variation of power spectrum Sj (/) 
or difference moments Oy^^\r) that are calculated within the averaging interval 
[kAT, tic= kAT+T] of duration T, where ^ = 0, 1, 2, 3, ..., shifting discretely over 
the series of entire observation period Tiot by steps Ar. The time intervals T and Ar 
should be physically chosen. So, if there are some "minor" processes with the 
characteristic times T; gently influencing the main non-stationary process in the 
system, a condition Ti«T must be fulfilled. It means, contrary to stationary case, 
that non-stationary evolution of complex system is characterized by a set of 
characteristic times Tsn, and the prediction problem becomes, in a general case, 
multi-parametric. We relate the "precursor" to the sharpest changes in the 
variations of Sj (J) and <^J^\T) when the upper boundary of the averaging interval 
tk becomes closer to the time of a catastrophic event tc. The simplest "precursors" 
are defined on the base of the difference moments Oy^^ (̂r). Taking delay rin the 
range [0, aT\ with a < 0.5, we introduce the dimensionless factors: 

Here tk+\ = {k+\)AT-^T, (A = 0, 1, 2, ...) and subscripts of square brackets show 
that 0/^\T) dependence was calculated for time interval [kAT, kAT+ T\, The peak 
values of these factors characterize a "measure of non-stationarity" of the signals 
when the sharp variations of Oj^^(r), during the shifting the averaging interval T, 
are due to large changes of signal on "forward" and "back" boundaries of interval 
T as the "forward" boundary approaches to the time tc of the expected event. This 
problem is resolved by analysis of temporal behavior of corresponding criteria for 
varied T: it is evident that when T increases by value ATi the effects of non-
stationarity due to signal behavior at "back" boundary must appear with the same 

Fig. 2. Non-stationarity factors Cf{tk+i) calculated for Nasdaq(open) (a) and Nikkei(open) 
(b) Indexes in Fig.l for AT= 3 days and averaging "windows" r=300 and r=500 days. {Cf 
and Cf-50, respectively) 
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delay time Ari, whereas the effects due to signal behavior at "forward" boundary 
must not sharply depend on averaging interval value. Evidently, Cj (4+1) = 0 for 
the stationary processes for T —> 00. As an example we found the factors of non-
stationarity for the daily Nasdaq(open)- and Nikkei(open)-Index time series, Fig.2. 
Note, that every C{tk+\) large peak on the "forward" boundary appearing at real 
time during computer processing of the time series under study can be considered 
as a signal of serious "changes" in the time series origin which could become a 
precursor of more catastrophic changes (Descherevsky et al. 2003), (Parkhutik et 
al. 2003). In any case, the peak appearance means that it is necessary to be more 
attentive to the analysis of additional information concerning the studied system 
and to deal with analysis of the time series with higher sampling frequency. In the 
case of the market price fluctuations it is necessary to get additional information 
which can be obtained from analysis of more detailed (sampled by hours or 
minutes) measured financial time series. 

Eventually, FNS is a new informative methodology. The "distinguishability" 
of the irregularities means that the parameters or patterns characterizing the totality 
of properties of the irregularities are distinguishably extracted from the power 
spectra and difference moments of different order. In FNS formalism, in contrary 
to the theory of deterministic chaos, a multi-parametric representation of the 
information image indicating the information loss rate is introduced. 

The work was supported by the ISTC Grant #2280. 
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Analysis of Evolution of Stock Prices in Terms 
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Summary. Taking advantage of the oscillatory evolution of stock prices, we 

analyze the evolution of stock prices in terms of the oscillation theory. 

We apply the formalisms to Nikkei225 data and compare with the predictions 

of the random walk theory. 

1. Introduction 

We study the time evolution of stock prices, for example, the Nikkei225 in 

terms of physics tools. It appears that stock prices vary randomly without 

any causal laws. It seems that a stock price in this month varies 

independently of the price in last month. Nevertheless, we introduce a 

theory for oscillations in order to analyze the time evolution of the stock 

prices (Kohmura and Nozawa 2003a, 200b, Nozawa and Kohmura 2004). 

The theory of oscillations is a very common approach in physics, which has 

an advantage to be solved analytically and to predict future development. 

The present paper is organized as follows. In section 2 we present an 

analytic formulation for the time evolution of the stock price indices in terms 

of the theory for oscillations. In section 3 we apply the formalisms to 

Nikkei225 data and compare with the predictions of the random walk theory. 

2. Analysis in Terms of Oscillation Theory 

Let us assume that stock prices fluctuate according to the theory for 
oscillations. Namely a stock price index x(t) at a time t oscillates 

173 



around a mean value b . Then jc(/) is determined by the following 

differential equation., 

^xit) = -co'{x(t)-b}, (1) 
dt 

where CD is the angular frequency, which represents the speed of 

oscillations. The solution is given as follows, 

x(t) = a cos(cot + ^) + 6, (2) 

where a and 0 are parameters. In the present case, we treat CO and b 

as parameters as well. Let At be a constant time interval. Then the 
variations of X between two successive time points are defined as follows, 

y(t -\-- At) = Ax(t + - At) = x(t + At)- x{t). (3) 

Similarly, the second order of difference of the variation y(t) of the stock 

price x(t) varying in the oscillation motion in equation (2) yields the 

difference equation of motion, 

AV(0 = -4sinf—V(0' (4) 
V 2 y/ 

where the second order of difference of y{t) is defined to be 

A'y(t) = Ay(t + -At)-Ay(t--At) ^^^ 

= y{t + At)-2y{t)-^yit-At). 

From the actual values of the stock price x(/) for the given corporation 

recorded at four consecutive points in time in the stock market, we obtain the 

variation y(t) and its second order difference in equation (5) and evaluate 

the following ratio R. If the stock price x(t) features the oscillation motion 

in equation (2), then the ratio is given by 

^ A^y(t) . . 2fcoAt^ ... 
R = -̂ ^ = -4sm . (6) 

y(t) [ 2 J 
This relation shows that for the stock price x{t) varying in an oscillation 
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motion, the ratio is bound as 

- 4 < 7? < 0. (7) 

From the analysis of the actual stock prices belonging to Tokyo Stock Market, 

we have found that about 60 percent of the stock prices satisfy the above 

condition for oscillation motion. This will be discussed in more detail in the 

next section. But there are some other cases when the stock prices x(t) 

yield the ratio 

R>0, («) 

which indicates that the stock prices x{t) vary exponentially. There are also 

other cases when the stock prices x(t) yield the ratio 

R<-4, (9) 

which indicates that the stock prices x{t) vary in a zigzag motion. 

The ratio /? is a very useful index to classify the current trend of the 
evolution of the stock prices. From the values of the ratio, we can figure out 
the current evolution state of the stock prices and predict the medium length 
period (a few month) trend of the evolution. 

3. Application to Nikkei225 data 

In this section we analyze stock price data in terms of the theory for 

oscillations derived in section 2. In the present paper, in particular, we 

study general trends of stock prices. Therefore, we use Nikkei225 data 

instead of individual issues. In order to reduce statistical uncertainties as 

much as possible, we try to include large number of data available for us. 

In Figure 1 we have plotted a histogram of Nikkei225 data as a function 

of R . The data are Nikkei225 stock price indices at the end of months. 

The total number of data is 400 (months) for the last 33 years in the period of 

1970-2003. Each bar in Figure 1 denotes the number of frequency for the 

interval AR = OA. The solid curve is the prediction of the random walk 

theory, which is normalized to the total number of frequencies. As far as the 

gross structure of the frequency distribution is concerned, both of the shape 

and the peak position of the frequency distribution of the practical data seem 

to be consistent with the random walk theory prediction. However, number 
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of data points (400 points) is not sufficient enough to exclude statistical 

errors. 

Fig. 1 Frequency distribution of Nikkei225 data for the last 33 years as a 

function of R Total number of data is 400 (months) for the period 

of 1970-2003. The curve is a result of the random walk theory, which 

is normalized to the total number of data. 

In Table 1 we have calculated the frequencies (in percent) of the same 

Nikkei225 data for the period of 1970-2003 for each fluctuation mode. The 

first, second and third lines stand for oscillation fluctuations, zigzag 

fluctuations and divergent fluctuations, respectively. The third column 

shows the prediction by the standard random walk theory. Again, the gross 

structure of the frequency distribution of Nikkei225 seems to be described by 

the random walk theory reasonably well. However, there exists a significant 

deviation in specific fluctuation modes. Again higher statistics is necessary 

to draw a definite conclusion. 

In summary we have introduced a formulation for the evolution of the 

stock prices indices in terms of a theory for oscillations. We have shown 

that the ratio of R is an essential quantity in analyzing the stock price 
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indices. We have compared the data with a standard random walk theory 

result. 

Table 1 Frequency distribution of Nikkei225 data for the last 33 years in 

various fluctuation modes. Total number of data is 400 (months) 

for the period of 1970-2003. 

Fluctuations ~-—.____̂ ^ 

Oscillations (-4<R<0) 

Zigzag (R>0) 

Divergent (R < -4) 

Total 

Nikkei225 Data 

0.595 

0.215 

0.190 

1.000 

Random Walks 

0.608 

0.196 

0.196 

1.000 
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1 Introduction 

Stochastic theories for the description of financial markets, e.g. via the 
Langevin equation, are usually based on terms with uncorrelated noise. The 
purpose of this paper is to investigate how correlations in the market can 
introduce "fat tails" in Random Walk (RW)-like models as well as a narrow 
center in the distribution as found in the S&:P500[1]. Using the discrete version 
for the RW 

Xi = |d^^X^^l -\-^i (1) 

as a starting point, where /i is the "trend" and ^i is Gaussian/ normally 
distributed uncorrelated noise, we focus on de-trended random walks with 
/i = 0. Correlated noise for our purpose can easily be produced by "mixing" 
successive random numbers from the Gaussian random number sequence in a 
weighted average, e.g. 

j 

l i = E (l-f)^i+^Ci-i- (2) 
j=i — M 

For different e, we get different distributions all narrower than the standard 
normal distribution, which nevertheless still can all be fitted to a Gaussian 
with standard deviation a < I. Therefore the narrow center in the S&;P500-
Data of Mantegna et al.[l] may be explained by short-term/local correlations 
in the "noise" of the random walk, which corresponds to the correlated in­
formation/noise the players receive in the financial world. In the remaining 
part, Gaussian white noise with reduced variance is used instead of explicitly 
correlated noise to model the center of the distribution, which nevertheless 
cannot account for the fat tails, because it does narrow, not widen, the dis­
tributions. From here on, we use "correlated noise" ^i = a^i, from a Gaussian 
distribution £,i with the standard deviation a = a < 1, so eqn. (1) becomes 

Xi = Xi-i-{• a^i. (3) 
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2 Technical analysis, correlation and fat tails 

A possible reason for much wider market swings than local correlation in mar­
ket data is the synchronous reaction of many market players to signals from 
technical/chart analysis: Erratic chart data are averaged or fitted (in a very 
loose sense of the word), and the market players adapt their expectations 
and strategies accordingly, which is reflected in the price evolution. As the 
basis for our "technical analysis", we will use "moving averages", which are 
computationally easier accessible than chart formations like "double tops", 
"shoulder-head-shoulder-configurations" or "resistance-lines", on which mar­
ket analysts often don't agree among themselves. 

2.1 T h e Model: R W wi th Moving Averages 

We set up our model equation for the technical analysis random walk (TARW) 

Xi = Xi_i + a ^ i + 6r7i, (4) 

with Gaussian distributed mini-trends r/i, which react to the crossing of the 
averages in "bullish" or "bearish" manner as follows: The standard-normal-
distributed "mini-trends" r]i with prefactor 6 don't change as long as the chart 
Xi does not cross the moving average {xi)]s[ = jj Yl]=i-N -^j from the previous 
N market transactions: 

Vi = Vi-i if Vi-i > 0 and Xi > {xi)^ (5) 

m = Vi-i if ^ i - i < 0 and Xi < {xi)^ (6) 

Whenever the chart Xi crosses the moving average {xi)^^ a new "mini-trend" 
r]i with sign opposite the previous one is selected: 

new rji <0 if r/i-i > 0 and xi < {xi)j\[ (7) 

new 77i > 0 if rji-i < 0 and Xi > {xi)isi. (8) 

The result for the distribution^ of such a TARW is shown in Fig. 1(a) with fit 
parameters a = 0.4, 6 = 4. The inclusion of technical-analysis-like decision­
making leads to fat tails and also a curvature change similar to the one seen 
in the empirical S&P500-data. Nevertheless, the fat tails in Fig. 1(a) branch 

1 This and all the following distributions have been plotted with the maximum 
probability normalized to one to allow the simple comparison with the empirical 
data, with 300000 time steps, 8000 equilibration steps before the first measure­
ment, and moving averages of length N = 5000. Distributions did not change 
significantly if the moving averages were computed for N = 5000, N = 50000, or 
N = 500. Our "technical analysis" is "time-scale-free" in the sense that the sum 
of Gaussian random numbers produces a Gaussian again. The structure of the 
time-series itself varied considerably with the length of the moving averages. 
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out at too high probabihties compared to the data from Mantegna[l]. The 
TARW-mechanism can be interpreted as the superposition of two Gaussian 
distributions, one narrow, one wide, where the wider distribution is selected 
due to the relative motion of chart and moving average very rarely. Though 
we can conclude that the "technical analysis" (i.e. a quantifiable herd-like 
behavior produced by the herd itself) is a very efficient way to obtain "fat 
tails" when introduced in random walk models, the TARW-mechanism is not 
the final answer: The simulated curve deviates significantly from the empirical 
data, the "onset" of the fat tails is much too high. 
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(c) After eqn. (9)-(8), (10)-(15), a = 0.32, 6 = 1 and D = 15. 

Fig. 1. Comparison for TARW (a), DTARW (b) and DTARWB (c) (moving averages 
of length N = 5000, circles) with the empirical data for the S&P500 (full dots), the 
fitted Levy-distribution (solid line) and Gaussian (broken line) after Ref. [1] 
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2.2 Introducing Delay 

In our TARW-Model, each transaction relates to the previous one as reference 
level. In reality, in the trader-based New York Stock exchange, transactions 
for the S&PSOO do not take place instantaneously, but there is a certain time 
lag between the transaction decision, the completion of the transaction and 
the actual display of the new price. Data for the duration of this delay are hard 
to come by, Wall Street seems to be quite reluctant to talk it. To mimic the 
time lag, we introduce the delay time D so that between display-timestep j 
and the next display-timestep j -^D all players base their transaction decision 
on the data at the display-timestep j , so 

Xj+i = Xj + a^j+i-i + brjj^i-i, D >i> I, (9) 

all other terms are defined as in the TARW-model. For this "delayed technical 
analysis random walk model" ̂  (DTARW), the delay parameter of D means 
that the average number of transactions between a transaction and the ref­
erence price is D/2. The "best fit" for the empirical S&P500-data obtained 
with the parameters a = 0.4, 6 = 1.4 and delay D = 25 is shown in Fig. 9. For 
the DTARW, the variance b for the "mini-trend" has decreased to 1.4, from 4 
for the TARW, which is an improvement for the sake of plausible simulation 
parameters. Nevertheless, the simulation data are higher than the empirical 
distribution for the probability interval between 10~^ and 10""^^. Another 
setback of the model is that we had to introduce an additional simulation pa­
rameter, the delay D (again the distribution did not change with the length of 
the moving average), so the DTARW needs three fit parameters, which should 
account for any curve symmetric to the y-axis with two different curvatures, 
not very satisfying from the point of data modeling. 

2.3 Boll inger Bands 

Our models up to here[2] allowed only a change from "down" to "up" in the 
mini-trends, and vice versa. A convenient way to implement a steepening or 
flattening of a trend in the same direction is via Bollinger Bands, so that 

rji > ?7i_i if rji-i > 0 and Xi > {xi)^ + 2STD(xi) (10) 

rji = rji^i if Tji-i > 0 and {xi)j^ -f- 2STD(xi) > Xi > {xi)jsf (11) 

new rji < 0 if r]i-i > 0 and Xi < {xi)^ (12) 

rji < rji^i if rji-i < 0 and Xi < (xi)/v - 2STD(xi) (13) 

r]i = rji^i if rji-i < 0 and (xi)N - 2STD(xi) < xi < {xi)^ (14) 

new r}i> Q if ry^.i < 0 and xi > {xi)^, (15) 

^ This model is not a delay differential equation in the conventional sense where 
each Xi would be computed from the previous Xi^o-
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where the "mini-trends" r/̂  are chosen with absolute vahie larger than the pre­
vious one, but the same sign, if the market breaks out beyond the Bollinger 
bands (twice the standard deviation above and below the moving average^). 
The result for this "Delayed technical analysis random walk with Bollinger 
Bands" (DTARWB) can be seen in Fig. 1(c) for a = 0.32, 6 = 1 and delay in­
terval D = 1^. The tails have been significantly straightened in comparison to 
the DTARW-case. Not only are the simulated data very close to the empirical 
data, the scattering in the tails and the convex part are quantitatively well 
reproduced. The delay-parameter D to model the empirical S&P500-data has 
been reduced to 15 in the DTARWB from 25 for the DTARW, so between a 
transaction decision and the display of the price on average 7 to 8 transac­
tions have occurred. More important: The previous fit-parameter b has been 
reduced to unity, which means that though the returns Xj Xj—1 a re not Gaus­
sian distributed, the mini-trends rji are. Therefore, our DTARWB needs only 
two free fit-parameters, the local correlation a and the delay D, so it seems 
to contain some "true" information about the market. 

3 Summary and Conclusions 

We have shown that the return distributions observed in the S&P500 can be 
obtained for a random-walk which reacts to moving averages in the technical 
analysis sense. Characteristic ingredients are mini-trends in accordance with 
moving averages, which lead to fat tails, delay in trading, which shifts the tails 
lower in the distributions and a reaction to break-outs of the market (in our 
case, Bollinger bands) which straighten out the curvature of the tails. Though 
the chart values of the S&P500 are not Gaussian distributed, it is the mini-
trends which follow a random walk/ Gaussian distribution with unit variance. 
This leaves considerable doubts about the actual "efficiency" of the market. It 
will be interesting to analyze other market data whether the local correlation 
a is universal, the mini-trends r]i are always standard-normal-distributed and 
whether the delay D is shorter in markets with electronic trading. 
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Summary. 
We present a novel agent based simulation platform designed for general-purpose 
modeling in social sciences. Beyond providing convenient environment for 
modeling, debugging, simulation and analysis, the platform automatically enforces 
many of the properties inherent to the reality (such as causality and precise timing 
of events). A unique formalism grants agents with an unprecedented flexibility of 
actions simultaneously isolating researchers from most of the overhead of the 
virtual environment maintenance. 

Key words. Agent-Based Simulation; Experimental Markets; Artificial Financial 
Markets; Market Microstructure. 

Introduction 

The classic analysis of financial phenomena is usually based on simple (often 
linear) macroscopic models, which preferably can be solved analytically. Such 
models can reproduce basic market macroscopic features. This type of models 
fails to reproduce emergent features of markets that cannot be directly deduced 
from the microscopic interaction producing them. 

Emergent phenomena, were studied over the last couple of decades in a wide 
range of systems. A general approach is to model the system in question as a set of 
microscopic elements and define microscopic interactions between them so that 
the desired macroscopic phenomenon emerges. Being frequently and successfully 
exploited in physics, this method is now being applied in social sciences as well. 
In the specific context of the stock market, a variety of simplified microscopic 
models have been introduced over the last decade, (Bak et al. 1997, Stauffer 2000, 
Levy et al. 1994, Mantegna R., Stanley 1999, Maslov 2000, Solomon 2000 and 
many others). Most of these models focus on specific aspects of the problem: 
basic features of the agent's behavior or of the stock exchange procedures. They 
show that even a small set of simple assumptions can explain the set of "stylized" 
experimental facts characterizing generically the market (Mantegna, Stanley 1999, 
Cont 2001, Lux, Heitger, Takayasu): power (Pareto-Zipf) laws, fat tails (and/or 
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Levy-Stable distributions), (multi-) fractal dynamics (Hurst exponents), long range 
correlations (clustered volatility), criticality (scaling exponents). 

Similar models explaining stylized facts exist in practically all domains of 
social sciences ranging from social influence and opinion dynamics (Weidlich, 
Haag, 1983) to wealth distribution (Levy et. al 2000). It is obvious that in order to 
go beyond these generic "stylized" facts, one has to consider more realistic 
features (Solomon, 1999). In the context of the stock market, we would need to 
consider: detailed stock market procedures, individual trader behavior, 
communication lags, external events (news arrival, economic fundamentals, etc.) 
(Levy et al. 1994, Moss et al. 1999). 

We developed a platform that simulates an arbitrary number of agents 
interacting with an arbitrary range of behaviors. A demand for such a tool has 
been present for quite some time already and several attempts were made to 
satisfy it (Jacobs et al. 2004, Minar et al. 1996, LeBaron 2002,2004). However, to 
the best of our knowledge, none of them possessed all the properties required to 
satisfy the growing community of researchers who could use it. We hereby 
introduce the basic concepts for the general simulation platform we have 
developed, named NatLab for A âtural asynchronous-Time Event-Lead y4gent-
5ased Platform. NatLab is a realistic continuous time causal asynchronous event 
driven simulator. It is highly efficient - the cost of each event is proportional to the 
log of the number of candidate events. In NatLab the communication between 
agents is through a novel efficient messaging mechanism. In the next section first, 
the design principles of the simulation will be detailed, then a concrete application 
will be used to exemplify its potential. 

NatLab Design Principles and Implementation Details. 

NatLab deals with any arbitrary system of interacting agents unless they 
experience continuous interactions. As long as the microscopic inter-agent 
interactions can be presented as sequence of momentary "collisions", the entire 
system can be simulated precisely. Each agent can engage any other agent, group 
of agents or the entire population. The spatial structure in NatLab is implemented 
using a fixed (or evolving) network of nodes and links, effectively introducing 
neighbors. The basic design principles of NatLab are as follow: 
• Timing 

o Asynchronous update - Active agents are allowed to initiate actions as 
opposed to the conventional passive agents that are delayed until polled. 

o Event-Driven - The simulation engine schedules future events and 
processes them one by one, skipping the time in-between 

o Continues time - Unlike in conventional discrete time simulations, times 
of the events are precise as they are not confined to any discrete time. 

• Causality - Being event-driven and executing all events at the precise time of 
their occurrence, the simulation does not accumulate inaccuracies as it evolves. 
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Moreover, the platform ensures the correct ordering of events, continuously 
maintaining the cause-effect principle. This allows each and every agent to 
respond and adjust by re-scheduling his future actions. The schedule of 
upcoming events is constructed on the fly, while the first event is executed. 

• Realistic action cycle - Agents may exploit the asynchronous nature of the 
platform implementing a realistic multi-stage action cycle. Being isolated 
between events and exogenous to the agent messages, each agent can evolve in 
parallel until it either spontaneously decides to initiate some action or responds 
to an interaction coming from outside (either directly induced by an other agent 
or indirectly in response to an objective state change following some event 
execution). Since events are scheduled and executed when their time arrives, 
realistic delays in agents evolution and action time lags are naturally ensured. 

• Messages - Agents interact by exchanging arbitrary delayed messages. The 
simulation platform engine guarantees delivery of the messages when the 
simulation time is promoted to the appropriate time. The same message can be 
delivered to a group or even all agents, which may either ignore it or respond by 
scheduling some future action (simulating natural delayed response). 

• Efficacy -NatLab is optimally efficient. NatLab deals uniquely with events 
execution, wasting no resources on looping over the pool of agents, and very 
few resources on scheduling future events. The execution time scales as 
0(N*log(M)), where N is the total number of events, and M is the number of 
events currently in the queue. NatLab CPU cost does not depend on the total 
number of agents in the system. 

• Multilevel - NatLab is suited to simulate not only relatively small isolated 
systems (such as the stock exchange), but can deal with systems of arbitrary 
complexity at several scales (time scales and organizational complexity). One 
could in principle model the entire economy- starting from individuals acting as 
employees through firms, banks, the stock exchanges, etc. All the interactions 
between them can be made as precise as required. 
We will not provide all algorithmic details and the software implementation, as 

these are mainly technical and do not contribute to understanding the function of 
NatLab. There are, however some particulars which are essential in order to 
understand the general function of the simulation. 

General structure: The platform is divided into three independently developed 
modules with a strictly defined interface and communication protocols between 
them. This structure allows the optimization of NatLab, and its implementation on 
very different platforms. Moreover, it allows the user to ignore the internal 
structure when designing agents. The basic elements are: 
• The Autonomous engine. The highly optimized core of the platform, whose task 

is to automatically manipulate user-defined agents by delivering their messages. 
• Simulation User Interface (Figure 1). This module provides the user with a 

convenient user interface, and is independent on of the simulation core. 
• Agents. To reduce requirements from developers, we do not require inter-

platform compatibility from each agent. However, each agent should be based 
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either on the template supplied with the platform, or strictly support the 
interface, specified by us. 
Agents: NatLab implements a modular concept which requires each agent to be 

implemented and compiled as a separate binary module. These modules are 
automatically recognized and imported by the simulation platform as it loads or 
when at the configuration stage of a specific simulation run. All agents should be 
based upon the single basic agent class and provide the functionality required by 
NatLab. Moreover, they should all provide a common binary interface to allow the 
platform to operate them. The functionality includes mainly the agent ability to 
filter and respond to messages they receive, and to send new messages. 

Messages: Messages are used for communication between agents. All 
messages must provide the minimal information required for their transfer and 
delivery: A) Issuing agent ID, B) Issue time, C) Destination agent ID, D) Delivery 
time, E) Message type (ENUM) and may include arbitrary additional information. 

Application 

Let us demonstrate the 
simulation platform by 
schematically presenting a 
simple stock exchange 
model where the 
spontaneous herding 
behavior of a tiny fraction 
of the traders populating it 
causes formation of a 
bubble and a crash, 
followed by a long 
recovery period. This 
simulation shows the huge 
effect of the uncoordinated 
action of a very small 
portion of traders. We do 
not intend to replicate or 
explain any of the real 
market properties, but to 
merely present an example 
of the platform use. 

The model framework 
consists of a single stock 
traded by means of a 

Fig. 1 GUI of NatLab. The graphical user interface of the 
Platform is designed to provide a comprehensive insight into the 
dynamical processes of any specific model at both macroscopic 
and microscopi levels. The windows providing textual or 
graphical representation of model parameters at the run time are 
also implemented as agents, each updating it's own content on 
demand. Similartly to model-specific agents, each window can be 
designed to update periodically or to respond to specific events. 
They can also allow the user to interfer into the simulation by 
providing the interface for setting parameters and issuing system-
wide or specific messeges. In this particular example: (a)Shows 
the price evolution. (b)Daily price and volume. (c)Exposes details 
of every transaction. (d)Comparative distribution of traders' 
wealth for each type. (e)Provides acccess to detailed information 
about each agent, (f) Allows the user to inspect and issue news. 
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classical orders book similar to the one employed today by most stock exchanges^ 
The market is mainly populated (98% in our runs) by one type of agents. These 
agents act randomly by occasionally submitting relatively small (-2% of their 
wealth) limit orders. The limit orders' prices are drawn from the neighborhood of 
the current market price. Each order has 50% probability to be a buy or a sell 
order. If these agents would be the only agents acting in the market, the stock 
value distribution would be approximately a narrow Gaussian around the value 
determined by the amount of money and the stock number. One could argue that 
the inclusion of a few uncoordinated agents should not significantly affect the 
market dynamics. We actually show that a small minority, trying (naively) to 
identify the market's behavior and to follow it can drastically change the market 
dynamics. 

Let us, thus, assume a second 
small population (2% in our case, but 
it can be even smaller). Unlike the 
random traders, each of the agents 
belonging to the second type 
continuously tries to identify and 
exploit price trends. Those occasional 
traders represent people that do not 
invest in stocks unless they identify 
(to the best of their knowledge) a Fig. 2 The price evolution shows region of regular 
clear opportunity. In our case, we ^^^^^ followed by gradual price raise due to 
, 1 X J • X X V massive acquisition by ocasional agents, crash and 
have selected a persistent positive slow recovery. 
price trend as an indicator for 
occasional traders to enter the market. They start with no shares at all and keep 
inspecting the prices until they recognize a trend. From this moment on, the agent 
gradually buys stocks until either its entire capital is invested or the price starts to 
drop. When the opposite trend is detected, the agent starts selling by submitting 
market orders. Note again that these minority traders (2%) are not synchronized. 

In our runs executed for a population of 10,000 random traders and 200 
occasional traders (Fig. 2) we observe the emergence of a herding behavior which 
causes a gradual increase of the price, followed by sudden crash. Each agent acts 
independently from the others, having personal criteria for its behavior. 
Occasional traders start with no stocks and watch the market sporadically 
identifying random fluctuation as appearing trends. In response to such an initially 
(erroneous) trigger the demand increases. This demand in turn actually raises the 
price, increasing the chance for other agents to identify it as a (real) emerging 
trend. Eventually, all occasional traders will interpret the raising price as an 
opportunity and will start competing with the rest for the available stocks 
(obviously raising the price even more). The process will continue until most of 
the occasional agents are exhausted and have no more cash to invest. At this point, 
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the price stops rising. The traders interpret this by realization that no additional 
profits can be made in this situation and start realizing them as fast as they can. 
This, naturally enough, causes the price to crash. As soon as the majority of 
occasional traders manage to get rid of their stocks, the price stabilizes and even 
climbs gradually. The reason for the positive trend in this case is the interaction 
between the random agents. By definition, they do not distinguish between any of 
the two assets (the money and the stocks) and operate caring only for the volume 
of transactions. Therefore, they will tend to sell more shares at low prices, 
effectively causing the price to rise. This effect stabilizes the price near the price 
determined by the total amount of money and stocks random agents have. Note 
that none of the agents involved has to know what those numbers are. 
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Summary. We have developed a microscopic model of interacting agents where 
agents buy or sell shares depending on the information they get from neighbours and 
a relation of a temporary price to a fundamental price. Depending on the magnitude 
of the noise present in the system (magnitude of market temperature) prices oscillate 
between the bull and the bear phases or around a mean fundamental value. The 
oscillation period can be calculated from a mean field theory. A very influencial 
investor (market leader) does not get larger profits than a typical one. A crucial role 
for profits is played by a coupling constant to a fundamental price. 

pacs 89.65. Gh, 75.10.Hk 
keywords: multi-agents models, stock market 
We use the social impact theory [1, 2] to describe behaviour of a group of Â  

investors described by constant in time strengths Sj > 0 and the state variables 
C7i{t) = ±1 that define their investment attitude as follows: o-i{t) = 1 if the 
trader wants to buy a share and ai{t) = — 1 if the trader wants to sell a share 
at time t. For simplicity we assume that every investor can buy/sell at every 
moment not more than one share. Orders are reduced to ensure a constant 
number of all shares available at the market. Each investor j influences the 
opinion of other investor i with a magnitude proportional to the strength Sj 
of the investor j and their market immediacy ruij > 0 where the constant rriij 
does not need to be equal to rriji. 

Investor attitudes ai{t) may change simultaneously (synchronous dynam­
ics) in discrete time steps according to the Glauber-like rule : cri(t 4- 1) = +1 
with the probability a and ai{t -\- 1) = —1 with the probability 1 — a where 
a = 1/[1 -h exp(—2/j/T)]. Here /j corresponds to the local information field 
acting at the investor i and it has been assumed as 
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where p(t) is a temporary price, p( is a value of a fundamental price chosen 
by the investor i while 7̂  > 0 is a constant characterizing sensitivity of the 
attitude of investor i to price changes. The parameter T may be interpreted as 
a "market temperature" describing a degree of randomness in the behaviour 
of individuals, but also their average volatility. 

Price p{t) changes as Ap{t - I) = ßp{t - 1) YJJ^=I ^ji^ - 1) where /? > 0 is 
a constant. 

The model belongs to the similar class of Ising-like models that were stud­
ied among others in [3, 4] but instead of coupUng the attitude of interacting 
traders to the global attitude ai{t)\ J2j=i ^j(^~ 1)1 ^^ in [4] we have introduced 
the coupling to the temporary price p{t). We assume also that one can not 
distinguish between fundamental and interacting traders and all traders are 
influenced by trader-trader interactions and by ratio between the temporary 
price and the individually chosen fundamental price. 

Using the mean field approximation after some algebra one can write av­
erage attitude of investors as 

t-i 

(a{t + 1)) = tanhl{Nsm/T){a{t)) - {N^ß/T) J2(<^ir))] (2) 
T = l 

where s, m, 7 are corresponding mean values. As one can see due to the cou­
pling of investment attitudes to the local price there is a memory term in the 
above equation. This term induces either oscillations of the mean attitude (in­
vestor mood) {o-{t)) around the zero value for Nsm/T < 1 (the paramgentic 
phase of weak interactions) or between two values that follow from the stan­
dard mean field solution for Nsm/T > 1 (the ferromagnetic phase of strong 
interactions). The second kind of dynamics corresponds to switching bwetween 
the bull {{(j{t)) > 0) and bear {{a{t)) < 0) market. A typical dynamics for 
weak and strong interactions regime is presented at Fig. (1). 

It easy to show that in the case when the discrete time equation for price 
changes can be approximated by a differential equation then the switching 
time between two ferromagnetic phases is inversely proportional to the cou­
pling constant 7 what in fact has been observed in our numerical experiments. 

We have studied the influence of the leader on the market dynamics. The 
leader has been characterized by a large market strength SL- In the presence of 
such a leader the evolution of prices has been shifted towards lower or towards 
higher values depending on a characteristic value of a fundamental price p{ 
assumed by the market leader. In fact the presence of such a leader resembles 
the effect of the external field h that breaks the symmetry in the considered 
system. It is remarkable that in average the leader doee not have larger profits 
than less influential players (see Fig. 2). 
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Fig. 1. Solutions: oscilations of the mean investor mood in a paramagnetic phase 
or between two ferromagnetic phases 

Various test have been performed to find optimal values for an individual 
to get the largest profit. Our simulations have shown that the best strategies 
correspond to larger values of the coupling constants ji that characterize the 
role of fundamental aspects in the trader strategy (see Fig. 3 and Fig. 4) 

It interesting that values of assumed fundamental prices p{ play only a 
minor role and investors with different p{ get in average the same profits if 
they coupling constants ji are the same. 

In conclusions we show that in a simple model of heterogenous investors 
an influential market player does not have large benefits. Such benefits can be 
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Fig. 2. Strong leader does not get larger profits ! 

a result of a strong coupling between an investor strategy and a fundamental 
price. 
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Fig. 3 . Changes of cumulative profits for agents with different fundamental weights 
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Abstract . This paper presents the model of the dynamics process of switching 
the strategies adopted by a large number of agents according to their views of 
what they deem as the most advantageous strategy in relation to the behavior 
of other agents and/or exogenous environments. The process of switching 
the strategies is modeled by the master equation by suitably specifying the 
transition rates of continuous time Markov chains. The computer simulation 
explains the effects of demand-supply imbalance created by short-medium 
term traders in the dollar-yen foreign exchange market. 

1 Introduction 

We examine nonlinear dynamics generated by a large number of heterogeneous 
agents when they switch, enter or exit their strategies. They change, enter or 
exit their strategies over time, because they can not foresee the consequences 
of their choices exactly at the moment of their choice. Consequences of their 
choices are distributed stochastically, and over time new information may 
become available as to desirability of some choices over the others. 

Consequently, clusters of agents of the same choices may develop and dis­
appear over time. Aoki (1996,2002) has discussed problems for the case where 
each agent has binary choices. As in these cases, we use the master equa­
tion, that is, the backward Chapman-Kolmogorov equation, to discuss the 
dynamics of agent behavior. 

In the late 1980s and until the mid 1990s, Hogg and Huberman (1991), 
Youssefmir and Huberman (1995) or Adjali, Gell and Lunn (1994), and their 
collaborators have published a number of papers in which agents have many 
choices over resources and strategies. While these authors use error func­
tions to express distributions of the consequences of choices. We use Ingber's 
approximation to the error function and introduce Gibbs distributions into 
transition rates of continuous time Markov chains. 
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Here, the computer simulations focus on the states that agents implement 
two strategies in dollar-yen foreign exchange market. 

2 The model 

Suppose that there are a fixed number K strategies. The total number of 
agents is fixed at N . At any time n^ is the number of agents with strategy i, 
where Y^^ Ui = N . The master equation describe how the probability P r ( n , t) 
evolves over time, where n is the vector whose i-th component is n^. We say 
agent is of type i when it uses strategy i. 

The probability Pr{n,t -f A) increases over Pr{n,t) by the net inflow of 
probability flux, that is, the difference between the inflow and outflow, where 
inflow arise from some agent of type j deciding to drop strategy j and adopting 
strategy i, j ^ i, and outflow is due to one agent of type i deciding to switch 
to a different strategy. 

Since we model those processes as birth-and-death type Markov process, 
at most one such strategy switch takes place over a small time interval A. 

The master equation is derived from 

P r ( n , t-^Ä) = F r ( n , t) - ^ P r ( n , t)Lü(n, n') + ^ Pr{n\ t)uj{n\ n) 

Assuming that A is the rate of strategy examination over time, denoting 
the number of agents of type j before revision by n ' , and let r)j^i the probability 
that strategy i is regarded by agent j to be the most desirable, we write the 
transition probability over time interval A as 

a;(n' ,n) = n'jr]j^i{n')A 

Aoki(2002) has shown that on the derivation that 77 has a Gibbs distribu­
tion e^^^'^/Z, where Z is a partition function, where /? is a parameter which 
embody the uncertainty associated with this switch of strategy, and gj^i is 
the expected difference in the discounted present value of adopting strat­
egy j over strategy i. Here we use Ingber's approximation to error functions 
for approximating transition rates in the way described by Aoki (1996,page 
133; 1998;2002,chap 6). Hence the master equation is rewritten as 

P r ( n , t + A)- P r ( n , t) = XA{0 - / ) , 

where O — I stands for inflow - outflow, where 

and 
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i j^i 

up to o{A). 
Dividing both sides by A and letting it go to zero we arrive at 

^ ^ = A ( 0 - / ) 

3 Interacting or No interacting patterns 

Calculating rjij for interacting patterns: Let Vi be the random dis­
counted present value of using strategy i,i = 1 , . . . , n for some specified length 
of time. Define rjij to be the probability that agents who have been using 
strategy i want to switch from strategy i to j , 

Viji^) = P^{^3 ^ max{V;}|x-) 

Under certain sets of assumptions, it is known that this expression is given 
by a Gibbs distribution, Aoki(2002,Sec.6.3). We can use a program called 
MULNOR, introduced by Shervich(1984,1985), to calculate such probabilities 
with agents interactions. 

Calculating equilibrium probability for no interacting patterns 
The master equation with the entry and exit without any switching the strate­
gies provides the equilibrium probabilities of the strategy i based on Poisson 
distribution. 

where 0 = a/{/j.k) ; a:the entry rate; fik'.the exit rate: /c:the number of traders. 

4 Simulation 

The simulation is made for identifying how the behavior of trading groups 
with a short-medium term horizon affects price movements in the foreign ex­
change market. We focus on two types of traders in the market: trend followers 
and contrarians. Type 1 is a trend follower who buys(or sells) currency when 
the currency is appreciating(or depreciating). They are sub-divided into type 
la and type lb . Type l a is a upward trend follower who gets profits when the 
market has upward trend. As a large number of trading strategies are available 
for upward trend viewers, we use option strategies to replicate their behav­
ior. The trading with buying calls represents type la strategy. Type l b is a 
downward trend follower who makes money when the market has downward 
trend. Buying puts represents type lb strategy. The trend followers switch 
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the sub-strategy from la to l b or vice versa, depending on their profits and 
losses. These interactions are described as birth-death process. Type l a and 
type lb have the master equation with transition rates that are functions of 
the profits and losses. 

Type 2 is a contrarian who buy(or sell) the currency when it is depreci-
ating(or appreciating), because they believe that the market will stay in the 
range. Selling calls and puts represents type 2 strategy. 

We assume that the trend followers and the contrarians do not change 
their types in a short-medium term horizon. However, they enter and exit the 
strategy over time depending on profits and losses of the strategy. Each of 
type 1 and type 2 has the master equation with the entry and exit without 
any interacting patterns. 

The simulations are made as follows: 
1. Trend followers : Type la(type lb) buys one unit of at the money 

call(put) with one(or three) month(s) maturity every day. They hold the po­
sitions until the maturity. Simplifying the problems, one(or three) month(s) 
consists of 20(or 60) working days. Therefore, the portfolios of options held 
by each sub-group include 20(or 60) different options. A set of daily historical 
data is used for the evaluations: spot price, imphed volatihties, and domestic 
and foreign interest rates. In case of type l a with one month maturity, the 
portfolio is evaluated daily as 

2 0 - 1 

Viait) - ^ im-tp X Q-<p,t - n-tj 

where Ct-tp,t is the value of the call option at time t starting at time t — tp 
as the at the money option with maturity of one month, and is evaluated 
by using the Black-Scholes type currency option model(M.b.Garman and 
S.W.Kohlhagen,1983). Wt-tj, is the weight of the option and equal to the 
inverse of Ct-tp^t-tp- 'ft-tp is the funding cost for the option starting at time 
t — tp. Based on the standard deviations and means of Via{t), we estimate the 
rates, r]ia,ib(t) by using Mulnor program, 

/

OO /»OO 

/ f{xia.xn)dxiadxib. 
-OO . / a 

The probabilities of type l a at time t-\- A based on a set of empirical data 
are obtained from 

Pr{nia, t-^ A) = Pr(nia, 0) -h ^ Pr{nia, t)uj{nia, nit, t) 
t=o 

0 < Pr{ni, t) < 1 for any t, where a;(7iia, nib, t) = Ix r]ia,ib{x{t)). I is constant 
over time and determined as maximizing the profit of the trend followers. 

Consequently, we get the daily values of the portfolio held by the trend 
followers. 
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V{t) = Prima, t-^A)x Viait) + (1 - Prima, t + A))x Vnit) 

2. Contrarians : Contrarians sell one unit of at the money call and put with 
one(or three) month(s) maturity every day and keep these positions until the 
maturity. The value of the portfolio is calculated by the same way as above. 

3. Entry to and Exit from the strategy : Finally, we calculate the standard 
deviation of the portfolio value of both the trend followers and the contrarians, 
and estimate the equihbrium probabilities of each strategy Pi^t^'^ = 1,2 with 
the entry and exit at time t based on Pisson distribution. 

Fig. 1. Three months simulation (la) provides the relationship between de­
mand/supply imbalance and dollar-yen price movements, (lb) provides the rela­
tionship between price increments and demand/supply imbalance. 

Fig. 2, One month simulation (2a) provides the relationship between de­
mand/supply imbalance and dollar-yen price movements. (2b) provides the rela­
tionship between price increments and demand/supply imbalance. 
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The decisions of entry to and exit from each group are made indepen­
dently, therefore, there are the imbalance between demand and supply of 
the currency (opt ions). This imbalance is balanced by market-makers and day 
traders in the market, however, we currently focus on the imbalance created 
by the short-medium term traders. In general, we can understand when trend 
followers dominate the market, they will provide the positive feedback of the 
price movements that may emerge the trend in the market. On the other hand, 
when contrarians dominate the market, the market may stay in the range due 
to the negative feedback of the price movements. The imbalance at time t is 
obtained by Pi^t — ̂ 2,1 • Fig 1 and 2 show us the simulation results that ex­
plain the demand-supply imbalance afPects the price movements in dollar-yen 
market, visually and intuitively. 

5 Conclusion 

We examine nonlinear dynamics generated by trend followers and contrarians 
with a short-medium term view in the dollar-yen market. Based on the analysis 
of computer simulation, we currently conclude that behavior of heterogeneous 
agents may be one of the reasons for generating trending or trendless market. 
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Phenomena which involves collective choice of many agents who are interact­
ing with each other and choosing one of several alternatives, based on the 
limited information available to them, frequently show switching between two 
distinct phases characterized by a bimodal and an unimodal distribution re­
spectively. Examples include financial markets, movie popularity and electoral 
behavior. Here we present a model for this biphasic behavior and argue that 
it arises from interactions in a local neighborhood and adaptation Sz learning 
based on information about the effectiveness of past choices. 

1 Introduction 
The behavior of markets and other social agglomerations are made up of the 
individual decisions of agents, choosing among a number of possibilities open 
to them at a given time. Let us consider the example of binary choice, where 
the agent can make one of two possible decisions, e.g., to buy or to sell. If each 
agent makes a choice completely at random, the outcome will be an unimodal 
distribution, a Gaussian to be precise, of the collective choice (i.e., the sum 
total of all the individual decisions), at whose mean value the distribution 
will have its peak. In our example this implies that, on the average, there are 
equal numbers of buyers and sellers. 

However, empirical data in financial markets [1, 2], movie popularity [3] 
and electoral behavior [4] indicate that there is another phase, correspond­
ing to the agents predominantly choosing one option over the other. This is 
reflected in a bimodal distribution of the collective choice (Fig. 1). 

To account for this we argue that, in a society, agents make choices based 
on their personal beliefs as well as opinions of their neighbors about the pos­
sible outcomes of a choice. These beliefs are not fixed but evolve over time 
according to changing circumstances, based on previous choices (adaptation) 
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u s Box Office Opening Gross Distribution: 1999-2003 2000 US House of Representatives Election 

l ° g i n ( G o / < G o > ) Fraction voting Democratic in a House District 

Fig. 1. Examples of empirical bimodal distributions. (Left) The distribution of 
opening week gross earning, Go (scaled by the average value for a particular year, 
< Go >) for movies released in the USA during the period 1999-2003. The different 
symbols correspond to individual years, while the curve represents the average over 
the entire period. (Right) Frequency histogram of vote share for the Democratic 
Party candidate in each House district at the 2000 US Federal House of Represen­
tatives election. 

and how they accorded with those of the majority (learning). We propose a 
model of collective choice dynamics where each agent has two variables asso­
ciated with it, one corresponding to its choice and the other corresponding to 
its belief regarding the possible outcome of the choice. 

The bounded rationality of the agents in our model is due to the limited 
information available to the agent at a given point of time. However, subject 
to this constraint, the agent behaves deterministically. One of the striking 
observations obtained from the model is that although each agent may behave 
rationally and change their beliefs (and hence their choices) periodically, the 
collective choice may get polarized and remain so for extremely long times 
(e.g., the entire duration of the simulation). 

2 The Model 
Our model is defined as follows. Consider a population of N agents, each of 
whom can be in one of two choice states S = ±\ (e.g., to buy or to sell, to vote 
Party A or Party B, etc.). In addition, each agent has a personal preference 
or belief, 9, that is chosen from a uniform random distribution initially. At 
each time step, every agent considers the average choice of its neighbors at 
the previous instant, and if this exceeds its belief, makes the same choice; 
otherwise, it makes the opposite choice. Then, for the z-th agent, the choice 
dynamics is described by: 

S\+' = signiSjeMJijS'j - of), (1) 

where ßf is the set of neighbors of agent z (?' = 1 , . . . , A/"), and sign (z) — 4-1, 
if 2; > 0, and = - 1 , otherwise. The coupling coefficient among agents, Jij, is 
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assumed to be a constant (= 1) for simplicity and normalized by ^ (== lA/'l), 
the number of neighbors. In a lattice, N is the set of spatial nearest neighbors 
and z is the coordination number. 

The individual belief 0 in turn evolves, being incremented or decreased at 
each time step, according to the agent's choice: 

61̂ +̂1 = e\ -h yiS\-^^ + XS\, if S\M^ < 0, 
= Ol + /i5*"^\ otherwise, 

(2) 

where M* = {l/N)EjSj is the collective choice of the entire community at 
time t. The adaptation parameter // is a measure of how frequently an agent 
switches from one decision to another. Belief also changes according to whether 
the previous choice agreed with the majority decision. In case of disagreement, 
the belief is increased/decreased by a quantity A that measures the relative 
importance of global feedback (e.g., through information obtained from the 
media). The desirability of a particular choice is assumed to be related to the 
fraction of agents in the community choosing it; hence, at any given time, 
every agent is trying to coordinate its choice with that of the majority. 

3 Results 
Although some analytical results can be obtained under mean field theory, 
here we present only numerical simulation results for the case where the agents 
are placed on a two-dimensional regular lattice (see Ref. [5] for details). Note 
that, in absence of either adaptation or global feedback (/x = A = 0) the model 
reduces to the well-studied random field Ising model. 

N = 1002,n=0.1 

T = 5 X10" itrns 

-0.6 -0.4 -0.2 

Fig. 2. (Left) Probability distribution of the collective choice M at different values of 
the global feedback parameter A. A phase transition from a bimodal to an unimodal 
distribution occurs as A ^ 0. The simulation results shown are for 100 x 100 agents 
interacting in a 2-D lattice for 50,000 iterations. The adaptation rate is /x = 0.1. 
Compare with Fig. la in Ref. [1]. (Right) Spatial pattern in the choice behavior for 
1000 X 1000 agents interacting in a square lattice after 10^ iterations with /i = 0.1 
and A = 0.05. 
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In the presence of adaptation but absence of learning (/i > 0, A = 0), start­
ing from an initial random distribution of choices and personal preferences, 
we observe only very small clusters of similar choice behavior and the average 
choice M fluctuates around 0. In other words, at any given time equal num­
ber of agents have opposite choice preferences (on an average). Introduction 
of learning in the model (A > 0) gives rise to significant clustering as well as 
a non-zero value for the collective choice M. We observe a phase transition of 
the probability distribution of M from an unimodal to a bimodal form as a 
result of the competition between the adaptation and global feedback effects 
(Fig. 2 (left)). 

The collective choice switches periodically between a positive value and a 
negative value, having an average residence time which diverges with A and 
with N. For instance, when A is very high relative to /z, M gets locked into 
one of two states (depending on the initial condition), corresponding to the 
majority preferring either one or the other choice. This is reminiscent of lock-
in in certain economic systems subject to positive feedback [6]. The existence 
of long-range correlations in the choice of agents in the bimodal phase often 
results in striking spatial patterns such as vortices and spiral waves [Fig. 2 
(right)] after long times. These patterns often show the existence of multiple 
domains, with the behavior of agents belonging to a particular domain being 
highly correlated and slaved to the choice behavior of an "opinion leader". 

We have also introduced partial irrationality in the model by making the 
choice dynamics stochastic. Each agent may choose the same as or opposite 
to that of its neighbors if their overall decision exceeds its personal belief, 
according to a certain probability function with a parameter ß that is a mea­
sure of the degree of reliability that an agent assigns to the information it 
receives. For /? —> 0, the agent ignores all information and essentially chooses 
randomly; in this case, expectedly, the distribution becomes unimodal. Un­
der mean-field theory, one sees that the bimodal distribution occurs even for 
A = 0 as /? —> oo; however, as ß is gradually decreased a phase transition to 
the unimodal distribution is observed. 

4 Discussion and Summary 
Our model seems to provide an explanation for the observed bimodality in a 
large number of social or economic phenomena, e.g., in the initial reception of 
movies, as shown in the distribution of the opening gross of movies released in 
theaters across the USA during the period 1997-2003 [3]. Bimodality in this 
context implies that movies either achieve significant success or are dismal 
box-office failures initially. We have considered the opening, rather than the 
total, gross for our analysis because the former characterizes the uncertainty 
faced by the moviegoer (agent) whether to see a newly released movie, when 
there is very little information available about its quality. Based on the model 
presented here, we conclude that, in such a situation the moviegoers' choice 
depends not only on their neighbors' choice about this movie, but also on how 
well previous action based on such neighborhood information agreed with 
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media reports and reviews of movies indicating the overall or community 
choice. Hence, the case of A > 0, indicating the reliance of an individual agent 
on the aggregate information, imposes correlation among agent choice across 
the community which leads to bimodality in the opening gross distribution. 

Our model also provides justification for the two-phase behavior observed 
in the financial markets wherein volume imbalance clearly shows a bimodal 
distribution beyond a critical threshold of local noise intensity [1]. In contrast 
to many current models, we have not assumed a priori existence of contrar­
ian and trend-follower strategies among the agents [7]. Rather such behavior 
emerges naturally from the micro-dynamics of agents' choice behavior. 

Similar behavior possibly underlies biphasic behavior in election results. 
The distribution of votes in a two-party election will show an unimodal pattern 
for elections where local issues are more important than the role of the mass 
media (hence A = 0) and a bimodal distribution for elections where voters are 
more reliant on media coverage for individual-level voting cues (A > 0). 

One can also tailor marketing strategies to different segments of the pop­
ulation depending on the role that global feedback plays in their decisions. 
Products, whose consumers have A = 0, can be better disseminated through 
distributing free samples in neighborhoods; while for A > 0, a mass media 
campaign blitz will be more effective. 

In summary, we have presented here a model of the emergence of collec­
tive choice through interactions between agents who are influenced by their 
personal preferences which change over time through processes akin to adapta­
tion and learning. We find that introducing these effects produce a two-phase 
behavior, marked by an unimodal distribution and a bimodal distribution of 
the collective choice, respectively. Our model explains very well the observed 
two-phase behavior in markets, not only in the restricted context of financial 
markets, but also, in a wider context, movie income and election results. 
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Summary. This paper attempts to clarify some time series properties of binarized 
tick data by investor sentiment and genetic algorithm. For this purpose, first we 
explore the conditions for genetic algorithm to describe investor sentiment. Then 
we calculate auto-correlations and conditional probabilities using binarized sample 
paths generated by estimated models of investor sentiment. The most fitted param­
eter set of genetic algorithm have the following implications: First, a herd behavior 
is likely to emerge. Second, traders try to perceive brand-new information even if it 
is not completely correct. 

Key words : investor sentiment, genetic learning, binarized time series 

1 Introduction 

The recent development of econophysics has enabled us to capture another 
time series properties of high frequency data. The main contributions of this 
aspect are to reveal some differences of time scales and to clarify some pre­
dictabilities of markets (e.g. [6, 10]). While spin lattice models or Ising models 
have successfully described some emergent phenomena (e.g. [3, 4]), but it is 
not clear what drives such features of high frequency data, since those models 
have not taken into account behaviors of market participants so much. 

On the other hand, behavioral economics and agent-based computational 
economics (ACE) allow us to offer descriptive models about behaviors of in­
vestors or to replicate market dynamics. Among ACE models, genetic algo­
rithm has been often used as a method of agents' learnings [1, 5, 11]. Besides, 
some studies have stated that there needs some models which incorporate 
behavioral economics into ACE models [9, 13]. 

We investigated whether genetic algorithm learning (hereafter GAL) with 
investor sentiment (A model of investor sentiment: hereafter MIS) [2] was able 
to reproduce actual tick data. For this purpose, we determined the conditions 
from the viewpoints of agents towards market which were obtained when some 
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series of typical asset-returns were given. Then we explored more plausible 
conditions by comparing time series properties between actual data and the 
generated sample paths using the estimated variables of MIS. 

2 Description of MIS by GAL 

The constitutions of MIS are twofold; First, a market is either in a stable state 
or in an unstable one. If the market is in a stable state, the probability TTH 
that the price movement will be the same as the previous one is over 0.5. On 
the other hand, if the market is in an unstable condition, the probability TTL 
is under 0.5. And the parameter Ai (A2) is the probability of transition from 
unstable (stable) state to stable (unstable) one. Second, the price movement 
in the economy is -hi or —1. Therefore qt, the probability that the market is 
unstable, becomes to be higher in case that the asset return is different from 
the previous one, or to be lower otherwise^. 

In order to determine conditions requisite for GAL to describe MIS, we 
fed two kinds of price movements (—I I--I-+ and -I—) to agents with 
five binary bits (one of them was to judge a market condition, and others were 
to make a prediction). 

The simulation was ran by altering parameters of genetic algorithm, i.e. 
crossover (0.6 or 0.8), mutation (0.01 or 0.05), learning frequency (LF) (ev­
ery period or every 19-period), time horizon (last 1 or 19-period, or all peri­
ods), and fitness calculation^. We obtained the following conditions: First, the 
agents needed to know the market condition for their learnings. Second, the 
information used when the agents selected their parents must be up-to-date^. 

3 Relations between estimated MIS and binarized time 
series 

To describe some features of binarized data, first we generated 100 sample 
paths, each consisted of 10000 periods, using estimated and other variables of 
MIS, and learning frequency used in the previous section. Price movements 
and the renewal of qt were determined by random number and those five 
variables in MIS respectively, i.e. (1) in case that the previous change was +1 
and (2) otherwise: 

^ For more details, see [2]. 
^ There are three types: (fa) An agent receives -1-1 if she predicts the asset return 

precisely, (fb) She receives -hi if she predicts the asset return and, at the same 
time, judges the market condition properly, (fc) She receives -hi if she judges only 
the market condition properly. While she receives +3 if her expectation is also 
right about the price movement. 

^ For more details, see [14]. 
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Table 1. Auto-correlations of binarized data 

Al A2 TTL TTH Lag 1 Lag 2 

GAL 1*' 5.09 X 10"^ 12.63 x 10"^ 0.406 0.509 -0.129 0.025 
GAL 2*2 7.96 x 10"^ 10.06 x 10"^ 0.440 0.532 -0.040 0.008 
GAL 3*^ 6.50 X 10"^ 16.68 x 10"^ 0.403 0.501 -0.135 0.021 
GAL 4*^ 4.72 x 10"^ 5.53 x 10"^ 0.398 0.540 -0.073 0.009 
Baxberis [2] 1.00 x 10"^ 3.00 x 10"^ 0.333 0.750 -0.120 0.151 
Nikkei225 daily [7] 1.00 x 10"^ 8.00 x 10"^ 0.310 0.690 -0.174 0.047 
USD/JPY tick [12] -0.350 0.050 
*1: crossover: 0.8, mutation: 0.01, LF: every period, fitness: (fc) 
*2: crossover: 0.6, mutation: 0.01, LF: every period, fitness: (fc) 
*3: crossover: 0.8, mutation: 0.01, LF: every 19-period, fitness: (fc) 
*4: crossover: 0.8, mutation: 0.05, LF: every 19-period, fitness: (fc) 

f -hi, if rnd{) < qtiri + (1 - qt)'^H 
\ — 1, otherwise 

4-1, if rnd{) < qt{l - TTL) 4- (1 - qt){l - T^H) 

—1, otherwise 

(1) 

(2) 

where rndQ G (0, 1) is uniform random number. Then auto-correlations [12] 
and conditional probabilities [8] were calculated after eliciting the last 9000 
periods from each of the generated sample paths. 

First, we confirmed that each parameter of genetic algorithm, especially 
fitness calculation, influenced the first-order auto-correlation. If a parameter 
set was the one estimated by the fitness calculation (fb), the auto-correlation 
was nearly zero. On the other hand, the auto-correlation was around —0.100 
in case that the fitness calculation was (fc) (Table 1). These results imply that 
traders try to perceive brand-new but not perfectly correct information. 

Second, we found that the predictabilities hinged mostly on the learning 
frequencies and on the fitness calculations. Especially we can say the following 
implications with respect to the former parameter of genetic algorithm; The 
qt remained high in case that the learning interval was every 19-period (Fig. 
la) . This means that since the over half investors considered the market to be 
unstable, a trend-following prediction could not be seen. On the other hand, 
the qt dropped to be under 0.5 in case of fast learning (Fig. lb) . Besides, spec­
ulators switched their recognition before a predictability situation emerged. 
As a consequence, a trend-following prediction dominated the market. 

Finally, we show some results of other variables for comparison; The one 
is from [2] and the other is from [7] (Table 1 and Fig. Ic). From the most 
fitted parameter set, namely GAL 1, and the experimental ones, we draw 
some inferences as follows: First, a herd behavior is likely to emerge due to 
a high probability of crossover and a low probability of mutation. Second, 
speculators try to get brand-new information as soon as possible even if it is 
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a. Slow learning 
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c. Practical application 

Fig. 1. Differences of conditional probabilities (left panel) and qts (right panel) 

not completely correct. Probably lower TTL and higher TTH will describe actual 
tick data more precisely. 
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4 Conclusion 

This paper attempts to explain what drives time series properties of binarized 
tick data by investor sentiment and genetic algorithm. Our results imply that 
a herd behavior is likely to emerge and that speculators perceive brand-new 
information as soon as possible even if the information is not completely cor­
rect. For further research, we need to extend our model by altering parameters 
of genetic algorithm or by adding fundamentalists in order to distinguish be­
tween actual data and our results, or conduct other time series analyses. 
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Summary. A model of business scenario simulation is developed by applying 
game theory to the stochastic agents described by the Langevin equations for 
enterprise risk management (ERM). Business scenarios of computer-related 
industries are simulated using the developed model, and are compared with real 
market data. Economic capital was calculated based on the business scenario, as 
the most basic requisite of ERM. 
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1. Introduction 

Business scenario simulation is a crucial task for the decision-making of enterprise 
risk management (ERM) [1], in order to cope with an uncertain business 
environment, a business scenario simulation model, i.e. the game-theoretic 
stochastic agent [2, 3], was developed by applying game theory to the stochastic 
agents [4, 5] described by the Langevin equations in order to analyze uncertain 
business environments. In this paper, the business scenarios of computer-related 
industries, which consist of three industrial sectors, i.e. the large scale integrated 
circuit (LSI) sector, the personal computer (PC) sector, and the liquid crystal 
display (LCD) sector, were simulated using the game-theoretic stochastic agent 
model, and the results were compared with real market data. The importance of 
the herding behavior of firms was demonstrated to reproduce the formation and 
collapse of the bubble in the computer-related industry market in Japan during the 
late 90s. The economic capital of each sector was calculated, based on the 
business scenario, as the most basic requisite of ERM. 

2. Game-theoretic Stochastic Agent IVIodel 

The revenue R.{t) (/ = 1,---,N) for the /̂ ^ agent is described by the Langevin 
equation, 

^ = EAw,/(/-^.)-r./f,-|^+^,#,(')+'7('KM. (1) 
at k OK. 

where y. , U , a., and .̂ are a friction coefficient, an interaction energy, 
volatility, and the Gaussian white noise, respectively. Rational decision-making of 
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the î ^ agent is made by the first term of the RHS of Eq. (1). 
D.w.,^ = ±D. (^ = I,--, A )̂ is the planned revenue of the î*" agent, w.̂  = yv.^{PV.) 

is a transition probability at a decision-making point in time k, and depends on the 
payoff PV^ of the î ^ agent, which is the summed discounted cash flow over 

/ = t/At, 

p^ =(i-r)x{/?,(/A/)-c.(/AO}/(i+ry, (2) 

where T is a tax rate. The cost C. is assumed to be linear and quadratic, 

proportional to the revenue, C.{t)= aR.{t)-\- ßR.{ty . The second term of the cost 

corresponds to the fact that larger firms are less efficient. A transition probability 

w.̂ , which corresponds to the Nash equilibrium, is evaluated using backward 

induction. The third term of the RHS of Eq. (1) represents an interaction acting on 

the i'̂  agent, dU/dR^ = Z ^ ( ^ , -Rj -R, -^X where R.-R. is the average 

difference of revenue between the i* agent and the ĵ *" agent. The last term of the 
RHS of Eq. (1) represents the irrational herding behavior. 7]{t) and c{i) are the 
time-varying strength of the herding behavior and the competitor of the î*" agent, 
respectively. The time-varying strength of the herding behavior 7]{t) is assumed 
to be externally given in this model. 

3. Simulation 

The market data for the LSI, PC, and LCD sectors among the computer-related 
industries in Japan were divided into three periods, i.e. (I) the normal period, (II) 
the bubble period, (III) the post-bubble period. The model parameters were 
calibrated in order to reproduce the market data of the computer-related industries 
during Period I as a Nash equilibrium [3]. Scenarios of revenues for Periods II and 
III were generated for the six-agents system, i.e. the LSIl agent, the LSI2 agent, 
the PCI agent, the PC2 agent, the LCDl agent, and the LCD2 agent, using a 
Monte Carlo simulation according to Eq. (1). The time-varying strength of the 
herding behavior rj{t) was given as follows, rj{t) = -^OA for Period II and 
;/(/)= -0.1 for Period III. The generated mean scenarios of revenues for Periods 

II and III are shown in Fig. 1 (a). Fig. 1 (a) shows that the bubble formation during 
Period II and the bubble collapse during Period III were reproduced fairly well for 
all sectors. It is, however, noted that the calculated revenue for the LCD sector 
was larger than the market data during Period III. The importance of the herding 
behavior of firms was demonstrated to reproduce the formation and collapse of the 
bubble in the computer-related industry market in Japan during the late 90s. 

The revenue distributions of the PC sector at 2Q-01 are shown in Fig. 1 (b). 
One is for the Gaussian random number, and the other is for the power random 
number. The same standard deviation was used for both random numbers. The 
revenue distribution with the power random number has a fat tail. 
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The payoff distributions PVp^., calculated using Eq. (2) for the Gaussian and 
the power random number, are shown in Fig. 1 (c) and (d), respectively. The 
economic capital, which is equal to the capital exposed to risk according to the 
Eaming-at-Risk technique, was calculated as the most basic requisite of ERM. 
The calculated economic capitals were 6.05x10^ JPYand 6.05x10^ JPYfor 
Fig. 1 (c) and (d), respectively. 

Fig. 1 Revenues for Periods II and III for the six-agents system with herding 
behavior are shown in Fig. 1 (a). The symbols are real market data. The revenue 
distribution of the PC sector at 2Q-01 is shown in Fig. 1 (b). The revenue 
distribution with the power random number has a fat tail. The payoffs with the 
Gaussian and the power random number are shown in Fig. 1 (c) and (d), 
respectively. The calculated economic capitals as the requisite of ERM were 
6.05x10' JPYand 6.05x10' JPY for Fig. 1 (c) and (d), respectively. 
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4. Conclusions 

Business scenario simulation is a crucial task for the decision-making of ERM, in 
order to cope with the uncertain business environment. A model of business 
scenario simulation was developed by applying game theory to the stochastic 
agents described by the Langevin equations for ERM. Business scenarios of 
computer-related industries were simulated using the developed model, and were 
compared with real market data. The importance of the herding behavior of firms 
was demonstrated to reproduce the formation and collapse of the bubble in the 
computer-related industry market in Japan during the late 1990s. The economic 
capital, which is equal to the capital exposed to risk according to the 
Eaming-at-Risk technique, was calculated as the most basic requisite of ERM, and 
used for the obtained payoff distribution. An appropriate implementation of the 
model will be valuable to analyze the uncertain business environment and to 
provide feasible decision-making for ERM. 
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Blackouts, risk, and fat-tailed distributions 
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Summary. We analyze a 19-year time series of North American electric power 
transmission system blackouts. Contrary to previously reported results we find a 
fatter than exponential decay in the distribution of inter-occurrence times and ev­
idence of seasonal dependence in the number of events. Our findings question the 
use of self-organized criticality, and in particular the sandpile model, as a paradigm 
of blackout dynamics in power transmission systems. Hopefully, though, they will 
provide guidehnes to more accurate models for evaluation of blackout risk. 

Electric power transmission networks are complex systems.^ Due to eco­
nomic factors, they are commonly run near their operational limits. Major 
cascading disturbances or blackouts of these transmission systems have seri­
ous consequences. Although, each blackout can be attributed to a particular 
cause: natural peril, equipment malfunction or human behavior, an exclusive 
focus on the causes of these events can overlook the global dynamics of a 
complex system. Instead, it might be interesting to study blackouts from a 
top-down perspective. Following Carreras et al. (2004) we analyze a time series 
of blackouts to explore the nature of these complex systems. However, despite 
the fact that we are using the same database we obtain different results. Con­
sequently, we challenge their arguments that lead to modeling blackouts as a 
self-organized criticality (SOC) phenomenon (Bak et a/., 1987). 

The reliability events — like the August 1996 blackout in Northwestern 
America that disconnected 30,390 MW of power to 7.5 million customers or 
the even more spectacular August 2003 blackout in Northeastern America 
that disconnected 61,800 MW of power to 50 million people — demonstrate 
that the necessary operating practices, regulatory policies, and technological 
tools for dealing with the changes are not yet in place to assure an acceptable 
level of reliability. In a restructured environment, prices are a matter of private 
choice, yet the reliability of the delivery system affects everyone. 

^ For a brief review of approaches to complex systems and cascading failure in 
power system blackouts see Dobson et al. (2004). 
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Naturally, the operation of the electric system is more difficult to coordi­
nate in a competitive environment, where a much larger number of parties are 
participating. For example, in North America about one-half of all domestic 
generation is now sold over ever-increasing distances on the wholesale mar­
ket before it is delivered to customers (Albert et a/., 2004). Consequently the 
power grid is witnessing power flows in unprecedented magnitudes and direc­
tions. Unfortunately, it seems that the development of reliability management 
reforms and operating procedures has lagged behind economic reforms in the 
power industry. In addition, responsibility for reliability management has been 
disaggregated to multiple institutions (Carrier et a/., 2000). All this results 
in an increase of the risk of blackouts, not only in North America, but also 
world-wide. 

The Disturbance Analysis Working Group (DAWG) database"^ summarizes 
disturbances that have occurred in the electric systems in North America. The 
database is based on major electric utiHty system disturbances reported to the 
U.S. Department of Energy (DOE) and the North American Electrical Reli­
ability Council (NERC). The data arise from government incident reporting 
requirements criteria detailed in DOE form EIA-417. 

Carreras et al. (2004) analyzed the first 15 years of data (1984-1998) from 
the DAWG database. As currently four more years of data are available^ we 
study two datasets: D98 covering the period 1984-1998 and D02 covering the 
full data set 1984-2002. The first one is used for comparison with the previous 
findings, while the second lets us extend the analysis and draw more up-
to-date conclusions. The data are of diverse magnitude and of varying causes 
(including natural perils, human error, equipment malfunction, and sabotage). 
It is not clear how complete these data are, but it seems to be the best-
documented source for blackouts in the North American power transmission 
system. Besides the date and the region of occurrence, two measures of the 
event's severity are given: the amount of power lost (in MW) and the number 
of customers affected. 

There are 435 documented blackouts in the first 15 years (dataset D98), 
which gives on average 29 blackouts per year. A few events have missing 
data in one or both of the severity fields. For the analysis of blackout sizes 
we have used only those 427 occurrences which have complete data in both 
columns.^ The average inter-occurrence time is 12.6 days, but the blackouts 
are distributed over the 15 years in a non-uniform manner with a maximum 
waiting time of 252 days between event origins. Furthermore, the mean and the 
maximum restoration times are 14 hours and 14 days, respectively, indicating 

Publicly available from http://www.nerc.com/''dawg/database.html. 
The delay in data distribution is due to the complexity of the problem. It can 
take months after a large blackout to dig through the records, establish the events 
occurring and reproduce a causal sequence of events. 
However, for the waiting time distribution analysis we have used all occur­
rences. A preprocessed, spreadsheet-ready ASCII format datafile is available from 
http://www.im.pwr.wrocpl/'rweron/exchlink-html. 
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Fig. 1. The quarterly number of blackout events from 1984 till 2002 (top) and 
annual distribution of monthly events (bottom) for the North-American power grid. 

that the inter-occurrence times are more or less equivalent to the quiet times 
(the lapses of time between the end of a blackout and the beginning of the 
next one). 

In the full dataset (D02) there are 646 documented blackouts, yielding on 
average 34 blackouts per year. However, only 578 occurrences have complete 
severity data, since - especially in 1999 and 2000 - there are many missing 
values. The average period of time between blackouts is now only 10.7 days, 
indicating a recent increasing trend in the number of blackouts, while the 
mean and the maximum restoration times are slightly higher: 16 hours and 
15 days, respectively. 

Although the scarcity of data limits sound statistical inference, looking at 
the top panel of Fig. 1 we can intuitively divide the dataset into three parts: an 
initial period of relatively volatile activity (1984-1990; quarters 1-28), followed 
by a fairly calm period (1991-1998; quarters 29-60), and, most recently, a 
period of increasing activity (1999-2002; quarters 61-76). Whether this is a 
consequence of deregulation, different incident reporting procedures or simply 
randomness remains an open question. However, the seasonal behavior of the 
outages is indisputable. Roughly 30% of all blackouts take place in July and 
August, see the bottom panel of Fig. 1, regardless of the dataset analyzed. 
Our observations contradict earlier reports, where the authors detected no 
evidence of systematic changes in the number of blackouts or (quasi-)periodic 
behavior (Carreras et a/., 2004). 

A closer inspection of the waiting times between blackouts reveals a non-
trivial nature. The distribution does not have an exponential tail, as reported 
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Fig. 2. The complementary cumulative distribution function (1 — CDF(r)) of the 
waiting times r (measured in days) between two consecutive blackout origins for the 
North-American power transmission system using the D02 (main panel) and D98 
data sets (inset). The dashed lines represent exponential fits to the distributions. The 
solid lines correspond to a stretch exponential fit (main panel) and the exponential 
fit obtained by Carreras et al. (2004) using the same data set (inset). 

e.g. by Chen et al. (2001), but rather a fatter one.^ As can be seen in Fig. 
2 the deviation is significant for both D98 and D02. These findings question 
the SOC-type approach to modeling blackout dynamics (Carreras et al., 2004) 
since SOC-type dynamics should exhibit exponential decay in the waiting time 
distribution (BoflFetta et al., 1999, Carreras et a/., 2004). 

It is apparent that large blackouts, as the mentioned earlier August 1996 
and August 2003 events, are rarer than small blackouts. But how much rarer 
are they? Analysis of the D98 and D02 datasets shows that the complementary 
cumulative probability distribution of the blackout sizes does not decrease 
exponentially with the size of the outage, but rather has a power-law tail of 
exponent a = 1, see Fig.3. Hence, if we evaluate the risk of a blackout as 
the product of its frequency and cost (commonly regarded to be proportional 
to unserved energy, see e.g. Billinton and Allan (1996)), then the total risk 
associated with the large blackouts is - due to the power-law type distribution 
of blackout sizes - much greater than the risk of small outages. This is strong 
motivation for investigating the global dynamics of series of blackouts that 
can lead to power-law tails. The investigated models, though, should take 
into account all or at least most of the characteristics revealed in this study. 

^ Waiting time distribution of high-frequency financial data show similar fatter-
than exponential distributions (Scalas et a/., 2005). 
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Fig. 3. The complimentary cumulative distribution (1 — CDF(P)) of power lost (P) 
due to blackouts for the North-American electric power transmission system. 
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Summary. Portfolio selection has a central role in finance theory and practical 
applications. The classical approach uses the standard deviation as risk measure, 
but a couple of alternatives also exist in the literature. Due to its computational 
advantages, portfolio optimization based on absolute deviation looks particularly 
interesting and it is widely used in practice. For the practical implementation of 
any variant, however, one needs to estimate the parameters from finite return se­
ries, which inevitably introduces measurement noise that, in turn, affects portfolio 
selection. Although much research has been devoted to investigating the noise in the 
classical model, hardly any attention has been paid to the problem in the case of 
absolute deviation. In this paper, we study the effect of estimation noise in the case 
of absolute-deviation-based portfolio optimization. We show that the key parameter 
determining the effect of noise is the ratio of the length of time series to portfolio size 
and that, other things being equal, the effect of noise is higher than in the classical, 
variance-based model. This finding points to the importance of checking whether 
theoretically ,,better" portfolio selection models can indeed outperform the claissical 
one in practice. 

K e y words: portfolio optimization, absolute deviation, estimation error 

Introduction 

Starting with the seminal work of Markowitz (1952, 1959) the problem of 
portfolio selection has gained a central role in finance, both in theory and 
practical applications (see e.g. Elton and Gruber (1995) and the numerous 
references therein). Mean-variance portfolio selection along with the subse­
quently developed Capital Asset Pricing Model (CAPM) form the pillars of 
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modern investment theory and have led to important investment and risk 
management appHcations such as, for example, capital allocation or risk ad­
justed performance measurement. 

However, it has been clear from the very outset that the practical im­
plementation of the theory is less than straightforward. First, the input pa­
rameters in the optimization problem (expected returns and the covariance 
matrix) have to be determined from empirical data. Estimating ,,expected" 
returns is notoriously hard, but one is left with the task of estimating covari-
ances even in those cases, where one attempts to minimize risk without any 
reference to expected returns (e.g. in several hedging problems or benchmark 
tracking). Covariance matrices of returns are usually estimated from finan­
cial time series. Since one has to estimate 0(A/'^) covariance matrix elements 
{N denotes the number of assets) from NT datapoints (T denotes the length 
of the time series), it is clear that, unless T ^ N (which is usually not the 
case in practical applications), these estimates will contain considerable noise, 
which can in turn adversely affect the determination of the optimal portfolio. 
This was recognized very early in the literature and several procedures, for 
example factor models (see e.g. Elton and Gruber 1995) or Bayesian shrinkage 
estimators (e.g. Frost and Savarino 1986), have been introduced in order to 
reduce the estimation error. By decreasing the effective dimensionality of the 
problem, most of these techniques can achieve a significant reduction of noise. 

Second, since mean-variance portfolio selection requires the minimization 
of a quadratic form (in the asset portfolio weights) subject to different con­
straints, it usually leads to a quadratic programming problem that needs to 
be solved numerically^. Although (thanks to spectacular advances in comput­
ing technology) this does not constitute an impassable barrier anymore, for 
large portfolios the practical implementation of the mean-variance portfolio 
selection framework can still require considerable resources and sometimes 
non-standard optimization techniques. It is, therefore, important to consider 
alternatives to the classical mean-variance optimization, preferably such that 
the idea of mean-risk optimization be preserved (with some other measure of 
risk, instead of the standard deviation). 

One such portfolio optimization framework, based on absolute deviation 
as a risk measure, has been advanced by Konno and Yamazaki (1991). Here, 
the risk of a portfoho (of weights Wi) of Â  assets with returns described by 
random variables r^ of means //j is given by 

E ( | ^ i / ; , ( r , - / x , ) | ) , (1) 
i 

where E(-) denotes expected value and i = 1,2,...,A^. In practice, one has to 
minimize (subject to different constraints) an estimator for this, based on a 
sample of finite time series: 

^ Except in the simple case when the only constraints are the budget constraint and 
the one on the expected returns, when the problem can be solved analytically. 
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t i 

where ru denotes the return on asset i at time t {t = 1,2, . . . , T ) and 
fii = ^ 5Zt ^i* • '^^^ main advantage of the above mean-absolute deviation 
portfoUo optimization model is computational: as long as the accompanying 
constraints remain linear, the problem can be solved by linear programming, 
which requires significantly less computational effort than the classical, mean-
variance optimization. 

Due to its computational ease, mean-absolute deviation portfolio selection 
has gained important ground also in practice. For example, Algorithmics, a 
leader in risk management solutions, has built its portfolio optimization tool 
on absolute deviation as risk measure*^ (Dembo and Rosen 2000, Algorithmics 
2002). Besides the usual mean-risk optimization, the software can be used to 
minimize risk without constraints on expected returns, providing solutions, for 
example, for benchmark tracking, portfolio compression or different hedging 
or pricing problems. 

However, little attention has been paid to the estimation error in the mean-
absolute deviation framework. Even if we only consider a situation where 
expected returns are irrelevant, there might be considerable noise stemming 
from the finiteness of the time series in Eq. (2). It is therefore important to 
know the magnitude of the effect of this noise on the selected portfolio. 

Since very early, much research has focused on the estimation noise and 
the performance of different noise reduction techniques in the case of mean-
variance optimization (e.g. Elton and Gruber 1973, Eun and Resnick 1984, 
Chan, Karceski and Lakonishok 1999). In contrast with the empirical approach 
in the literature, in an earlier paper (Pafka and Kondor 2002) we proposed a 
model/simulation-based approach. Making use of an appropriate metric for 
the effect of noise, we applied this framework to systematically investigate the 
effect of noise in the problem of variance-based risk minimization. We showed 
that the effect of noise depends essentially on the ratio T/N of the length of 
the time series to the size of the portfolio (Pafka and Kondor 2003), and that, 
indeed, dimension reduction techniques can be very efficient in reducing this 
estimation noise (Pafka and Kondor 2004). However, (except Simaan 1997) 
we are not aware of a similar study of the effect of noise in mean-absolute 
deviation portfolio optimization. 

In this paper we extend our earlier methodology to investigate the effect 
of noise in the risk minimization problem based on absolute deviation. Very 
much like in Simaan (1997), we find that noise can cause a significant error in 
the optimal portfolio and, for the same set of parameters, this error is higher 
than in the case of variance-based risk optimization. In addition, we identify 
the key factor determining the impact of noise in the mean-absolute deviation 

^ More precisely, the user can choose from different forms of absolute deviation (e.g. 
considering all or only the negative returns, respectively) or a form of ,,maximal 
loss" (which also leads to a linear programming problem). 
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framework and show that (for a wide choice of the random process generating 
the time series) the effect of noise depends essentially only on the ratio T/N 
again, similarly to the case of variance minimization. 

Results and Discussion 

For our present study we adapt the simplified portfolio optimization frame­
work advanced by Pafka and Kondor (2003): the portfolio risk (estimator) 
T £ t I X^i'^i'^it\ is minimized under the budget constraint Yli'^i — 1' where 
Tit represents (normally distributed) surrogate return series generated using 
various covariance structures. The „optimal" portfolio in the presence of noise 
is determined by solving the above minimization problem (which reduces to 
linear programming), while the ,,true" optimal portfolio is determined by 
solving the minimization of E( | ^i'^iTi\) under the same budget constraint, 
which, for normally distributed returns, is equivalent to solving the corre­
sponding variance minimization problem (Konno and Yamazaki (1991)). Us­
ing the same metric as in Pafka and Kondor (2002), we quantify the effect 
of noise by ^o, the ratio of the risk (in this case the absolute deviation) of 
the optimal portfolio in the presence of noise and the risk of the true optimal 
portfolio^. 

For different values of portfolio size N and time series length T, and for dif­
ferent covariance structures crj • (Pafka and Kondor 2004), we determined the 
effect of noise {QQ) using Monte Carlo simulations. The results are summarized 
in Fig. 1. It can be seen from the figure that for large sizes, the effect of noise 
depends essentially only on the ratio T/N (for a large choice of the covariance 
structure of returns). Pafka and Kondor (2003) found a similar dependence in 
the classical variance-based case^, also shown in the figure. Therefore the key 
factor determining the effect of noise in the absolute deviation based portfolio 
optimization is T/AT, similarly to the classical variance-based case. Moreover, 
(in both cases) as T approaches N from above, ^o diverges, anticipating the 
fact that for T < A/" the optimization problem becomes degenerate (and mean­
ingless from a practical point of view). 

The other remarkable feature of the results presented in Fig. 1 is that for 
the same choice of input parameters the level of noise in absolute-deviation-
based optimization is higher than in the classical case with standard deviation. 
An interesting (although not rigorous) explanation for this can be obtained 

We emphasize that by risk (of a portfolio of weights wi) we mean E ( ^ ^ WiTiyj^ 
which in the case of normally distributed returns is proportional to the standard 

deviation of ^^win^ i.e. to ( J^^ i^tcj^ lüj) , where aĵ - is the covariance 
matrix used for generating the return series. 
In addition to simulation results, tools from random matrix theory allow one to 
derive a closed, analytical formula for qo in the AT —̂  oo limit: qo = 1 /^1 — N/T 
(Pafka and Kondor 2003), which fits the simulation results already for N ~ 50. 
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Fig. 1. q'o as a function of T/N for different N, T and different covariance structures 
(solid line). For comparison, we also display the corresponding results for variance 
minimization (dashed line). 

by considering the iso-risk level surfaces (in the space of portfolio weights) 
of standard and absolute deviation, respectively. If returns are, for exam­
ple, independent, normally distributed, the ,,true" iso-risk surfaces of both 
standard and absolute deviation are ellipsoids. However, when risk must be 
estimated from finite return series, the iso-risk surfaces become ,,deformed" 
and, in general, a higher level of noise will cause more significant deformation. 
The deformation (relative to the ideal case) can be significant in both cases. 
However, while the iso-risk surfaces of standard deviation remain ellipses, 
those for absolute deviation become polygons (that go over into ellipses for 
infinitely long time series). Similarly, in higher dimensions we will have risk 
ellipsoids and risk polyhedra. The solution to the risk minimization problems 
is at the points where these level surfaces first touch the hyperplane of the 
budget constraint; in the case of absolute deviation this happens at one of the 
corners of the risk polyhedron. It is clear that the slightest change (due to 
noise) in the orientation of the risk polyhedron will cause the solution to jump 
to another corner, while a small reorientation of the ellipsoid corresponding 
to the variance will cause a smooth shift in the solution. This explains the 
enhanced sensitivity of the absolute deviation framework to noise. We can 
see then that ,,linearizing" the problem by using the absolute deviation for a 
risk measure comes not only with the computational advantage of linear pro­
gramming, but also with the inevitable increase in instability and estimation 
noise. 
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Conclusion 

Due to its computational advantages, portfolio optimization based on ab­
solute deviation as risk measure (instead of the standard deviation of the 
classical approach) has recently become wide-spread in practice. Although 
much research has focused on the effect of estimation noise in the classical 
(standard-deviation-based) problem, little attention has been paid to the case 
of absolute deviation. In this paper we have analyzed the effect of estimation 
noise in absolute-deviation-based portfolio optimization. We found that the 
level of noise can be significant and it is, in general, higher than in the case 
of standard-deviation-based optimization. This points to a possible trade off 
between computational advantage and noise level, which should be carefully 
analyzed whenever one chooses a risk measure for practical application. 
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Summary. We use principal component analysis (PCA) for extracting princi­
pal components having larger-power in cross correlation from risky assets (El­
ton and Gruber 1973), and random matrix theory (RMT) for removing noise 
in the correlation and for choosing statistically significant components (Laloux 
et al 1999, Plerou et al 1999) in order to estimate expected correlation in port­
folio optimization problem. In addition to correlation between every pairs of 
asset returns, the standard mean-variance model of optimal asset allocation 
requires estimation of expected return and risk for each assets. Asset alloca­
tion is, in practice, quite sensitive to how to estimate the expected return. We 
applied estimation based on ''beta" (following the idea of Black and Litterman 
1992) to portfolio optimization for 658 stocks in Tokyo Stock Exchange (TSE). 
By using daily returns in TSE and verifying that TSE has qualitatively sim­
ilar principal components as NYSE (Plerou et al 1999), we show (i) that the 
error in estimation of correlation matrix via RMT is more stable and smaller 
than either historical, single-index model or constant-correlation model, (ii) 
that the realized risk-return in TSE based on our method outperforms that of 
index-fund with respect to Sharpe ratio, and (iii) that the optimization gives 
a practically reasonable asset allocation. 

Key words, random matrix theory, cross correlation, portfolio optimization 

In the standard of mean-variance paradigm (Elton et al 2003), portfolio 
optimization problem is to allocate a fraction Wi of total asset to each risky 
asset i by minimizing the variance ^ ^ pija^djU^Wj under the constraints (a) 
total return fp = f̂ it;̂ , (b) normalization ^ ^ w^ — 1, and (c) some constraints 
such that Wi > ^ forbidding short-selling. Here r̂  is return of asset i, f^ is 
its expected value, o\ is expected variance of asset z, and p ĵ is correlation 
coefficient matrix (normalized such that p^^ — \.). 

The optimization problem involves estimation of expected return fj, ex­
pected risk G^ and correlation of every pairs of assets p^j. For practical appli-
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cation of portfolio optimization, one has to overcome several problems. First, 
since the number of risky assets involved is typically hundreds or thousands, it 
is a formidable task for a practitioner to estimate every elements of correlation 
matrix. Although the cross correlation matrix has components of correlated 
movement of returns (Elton and Gruber 1973), one often assumes some simph-
fication in the correlation matrix (Elton et al 1978). Several years ago, Laloux 
et al 1999 and Plerou et al 1999 independently applied random matrix theory 
to estimate a noise level appearing in the eigen-value spectrum of correlation 
matrix (see also Bouchaud and Potters 2000, Plerou et al 2002, Rosenow et al 
2002). There have been some recent works (Ma et al 2004, Sharifi et al 2004, 
Utsugi et al 2004) for example. We have verified that TSE has qualitatively 
similar principal components as what had been found in other markets (see 
principal components in Fig. 4). 

Second, when solving the optimization problem without constraint such as 
(c) above, one often gets large short positions in many assets. When one rules 
out short positions by constraint (c) and uses historical values for estimation 
of return f̂ , they frequently obtain "corner' solutions with zero weights in 
many assets, and at the same time, unreasonably large weights in a small 
number. This would invalidate the diversified portfolio itself (see Fig. 1). We 
employ the idea in solving these problems developed by Black and Litterman 
1992, and use "beta" estimation of return f̂ , while we use historical values for 
estimation of risk ai in solving the optimization. For estimation of correlation 
Pij, we use RMT-denoised historical correlation as done in Plerou et al 2002. 

We show that this approach of denoising by RMT and "beta" estimation 
of return can be used for passive fund management, in which a portfolio needs 
to track market index. The result outperforms return and decreasing risk by 
diversification into a smaller number of assets, rather than by investment into 
all the assets. Specifically, by using TSE daily returns for 658 stocks, we show 
(i) that the error in estimation of correlation matrix via RMT is more stable 
and smaller than that for historical values, single-index model and constant 
correlation model (Fig. 2), (ii) that the reahzed risk-return in TSE based 
on our method outperforms that of index-fund (Fig. 3), and (iii) that the 
optimization gives a practically reasonable (not "non-sense" as what one gets 
by using historical returns) asset allocation (Fig. 1). 

We developed a prototype of software which does the PCA and RMT anal­
ysis, then denoising, calculates eflftcient frontier, and tests out-of-sample data. 
Visualization of principal components with firm sectors, and correlation struc­
ture by classic methods including multi-dimensional scaling and clustering-
dendrogram analysis can be done in the software (Fig. 4 lower-panel). 
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Fig. 1. (a) Optimal portfolio for 658 stocks in TSE, obtained by using historical 
values for expected return fi. The right plot is its weights Wi, and the left list is the 
names of stocks with the highest 30 weights. The list mainly includes electric-power, 
local railway companies etc. of little practical interest, (b) The same plot and list 
obtained by using historical beta ft for expected return fi = ßiTm where rm is 
historical market-index return. The list includes majors such as Toyota, NTT, Sony, 
Fujitsu, NEC, Hitachi, Honda, Sharp, Matsushita, Takeda etc. Both for (a) and (b), 
historical value of en and RMT-denoised correlation matrix pij are used with past 
period being 750 days. 

Fig. 2. Prediction error in correlation coefficient pij. One year for correlation calcu­
lation. The prediction error is defined as follows: take the quantity |/9ij (realized) -
Pij (predicted) I averaged over all pairs (i, j ) , and calculate fractional error compared 
with that for simple-minded historical-value prediction. The x-axis is beginning date 
of one-year (starting from Jan 2000 to Feb 2002). Single-index and historical corre­
lation model (Elton et al 1978) are compared with RMT-denoised result. 
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Fig. 3 . The portfolio optimization in Fig. 1 (b) is used to measure the performance 
of portfoHo for 1-year "buy-and-hold" passive fund management. The performance 
is measured by Sharpe ratio in the 1-year period. Horizontal dotted-line corresponds 
to the Sharpe ratio of TOPIX, with respect to which the result of raw correlation 
(open circles) and that of RMT-denoised correlation (filled circles) are compared. 
RMT outperforms others almost all the period from Jan 2000 to Feb 2002. 
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Fig . 4. Upper panel: Principal component with large eigen-values. Each column 
represent the contribution of each stock to the component. The color of column 
represents business-sector which the stock belongs to. Top left corresponds to the 
largest eigen-value. The others corresponds industrial processing, material indus­
tries, pharmaceutical/bio-technologies, construction, and electricity/power. Lower 
panel: A prototype of software for analysis of PC A and RMT, denoising, calculation 
of efficient frontier (bottom right), weights in the optimal portfolio with Sharpe ra­
tio maximum (top middle), tests out-of-sample data (top right), visualize principal 
components (bottom left) as well as multi-dimensional scaling (bottom middle). 
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Noise dressing of financial correlation matrices leads to spectral properties 
which have much in common with those of purely random matrices. Efficient 
noise reduction methods are needed. We study two such methods which have 
been proposed recently. The first method, the filtering, is based on a principal 
component analysis. The second method, the power mapping, is a shrinkage 
approach. Due to the definition of the correlation matrix itself, the optimal 
shrinkage parameter is uniquely determined. Hence, filtering and power map­
ping are conceptually different methods. We apply the two methods to Swedish 
and US market data. 

1 Introduction 

The noise dressing of financial correlation matrices was revealed and clearly 
demonstrated for empirical data in Refs. [1, 2]. The spectral properties of 
financial correlation matrices are compatible with those of purely random 
matrices. A major reason for the presence of noise is the finiteness of the time 
series used to calculate the correlation matrix elements. Obviously, this issue 
is important for any kind of risk management involving correlations, particu­
larly for portfolio optimization. Various authors addressed this problem and 
suggested methods to reduce the noise. Here we focus on two methods: the 
filtering, put forward in Refs. [3, 4], and the power mapping, developed in 
Ref. [5]. Reference to other approaches is given in the paper [5]. These pro­
ceedings contain further contributions dealing with noise dressing and noise 
reduction. More references can also be found there. 

The filtering method reHes on the observation that the spectral density, 
i.e. the probability density function of finding an eigenvalue at a certain po­
sition, consists of, first, a generic bulk part which is well described by the 
analytically known spectral density for random matrices and, second, a part 
refiecting the industrial branches [3, 4]. Thus, only the information in the 
latter is directly usable, while the information in the former is buried under 
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noise. To remove the noise one proceeds as follows. The financial correlation 
matrix for K companies or, more generally, risk factors, is diagonalized, yield­
ing the eigenvalues A/k, k = I,. ..,K. A üt to the random matrix spectral 
density gives a cut-off eigenvalue Ac such that the eigenvalues below Ac repre­
sent the bulk. The whole set of eigenvalues (Ai, . . . , Ac, Ac+i,..., AA:) is then 
replaced by the filtered set (0 , . . . , 0, Ac-f i , . . . , AK) where the remaining larger 
eigenvalues can be associated with industrial branches. These eigenvalues are 
reexpressed in the original basis which gives the filtered correlation matrix, 
comprising the desired information. 

The filtering has been proven to be very successful. Nevertheless, it is al­
ways good to have an alternative method. If the dimension K of the correlation 
matrix is relatively small, the random matrix properties are not developed so 
well making the cut-off Ac ambiguous. Moreover, if some branches are small, 
the corresponding eigenvalues are small and can even be smaller than the 
cut-off such that the filtering would remove relevant information. The power 
mapping proposed in Ref. [5] is such an alternative method. It does not use 
any random matrix input and it is thus parameter firee. 

2 Power Mapping 

The elements Cki of the correlation matrix C are scalar products of the prop­
erly normalized time series for companies k and /. Hence, each element con­
tains the information about the length of the time series. We mention in 
passing the close formal connection to chirality encountered when studying 
the spectra of the Dirac operator, see Refs. [4, 5]. Remarkably, this can be 
used to map the correlation matrix C via the power mapping 

Cki —V sign {Cki) \Cki\' = elf (1) 

onto another correlation matrix C^^^ in which the noise-dressed information 
is partly recovered [5]. The optimal power ^ « 1.5 is automatically determined 
by the very definition and normalization of the correlation matrix. The effect is 
illustrated in Fig. 1 for the bulk part of the spectral density. These correlation 
matrices were generated from a one-factor-model. Two peaks emerge due to 
the power mapping, the left one stems from the true correlations, while the 
right one is produced by remainders of the noise. This clearly shows that even 
the information in the bulk can partly be reconstructed. The power mapping 
can be viewed as an "artificial prolongation" of the time series. A heuristic 
explanation: Some elements Cki comprise a true part u, say, and a noisy part 
V which scales with 1/>/T where T is the length of the time series. Purely 
noisy elements lack the true part. The power mapping yields 

i^r- rpq/2 (2) 
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Fig. 1. Bulk part of the spectral density for synthetic correlation matrices, before 
(left) and after (right) the power mapping. Taken from Ref. [5] 

Thus, the elements which only contain noise are stronger suppressed than 
those with a true part, if ^ > 1. The larger eigenvalues associated with the 
industrial branches are little affected. The power mapped correlation matrices 

are used as they stand instead of the original ones for risk management. 

3 Application to Market Data 

3.1 Observables and Data 

We apply both noise reduction methods to portfoHo optimization, using the 
standard Markowitz theory. We calculate the correlation matrices for our em­
pirical data by sampling over a certain (longer) period, reduce the noise and 
then evaluate the portfolio over a certain (shorter) period with the noise re­
duced correlation matrices. As historical data are employed, we can compare, 
at the end of the evaluation period, risk and return involving the correlation 
matrices without noise reduction (simply referred to as sample) with risk and 
return after noise reduction has been applied. To obtain some statistical sig­
nificance, the lengths of sample and evaluation period is chosen in such a way 
that the latter can be moved through the available data, allowing for several 
repetitions. We have two data sets: (i) daily Swedish stock returns [6] for 197 
companies from July 12th, 1999, to July 18th, 2003, sampling period one year, 
evaluation period one week, and (ii) monthly US portfolio returns [7] for 48 
branches from January 1973 to December 2002, sampling period five years, 
evaluation period one year. 

3.2 Results 

We set the expected return to 0.3% per week and work out the daily risk 
and the monthly return as functions of time. In a first study, we impose no 
constraints in the optimization procedure, the results are shown in Fig. 2. 
The yearly actual risk which amounts to 20.7% without noise reduction is 
considerably lowered by the noise reduction, we find 11.3% for power mapping 
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Fig. 2. Daily risk (left) and and monthly return (right) for the Swedish market 
data, no constraints imposed: no noise reduction, i.e. plain sample (circles), power 
mapping (crosses) and filtering (dashes). 

and 11.4% for filtering. Although statements about the return are, in general, 
less meaningful in such a study, we believe that they are still of interest as 
relative information, when comparing the results for the two noise reduction 
methods. The yearly actual return is 11.1% without noise reduction and is 
given by 5.0% and 10.5% for power mapping and filtering, respectively. Thus 
both methods reduce the risk very efficiently, but the filtering seems to do 
better for the return. In a second study, we impose the constraint that no 
short selling is allowed. The outcome which is quite different is displayed 
in Fig. 3. The yearly actual risk of 10.1% without noise reduction is only 

Fig. 3. Daily risk (left) and and monthly return (right) for the Swedish market 
data, no short selling allowed: no noise reduction, i.e. plain sample (circles), power 
mapping (crosses) and filtering (dashes). 

very slightly lowered to 9.9% for both noise reduction methods. The yearly 
actual return is 0.5% without noise reduction and is improved to 1.1% for 
power mapping and 0.7% for filtering. In spite of the caveat applying to the 
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evaluation of returns in this context, we find it interesting that the power 
mapping in this case seems to perform better than the filtering. 

The striking difference between the studies without and with constraints 
becomes understandable when looking at the fractions of wealth invested in 
the individual companies, which are the result of the optimization procedure. 
Without constraints, the fractions scatter almost symmetrically around zero 
implying that there are many negative fractions. Thus, short selling is very 
important to achieve the optimal portfolio. When short selling is forbidden, all 
weights must be positive. Apparently, the power mapping handle this situation 
well by yielding diversification with less fluctuations than filtering. 

The results for the US portfolio returns are qualitatively the same. This 
is remarkable, because the correlation structure changes over the period of 
almost thirty years — which was our main motivation to study these data. 
It is also surprising that the filtering works well: as the dimension i^ = 48 is 
so small, basically only one eigenvalue survives the filtering, representing the 
entire market. 

4 Conclusions 

As the two noise reduction methods are conceptually diffierent, they also pro­
duce different results. Our preliminary studies cannot serve as a basis to make 
schematic suggestions as to which method ought to be preferred in which 
situation. This will always be difficult. But further and systematic studies 
extending the ones presented here might yield some guidelines. 
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Summary. Time changes of noise level at Warsaw Stock Market are analyzed us­
ing a recently developed method beising on properties of the coarse grained entropy. 
The condition of the minimal noise level is used to build an efficient portfolio. Our 
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diversification 

1 Introduction 

Although it is a common believe that the stock market behaviour is driven 
by stochastic processes [1, 2, 3] it is difficult to separate stochastic and deter­
ministic components of market dynamics. In fact the deterministic fraction 
follows usually from nonlinear effects and can possess a non-periodic or even 
chaotic characteristics [4, 5]. The aim of this paper is to study the level of 
stochasticity in time series coming from stock market. We will show that our 
noise level analysis can be useful for portfolio optimization. 

We employ here a method of noise-level estimation that has been described 
in details in [6]. The method is quite universal and it is valid even for high noise 
levels. The method makes use of a functional dependence of coarse-grained 
correlation entropy K2{s) [7] on the threshold parameter e. Since the func­
tion K2{s) depends in a characteristic way on the noise standard deviation a 
thus a can be found from a shape of K2 {s). The validity of our method has 
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been verified by applying it for the noise level estimation in several chaotic 
models [7] and for the Chua electronic circuit contaminated by noise. The 
method distinguishes a noise appearing due to the presence of a stochgistic 
process from a non-periodic deterministic behaviour (including the determin­
istic chaos). Analytic calculations justifying our method have been developed 
for the gaussian noise added to the observed deterministic variable. It has 
been also checked by numerical experiments that the method works properly 
for a uniform noise distribution and at least for some models with a dynami­
cal noise corresponding to the Langevine equation [6]. The method has been 
already successfully applied for noise level calculations of engine process [8] 
and has given similar results to an approach basing on neighboring distances 
in Takens space [9]. 

2 Choosing low noise portfolio 

In the present paper we define the noise level as the ratio of standard deviation 
of estimated noise a to the standard deviation of data adata 

NTS = - ^ (1) 
Cfdata 

In the first step we construct a portfolio from M stocks with the mini­
mal value of the stochastic variable [10]. We assume that one can do this by 
maximization of the following quantity: 

M M 

^ = V V piPj - ^ -^^Pij = max (2) 
1=1 j = i -f 

where CFi^o is the standard deviation of deterministic part of the stock i, ai 
is the standard deviation of the noise for this stock and pt^j is the correlation 
coefficient between deterministic parts of stocks i and j . The maximal value 
of B can be received with the help of the steepest descent method by changing 
variables pi and keeping the normafization constraint ^i-iPi = 1. 

In some cases for practical reasons it is more efficient not to minimize the 
noise level in the portfolio but to maximize it. This is because the method 
for noise level estimation can fail and it can occasionally give wrong values of 
NTS. When we minimize the noise level it can happen that one stock with 
an artificially very low noise level dominates the whole portfolio and the risk 
increases without any additional profit. 

3 Investment method 

In our investment method we make use of additional information, available 
due to the knowledge of the noise level, to increase profits from selected port­
folios. The simplest approach is to introduce a threshold for a noise level. We 
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divide all portfolios into two classes: profitable and nonprofitable taking into 
account high or low values of the noise level and a positive or a negative past 
trend. The partition into high/low noise classes is based on the threshold pa­
rameter NTSth that should be optimized. Additionally we label portfoho by 
calculations of an average return for the last Nyji^ data. We use the following 
algorithm: if the past trend from Nyji^ data of the portfolio is positive rrip > 0 
and the noise level of the portfolio is small (NTSp < NTSth) we consider the 
portfolio as a profitable. We have a profitable portfolio also when it is more 
stochastic (NTSp > NTSth) but its trend is negative rup < 0. In the remain­
ing two cases we consider the portfolio as a nonprofitable. In such a way we 
create the basic strategy giving {pi}, which involves the information on the 
noise level and the past trend in the portfolio selection. This basic strategy 
should then be adjusted using a risk parameter r that is introduced below. 
The process of the final portfolio selection is based on the comparison of the 
optimized portfolio to the simplest portfolio consisting of equal contributions 
from all stocks {pi = 1/M, i = 1,...,M). We set up a composition of the 
final portfolio [pi) with a use of certain risk parameter r on the preliminary 
optimized portfolio {pi) as follows: 

One should mention that for a negative value of the parameter r we have the 
opposite investing to the composition pi. 

At Fig. 1 the level of success of our investment method as a function of 
the parameter NTSth is shown. Here the percent of success corresponds to a 
fraction of positive returns from our strategy. We have used a negative risk 
parameter r — - 1 0 to get a positive profit for small values of NTSth- NTSth < 
0.85 in the above simulations. A similar dependence on the parameter Nyjin 
is shown at Fig. 2. The percent of the success in both cases is above 50% and 
for some regions of selected parameters the strategy brings positive returns 
after commissions deduction. 

It is clear that to use our approach we have to find optimal threshold 
parameters NTSth and N^in- Our optimization method is quite straightfor­
ward and it resembles a genetic algorithm. During the optimization process 
we change the selection probability for actual values of optimized parameters 
i.e. we increase the probability if the profit from portfolio is positive and we 
decrease in the opposite case. The optimization process is terminated when 
we reach a satisfactory mean value of a yearly profit from past data (here it 
is 30%). In such a way we optimize simultaneously two parameters N^in and 
NTSth. 

We begin our algorithm by generating randomly chosen stocks in the initial 
portfolio. Then we randomly select a starting moment for our virtual invest­
ment. The next step is to optimize the parameters N^i^ and NTSth using 
available data from the period prior to the selected starting point. Finally we 
invest in the portfolio described by the risk value r = —3 (see Eq. 3). The 
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Fig. 1. Plot of the investment success 
as a function of parameter NTSth in 
the period of January - July 2003 at 
the Warsaw Stock Exchange {Nujin = 
2500). Portfolio consists of 18 stocks 
from WSE. 
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Fig. 2. Plot of the investment success 
as a function of parameter Nwin in the 
period of January - July 2003 at War­
saw Stock Exchange (NTSth = 0.85). 
Portfolio consists of 18 stocks from 
WSE. 

procedure was repeated 10000 times and at the end we calculated an aver­
age profit i.e. the efficiency of the method. At Fig. 3 we show a distribution 
of returns for our portfolio at Warsaw Stock Exchange. We have calculated 
recommendations for windows 17 — 41 days long on the period July 2002 -
December 2003 (see Fig. 4). The annual return received in such a way after 
commissions substracting is around 56% (the commission level has been set 
to 0.25%). To omit artificially large price changes that can be caused by such 
effects as stock splitting, extreme returns larger than 12 standard deviation 
of data have been rejected. 

4 Conclusions 

In conclusion we have analyzed noise level for data from Warsaw Stock Ex­
change. We show that our noise level estimations can be useful for portfolio 
optimization. The resulting investment strategy brings larger profits than a 
simple average from the same stocks. 

References 

1. Voit J (2001) The Statistical Mechanics of Financial Markets. Springer-Verlag, 
Berlin Heidelberg New York Barcelona Hong Kong London Milan Paris Singa­
pore Tokyo 

2. Bouchaud JP, Potters M (2000) Theory of financial risks - from statistical 
physics to risk management. Cambridge University Press, Cambridge 

3. Mantegna RN, Stanley HE (2000) An Introduction to Econophysics. Correla­
tions and Complexity in Finance. Cambridge University Press, Cambridge 

239 



250 

200 
E 
5 150 

.«> 100 

-60 -40 -20 0 20 40 60 80 100 
Return [%] 

Fig . 3 . Histogram of returns re­
ceived by our strategy. The mean re­
turn equals to 4.33% while the his­
togram dispersion is about 17%. 

600001 

„50000 
^ I 
I* 40000 
3 

£ 30000 
•D 

•§ 20000 

0)10000 

Investment strategy 
- Investment strategy after commlsions 
- Mean retum from stocks (WSE) 

2000 4000 6000 8000 10000 
Number of recommendations 

Fig . 4. The aggregated return for 
our investment strategy applied for 
the Warsaw Stock Exchange. The re­
turn corresponds to the mean annual 
return 56% while the mean annual 
return of Warsaw Stock Index was 
about 28% at the same time period. 

4. Peters EE (1997) Chaos and Order in the Capital Markets. A new view of cycle, 
Price, and Market Volatility. John Wiley & Sons, New York. 

5. Holyst JA et al. (2001) Observations of deterministic chaos in financial time 
series by recurrence plots, can one control chaotic economy? European Physical 
Journal B 20:531-535 

6. Urbanowicz K, Holyst JA (2003) Noise-level estimation of time series using 
coarse-grained entropy. Phys. Rev. E 67:046218; http://www.chaosandnoise.org 

7. Kantz H, Schreiber T (1997) Nonlinear Time Series Analysis. Cambridge Uni­
versity Press, Cambridge 

8. Kaminski T et al. (2004) Combustion process in a spark ignition engine: Dy­
namics and noise level estimation. Chaos 14(2):461-466; Litak G et al. (2005) 
Estimation of a Noise Level Using Coarse-Grained Entropy of Experimental 
Time Series of Internal Pressure in a Combustion Engine. Chaos Solitons &; 
fractals 23(5):1695-1701 

9. Urbanowicz K, Holyst JA (2004) Noise estimation by the use of neighboring dis­
tance in Takens space and its application to the stock market data. Proceedings 
of the Conference Complexity in science and society. International Journal of Bi­
furcation and Chaos, arXiv:cond-mat/0412098; http://www.chaosandnoise.org 

10. Urbanowicz K and Holyst JA (2004) Investment strategy due to the minimiza­
tion of the noise level in a portfolio. Physica A 344:284-288 

240 

http://www.chaosandnoise.org
http://www.chaosandnoise.org


Method of Analyzing Weather Derivatives Based 
on Long-range Weather Forecasts 

Masashi Egi\ Shun Takahashi^, Takeshi leshima^, and Kaoru Hijikata^ 

^Hitachi, Ltd., Central Research Laboratory, 1-280, Higashi-koigakubo, 
Kokubunji-shi, Tokyo 185-8601, Japan 
^Hitachi, Ltd., Business Solution Systems Division, Hitachi Systemplaza, 
Shin-kawasaki, 890 Kashimada, Saiwai, Kawasaki, Kanagawa, 212-8567, Japan 
^Hitachi, Ltd., Finance Department II, Financial Business Planning Group, 6, 
Kanda-Surugadai 4-chome, Chiyoda-ku, Tokyo 101-8010, Japan 

Summary. We examined the effectiveness of long-range weather forecasts ap­
plied to analyze weather derivatives. We carried out 651 back tests for different 
historical periods and confirmed that the accuracy of evaluating the risk of 
weather derivatives could be drastically improved by using long-range weather 
forecasts. 

Key words, weather derivative, weather forecast, Monte Carlo simulation 

Introduction 

Weather derivatives are financial instruments for companies to hedge against the 
risk of weather-related losses. The investor who sells a weather derivative accepts 
the risk by charging the buyer a premium. For example "The company pays $5M 
to the investors as a premium beforehand. If there are days cooler than 20°C next 
July in Tokyo, the investor must pay $1M per day to the company as compensa­
tion." If nothing happens, then the investor makes a profit. However, if the 
weather turns bad, the company claims the money. 

The premium, i.e. the price of a weather derivative, is determined based on a 
predicted distribution of compensation, which can be obtained by Monte Carlo 
simulation generating virtual weather scenarios based on stochastic weather time-
series models. So far, various stochastic models have been proposed to describe 
various characteristics of weather transitions (Briggs and Wilks 1996, Caw and 
Wei 1999, Dischel 1999, Jewson and Caballero 2002, Richardson 1981, Torro et 
al. 2001, Wilks 2002). 

The accuracy of the distribution depends on the values of the model parameters, 
which have been simply determined to fit into historical data. However it is obvi­
ous that these values do not have specific information about weather in future. To 
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improve the accuracy, we need to feed information about future weather into the 
model parameters. 

Long-range weather forecasts (LWF hereafter) are one type of such ftiture 
weather information provided by the Meteorological Agency. LWFs are periodi­
cally broadcast for monthly average temperatures and monthly precipitation 
amounts, and consist of three probabilities (Pi,,p„,Pa) pertaining to the three 
classes "below-normal", "near-normal", and "above-normal", respectively. The 
normal range is defined in such a way that historical data for the last 30 years is 
equally divided among the three classes. 

However, reflecting LWFs that have a temporally aggregated nature in stochas­
tic weather time-series models presents a significant challenge. In the next section, 
we explain, a method to solve this difficulty. 

Parameter Estimation IVIethods Reflecting Long-Range 
Weatlier Forecasts 

We briefly review a model-independent method proposed by Briggs and Wilks 
(1996) to reflect LWF in stochastic weather time-series models, and refer to this 
method as a biased sampling method. Schematic diagrams of traditional and bi­
ased sampling methods are shown in Figure 1. The original population consists of 
30 samples for the last 30 years of data. According to the definition of the normal 
range, each of the three classes has 10 samples. In a traditional method, the model 
parameter values are estimated to fit well into the original population. 

The biased sampling method is as follows. First, we construct a biased popula­
tion sampling from each of the three classes of the original population on the 
weights iPi,,p„,Pa) according to LWF. In figure 1, we show an example when 
the forecast is (p^,p^,p^) = (20%,30%,50%). In this case the biased population 
can be constructed by sampling 20, 30, and 50 items of data from each of the three 
classes. Then, the model parameter values are estimated to fit well into the biased 
population. In this way, we can reflect LWF in stochastic weather time-series 
models, which is obviously independent of the model details. 

Briggs and Wilks (1996) proposed the biased sampling method for use in the 
hydrometeorology field rather than in financial engineering, so an application for 
weather derivatives was not discussed. Zeng (2000) independently proposed the 
biased sampling method to analyze weather derivatives. However, the effective­
ness has never been examined. In the next section, we comprehensively verify the 
effectiveness of the method applied to analyze weather derivatives. 
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Fig. 1. Schematic diagrams of traditional and biased sampling methods. Each circle repre­
sents a sample of historical data over the last 30 years, and the number in the circle repre­
sents the order among the 30 samples. 

Verification of Effectiveness 

We carried out M = 65\ back tests for different historical periods shifting a time-
window, using actual past data observed in Japan, and compared the accuracy of 
the compensation distribution of traditional and biased sampling methods. We as­
sumed the following weather derivatives against heavy rain "In the forthcoming 
31 days, if there are days in which the daily precipitation exceeds 1 mm, then the 
investor will pay $10K per a day." 

Here we notice that the accuracy of the biased sampling method depends on the 
accuracy of the LWF itself. To focus our attention on the accuracy of the biased 
sampling method, we used the artificial LWF constructed to have an ideal accu-
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racy in which the observed occurrence rates in each class exactly equal the fore­
casted values (Pi,,p„,pJ. 

Employing the model developed by Richardson (1981) for daily precipitation, 
we generated 10000 virtual weather scenarios to construct the predicted compen­
sation distribution function for each period. We evaluated the following two per­
formance indicators to quantify the accuracy of the predicted compensation distri­
bution function f^{x) and /^(A:) predicted by each method, where x denotes 
compensation value and the indices represent traditional and biased sampling 
methods, respectively. 

One performance indicator is the absolute error between the expectation value 
of the predicted compensation distribution and the realized compensation, namely 

1 A/ 1 M 

^.=-j^l\E.M-4 £» =j^t\E.M-4 (1) 
where index i represents the period number, x' represents the realized compensa­
tion, and E^[], £ J ] represent expectation values of jc by each method. 

The second performance indicator is the goodness of fit in terms of the x^ value 
in order to evaluate the adequacy of risk estimation. The percentile of a realized 
compensation in the predicted compensation distribution is given by 

g=^f{x)dx (2) 

If the predicted compensation distribution is ideal, the percentiles are uniformly 
distributed in a range [0,1]. We evaluated the deviation from the ideal uniformity 
by the ;̂ ^ value. Dividing the range [0,1] intoA^ equal intervals, we counted the 
number of periods appearing in each interval denoted by n{i); / = 1, • •, Â  where 
X/=i^('^ ~ ^ ' T^^^ th® goodness of fit is given by 

where m = M / N and assumed Â  = 10. 
We obtained the results listed in table 1, which shows that both indicators are 

improved, and the goodness of fit is drastically improved. 

Table 1. Results of our examinations of performance indicators. 

Performance Traditional Biased sampling , 
Indicator method method 
Absolute erorr $25.6K $24.6K 4% 
Goodness of fit 28.1 13.9 51% 
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Conclusion 

We examined the effectiveness of LWF applied to analyze weather derivatives. 
We carried out 651 back tests for different historical periods and confirmed that it 
was possible to drastically improve the accuracy of evaluating the risk of weather 
derivatives by using LWFs. Therefore, LWF may have a great deal of potential to 
improve the quality of weather risk managements. 
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Summary. We review a resent time-dependent performance measure for economical 
time series — the (optimal) investment horizon approach. For stock indices, the 
approach shows a pronounced gain-loss asymmetry that is not observed for the 
individual stocks that comprise the index. This difference may hint towards an 
synchronize of the draw downs of the stocks. 

As an investor or practitioner working in the financial industry, you are 
continuously faced with the challenge of how to chose and manage a portefolio 
under varying market conditions; as the market change, you have to decide 
whether to adjust your positions in order to make the portfolio, as you see 
it, more optimal. The way such important decisions are made, with dramatic 
economic consequences if done badly, is rather complex; most market players 
have their very own methods for this purpose, and they are only rarely dis­
closed to the public. The clients risk aversion, which is based on individual 
psychology, plays a major role in the task of choosing a portfolio and hence 
quantifiable and rational measure must be used in for example stress testing 
of the portfolio. 

As the financial industry became fully computerized, the distribution of re­
turns approach became popular for measuring asset performance from historic 
data records. Today, this method is considered one of the classic approaches 
for gauging the performance of an asset [1,2]. The method relies on the distri­
bution of returns (to be defined below) corresponding to a fixed time window 
(or horizon as we will refer to it below). In order to look into the performance 
over a different time horizon, the return distribution has to be regenerated 
for the new window size. Actually, one of the most successful strategies for 
actively investing when the risk aversion is not low, is to, a priori, decide for a 
return level and then liquidate the position when this level has been reached. 

It is not at all clear that the natural scenario for an investor is to consider 
fixed time windows. There has therefore lately been a lot of interest in time 
dependent measures, i.e. measures where the time period over which the asset 
is hold, is non-constant, and allowed to depend on the specific market condi-
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tions which in general is not known in detail. A change in time horizon used 
by an investor may be due to for instance a changes in the market itself, or 
new investment strategies being implemented by the investor. 

In this work, we will review a recent development in such time-dependent 
measures — the investment horizon approach. This approach is motivated by 
progress in turbulence [3], and it represents an adaption of a more general 
concept, known as inverse statistics^ to economics. The investment horizon 
approach was first introduced into economics by the present authors [4], and 
later considered in a series of publications [5, 6, 7, 8]. The method has re­
cently been applied to different types of financial data with success; stock 
index data [4, 5, 6], like the Dow Jones Industrial Average (DJIA), NASDAQ, 
Standard and Poor 500 (SP500), individual stocks [8], and high frequency 
foreign exchange (FX) data [6]. A similar approach, however without a fixed 
return level, has been studied in Refs. [9, 10] with the prime focus on losses. 

Let *S'(̂ ) denote the asset price, and s{t) = In S{t) the corresponding log­
arithmic price. Here time {t) can be measured in diff'erent ways [2], but the 
various choices may result in different properties for the inverse statistics [6]. 
The logarithmic return at time t, calculated over a time interval At, is defined 
as [1, 2] rAt{t) = s{t -h At) - s{t). 

We consider a situation where an investor is aiming for a given return level 
denoted by p. This level may be both positive (gains) or negative (losses). If 
the investment is made at time t, then the investment horizon is defined as 
the time rp{t) = At so that the inequality rAt{t) > P ( M t ( 0 ^ p) for p > 0 
(p < 0) is satisfied for the first time. In mathematical terms, this can be 
expressed as 

(m^At\rAt{t)>p}. P > 0 , ... 
^'^^'~\mf{At\rM{t)<p}, p<0. ^'^ 

The investment horizon distribution, p{Tp), is then the distribution of invest­
ment horizons Tp estimated from the data (cf. Fig. la) . This distribution will 
go through a maximum, as should be apparent from the discussion to follow. 
This maximum — the optimal investment horizon — will be denoted r*. It 
quantifies the most likely time period (obtained from historic data) needed to 
reach the investment outcome characterized by p. 

For later use, we stress that if the price process S{t) is a geometrical 
Brownian motion — the classic assumption made in theoretical finance — then 
the solution to the investment horizon (first passage time) problem is known 
analytically [11]. It can be shown that the investment horizon distribution 
is given by the Gamma-distribution: p{t) = \a\ exp(-a^/2^)/(\/27r^^^^), where 
a oc p. Hence, in the limit of large (waiting) times, one recovers the well-known 
first return probability p{t) ~ t~^/^. 

Figures 1 show empirical investment horizon distributions, p (rp) with p = 
±0.05. for an index (Fig. la) and an individual stock (Fig. lb) . Drift-terms 
that were "smooth" up till a time scale of roughly 4 years, were removed 
from the logarithmic prices prior to the analysis (consult Ref. [4] for details). 
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Fig. 1. (a) The investment horizon distributions of the DJIA closing prices from 
1896 till present, at a return levels \p\ = 0.05. (b) The same as Fig.l(a), but now 
for the single stock of IBM for the period from the beginning of 1962 till June 2000. 
IBM has been part of DJIA since June 29, 1979. 

This pre-processing of the data was done in order to enable a more consistent 
comparison of the results corresponding to positive and negative levels of 
returns due to differences in economic fundamentals such as inflation, interest 
rates, etc. The data set used to produce the results of Fig. l a was the daily 
close of the Dow Jones Industrial Average taken over its whole history up 
till present. From this same figure, two well-pronounced, but not coinciding, 
optimal investment horizons can be observed from the empirical distributions 
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Fig. 2. The optimal investment horizon r^ for positive (open circles) and nega­
tive (open squares) levels of return ±p. In the case p < 0 one has used - p on the 
abscissa for reasons of comparison. 

V ijp)' With \p\ = 0.05 they are both of the order of r* ^ 10 days. In general, 
the values of r* will depend on the return level p, and we presents results 
for the DJIA in Fig. 2 for positive and negative return levels. Recall that if 
the price process is consistent with a geometrical Brownian motion, one has 
r* ~ p^ with 7 = 2 for all values of p (lower dashed line in Fig. 2). The 
empirical results are observed not to be consistent with such a behavior. For 
rather small levels of returns — a fraction of a percent — the dependence 
on return level is quite weak. When \p\ is increased, however, the dependence 
becomes more pronounced and it gradually becomes more and more like, 
but still different from, the geometrical Brownian result. As a whole, the 
dependence of r* (on p) over the range of return levels considered in Fig. 2, 
resembles more a double logarithmic behavior than a power law. However, 
for the range of p-values considered and the fact that the statistics become 
poorer for increasing levels of return, we are unable from the empirical data 
alone to uncover the actual functional dependence of r* on the return level. 

One of the most striking features of Fig. 2 is the apparent fact that the 
optimal investment horizon for positive and negative return levels are not the 
same. This asymmetry starts to develop when the return level \p\ is not too 
small (cf. Fig. 2). Such a gain-loss asymmetry is actually a rather general 
feature of the investment horizon of stock indices [6]. On the other hand, for 
individual stocks that together comprise the index, this phenomenon is less 
pronounced [8] and an asymmetry can often hardly be seen at all. In Fig. lb 
this is exemplified by the investment horizons of IBM for p = ±0.05, a com­
pany that is part of the DJIA index. Similar results hold for most other stocks 
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being part of the DJIA [8]. The attentive reader could ask: How is it possible 
that an asymmetry is present in the index, but not in the individual stocks 
that together make out the index? At the time of writing, there is no consen­
sus on what is causing this behavior. It has been speculated that it might be 
caused by cooperative effects taking place among the stocks and causing them 
to partly synchronize their draw-downs (conditional serial correlation). If that 
was to be the case, the index — that is some average of the individual stocks — 
will experience an increased probability of shorter investments horizons r_|p| 
compared to the similar results found for the same positive level of return. 
Other speculations go in the direction of this phenomenon being related to the 
so-called leverage effect [12]. These questions are being addressed by ongoing 
research efforts, and it is hoped that they will be satisfactory answered in the 
immediate future. 

Before ending this contribution, we would like to add a few comments 
regarding possible practical implications (as we see it) of the investment hori­
zon approach [13]. Two applications will be mentioned here, both taken from 
portfolio management. The first application is related to the problem of consis­
tent allocation of VAR-like (quantile) and stop-loss limits. For such problems, 
the correlation structure over different time horizons is important. Our ap­
proach naturally use non-fixed time windows, and it is therefore hoped that it 
might contribute some new insight onto these issues. The second application 
is concerned with the calculation of risk measures for portfolios. When the 
market is moving against you, you are forced to liquidate. In this process, 
"liquidation horizons" that are used across assets of a portfolio, are normally 
not the same. By taking advantage of the negative return levels, investment 
horizon distributions p {T-\P\) for the different assets of the portfolio, may be 
used to design an optimal liquidation procedure depending on the nature of 
the position, e.g., long or short. The exploration of possible applications of 
the concept of inverse statistics in economics is at its infancy. We hope that 
the future will demonstrate this approach to be fruitful also from a practical 
standpoint. 

A new measure of asset performance that represents an alternative to the 
classic distribution of returns approach has been described. Unlike the classic 
method, the new technique is time-dependent. This opens the possibility of 
studying and measure asset performance over a non-constant time scale, an 
idea that lately has attracted a great deal of attention. 
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Summary. We analyze the shares aggregated into the Dow Jones Industrial Aver­
age (DJIA) index in order to recognize groups of stocks sharing synchronous time 
evolutions. To this purpose, a pairwise version of the Chaotic Map Clustering algo­
rithm is applied: a map is associated to each share and the correlation coefficients 
of the daily price series provide the coupling strengths among maps. A natural par­
tition of the data arises by simulating a chaotic map dynamics. The detection of 
clusters of similar stocks can be exploited in portfolio optimization. 

K e y words: Clustering algorithms, Chaotic maps, Portfolio optimization 

1 Introduction 

In recent years, the analysis of several social systems (economics, finance, 
urban planning, etc.) has dramatically aroused the attention of many quanti­
tative scientists. Because of their features, the analysis of financial markets is 
especially challenging. We focus here on a specific level of their complexity: the 
cross-correlation among temporal series of stock prices. Clustering is the natu­
ral approach to a problem like this one. In particular, non-parametric methods 
are the optimal strategy when no prior knowledge on the clusters to find is 
available: these methods make few assumptions about the structure of the 
data, rather they employ local criteria for reconstructing the clusters and are 
particularly suited when a hierarchical structure, rather than a fixed partition, 
of the data should be obtained. Here we implement a non-parametric version 
of a clustering technique, named Chaotic Map Clustering (CMC) (Basalto et 
al. 2005) (Angelini et al. 2000), which relies on the synchronization properties 
of a chaotic map system (Manrubia et al. 1999) in order to obtain a hierarchy 
of classes. The matter in hand is the analysis of the financial time series of 
the 30 stocks belonging to the DJIA (Dow Jones Industrial Average) index. 
We aim to find, by means of mathematically rigorous methods, economically 
significant partitions to be further exploited into portfolio optimization. 
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2 Preliminary notions 

In general, clustering consists in partitioning a set of N elements into K 
clusters on the basis of a suitable similarity criterion (Fukunaga 1990). A 
number of criteria can be used to define this intuitive concept leading, in 
general, to different resulting partitions, each one deeply influenced by the 
strategy adopted by the observer in reason of his own ideas and preconceptions 
on the problem. Furthermore, the clustering techniques differ from each other 
depending on a number of features of the algorithm used to implement them. 
The CMC algorithm we apply can be classified as: non-parametric, which is 
a neutral approach whenever no prior knowledge is available; hierarchical, as 
it yields nested partitions; pairwise, as the data are indirectly represented by 
a similarity matrix which provides pairwise comparisons among elements. 

3 Physical model 

In this section we give a brief review of the chaotic map algorithm. In a D-
dimensional feature space, the data-points are viewed as sites of a lattice, 
each one hosting a map Xi G [—1,1], i = 1, • . . , iV. Short-range interactions 
between neighboring maps are introduced as exponential decreasing function 
of the site distances. In the stationary regime, clusters of synchronized maps 
appear, corresponding to high density regions in the original data space. The 
mutual information between maps is used as both a similarity index for build­
ing the clusters, and a scale parameter for reconstructing the hierarchical tree 
(Angelini et al. 2000). As the data at hand are the similarity matrices of the 
financial times series, rather than feature vectors, a pairwise version of this al­
gorithm would be more suitable. The CMC algorithm shares the same philoso­
phy of the Super Paramagnetic Clustering (SPC) algorithm (Blatt et al. 1996) 
where the physical system used to partition the data is an inhomogeneous fer­
romagnetic model: Potts spin Si are assigned, instead of map variables, to each 
data-point and short-range interactions between neighboring sites are intro­
duced. The spin-spin correlation function replaces the mutual information as 
similarity index for clustering the data. In the super-paramagnetic regime, 
domains of aligned spins appear, corresponding to the classes present in the 
data. Kertesz et al. generalized the SPC to the case of anti-ferromagnetic 
couplings by introducing the following spin-spin strength as a function of the 
correlation coefficients Cij (Kertesz et al. 2000): 

Jij = sgn{cij) ^1 - exp I - ^^^-^ [ ^ ] I ) , (1) 

where n is an even positive integer tuning the shape of the interaction function 
(whose value should be chosen so that a stable non-trivial partition can be 
obtained inside the hierarchical solution), and a is the average of the largest 
correlation coefficients for each sequence (Kertesz et al. 2000): 
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1 ^ 
a = — ^ i n a x ( c i j ) . (2) 

1 = 1 

We shall try to follow a similar strategy in our CMC approach. We are 
naturally led to adopt the couplings (1) for Cij > 0, while setting Jij — 0 
for Cij < 0. In this way, we build up a partially coupled map lattice with 
exponential increasing interactions between positively correlated data-points. 
The evolution of the maps is driven by a chaotic dynamics: 

where f{x) = 1 — 2x^ is the logistic map, Ci = Ylj^i '^ij ^^ ^ normalization 
factor, and r denotes the evolution time of the chaotic map system (not to be 
confused with the real time t of the financial series). A detailed description of 
the above mentioned dynamics for clustering purposes is described elsewhere 
(Angelini et al. 2000); roughly speaking, after a certain equilibration time, 
the dynamics (3) yields a stable partition of the maps Xi into synchronized 
clusters. In order to evaluate the synchronicity in the evolution of the maps 
and to explore the entire resulting hierarchical structure we adopt the Shannon 
mutual information / (Basalto et al. 2005). 

4 Application to financial data 

We applied the CMC algorithm to cluster the Â  = 30 shares composing the 
DJIA index collecting their daily closure price during the period 1998-2002. 
The analysis has been performed either over each single year and over the 
whole period. We look at the temporal series of the logarithmic differences 

Yi{t) = lnP,{t)-\nP,{t-l), (4) 

where Pi{t) is the closure price of the i-th share at day t. The natural mea­
sure to quantify the degree of similarity between two time series, namely the 
synchronicity in their time evolution, is the correlation coefficient: 

" ^{{y?) - {yr)')i{Y,') - {Yj^)' 

In our framework, each stock is represented by a map. Once we have set the 
coupling strength between each pair of them (1), they evolve according to the 
dynamics (3) in order to reach a stable partition. Exploring the whole mutual 
information range of values, the complete hierarchy of clustering is obtained. 
In Fig. 1, we display, by means of a dendrogram, the resulting partition of 
stocks over the whole time period. Each firm is labeled by mean of its ticker. 
Tickers and their corresponding companies are shown in Table 1. 
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Fig. 1. Dendrogram obtained from the whole 5-year time period 1998-2002, with n = 
18. The main branches have been marked by the industrial areas of the companies 
they are made of 

Analyzing the outcomes, it is worth stressing the presence of some econom­
ically meaningful cores of companies which remain strongly linked together 
over periods longer than one year: financial companies (AXP, C, JPM, 98-
02), services (DIS, MCD, T, WMT, 98-99, 01), consumers non-cychcal (KO, 
MO, PG, 98-99), basic materials (AA, DD, IP, 00-02), capital goods (BA, 
CAT, HON, 99-01), technology (HPQ, IBM, MSFT, 01-02), healthcare (JNJ, 
MRK, 98-99), conglomerates (MMM, UTX, 00-02). Let us stress that these 
resulting partitions come out from a purely mathematical algorithm, using no 
economical information but the price of stocks. In this sense, the partitions 
are provided by the market itself and should have an immediate pertinence in 
a matter of great interest for financial institutions: the portfolio optimization. 
According to the portfolio theory, in order to minimize the risk involved in a 
financial investment, one should diversify among different assets by choosing 
those stocks whose price time evolutions are as different as possible. In our 
opinion, a proper selection of stocks can be performed by means of the chaotic 
map clustering approach. 

5 Conclusions 

In the present work, a pairwise version of the chaotic map algorithm has been 
applied to the analysis of the stocks aggregated into the DJIA index. The cor­
relation coefficients between financial time series have been used as similarity 
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Table 1. Companies belonging to the Dow Jones Industrial Average: tickers and 
their extended names 

Ticker Name 

AA 
AXP 
BA 
C 
CAT 
DD 
DIS 
EK 
GE 
CM 
HD 
HON 
HPQ 
IBM 
INTC 

Alcoa Inc. 
American Express 
Boeing 
Citigroup 
Caterpillar 
DuPont 
Walt Disney 
Eastman Kodak 
General Electrics 
General Motors 
Home Depot 
Honeywell Intl 
Hewlett-Packard 

Ticker Name 

IP Intl Paper 
Co JNJ Johnson &; Johnson 

JPM JP Morgan Chase 
KO Coca Cola Inc. 
MCD McDonalds Corp. 
MMM Minnesota Mining 
MO Philip Morris 
MRK Merck & Co. 
MSFT Microsoft 
PC Procter k Gamble 
SBC SBC Communications 
T AT&T 
UTX United Technology 

Intl Business Machine WMT Wal-Mart Stores 
Intel Co XOM Exxon Mobil 

measures to cluster the temporal patterns. Once the coupling interactions be­
tween maps are taken to be functions of these coefficients, the dynamics of 
such a system leads to the formation of clusters of companies that can often 
be identified as different industrial branches. The resulting analysis can be 
exploited into a suitable portfolio selection and optimization procedure. 
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Summary. A so called Zipf analysis portofolio management technique is intro­
duced in order to comprehend the risk and returns. Two portofoios are built each 
from a well known financial index. The portofolio management is based on two 
approaches: one called the "equally weighted portofolio", the other the "confidence 
parametrized portofolio". A discussion of the (yearly) expected return, variance, 
Sharpe ratio and ß follows. Optimization levels of high returns or low risks are 
found. 

1 Introduction 

Risk must be expected for any reasonable investment. A portofolio should be 
constructed such as to minimize the investment risk in presence of somewhat 
unknown fluctiiation distributions of the various asset prices [1,2] in view of 
obtaining the highest possible returns. The risk considered hereby is measured 
through the variances of returns, i.e. the ß. Our previous approaches were 
based on the "time dependent" Hurst exponent [3]. In contrast, the Zipf 
method which we previously developed as an investment strategy (on usual 
financial indices) [4,5] can be adapted to portofolio management. This is 
shown here through portofolios based on the DJIA^Q and the NASDAQIOO. 
Two strategies are examined through different weights to the shares in the 
portofolio at buying or selling time. This is shown to have some interesting 
features. A key parameter is the coefficient of confidence. Yearly expected 
levels of returns are discussed through the Sharpe ratio and the risk through 
the/? . 

2 Data 

Recall that a time series signal can be interpreted as a series of words of 
m letters made of characters taken from an alphabet having k letters. Here 
below k = 2: u and d, while the words have a systematic (constant) size 
ranging between 1 and 10 letters. 
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Prior to some strategy definition and implementation, let us introduce a 
few notations. Let the probability of finding a word of size m ending with a u 
in the i (asset) series be given by Pm^M = ^i([Q-m+2, Q-m+i , •••, Q+i, Q ; '^]) 
and correspondingly by Pm,i{d) when a <i is the last letter of a word of size 
m. The character Q is that seen at the end of day t. 

In the following, we have downloaded the daily closing price data available 
from the web: (i) for the D J/i430, 3909 data points for the 30 available shares, 
i.e. for about 16 years^ (ii) for the NASDAQim, 3599 data points^ for the 
39 shares which have been maintained in the index, i.e. for about 14.5 years. 
The first 2500 days are taken as the prehminary historical data necessary for 
calculating/setting the above probabilities at time i = 0. From these we have 
invented a strategy for the following 1408 and 1098 possible investment days, 
respectively, i.e. for ca. the latest 6 and 4.5 years respectively. The relevant 
probabilities are recalculated at the end of each day in order to implement a 
buy or sell action on the following day. The daily strategy consists in buying a 
share in any index if PmA'^) ^ ^m,i(G^), and in selling it if Pm,i{'^) ^ Pm,i{d). 

However the weight of a given stock in the portofolio of n assets can be 
difi'erent according to the preferred strategy. In the equally weighted porto­
folio (EWP), each stock i has the same weight, i.e. we give WI^B — '^/'^u and 
Wi^s = — l/^dj where Uu (rid) is the number of shares in B (S) respectively 
such that E[wi^B + '^ies] — 1, with riu -\- rid = n oi course. This portofolio 
management strategy is called ZEWP. 

In the other strategy, called ZCPP, for the confidence parametrized 
portofolio (CPP), the weight of a share depends on a confidence parame­
ter Km,i = Prn^iiu) " Pm,i{d). The shares i to be bought on a day belong to 
the set B when Km,i > 0, and those to be sold belong to the set S when 

2Krr 
Km,i < 0- The respective weights are then taken to be WB ~ EIT ^^^ ' ^^^ 

— Km iGS 

3 Results 

The yearly return, variance, Sharpe ratio, and ß are given in Table 1 and Ta­
ble 2 for the so called DJIA30 and so called NASDAQ39 shares respectively 
as a function of the word length m. The last line gives the corresponding re­
sults for the DJIA30 and the NASDAQIOO respectively. We have calculated 
the average (over 5 or 4 years for the DJIA30 and NASDAQ39 respectively) 
yearly returns, i.e. E{rp) for the portofolio P. The yearly variances crp re­
sult from the 5 or 4 years root mean square deviations from the mean. The 
Sharpe ratio SR is given by SR = E{rp) / ap and is considered to measure 
the portofolio performance. The ß is given by cov{rp,rM)l<^\i where the 
P covariance cov{rp,rM) is measured with respect to the relevant financial 

^From Jan. 01, 1989 till Oct. 04, 2004 
^From June 27, 1990 till Oct. 04, 2004 
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index, so called market (M), return. Of course, cr^ measures the relevant 
market variance. The ß is considered to measure the portofolio risk. For lack 
of space the data in the tables are not graphically displayed. 

It is remarkable that the E{rp) is rather low for the ZEWP, and so is the 
(jp, but the E{rp) can be very large, but so is the ap in the ZCPP case for 
both portofolios based on the DJIA30. The same observation can be made 
for the NASDAQ39. In the former case, the highest E{rp) is larger than 
100% (on average) and occurs for m =4, but it is the highest for m=3 in the 
latter case. Yet the risk is large in such cases. The dependences of the Sharpe 
ratio and ß are not smooth functions of m, even indicating some systematic 
dip near m = 6, in 3 cases; a peak occurs otherwise. 

The expected yearly returns E{rp) vs. a are shown for both portofolios 
and for both strategies in Figs. 1-2, together with the equilibrium Hne, given 
by E{rM){o'/o'M)^ where it is understood that a is the appropriate value for 
the investigated case. Except for rare isolated points below the equilibrium 
line, data points fall above it. They are even very much above in the Z C P P ' s . 
cases. 

m 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

DJIA30 

ZEWP 
E{rp) ap SR 
20.00 16.98 1.18 
18.10 16.21 1.12 
22.00 14.05 1.57 
24.93 11.90 2.09 
22.60 9.16 2.47 
18.37 11.68 1.57 
17.33 8.93 1.94 
9.84 7.73 1.27 

11.23 4.91 2.29 
6.46 7.11 0.91 

E(rM) (7M SR 
17.09 17.47 0.98 

ß 
0.97 
0.92 
0.79 
0.57 
0.38 
0.47 

-0.06 
0.11 

-O.Ol 
0.15 

ß 
1 

ZCPP 
E{rp) ap SR 
20.16 17.95 1.12 
20.36 17.66 1.15 
65.24 39.52 1.65 

104.85 47.02 2.23 
95.96 56.54 1.70 
67.97 40.55 1.68 
65.27 30.18 2.16 
53.83 37.52 1.43 
44.23 38.12 1.16 
37.40 61.05 0.61 

ß 
1.02 
1.00 
0.08 

-1.11 
-1.58 
0.09 

-0.50 
0.32 
0.58 
1.92 

Table 1. Statistical results for a portofolio based on the 30 shares in the DJIASO 
index for two strategies, i.e. ZEWP and ZCPP bcised on different word sizes rn 
for the time interval mentioned in the text. The last line gives the corresponding 
results for the DJIA30. All quantities are given in % 

4 Conclusion 

We have translated the time series of the closing price of stocks from two fi­
nancial indices into letters taken from a two character alphabet, searched for 
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m 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

NASDAQIOO" 

ZEWP 
E{rp) ap SR 
12.68 22.01 0.58 
11.43 19.99 0.57 
20.25 16.92 1.20 
27.08 15.74 1.72 
27.84 11.49 2.42 
24.89 8.77 2.84 
15.99 9.19 1.74 
13.93 12.39 1.13 
17.52 11.13 1.57 
14.77 10.81 1.37 

E{rM) OM SR 
7.36 24.11 0.31 

ß 
0.89 
0.81 
0.24 

-0.04 
-0.18 
-0.05 
-0.10 
-0.25 
-0.32 
-0.32 

ß 
1 

E{rp) 
5.41 
2.25 

ZCPP 
ap SR 

26.30 0.21 
28.12 0.08 

149.27 192.91 0.77 
131.69 149.75 0.88 
106.63 103.30 1.03 
90.11 
67.28 
68.34 
99.20 
71.42 

68.89 1.31 
32.58 2.07 
44.33 1.54 
38.84 2.55 
32.09 2.23 

ß 
0.55 
0.63 

-1.87 
-1.70 
-1.08 
-0.26 
0.37 
0.06 
0.21 
0.30 

Table 2. Statistical results for a portofolio based on 39 shares from the 
NASDAQim index for two strategies, i.e. ZEWP and ZCPP based on differ­
ent word sizes m for the time interval mentioned in the text. The last line gives the 
corresponding results for the NASDAQIQO. All quantities are given in % 
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Fig. 1. Expected yearly return as a function of the corresponding variance for two 
investment strategies involving the shares in the DJIA'^Q. The time of investigations 
concerns the latest 5 yrs 

words of m letters, and investigated the occurrence of such words. We have in­
vented two portofolios and maintained them for a few years, buying or selling 
shares according to different strategies. We have calculated the correspond­
ing yearly expected return, variance, Sharpe ratio and ß. The best returns 
and weakest risks have been determined depending on the word length. Even 
though some risks can be large, returns are sometimes very high. 
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Fig. 2. Expected yearly return as a function of the corresponding variance for two 
investment strategies involving 39 shares taken from the NASDAQIOO. The time 
of investigations concerns the latest 4 yrs 
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Abstract It is usually assumed that stock prices reflect a balance between large 
numbers of small individual sellers and buyers. However, over the past fifty years 
mutual ftinds and other institutional shareholders have assumed an ever increasing 
part of stock transactions: their assets, as a percentage of GDP, have been multi­
plied by more than one hundred. The paper presents evidence which shows that 
reactions to major shocks are often dominated by a small number of institutional 
players. Most often the market gets a wrong perception and inadequate understand­
ing of such events because the relevant information (e.g. the fact that one mutual 
fund has sold several million shares) only becomes available weeks or months after 
the event, through reports to the Securities and Exchange Commission (SEC). Our 
observations suggest that there is a radical difference between small (< 0.5%) day-
to-day price variations which may be due to the interplay of many agents and large 
(> 5%) price changes which, on the contrary, may be caused by massive sales (or 
purchases) by a few players. This suggests that the mechanisms which account for 
large returns are markedly different from those ruling small returns. 

1 Introduction 

Very broadly speaking, there are two ways to represent stock markets and also two 
different methodologies to choose between them (Fig. 1). In the micro-player rep­
resentation, the number of players is large enough to be treated by using statisti­
cal methods. In this case, each individual player has only a negligible impact on 
daily price changes. On the contrary, in the macro-player representation, the num­
ber of players is small and each one has a substantial impact not only on daily price 
changes but even on weekly or monthly price changes. In the second case a game 
theoretic approach would be more sensible than a statistical approach. The main ob­
jective of this paper is to find out which of these descriptions corresponds to the ac­
tual situation in 2004. A first hint is provided by the sheer weight of macro-players. 
In 1900, the share of financial institutions in total corporate stock outstanding was 
6.7%, in 1974 it was 33%, in 2002 it was of the order of 50% (Kotz 1978, Statistical 
Abstract of the United States 2003, p. 755). 

The purpose of this paper is to show that many (though not all) important phenom­
ena that occur nowadays in stock markets are due to macroplayers. Our analysis 
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TWO CLASSES OF STOCK MARKET 
MECHANISMS AND MODELS 

MICRO-PLAYERS 

• Many (> 100) players 

• Actions have a small effect 
(<0.1%) on stock prices 

• Criterion: expected value 
of the stock 

1 MACRO-PLAYERS 

• Few (<5) players 

# Actions have a substantial effect 
(>2%) on stock prices 

# Broad strategic objectives in which 
short term portofolio optimization 

1 is only one element 

TWO WAYS TO DISCRIMINATE BETWEEN THEM 

OBSERVATION 

Prior to developing a model, 
identify main mechanisms 
through observation of 
critical events. 1 

1 MODELING 

Rely on a priori assumptions about 
the behavior of agents and check 
whether the model's implications 

1 match stylized facts. 

Fig.l In this paper we want to discriminate between the micro- and macro-player repre­
sentations by observing the reactions of stocks to major shocks. Trying to unravel market 
mechanisms prior to any attempt at constructing specifi c mathematical models can be labeled 
as ex-ante analysis, as opposed to ex-post analysis which in econometrics is the standard 
approach. 

starts from the insight provided by some pertinent case-studies. First we consider 
two typical examples, then we discuss their broader relevance. This provides an 
overall framework for model building, a step that we leave to a subsequent paper. 
To begin with, I consider the case of Kmart, the American retail store company. 

2 Kmart: background information 

As several of the episodes to be considered below concern Kmart, it is in order to 
give some background information for this company. It was founded in 1899 by 
Sebastian Kresge and was called the Kresge company until 1977 when its name was 
changed to Kmart. As shown by Fig. 2a it has been a highly successful discount 
retailer for many decades, but fell into trouble in the 1980s^ Eventually it had to 
ask for Chapter 11 bankruptcy protection in January 2002. The losing battle that 
Kmart fought against Wal-Mart can be summarized by the following figures. 

^ Symbolizing this trend was the fact that back in 1988, in the Oscar-winning fi Im "Rain-
man", the character played by Dustin Hoffman repeatedly refers to Kmart by saying 
"Kmart sucks" meaning that the stores were shabby and displayed low quality items. 
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1920 1940 1960 1980 2000 

Fig.2a Ratio of Kmart stock price to the Standard and Poor's 500 index (1910-1999) 
In the 1950s In the late 1980s after becoming confronted to Wal-Mart's competition Kmart 
entered a downward spiral that lasted over 20 years and eventually lead to its bankruptcy 
in January 2002. After the company emerged from bankruptcy in May 2003, its shareprice 
increased more than 5 times within 18 months. The reference to the fi Im "Rainman" is ex­
plained in the text. Source: Common stock (1992), Kmart Fact Book (1999). 

Kmart Wal-Mart 

Revenue 1990 [billion dollars] 32 32 
Revenue 1994 [billion dollars] 36 83 

In 1993, Kmart had to close 5% of its stores and in 1994 it experienced a loss of 
one billion dollars. These poor performances led to increased indebtedness and in 
1996, the rating of its debt was lowered below investment grade. For a company of 
the size of Kmart to be rated at junk level is something which is not common. In 
subsequent years, Kmart continued to lose market shares to Wal-Mart. The fall of 
its .share price shown in Fig. 2a is consistent with this loss of momentum. However, 
the evolution of Kmart's stock price (Fig. 2b and c) raises at least two questions: 

• Why did it increase by almost 100% between September 2000 and August 
2001? 

• Why did it abruptly drop in January 2002 leading the company into bankruptcy? 

In the expected value framework one would wish to know which innovations in 
Kmart's growth perspectives justified these changes. In fact, there were none. Both 
the increase and the sharp fall were due to causes which had very little to do with 
Kmart's growth perspectives. The 100% rise resulted from the strategic move of a 
single investor, Ronald Burkle, a billionaire and head of an investment firm. The 
bankruptcy resulted from the withdrawal of Fidelity, a major shareholder. 
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3 Burkle's deal with Kmart 

Between October 2000 and October 2001, Burkle bought 7.2% of Kmart's outstand­
ing shares (Fig. 2b) representing about $ 300 million. We know this because an in-

111 1111 f i I 11111 11111 
Fig.2b Kmart share price (July 2000 - December 2001). The insert shows how the price 
increase that took place between June 2000 and August 2001 (as delimited by the circle) 
fi ts into the broader picture; this increase was mainly due to the fact that a consortium led 
by billionaire Ronald Burkle purchased 7.2% of Kmart's outstanding shares. Once Burkle's 
share purchases stopped the price resumed its downward trend. Source: CNN Money (January 
22, 2002). 

vestor who wishes to buy more than 5% of the shares has to notify the Securities 
and Exchange Commission in advance which he did on October 13, 2000. In the 
present case we are fortunate to know his global strategy, something which is rarely 
the case. The purchase of Kmart shares was in fact part of a broader deal. Before 
2001, Kmart had two grocery suppliers: Supervalue (for $ 2.3 billions) and Fleming 
(for $ 1.3 billion). In February 2001, that is to say 5 months after Burkle began his 
massive purchases, it became known that Kmart had chosen Fleming as exclusive 
supplier for the next 10 years, a deal whose value was estimated at $45 billions. As 
it happens, Burkle had a stake of almost 10% in Fleming. This makes the deal fairly 
clear. Burkle invests about $ 300 million in Kmart shares and in return he gets an 
exclusivity contract that is worth at least 10 times more (CNN, February 7, 2001) 

Naturally, Kmart denied that there was any link between the two transactions. How­
ever, one should keep in mind that in 1999 Kmart tried to initiate a buyback program 
of its own shares for a total amount of $ 1 billion; assuming a price range from $ 5 to 
$ 10 per share, this represented between 20% and 40% of its outstanding shares. Un­
able to complete this program by itself because of its indebtedness, Kmart certainly 
relied on the deal with Burkle for implementing its objective, albeit on a smaller 
scale than planned initially. 
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To sum up, the 100% price increase in Fig.2b had much to do with Burkle and 
Fleming, but very little with Kmart itself. We now turn to the events which occurred 
in the weeks before Km art's bankruptcy. 

4 The withdrawal of Fidelity from Kmart 

In a CNN financial report of February 15, 2002 one reads: 
Jim Lowell, editor of the newsletter 'Fidelity Investor" said Fidelity 
recently slashed its holding in Kmart. Kmart had represented al­
most 10% of assets at Fidelity parent company Fidelity Management 
and Research Corporation (FMR) until recently, before the company 
slashed its position to 1.3%. 

We posit that Fidelity's move (which was certainly imitated by other institutional 
holders even though we don't have explicit statements) accounts for much of 
Kmart's stock price collapse in January 2002 (Fig. 2c). Because holdings are re­
ported only every three months we do not know when exactly the sales occurred. As 
a result the term 'Recently" used in the above excerpt is fairly elastic: it refers to a 
date comprised between November 15, 2001 and January 22, 2002. 

\ 

\ 

-_ 
: 

'T 

Fidelity sells most of its Kmart shares ^ 

1 1 1 1 

a 

1 
«s 

S g" 
1 3 
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Fig.2c Kmart share price in January 2002. When Fidelity began to sell its shares, it became 
obvious that Kmart no longer had the support of its major institutional shareholders. Source: 
New York Times (January 2002). 

FMR is the world's largest investment fund with assets estimated in 2003 at about 1 
trillion dollars (~ 10% of US GDP in 2001). The company has several subsidiaries 
such as Fidelity Magellan, Fidelity Growth Company, Fidelity Leveraged Company 
which manage its funds. Unfortunately, in contrast to the previous case, we do not 
know precisely the reason of Fidelity's move. Of course, if Kmart had been unable to 
avoid bankruptcy that would have been a sufficient motive for share holders usually 
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lose 100% of their assets in a bankruptcy. However, my reading is that Kmart was 
not driven into bankruptcy by its debt but rather by the withdrawal of its major 
share holders. That feeling relies on the fact that Kmart's assets in terms of real 
estate (land and stores) was estimated at $ 15 billions in a report published by the 
Deutsche Bank in July 2004^; no doubt that, in early 2002 prior to the bankruptcy, 
the value of this asset was substantially larger. As Kmart's debt never exceeded $ 4 
billions, it was not in an Enron-like situation with debt being larger than real worth 
of assets. 

Naturally, if major investors withdraw their support, if the company's debt is down­
graded by rating agencies (which indeed happened on January 17, 2002), then it 
cannot get new short-term loans and bankruptcy becomes unavoidable. 

Let us summarize what we learned from the K-Mart case-study. 
1) Until 1999-2000 there was a connection between Kmart's share price and 

its achievements as a discount retailer. 
2) After October 2000, there is a one-year episode marked by a strong price 

rise due to a deal with a supplier which bears no relationship whatsoever with 
Kmart's performances. 

3) The bankruptcy occurred when one of the major share holders withdrew 
its support. Although it is difficult to distinguish with certainty between cause and 
consequence, the question must be examined in the light of what happened sub­
sequently, namely the fact that the corporation fell under the control of Lampert's 
hedge fund. 

4) The 700% price increase between May 2003 and September 2004, that is 
to say after K-Mart had emerged from bankruptcy, was completely at variance with 
the evolution of Kmart's growth fundamentals. 

Similar mechanisms are at work in many other cases. This is illustrated by the fol­
lowing example. 

5 Converium 

Converium (NYSE: CHR) is a Swiss reinsurer which ranks among the top 10 rein­
surers and employs approximatively 850 people in 23 countries around the world. 
Why did I select Converium among many other possible cases? My attention was 
attracted to it because it experienced a sharp price fall in July 2004. Subsequently I 
discovered that one of our colleagues, econophysicist Michel Dacorogna, is a senior 
member of its Risk Modeling team; naturally, this further increased my interest in 
the company. The graph (Fig. 3) of its share price is particularly striking because it 
has been very stable during two years before dropping sharply by 50% on July 21, 
2004. After this date it continued to fall albeit more slowly. As of September 23, 
2004 its share price was as low as $ 7.80 which means that it had been divided by 

In late July 2004 Kmart actually sold 78 of its 2000 stores for about $ 1 billion. 
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Fig.3 Converium share price (September 2003 - September 2004. Converium, a Swiss 
reinsurer began to be listed on the New York Stock Exchange in January 2002. From that 
date to mid-July 2004 its price remained within a fairly narrow margin of 25 ± 5 dollars. 
Then, on July 21, it suddenly dropped 50% after the company's announcement that it will 
have to increase its reserves. Source: http://finance.yahoo.com. 

more than 4 with respect to the price level of January 2004. The comments offered 
by analysts in the wake of the fall of July 21 were not very convincing. They at­
tributed the fall to a net loss amounting to 22% of its capitalization and to the fact 
that it had to strengthen its reserves by a similar amount. Although fairly serious, 
such a problem did not imperil the existence of the company especially because the 
loss was limited to its activity in the United States^. A more tangible explanation 
came two weeks later, on August 3 2004, in the form of the following statement 
made by the company: 

Converium Holding hereby informs that Fidelity International (based 
in Hamilton, Bermuda) has reduced its holding in Converium from 
9.87% to 3.81%. 

As is common in such announcements, it did not say when exactly Fidelity had sold 
its shares. 

To what extent is it possible to generalize the results of these case-studies? One can 
give the following answers. 

• The Kmart episode was not an isolated example. As a matter of fact, the 
strategy Lampert used at Kmart had been used previously in others of its acquisi­
tions such as Autonation (NYSE:AN), America's largest retailer of new and used 
vehicles, Autozone (NYSE: AZO), Deluxe (NYSE: DLX) and finally Sears, Roe­
buck and Co (NYSE: S). 

• The fact that an investment fund reduces its stake in a company to a consid­
erable extent in a short time interval is relatively common. Table 2 gives a number 

^ As one of the main activities of Converium was the reassurance of airspace industries, it 
is possible that the loss was a consequence of 9/11. 
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of illustrations for FMR. Usually the growth fundamentals of a company do not 
change sharply in a few months which means that such massive sales (or purchases) 
pursued broader strategic objectives. 

Table 1 Effect on share prices of a change in holdings 
by Fidelity Management and Research (FMR) 

1 
2 
3 
4 

Date 

2002 Dec. 
2003 Dec. 
2003 Oct. 
2004 Feb. 

Company 

Teradyne 
Delta Airlines 
Forrester Research 
Boeing 

Ticker 
symbol 

NYSE:TER 
NYSE.DAL 
NASDAQ:NM 
NYSE:BA 

Initial 
stake 
[%] 

15 
7.3 
9.4 
2.2 

Subsequent 
stake 
[%] 

8.24 
0.5 
2.8 
3.6 

Price 
variation 

[%] 

-61 
-72 
-30 

17 

Notes: FMR is the world's largest investment fund with about one trillion dollar under man­
agement (which represents 10% of the US GDP in 2001). The price variation refers to the 
quarter during which the sales or purchases were made (we do not know the exact dates of 
the transactions). Earlier FMR moves include the reduction of its stake in (i) United Airlines 
from 6% to 2% (June 1994), (ii) Apple Computer from 11% to 2.5% (August 1995), (iii) 
Technology stocks (end of 1995), (iv) US Airways from 11.3% to 5.8% (May 1996), (v) 
Digital Equipment Corporation from 13.7% to 7% (June 1996), (vi) Chrysler Corporation 
from 12.2% to 7.8% (June 1996) Besides FMR there are several other mutual frmds giants 
(e.g. Vanguard Group, Capital Research and Management, State Street) whose moves have 
substantial impacts on stock prices. 
Sources: Boston Business Journal (Dec. 10 2002, Oct. 10 2003); Atlanta Business Chronicle 
(Dec. 19 2003); The News Tribune of Tacoma, Washington (Feb. 18 2004), New York Times 
(June 11 1994, January 12 1996, Aug. 15 1996); Wall Street Journal (Oct. 12 1995); USA 
Today (May 9 1996); Boston Herald (July 11 1996). 

6 Conclusion 

The main message of this paper is the observation that many of the major shocks to 
which companies are confronted are due to the moves of a small number of invest­
ment funds. In the case of Kmart we have seen that single investors played a central 
role in each of the three successive episodes which sealed the fate of the corporation 
between 2000 and 2004: first it was Burkle, then FMR and finally Lampert. 

The key role played by major investment funds can be further illustrated by compar­
ing the major holders of three airline companies, namely American Airlines, Delta 
Airlines, and US Airways. Two observations can be made. 
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1) Several institutional holders have a stake in both American and Delta. Ex­
amination of other airlines (e.g. Continental, North West, Southwest) shows that 
these players also hold substantial stakes in those other airlines. 

2) There is a fundamental difference between the major holders of American 
and Delta on the one hand and those of US Airways on the other. In the latter we 
do not find any major investment funds with a substantial (say over 1%) stake. Most 
of the shares are in the hands of the Alabama Retirement Fund which, through its 
links with Social Security, is probably partly funded by federal money. This striking 
difference is certainly to be attributed to the fact that US Airways went through 
bankruptcy in August 2002. As seen previously, stocks are likely to lose all their 
worth in a bankruptcy process. For major holders the main problem therefore is 
to be able to sell before the price has collapsed. Naturally, such tactics are double 
edged because the withdrawal of a major holder may drive down the market price 
to a point which makes bankruptcy ineluctable. 

Fig. 4 shows that, since 1945, mutual funds experienced an exponential growth 
which was shortly interrupted only by the bear market of 1968-1978. As for any 
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Fig.4 Growth of American mutual funds compared to the growth of the US gross domes­
tic product (1945-2000). Between 1947 and 2000 the assets of mutual ftinds as a proportion 
of GDP have been multiplied by a factor of the order of 100. We had to rely on two different 
series because the pre-1970 data available in the Historical Statistics of the United States refer 
to total assets (i.e. stocks plus bonds), whereas the Statistical Abstract more specifi cally gives 
equity assets. Both trajectories are exponential. Naturally, mutual funds represent only one 
class (albeit the most important) of institutional share holders besides insurance companies, 
banks, state retirement funds, hedge funds, etc. Source: Historical Statistics of the US (1975), 
Statistical Abstract of the US (various years). 

exponential growth, the beginnings were inconspicuous. It is only in recent years 
that mutual funds were able to get a firm grip on American stock markets. If this 
evolution continues the conception based on micro-players will become less and 
less relevant. 
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In a previous paper (Roehner 2005) it was shown that, through buyback programs, 
corporations can influence the price level of their own stock. In this paper we tried 
to scrutinize the economic rationale of the moves of major players. Such an ap­
proach is complimentary to the comprehensive macrodynamic analysis of market 
structure carried out by other researchers such as for instance Elroy Dimson et al. 
(2002), Rosario Mantegna et al. (2000) or Didier Sornette (2003). Finally, there is 
an important question which we did not consider and which should be addressed in 
a subsequent study. What is the kind of interaction between macro-players. Is it a 
competitive or cooperative linkage, or perhaps both depending on circumstances? 

Acknowledgements I am most grateful to Stanislaw Drozdz, Olivier Gerard, Cor­
nelia Küffner, Joseph MacCauley and Michel Dacorogna for their helpful com­
ments. 
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Summary. The risk of a credit portfolio depends crucially on correlations between 
the probability of default (PD) in different economic sectors. We present statistical 
evidence that a (one-) factorial model is sufficient to describe PD correlations, and 
suggest a method of parameter estimation which avoids in a controlled way the 
underestimation of correlation risk. 

1 Introduction 

A reliable forecast of losses is mandatory for the credit business of a bank. 
Modeling losses stochastically enables the focus on high quantiles denoted 
as Credit Value-at-Risk (CreditVaR). The difference between the CreditVaR 
and the expected loss needs to be covered by the economic capital of a bank. 
Diversification of credit risk is possible by distributing debt across different 
business sectors. However, correlations between sector PDs determine to which 
degree diversification is successful. 

In CreditRisk+, concentration risk in industry sectors is modeled as a 
multiplicative random effect on the PD per counterpart in a given sector. 
Correlations between PD fluctuations in different sectors can be integrated 
into CreditRisk+ with the method of Bürgisser et al. [1]. For the calculation 
of the Credit VaR it is important whether input parameters like the corre­
lation coefficients between sector PDs are known or must be estimated. In 
the latter case, this estimation leads to an additional variability of the target 
estimate, i.e. the portfolio loss. In this way, uncertainty in the estimation of 
PD correlations translates itself into uncertainty of the economic capital. 

The estimation of cross-correlations is difficult if the length T of the avail­
able time series is comparable to the number K of industry sectors. In such 
a situation, the number of estimated correlations coefficients is of the same 
order as the number of input parameters, and estimation errors are large. The 
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use of a factor model with a reduced dimensionality of the parameter space is 
a way out of this dilemma. By using a test for the equivalence of the empirical 
correlation matrix to the unit matrix, we show that the PD correlations for 
K — 20 industry sectors are captured by a one-factor model. However, even 
the parameter estimation for a parsimonious model is subject to large statis­
tical fluctuations. We suggest a method which allows to find an upper limit 
for these parameters, and briefly discuss the influence of diff"erent conservative 
estimates on the CreditVaR of a realistic portfolio. 

2 Description of data set 

As the economic activity and the probability of default in a given indus­
try sector is not directly observable, we approximate it by the probability of 
insolvency PD^t of sector k in year t 

pj^ _ ^A € sector k in year t ' '{^^ fails} . . 

2-^ A £ sector k in year t 

With the help of insolvency rates, the default probability for a given com­
pany A can be factorized into an individual expected PD PA and the sector 
specific relative PD movement Xk with expectation {Xk) = 1 according to 
P{A fails) = pAXk with Xkt = P D k t / ( ^ E t ^^^kt)- For this study, we use 
sector specific default histories as supplied by the federal statistical office 
of Germany. We analyze default rates for T = 7 years for a segmentation 
of the economy into K = 20 sectors and assume stationarity of these de­
fault rates in the following. We estimate the sample correlation matrix as 
^T^ = '^Ylt=ii^it-'^)i^jt-'^)/(^Xi(^Xj with axi denoting the standard 
deviation of Xi. 

3 Test for independent sectors 

We first ask whether the sample correlation matrix of the PD time series 
is compatible with the hypothesis of zero correlations. Ideas for testing this 
hypothesis for covariance matrices date back to the seventies [3], and were 
recently generalized to situations where the number of time series is larger 
than the sample size [4]. Here, we use an adaption of the tests [3, 4] to test for 
the equivalence of correlation matrix to the unit matrix. The test statistics 

R=^tr[C']-l, (2) 

for a correlation matrix C is both K- and T-consistent with the T-limiting 

distribution {T-l)KR/2 -S X^K(K-I)/2 i^]' ^^^ prefactor T - 1 rather than T 
is chosen to improve the finite T properties of the test. For our example with 
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T = 7 and K — 20, we find R = 5.805, whereas the critical value for a = 0.05 
is i^crit = 3.719. Hence, the independence of sector PDs must not be assumed 
and a model describing sector correlations is needed. 

4 Description of one-factor model 

We diagonalize the empirical cross correlation matrix C®"̂ ^ and rank order its 
eigenvalues Â êmp < ^i+i^emp- As we are interested in modeling correlations 
rather than covariances, we normalize the Xu such that they have the same, 
namely the average variance cr^ = (V-^) ^i=i ^\ ^^^ subtract the mean 

Xit = {Xu-l)^^ . (3) 

We use the components of the eigenvector u emp corresponding to the largest 
eigenvalue A/c,emp = 10.38 to define a factor time series 

Yi^Jl^ZlAi • (4) 
i = l 

In the context of stock returns, a time series defined according to the prescrip­
tion of Eq. (4) was found to agree well with a value weighted stock index [6]. 
We expect that the factor time series Eq. (4) describes economy wide changes 
of relative PD. 

We model the correlations between relative PD movements by a one-factor 
model 

Xu = hYt-\-e^t . (5) 

The coefficients [hi] are found by performing a Hnear regression. To see 
whether a one-factor model fully describes the correlations between the {Xa}, 
we apply the test Eq. (2) to the correlation matrix of the residuals [tit)- Tak­
ing into account that the regression reduces the effective length of the residual 
time series from T to T — 1, we find R = 4.409 slightly below the threshold 
^crit = 4.463. As the assumption of uncorrelated residuals is not rejected, no 
further factors are needed for the description of correlations. 

The point estimator can now be calculated under the assumption that 
the residua {e^ t̂} are iid random variables. Defining the factor variance ay = 
7j;~ ^i-i y^, one finds the point estimator for the cross correlation matrix 
as 

Crr' = S,, + {l-S,,)b.b^a'y/al . (6) 

The largest eigenvalue of CP°^^^ is found to be A/c,point = 10.66 in good agree­
ment with the original largest eigenvalue. In addition, the corresponding eigen­
vector u pjj^^ is found to be very close to the original eigenvector (Fig. la) . 
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Eigenvalue X 

Fig. 1. (a) The components of the eigenvector Uemp of the empirical correlation 
matrix (connected full symbols) are almost identical to the components of the eigen­
vector Upoint of the point estimator Ĉ "*"* (open symbols), (b) Distribution of the 
largest eigenvalue from simulations of a one—factor toy model with AK,model = 10.38 
and u^.^^ , , = 0.22. 
ciiVA ""i,model — '-'••"•"• 

5 Fluctuations in empirical correlation matrices 

By using the test statistic R = j^tr [C^] - 1, we found that a one-factor model 
is both necessary and sufficient to reproduce the correlation structure of the 
empirical relative PDs. However, even for a one-factor model, the "true" cor­
relation matrix C"̂ °̂ ^^ resulting from infinitely long model time series differs 
significantly from matrices C®̂ "̂  numerically calculated from finite time series 
of length T = 7. We use Monte Carlo simulations to quantify the fluctuations 
of the ensemble of matrices C^̂ "̂ . Details of the simulations are described in 
[2]. We find that the largest eigenvalue of XK,sim fluctuates strongly around 
the true XK,mode\ with a standard deviation ax = 2.42 (Fig. lb) . Similarly, 
the components of the corresponding eigenvector u(/f)sim fluctuate around 
the value u(i^)niodei with a standard deviation au = 0.083 (Fig. 2a). 

6 Conservative Estimates 

Using the empirical correlation matrix C^'^P, the bank risks that the corre­
lations are "accidently" low. The most conservative approach would be to 
assume all correlations to be one, i.e. u\ = -4= V i and XK = ^ - As 
a controlled mediation we introduce "cases" of add-ons of x = 1,2,3 stan­
dard deviations to the fluctuating quantities such that the predicted risk for 
a portfolio is increased [2]. This means correcting the eigenvalue by x stan­
dard deviations ax towards larger values and the eigenvector components by 
X standard deviations au towards the value u\ = 1/y/K indicating the same 
correlation strength for all sectors (see Fig.2). 

To judge the economic implications of the various correlation estimates, 
we study the differences in the CreditVaR resulting from them for a realistic 

275 



Fig. 2. (a) Distribution of the components of the eigenvector with the largest 
eigenvalue from simulations of a one-factor toy model with A/cmodei = 10.38 and 
""i,model ~ ^•22- (^) Comparison between the empirical eigenvector Uemp (diamonds) 
and the conservative estimates u^^^ (circles), U2^^ (triangles), and \r^' (squares). 

- although fictitious - portfolio of an international bank [2]. Using the Cred­
it VaR without including any correlations as a reference point, we find that 
the CreditVaR increases by 26.5 % for C^""^, by 24.5 % for (y^^^\ by 37.8 % 
for Cf^^^\ by 52.5 % for CfS^^\ and by 61.5 % for Cf^'^^K In comparison, 
the assumption of full correlations between all business sectors leads to an 
increase of CreditVaR by 74.1 %. We find that the use of the two-a estimate 
guarantees a sufficient forecast reliability on the one hand and allows for some 
guidance for economical decision on the other hand. 

References 

1. Bürgisser, P., A. Kurth , A. Wagner, and M. Wolf, Integrating Correlations, 
Risk, 07/1999. 

2. B. Rosenow, R. Weißbach, and F. Altrock, eprint cond-mat/0401329 (2004). 
3. John, C.Some optimal multivariate tests, Biometrika 58, 123-127 (1971). 
4. Ledoit, O. and M. Wolf, Some hypothesis tests for the covariance matrix when 

the dimension is large compared to the sample size, Annals of Statistics 30, 
1081-1102 (2002). 

5. B. Rosenow, to be published. For correlation matrices, the test statistics R 
is equivalent to the statistics W studied in [4]. R has a limiting distribution 
XK{K-I) ^S compared to the limiting distribution XK^K+I) ^^^ ^ ^ ^^^ diag­
onal elements of a correlation matrix are fixed and do not fluctuate. 

6. P. Gopikrishnan, B. Rosenow, V. Plerou, and H.E. Stanley, Quantifying and in­
terpreting collective behavior in financial markets, Phys. Rev. E 64, 035106(R) 
(2001). 

276 



Are Firm Growth Rates Random? Evidence 
from Japanese Small Firms 

Yukiko Saito^ and Tsutomu Watanabe^ 

^ Fujitsu Research Insitute, 1-16-1 Kaigan, Minato-ku, Tokyo 105-0022, Japan 
s a i t o Q f r i . f u j i t su .com 

^ Institute of Economic Research, Hitotsubashi University, Kunitachi, Tokyo 
186-8603, Japan t su tomu.wQsrv .cc .h i t -u .ac . jp 

Summary. Anecdotal evidences suggest that a small number of firms con­
tinue to win until they finally acquire a big presence and monopolistic power in 
a market. To see whether such "winner-take-all" story is true or not, we look 
at the persistence of growth rates for Japanese small firms. Using a unique 
dataset covering half a million firms in each year of 1995-2003, we find the 
following. First, scale variables, such as total asset and sales, exhibit a diver­
gence property: firms that have experienced positive growth in the preceding 
years are more likely to achieve positive growth again. Second, other variables 
that are more or less related to firm profitability exhibit a convergence prop­
erty: firms with positive growth in the past are less likely to achieve positive 
growth again. These two evidences indicate that firm growth rates are not 
random but history dependent. 

Key words: Firm growth; Gibrat's Law; history dependence; winner-take-all; 
persistence of growth 

1 Introduction 

It is often said that a small number of firms continue to win until they fi­
nally acquire a big presence and strong monopolistic power in a market. For 
example, "winner-take-all" is said to be an important phenomena observed 
in IT (information technology) related industries, in which technology-driven 
network externalities enable a small number of firms to acquire a dominant 
presence in markets. Also, at least partially due to developments in financial 
technology, more and more firms are now engaged in mergers and acquisi­
tions, thereby contributing to the emergence of highly concentrated markets. 
Given this tendency, should we expect that each market will be monopolized 
in the near future? This is an important question to be addressed, partly be-
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cause highly concentrated market structure might lead to less competition, 
and consequently to the deterioration of economic welfare. 

Previous studies on firm growth give us some hint to think about this 
issue. Famous Gibrat's Law tells us that firm size evolves according to a 
random walk, so that there is no reason to believe that big firms grow faster 
than smaller ones. If this is true, what we currently observe in markets is 
just an illusion or, at best, a very short-life phenomena. More importantly, 
many of recent empirical studies, which tend to report results against Gibrat's 
Law, typically find that big firms grow more slowly than small ones, with an 
implication that firm size tend to converge over time to a common long-run 
level (See Sutton (1997) for an extensive survey). This is clearly against the 
winner-take-all story. 

The purpose of this paper is to investigate whether firm growth rates are 
random or not. More specifically, we try to detect persistence in firm growth 
rates. The rest of this paper is organized as follows. Sections 2 and 3 explain 
our empirical strategy and data. Section 4 presents empirical results. 

2 Empirical Strategy 

The common model used to explain firms' growth rate is 

Axit = ßxit-i -\-eit, (1) 

where xa is the logarithm of the size of firm i in period t, Axu is the growth 
rate, which is defined by Axu = xu — xu-i^ /3 is a parameter, and en is a 
disturbance. This equation can be rewritten as 

Axit = tit + ßeit-i -f • •. + /3(H- ßf-^tn + ß{l + ßf-^Xio. (2) 

It is straightforward to see that xu follows a random walk if (1) /3 = 0 and 
(2) Cov(eit,eit-fc) = 0. Put differently, we have 

Pr(Axit I Axit-i, Axit-2, Axit-3, ---) = Fi{Axit) (3) 

if these two conditions are satisfied. In words, firm i's growth rate in period 
t does not depend on its past performance. However, if either of the two 
conditions is violated, equation (3) does not hold any more, and firm i's growth 
rate in period t depends on its past performance. This is what we call history 
dependence. 

More specifically, we are interested in whether 

FriAxit > 0 I Axit-i > 0, Axit-2 > 0, • • •) = FviAxu > 0) (4) 

FiiAxit < 0 I Ax^t-l < 0, Axit-2 < 0, • • 0 = FiiAxu < 0) (5) 

hold or not. For example, if the conditional probability in equation (4) is 
smaller than the unconditional one, it implies "mean-reversion" or "conver­
gence" : those firms with positive growth in the past are more likely to turn to 
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Fig. 1. Growth Rates of Total Assets in Two Consecutive Years 

negative growth in period t. On the other hand, if the conditional probability 
is greater than the unconditional one in equation (4), it implies ' 'trend move­
ments" or "divergence": those firms with positive growth in the past are more 
likely to achieve positive growth again in period t, w^hich is consistent with 
the winner-take-all story. In what follow^s, we will compare the conditional 
and unconditional probabilities to see whether or not the da ta supports such 
a story. 

3 Data 

The da ta we use are from the Credit Risk Database (CRD) collected by the 
CRD Association. The sample is well suited for our purposes; it consists of 
more than half a million incorporated enterprises of small size (i.e., about 
tw^enty employees per firm) in each year and covers the nine years of 1995-
2003. Basic B / S and P / L information, which is reported by firms to their 
banks each year, is available for those small firms. 

4 Empirical Results 

4.1 G r o w t h rates in t w o c o n s e c u t i v e years 

Fig. 1 looks at the relationship between the growth rates of total assets in 2001 
(Ax,oi) and those in 2002 (Ax,o2)- We classify firms into 21 categories depend­
ing on the amount of total assets, which is measured by the horizontal axis, 
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and calculate four conditional probabilities for each category: Pr(Aa::i02 ^ 0 I 
Axioi > 0), represented by the line with "-f"; Pr(Axi02 > 0 | Axioi < 0), 
represented by the Une with "*"; Pr(Axi02 < 0 | Axioi > 0), represented by 
the Une with "x"; Pr(Axi02 < 0 | Axjoi < 0), represented by the hne with " 
D". The vertical axix measures probabilities. 

It is seen that the line with "+" is almost always above the line with 
"*", implying that those firms with positive growth in 2001 are more likely 
to achieve positive growth again in 2002.^ On the other hand, the line with " 
D" is almost always above the line with "x", implying that those firms with 
negative growth in 2001 are more likely to have negative growth again in 2002. 

The divergence property observed in Fig. 1 is consistent with the "winner-
take-all" story, but clearly not consistent with the results reported by the 
previous studies, which typically estimate ß in equation (1) under the as­
sumption that Cov{tit, eit-k) — 0, and find that ß is slightly smaller than 
zero. To compare our finding with those of the previous studies, observe that, 
under the assumption of Cov(6it,eit-fc) = 0, equation (1) implies 

Cov(Ax«, Ax«_,) = ^ Ü ± ^ a ? , (6) 

where a^ is the standard deviation of ^n. It is straightforward to see that 
Cov(Aa;if, Axit_fc) cannot be positive as long as /3 € (—1,0]. In this sense, 
our finding is against those of the previous studies. Our finding implies that 
the typical assumption adopted in the previous studies, Cov(€it, eit_fc) = 0, 
might not be appropriate, or their estimates of ß might be biased.^ 

4.2 Growth rates in five consecutive years 

Table 1 extends the analysis to more than two years. The upper part of the 
table presents the unconditional and conditional probabilities for those firms 
with positive growth in 2000; namely, the second column shows the uncon­
ditional probability (Pr(Axioo ^ 0 ) ) and the third column shows the condi­
tional probability Pr(Aa;ioo ^ 0 I Axigg > 0), and the fourth column shows 
the conditional probability Pr(Aa;ioo ^ 0 | Axjgg > 0, Axigs ^ 0)? -̂î d so on. 
The lower part of the table presents similar probabilities for those firms with 
negative growth in 1999. 

Table 1 shows several important features. First, the conditional probability 
Pr(Aa:ioo ^ 0 I Ax^gg > 0) is slightly lower than the corresponding uncondi­
tional probability, and similarly, the conditional probability Pr(Axtoo < 0 I 

^ If one looks at the two lines more closely, one finds tha t they overlap with each 
other for those firms with smaller total assets. 

^ Chesher (1979) is a notable exception in which ß is estimated allowing for the 
possibility of serial correlation of the disturbance term. Using 183 UK firms 
in 1960-1969, he finds tha t the disturbance term is positively autocorrelated 
{E{€itj eit-k) > 0), while the estimate of /? is close to zero. 
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Table 1. Multi-year history dependence: Total asset 

Pr(-f) 

0.41878 
Error bar 

Pr(-) 

0.58122 

Error bar 

Pr(+ 1 +) 

0.41665 
0.00284 

Pr(- 1 -) 

0.57942 

0.00261 

Pr(+ 1 ++) 

0.44522 
0.00441 

Pr(- 1 — ) 

0.60377 
0.00341 

Pr(+ 1 + + +) 

0.47158 
0.00646 

Pr(- 1 ) 

0.64643 

0.00497 

Pr(+ 1 + + ++) 

0.50012 

0.00869 

Pr(- 1 ) 

0.69962 

0.00742 

Axi99 < 0) is slightly higher than the corresponding unconditional probabil­
ity. These results imply a convergence property, but the differences between 
the conditional and unconditional probabilities are not substantial, and in fact 
not statistically significant.^ 

Second, the conditional probability Pr(Axioo ^ 0 I Axtgg > 0, Ax^gs > 
0) is higher than the corresponding unconditional probability, implying that 
those firms with positive growth in two consecutive years are more likely 
to achieve positive growth again in the third year. Similarly, we see that 
those firms with negative growth in two consecutive years are more likely to 
experience negative growth again in the third year. 

Third, the conditional probability of positive growth is higher for those 
firms experiencing positive growth for a longer period: namely, firms with three 
consecutive positive growth are more likely to achieve positive growth again 
than those with two consecutive positive growth, and similarly, firms with four 
consecutive positive growth are more likely to experience positive growth than 
those with three consecutive growth. The second and third findings strongly 
suggest that the data is consistent with the winner-take-all story, 

4.3 Growth rates in terms of various measures 

Tables 2 and 3 repeat the same exercise as we did in Table 1, but now we 
use two different variables: firm sales and firm profits. Table 2 shows that firm 
sales exhibit a divergence property that is similar to what we observed for total 
assets: positive (negative) growth is more likely to occur for those firms with 
positive (negative) growth in the preceding years. On the other hand. Table 

^ Error bars in table 1 are calculated as follows. Denote the total number of occur­
rences of the event Axu-i > 0 by ni . If the event Axu > 0 occurs totally indepen­
dently of past events (in particular, independently of the event Axu-i > 0), the 
number of occurrences of Axu > 0 obeys a binomial distribution whose mean and 
variance are given by rii Pr(Axit > 0) and rii Pr(Arrit > 0)(1 - Pr(ArEit > 0)), 
where Pr(-) represents an unconditional sample mean. Then the error bar for 
Pr(+ I +) is defined by [Pr(Axit > 0)(1 - Pr(Axit > 0))/ni]^/^ Similarly, the 
error bar for Pr(+ | ++) is given by [FiiAxu > 0 | Axu-i > 0)(1 - Pr(Axit | 
Axit-i > 0))/n2]^/^, where 712 represents the number of occurrences of the event 
Axit-i > 0 and Axit-2 > 0. Other error bars are calculated in a similar way. 
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Error bar 

Error bar 

Error bar 

Error bar 

Table 2. Multi-year history dependence: Firm sales 

Pr(+) 

0,44894 

P r ( - ) 

0.55106 

Pr(+ 1 +) 

0.44097 
0.00329 

Pr(- 1 - ) 

0.54683 
0.00240 

Pr(+ 1 ++) 

0.48341 
0.00546 

Pr(- 1 — ) 

0.55443 
0.00290 

Pr(+ 1 4- 4- +) 

0.53885 
0.00770 

Pr(- 1 ) 

0.60868 
0.00436 

Pr(+ 1 + + ++) 

0.58402 
0.01061 

Pr(- 1 ) 

0.67304 
0.00672 

Table 3. Multi-year history dependence: Firm profits 

Pr(-i-) 

0.53415 

P r ( - ) 

0.46585 

Pr(+ 1 +) 

0.42148 
0.00280 

Pr(- 1 - ) 

0.36140 
0.00270 

Pr(+ 1 4-f) 

0.36042 
0.00389 

Pr(- 1 — ) 

0.31090 
0.00303 

Pr(4- 1 + + +) 

0.34043 
0.00601 

Pr(- 1 ) 

0.28990 
0.00425 

Pr(+ 1 -h -h ++) 

0.35099 
0.01012 

Pr(- 1 ) 

0.29349 
0.00663 

3 shows that firm profits exhibit a convergence property: positive (negative) 
growth is less likely to occur for those firms with positive (negative) growth 
in the preceding years. Such a convergence property is observed for other 
variables, such as ROA (return on assets), probability of defaults, interest 
payments, that are more or less related to firm profitability (Not reported 
here). These two contrasting evidences seem to suggest that it is possible for 
firms to grow in terms of scale variables (such as total asset or firm sales) 
if they want to so, but larger scale operation does not necessarily guarantee 
higher profitability. 
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Trading Volume and Information Dynamics 
of Financial Markets 
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Summary. We describe a new financial diagnostic method, related to the entropy 
generated when a limit trader satisfies market demand by filling orders, thereby 
playing the role of a Maxwell Demon. By comparing the real cumulative trading 
volume to some measure of historically "normal" demand, one may determine 
whether the market shows excess order or disorder, and accordingly adjust one's 
trading strategy. 

Key words. Entropy, Maxwell Demon, Trading volume 

Introduction 

Information-theoretical analysis of financial markets has historically focused on 
prices. The Efficient Market Hypothesis states that all information about a stock or 
a market is contained in its price. Since every trader has access to the current stock 
price, no trader has an advantage in predicting future prices. 

In our model, we consider the information contained not in prices but in 
volume, the number of shares traded or offered for trade. While trading volume 
and price are not independent (they are related through liquidity or price impact), 
volume is more directly related than price to supply and demand for orders, and 
can be expressed in familiar probability measures from information theory. In 
particular, we make an econophysical analogy between financial markets and the 
Maxwell Demon. 

Analogy with the Maxwell Demon 

In the Maxwell Demon thought experiment, an intelligent "demon" observes 
particles moving in a box with two chambers separated by a trapdoor. The Demon 
collects fast particles in one chamber and slow particles in the other by opening or 
closing the trapdoor as each particle approaches. While the order created by the 
Demon seems to violate the Second Law of Thermodynamics, in fact the stream of 
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information collected by the Demon in determining whether to open or close the 
trapdoor more than offsets this. 

A A A A 

* A A 

B ^ B B B ^ 
B B B 

o,o,c,o,c,o,... X 

1 

s 
^ 

Fig. 1. The Maxwell Demon in thermodynamics. The Demon sorts molecules of gases A 
and B, generating a stream of information. There are four molecule states: (A, top), (A, 
bottom), (B, top), (B, bottom), and two sorting operations: (open, close). 

In our idealized model of a financial market, market orders play the role of 
particles, and a limit trader plays the role of the Demon. By placing limit orders at 
meaningful prices that add liquidity to the market, the limit trader effectively sorts 
market orders into filled and unfilled states, analogous to the chambers of the box. 
The limit trader creates order in the market while generating excess entropy in the 
universe. 

L S L S 
S L s L 

p F F F 

F ^F 

b,OAO,b,a,..- W 4 
Fig. 2. The Maxwell Demon in financial trading. Limit traders sort market orders by 
placing bids and asks. There are three order states (long, short, filled) and three sorting 
operations (bid, ask, do nothing). 

Idealized Stock Market Model 

Consider an idealized stock market in which: 
1. Supply and demand vary in time according to the quantity of unfilled short 

and long market orders present. 
2. A single limit trader fills all market orders. The market is efficient, so the 

limit trader knows the proper stock price (to within the bid-ask spread). 

In our model, at the beginning of a trading day there are N unfilled market 
orders (N/2 short, N/2 long) waiting to be filled. At any subsequent time, the limit 
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trader observes a market order and places either a bid or ask to fill it (if unfilled), 
or no order (if already filled). By the end of the day, all N market orders are filled. 

We have shown elsewhere (Jones et al. 2004) that the market's entropy change 
over the trading day is -N. The market becomes more ordered by 1 bit per market 
order filled, as expected. The corresponding increase in entropy of the limit trader 
is (1 +r|*)N, where 

r|* = 7cV (6 In 2) = 2.37 bits/order. (1) 

This excess entropy generation (information collection) is identical to the 
minimum increase in entropy for sorting initially anti-sorted particles in the 
Maxwell Demon problem (Jones et al. 2003). This result is surprising, as the two 
systems (particles v. market) are physically unrelated and have a different number 
of states and sorting operations. 

Practical Implementation 

The essence of this diagnostic method is tracking the cumulative trading volume 
V. time, and comparing it to a standard reference. As a simple example, when the 
trading volume exceeds that predicted for constant demand, the market is 
relatively ordered, otherwise it is relatively disordered. 

In real trading, we do not expect orders to arrive at a constant rate. Markets are 
most active at the open and close of trading. There are flurries of trading in 
response to financial news. Traders may place an excess of long or short orders 
during runs. Hence a more realistic diagnostic should compare the cumulative 
trading volume to a "normal" day or intraday interval. 

We have developed trading strategies that use various pattern recognition 
techniques to detect meaningful volume dynamics, but the details are beyond the 
scope of this article. In summary, trading volume reveals useful information about 
the order or disorder of financial markets, providing a valuable complement to 
conventional predictive models based on price history. 
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Summary. We examined the effectiveness of random matrix theory applied to 
portfolio optimization using Japanese stock market data. We carried out 48 back 
tests for different historical periods and confirmed that it was possible to drasti­
cally improve the accuracy of portfolio risk evaluation using random matrix the­
ory. 

Key words, random matrix theory, portfolio optimization, cross-correlation 

Introduction 

Portfolio optimization is one of the most important and fundamental problem in 
finance. According to Markowitz theory, a portfolio is optimized by minimizing 
the predicted risk using the cross-correlation matrix of stock returns (Markowitz 
1959). Conventionally, the matrix has been directly calculated from historical 
data. However, recent studies of random matrix theory (RMT hereafter) have re­
vealed that such a cross-correlation matrix is heavily contaminated with noise 
(Bouchaud et al. 2000, Laloux et al. 1999a, Plerou et al. 2001, Plerou et al. 2002, 
Utsugi et al. 2003), which causes a substantial margin of error in risk prediction 
(Bouchaud et al. 2000, Laloux et al. 1999b, Plerou et al. 2002, Rosenow et al. 
2002). Noise reduction methods applying RMT have also been proposed and the 
effectiveness in portfolio optimization has been shown in some examinations of 
the European and US stock markets (Bouchaud et al. 2000, Laloux et al. 1999b, 
Plerou et al. 2002, Rosenow et al. 2002, Pafka et al. 2004). In this paper, we com­
prehensively verified the effectiveness of RMT applied to portfolio optimization 
in the Japanese stock market. 
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Portfolio Optimization Theory 

A portfolio is defined by the fraction of money to be invested into each stock jc, 
where / runs over Â  different stocks. The predicted return R(x) and risk S(x) 
of the portfolio in the investment interval T are given by 

R(x,m) = ^f^x,m, (1) 
A/Tri* 

5(;c,CT,C) = |£|jJ;c,x,(7,(T,cT (2) 

where m, a and C are parameters which describe the average, standard deviation, 
and cross-correlation of the relative price change of stocks at every time inter­
val At, respectively (Markowitz 1959, Rosenow et al. 2002). These parameter val­
ues are predicted for the investment interval. 

The portfolio optimization problem is to solve on x , which minimizes 
S(x,c,C) under the constraints R{x,m) = r and ^,_,^, = 1 • With the aid of La­
grange's undetermined multiplier method, we can easily obtain the optimal portfo­
lio X = x{r,m,G,C) and the predicted minimum risk5'(jc(r,#ii,cj,C),CT,C) . 

The realized return and risk of the optimal portfolio in the actual investment in­
terval can be written as/?(jc(r,/w,cJ,C),in') and 5(jc(r,/ii,(T,C),cr',C'), where 
m' ,G' and C are the realized values in the actual investment interval. Then, 
each gap between predicted and realized values for return and risk are understood 
as prediction errors. 

In order to accurately predict the return and risk of a portfolio, we need the ac­
curate values of m ,a and C beforehand. Of these, C has been directly calcu­
lated usign the following familiar formula 

^ ^ (g,(OG/0),-(fi(/)),(^;(0), 3̂̂  

where G, (/) is past time-series data for relative price change of stock / in every 
time interval Â  and ( )̂  indicates a temporal average. However, there has been a 
problem that even if m = m' and a = G' , C calculated by eq.(3) causes a large 
gap between the predicted and realized risk. Recently, the RMT has revealed that 
C calculated by eq.(3) is heavily contaminated with noise, causing the problem 
described below. 

Random IVIatrix Tlieory 

We start from a null hypothesis that all stock price changes are purely independent 
of each other and consider a cross-correlation matrix calculated by eq.(3) using the 
time-series data of length L . According to RMT, in the limit N,L-^oo with 
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Q = L/ N>\ is fixed, the density function of eigen values A of the matrix can be 
explicitly written as follows (Bouchaud et al. 2000, Laloux et al. 1999b, Plerou et 
al. 2002, Rosenow et al. 2002) 

^ 27r A 

Q Ve 

(4) 

(5) 

There is a critical upper bound Â  on A . Therefore the range A < Â  can be under­
stood as a noise-level region, and Â  < A can be understood as a signal-level re­
gion. 

We plotted two eigen value distributions in figure 1. One is the observed distri­
bution of a cross-correlation matrix calculated by eq.(3) using actual past data 
from the Japanese stock market, and the other is the RMT distribution given by 
eq.(4). We can see from the figure 1 that the overwhelming majority of the ob­
served eigenvalues are found in the noise-level region. We can therefore under­
stand that this noise is the root cause of risk prediction error. 

pa) 1 

Fig. 1. Eigenvalue distributions of cross-correlation matrices. The dashed line is distribu­
tion given by eq.(4). The solid line is distribution of observed cross-correlation matrix us­
ing real stock price data from Tokyo Stock Exchange from July 16, 2001 to January 15, 
2002. Assuming At = 30 minutes corresponding to Z = 1079 , we selected TV = 414 
stocks with high liquidity whose data deficient rates were less than 1%. 

Noise reduction methods applying RMT have previously been proposed (Bou­
chaud et al. 2000, Laloux et al. 1999b, Plerou et al. 2002, Rosenow et al. 2002, 
Fafka et al. 2004), and the simplest one is as follows (Rosenow et al. 2002). First, 
we perform eigenvalue decomposition of C , that is, C = PAP' , 
A = diag(A ,̂- ^A^) where X^ <• •<A^. Second, we eliminate noise-level eigen­
values from A and defineA = diag(0,---,0,A^,---,A^), where Â _j <A^ <A^. Fi­
nally, we obtain the noise-reduced cross-correlation matrix C constructed by 
C = PAP' setting the diagonal elements to one. The effectiveness of this noise-
reduction method in portfolio optimization is explained in the next section. 
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Verification of Effectiveness 

We carried out 48 back tests for different historical periods shifting a time-
window, using actual past data of the Japanese stock market, and compared the 
accuracy of risk prediction methods using matrices before and after noise reduc­
tion. We set the time-window to 12 months, and considered the first and second 6 
months as virtual past and future. Using the virtual past data, we obtained optimal 
portfolios and their predicted risks using each method. Then, using the virtual fu­
ture data, we evaluated the realized risks for each optimal portfolio. To quantify 
the accuracy of each method, we defined error ratios at r = 1 as 

_S{x(\,m,(7,C),G,C)-S{x{l,m,G,C),G,C) 

^'''" ~ 5(jc(l,m,cj,C),<j,C) 

5(i(l,w,o',C),(T,C')-5'(jc(l,/n,(T,C),cr,c) 

(6) 

^• . f t«r ' (7) 
s(x(\,m,c,C\a,c) 

The results we obtained are plotted in figure 2. The average error ratios before 
and after noise reduction are 1.51 and 0.69, respectively. We confirmed that the 
optimization method using matrices after noise reduction always reduces the error 
ratio to about 80% compared to the method using matrices before noise reduction. 
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Fig. 2. Error ratios before and after noise reduction. The solid and open circles represent er­
ror ratios before and after noise reduction for each period. We carried out examinations 
shifting the time-window by one week using real market data from July 16 2001 to July 11 
2003. We set At = 30 minutes corresponding to L~1000 by average and selected 
N = 414 stocks with high liquidity whose data deficient rates were less than 1%. 
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Conclusion 

We examined the effectiveness of RMT applied to portfolio optimization using 
Japanese stock market data. We carried out 48 back tests for different historical 
periods and confirmed that it was possible to dramatically improve the accuracy of 
portfolio risk evaluation using RMT. Therefore, RMT may have a great deal of 
potential to improve risk management and portfolio optimization for various kinds 
of financial assets. 
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Summary. Small-business firms have qualitatively different characteristics of 
firm-size growth from those for large firms. Credit Risk Database (CRD) is the 
largest database of Japanese small and midsize companies, which covers nearly 
1 million small-business firms, more than 60% of all companies in Japan. By 
employing stock (total assets and debts) and flow (sales) quantities in the 
CRD, we show that Gibrat's law breaks down for the small and midsize com­
panies corresponding to non-power-law region, while the law asymptotically 
holds in the larger-size region, for all the variables examined. In fact, standard 
deviation a of logarithmic growth rate r = \ogR = log(x2/xi) (where xi and 
X2 are the variable for two successive years) scales as firm size becomes larger 
(cr oc x^ ), but asymptotically approaches non-scaling regime {a ~ const). 
We also show that there is scaling relation of growth rates for different time-
scales with which one observes firm-size. Standard deviation a of growth rate 
r = \ogR = \og{xt+At/xt) from time t and t -[- At scales as cr oc {Ät)~'^. 
Key words, company growth, Pareto-Zipf distribution, Gibrat law, scaling relation 

Introduction 
Financing small-business firms is one of the biggest financial problems in 

Japan. The problem concerns about how a financial institution should finance 
small and midsize companies with an appropriate interest rate for a duration of 
period. Although this is a fundamental issue for any financial sector, Japanese 
institutions have been lacking an applicable database for quantitative study. 

Credit Risk Database (CRD) is a database of about one million Japanese 
small-business firms. This is the largest database for small and midsize compa­
nies, which covers more than 60% in the year 2001, for example. Small-business 
firms have qualitatively different characteristics of firm-size growth from those 
for large firms. It was found, for example, that Gibrat's law (growth rate is 
independent of starting size) does not hold, i.e. smaller firms have larger vari-
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ation in their growth (Stanley et al. 1996, Amaral et al. 1997, Amaral et 
al. 1998, Mizuno et al. 2002, Aoyama et al. 2004). 

As a first step to state the financing problem in a quantitative way for 
small-business firms, we examine the growth process of such firms by employ­
ing the CRD and by examining stock and flow variables in financial state­
ments. In this paper, due to the limit of space, we focus on the empirical facts 
about growth rates as overall cross-sectional data for all business-sectors and 
geographical regions. 

Small and midsize companies 
According to survey by statistics bureau of a Japanese ministry, the num­

ber of Japanese companies is approximately 1.6 million in the year 2001. Data 
in the CRD is sampled annually by credit guarantee association, government-
affiliated institutions and private-sector financial institutions all over Japan 
since the year 1997. It mainly covers small and midsize companies, the def­
inition of which can be stated as follows, basically in accordance with the 
Japanese Small and Medium Enterprise Basic Law; either the capital (when 
established) or the number of employees is less than a threshold. The threshold 
depends on the business-sector to which the company belongs. For wholesales, 
the threshold of capital is 0.1 billion yen, and that of employees number is 
100. For retails, 50 million and 50. For services, 50 million and 100. And for 
manufacturing and other sectors, 0.3 billion and 300. The data coverage is 
more than 60 % of such companies in the year 2001. The database includes 
financial statements, non-financial facts (establishment etc.) and default facts. 
We used only those firms that satisfy the threshold conditions for analysis. 

10" t 

Q- 10-2 

I 10-3 

i io-
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460 largest firms 

non-power-law power-law 

102 10^ 10^ 
Number of employees 

Fig. 1. Cumulative probability distribution of Japanese firm-size in the year 2001. 
The squares correspond to a tabulated data by sample survey (Establishment and 
Enterprise Census 2001 by Ministry of Internal Affairs and Communications). The 
dots show an exhaustive list of largest 460 firms (database by Diamond, Inc.). The 
line is simply a guide for eyes with /i = 1.34 in the power-law P>(x) oc x~^. 

Firm size distribution with respect to the number of employees is depicted 
in Fig. 1. One can observe that there exists a transition from non-power-law 
regime to power-law regime (cf. Stanley et al. 1995, Hart and Oulton 1997, 
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Takayasu and Okiiyama 1998, Axteil 2001). The transition occurs at around 
several hundreds in terms of the number of employees. The CRD, therefore, 
covers the non-power-law regime and the transition region^. While company 
growth in the power-law regime has been extensively studied (see Steindl 1965, 
Stanley et al. 1996, Amaral et al. 1997, Amaral et al. 1998, and more recent 
works, Mizuno et al. 2002, Aoyama et al. 2003, Fujiwara et al. 2004), httle 
has been known for the growth and fluctuations for small-business firms. 

Growth and fluctuations 
Let X be a quantity that measures firm size (such as total-assets and 

sales), and Xi and X2 be the quantities measured at two successive years. 
The joint probability P(xi,X2) is shown in Fig. 2. It can be observed that 
detailed-balance condition holds approximately in the sense that P(xi,X2) = 
P(x2,xi ) . This means that the empirical probability for a firm to change its 
size from a value to another is statistically the same as that for its reverse 
process in the ensemble. 

2 3 4 5 6 7 

iogio(xi) 

2 3 4 5 6 

logio(Xi) 

2 3 4 5 6 7 

logio(xi) 

Fig. 2. Scatter plots corresponding to joint probabilities P{xi,X2) for total-assets 
(a), total-debts (b) and sales (c). The values of xi and X2 are in units of 10^ yen. 

Our concern is the annual change of individual firm-size, namely its growth. 
Growth rate is defined a.s R = X2/x\. It is customary to use the logarithm 
of -ß, r = logio Ft' We examine the probability density for the growth rate 
P{r\x\) on the condition that the size x\ in an initial year is fixed. If P{r\x\) 
does not depend on xi , it is said that Gibrat's law holds (see Sutton 1997). 
For large firms in the power-law regime, we showed in Fujiwara et al. 2004 
(see also Aoyama et al. 2003 for firm-income) that Gibrat's law holds and that 
Gibrat's law implies the existence of power-law in the firm-size distribution 
under the detailed-balance condition. However, for small and midsize ones, 
Gibrat's law was shown to break down for total-assets (Aoyama et al. 2004). 

^ In what follows, we shall examine stock quantities of total assets and total debts, 
and flow quantity of sales. We verified the existence of strong correlation between 
each of these quantities and the number of employees. Especially, the range of each 
such quantity corresponds to the range of the number of employees approximately 
coinciding to the non-power-law regime and the transition region. 
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Fig. 3 (a)-(c) shows the breakdown of Gibrat's law by depicting the proba­
bility density function P{r\xi) for logarithmic growth rate r. The probability 
density has explicit dependence on xi showing the breakdown of Gibrat's 
law. In order to quantify the dependence, we examine how the standard de­
viation of r in the ensemble defined in each bin of xi scales as xi becomes 
larger. Let the standard deviation of r be denoted by a. Fig. 3 (d)-(f) shows 
that a scales as a function of xi {a oc x^ ), but asymptotically approaches 
non-scaling regime (a ~ const). The breakdown of Gibrat's law in the non-
power-law regime and its holding in the power-law regime are consistent with 
what we showed in our work (Fujiwara et al. 2004). 
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Fig. 3. Upper panels: Probability density function P{r\xi) for r = logio(ß)- For 
conditioning .TI, we use different bins of initial firm-size with equal interval in log­
arithmic scale as xi G [lo^+o-̂ ^C'̂ -i)̂  io4+o.25n] (^ = i^...^8) for total-assets (a), 
total-debts (b) and sales (c). Lower panels: Standard deviation cr of r as a function 
of initial year's firm-size xi for total assets (d), total debts (e) and sales (f). 

We also examine the growth rate for different time-scales At, namely r = 
\ogR = log(xt+z^t/xt), for At changed from 1 to 6 years. Fig. 4 shows a as a 
function of At. It is obvious that there is a scaling relation a oc {At)~'^. This 
finding is thought to be quite important when one considers temporal change 
of financial state of stock (balance-sheet) and flow (profit-and-loss), as it is 
relevant to growth and default process of small and midsize companies (see 
also Fujiwara 2004 for bankruptcy of large firms). 

a c k n o w l e d g e m e n t The authors would like to thank the CRD Association 
(CRD: Credit Risk Database) in Japan for providing datasets and information. 
This research was supported in part by the National Institute of Information 
and Communications Technology. 

294 



Scaling of a for Sales 

Fig . 4. Standard deviation a oi r = log^o R- The growth rate R = Xt+At/xt is for 
different time-scales At which ranges from 1 year to 6 years. Scahng relation in the 
form (7 a ( ^ 0 ^ is evident for total-assets (a), total-debts (b) and sales (c). The 
values of 7 are respectively (a) 0.44, (b) 0.38 and (c) 0.41. 
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5. Networks and Wealth Distributions 



The skeleton of the Shareholders Networks 
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1 The Markets 

We have collected the data of the Shareholding Network (SN) as it appeared 
in 2002 in two US stock market (NYSE and NASDAQ, [1]) and in one Euro­
pean stock market (MIB, [2]). We have performed a systematic study of the 
topological properties of such networks using a complex networks approach 
[3], with particular attention at edges weights [4]. 

In a previous paper [5] we have addressed the issue of whether it is pos­
sible to classify stock markets based on the scale free nature of the connec­
tivity properties. Here we want to investigate the inner organization of such 
networks. While some network properties are common to different markets, 
others are dramatically different and may be used to classify financial sys­
tems. In our previous work [5] we have found that the in-degree distribution 
follows a power law, but exponents are different for MIB and US stock mar­
kets. The in-degree corresponds to the number of stocks in agents' portfolio 
and we will refer to it as portfolio diversification or portfolio size in the 
rest of the paper. The power law distribution implies that there is no char­
acteristic value for the portfolio diversification and that the network is self 
similar. Many social and biological networks have been recently found to dis­
play this property, the World Trade Web [6] and food webs [7] among others 
[8], suggesting common underlying mechanisms leading to self-organization. 

The set of companies quoted on a stock market, together with their re­
spective top-holders form the Shareholding Network (SN). Vertices of the 
graph represent either companies or shareholders (either another company 
or a mutual fund or an individual, hereafter we denote this as an economic 
"agent"). A link is drawn from the company to the shareholder, forming a 
weighted oriented graph. Each link is weighted by the fraction of shares held. 
Restricting only to vertices that are quoted on the same market, we obtained 
a subnetwork, the Stock Shareholding Network (SSN). 
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Whenever considering the whole investment relationships we will instead 
refer to the "extended net". We found in our previous work [5] that the 
portfolio diversification kin is correlated to the invested volume v in such a 
way that: 

kin oc v^ (1) 

This empirical correlation allowed us to relate, with a simple model of net­
work formation, the distribution of k to the distribution of v. The probability 
density of the portfolio diversification is a power law P{k) oa k~'^, where the 
values of the exponent 7 are given by ^nys = 2.37, jnas = 2.22, 7^16 = 2.97. 

The tail of the distribution of the invested volume (see [5]) displays too a 
power-law behavior 0{v) oc t;~", with anys = 1.95, oinas = 2.09, a^iö = 2.24. 

Since v represents the invested wealth, the observed power-law tails gen­
eralize to a market investment context the well-known Pareto tails describing 
the right part of the wealth distribution of different economies. 

It is also important to notice that if we re-define the weights as Wij = WijCj 
then the invested volume is analogous to the notion of strength Si for weighted 
graphs, recently introduced in [4] 

Vi = ^ t ^ i j C _ j - = ^ " ^ i j = Si (2 ) 

j 3 

Differently from social networks which are characterized by high clustering, 
shareholding networks have very small clustering coefficient, especially the US 
markets {CCMJLA = 1.8 • 1 0 - \ CCMYSE = 2,7- 1 0 - ^ CCNASD = 2.3 • 10"^ 

). 
An argument to explain this feature is the following. Recall that we are 

dealing with large, long term investments. If a portfolio contains two compa­
nies A and B, and B owns shares of A, then if A has financial difficulties this 
could propagate to B. Hence in general holders might prefer to avoid having 
connected stocks in their portfolios. 

It is important to understand whether the network can be decomposed in 
subnetworks of comparable size (in this case the market would be separated 
in sub-markets) or whether there exist a giant connected component including 
most of the nodes. We find 65 connected components of at least 2 nodes in 
MIB, while 14 in NYSE and 41 in NASDAQ. The largest connected component 
takes 73% of the whole network in MIB, while the 99.7% in NYSE and the 
99.2% in NASDAQ. 

2 Effective Control Indices 

We now want to take into account the relative importance of a shareholder 
of a stock with respect to the other shareholders of that same stock. It is 
clear that the concentration of the ownerships plays a crucial role in financial 
strategy. We thus compute two indexes that capture the fact that a 10% 
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shareholder holds much more control if the other shareholders hold 1% each, 
than if they hold 10% each. This information is not contained in the amount 
of share alone, nor in the distribution of shares Wij over all nodes. We define 
the following quantities. 

^-^j^ holders ij 

Sli gives the effective number of holders of the company i. SI is close to 1 
when there is a dominating holder. SI is equal to N when there are N equally 
important holders. 

For each holder j and each stock i we also compute: 

13 

(zZkeholders'^ik) 
(4) 

This quantity ranges in [0,1] and reflects to what extent the company i is 
controlled by the holder j . Then we sum up the above quantity for each of 
the stocks in the portfolio of the agent ?'. 

l^ie : w: 
,2 

Tj T ^-^i£stocks.owned.by.j ij / r \ 

\^-^kEholders.of .stock.i ik' 

HIj gives the effective number of stocks controlled by the holder j . 
We note that HI and SI are quantities analogous to the connectivity in-

degree kin and out-degree kout for a weighted network, because they measure 
the effective number of in-going and out-going links. 

We report the distributions of SI and HI in F igu re 1. While in the US 
markets the typical value of SI is around 6, in MIB the typical value is 1. 
These results shows that in MIB the concentration of power among holders is 
distributed in a very different way from US markets. In MIB companies are 
typically controlled by a single holder. In the US markets the large majority 
of companies is controlled by 6 holders. 

As for HI, the distribution has a power law behavior similarly to the kin 
distribution [5]. Note the difference of range across the markets: holders con­
trol up to the equivalent of 3 companies in the Italian market and up to the 
equivalent of 200 companies in the US markets. 

Imagine now to rebuild the network keeping only the effective holders of 
a company as measured by SI. The fact that in MIB companies are typi­
cally controlled by one holder, means that stocks have mostly one outgoing 
link. Which implies that the network has a tree-like structure or a forest-like 
structure in case there are several disconnected trees. The fact that HI ranges 
up only to 3 means that most holders have one or two in-going links. Putting 
together the two pieces of information we can expect the network of the promi­
nent relationships to be a tree (or a forest) with branching factor mostly 1 or 
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histogram of SI, MIB histogram of HI, MIB 

Fig. 1. Distributions of HI and SI computed on the extended networks. 
SI measures the effective number of holders for a stock. HI measures the number of 
stocks effectively controlled by a holder. 

2. To know whether the network is a single tree or a forest, we need to count 
the connected components (see next section). 

In the US markets, the distribution of HI shows that there are some very 
powerful holders who control dozens and even hundreds of stocks. But a stock 
typically has 6 prominent out-going links. Hence for sure we cannot build a 
tree out of the original network. Moreover we still do not know whether these 
powerful holders control separate sets of stocks or if instead they control 
together overlapping sets of stocks. 

3 Conclusions 

We have studied the topology of the Shareholding Networks of three different 
stock markets with a complex network approach. The portfolio diversification 
was known from our previous work to have a power law distribution in all 
those markets. This result can be explained with a 'Fitness model' as done 
in [5]. Here we have provided a further characterization of the network struc­
ture. We have introduced a novel method for extracting the backbone of the 
network by means of two quantities HI and SI, analogous to in-degree and 
out-degree for weighted graph. These quantities capture the notion of number 
of companies controlled by a holder and number of holders controlling a com­
pany. The quantities HI and SI allow on one hand to characterize statistically 
the ownership concentration of stocks and the power of holders at a local level. 
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On the other hand they allow to identify the investors that control most of the 
market. It turns out that they are 1% of all the investors in the US markets 
and 12% in the MIB. Finally the number of effective holders SI allow us to 
extract the subnetwork of the prominent shareholding relationships. We can 
thus unveil the essential structure of the market core, obtaining very different 
pictures for our cases of study: the MIB splits into several separated groups of 
interest, while the US markets is characterized by very large holders sharing 
their control on overlapping subsets of stocks. 
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We construct a weighted financial network for a subset of NYSE traded stocks, 
in which the nodes correspond to stocks and edges to interactions between 
them. We identify clusters of stocks in the network, based on the Forbes 
business sector classification, and study their intensity and coherence. Our 
approach indicates to what extent the business sector classifications are visible 
in market prices, enabling us to gauge the extent of group-behaviour exhibited 
by stocks belonging to a given business sector. 

1 Introduction 

Complex networks provide a very general framework, based on the concepts 
of statistical physics, for studying systems with large numbers of interacting 
agents [1]. The nodes of the network represent the agents and a link connecting 
two nodes indicates an interaction between them. In the complex networks 
framework, interactions have typically been considered to be binary in nature, 
meaning that either two nodes interact (are connected) or they do not (are not 
connected). Imposing a binary interaction requires setting a threshold value 
for interaction strength, such that interactions falling below it are discarded. 
Although this approach is a suitable first approximation, thresholding can 
lead to a loss of information. Consequently, a natural step forward is to assign 
weights on the links to reflect the strengths of interactions. 

In a financial market the performance of a company is compactly charac­
terised by a single number, the stock price, which results from a large number 
of interactions between different market participants. Although the exact na­
ture of these interactions is not known, they are certainly reflected in the 
equal-time return correlations. In this paper we study a financial network in 
which the nodes correspond to stocks and links to return correlation based 
interactions between them. Mantegna [2] wcis the first to construct such net­
works and the idea was followed and extended by others [3, 4, 5, 6, 7]. 
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2 Methods 

2.1 Constructing the Network 

We start by considering a price time series for a set of N stocks and denote the 
daily closing price of stock i at time r (an actual date) by Pt(r) . Since investors 
work in terms of relative as opposed to absolute returns, logarithmic returns 
are commonly used in studies, and thus we denote the daily logarithmic return 
of stock i by r, (r) = In Pi (r) - In Pi (r - 1 ) . We extract a time window of width 
T, measured in days and in this paper set to T = 1000 (equal to four years, 
assuming 250 trading days a year), and obtain a return vector r\ for stock 
i, where the superscript t enumerates the time window under consideration. 
Then equal time correlation coefficients between assets i and j can be written 
as 

where (...) indicates a time average over the consecutive trading days included 
in the return vectors. These correlation coefficients between N assets form a 
symmetric N x N correlation matrix C* with elements p\j. The different time 
windows are displaced by 6T, where we have used a step size of one week, i.e. 
ST = 5 days. 

Next we define interaction strengths, or link weights, based on the correla­
tion coefficients. One of the simplest alternatives is to use the absolute values 
of the correlation coefficients, in which case the interaction strength reflects 
the strength of linear coupling between the logarithmic returns of stocks i and 
j in time window i. If we use wlj to denote the weight on the link connecting 
node i and node j , with this choice we have w\j = |p* |, or in matrix form 
W* = |C*|. Because the correlation coefficients p^j vary between —1 and 1, 
the interaction strengths w\j are naturally limited to the [0,1] interval. In 
the correlation matrix C* we have estimated the correlations between all the 
assets. Thus, the resulting network will be fully connected consisting of N 
nodes and N{N — l)/2 links, corresponding to the elements in the upper (or 
lower) triangular part of the the weight matrix.^ 

2.2 Characterising Network Clusters 

Let us now consider any cluster or subgraph g in the above defined network. 
To characterise how compact or tight the subgraph is, we use the concept of 
subgraph intensity I{g) introduced in [8]. Put differently, subgraph intensity 
allows us to characterise the interaction patterns within clusters. K we use Vg 

^ It is possible, using some heuristic, to insert only a fraction of all the links in the 
network, but this would result in an additional parameter to be determined. 
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to denote the set of nodes and ig the set of links in the subgraph with weights 
Wij, we can express subgraph intensity as the geometric mean of its weights: 

i{9) = n ^«n (2) 

Due to the nature of the geometric mean, the subgraph intensity I{g) may 
be low because one of the weights is very low, or it may result from all of 
the weights being low. In order to distinguish between these two extremes, we 
use the concept of subgraph coherence Q{g) [8]. It assumes values from the 
interval [0,1] and is close to unity only if the subgraph weights do not differ 
much, i.e. are internally coherent. Subgraph coherence is defined as the ratio 
of the geometric to the arithmetic mean of the weights as 

Q{9) = I\^9\/ E '̂̂ •- (3) 
{im tg 

In order to compare intensity and coherence values, we need to establish 
a reference. A very natural reference system is obtained by considering the 
entire market. In other words, we take all of the N nodes and N{N—l)/2 links 
making up the network G, and then using the above definitions compute I{G) 
and Q(G), We can also use relative cluster intensity for cluster g, given by 
I{g)/I{G), and relative cluster coherence^ given by Q{g)/Q{G), if instead of 
absolute values we wish to examine the cluster intensity or coherence relative 
to the reference system. 

3 Results 

In this section we consider a subset of 116 NYSE-traded stocks from the 
S&P 500 index from 1.1.1982 to 31.12.2000. We deal with the closing price, 
resulting in a total of 4787 price quotes for each stock. To divide the stocks 
into clusters, we obtained the Forbes business sector labels for each stock [9]. 
The stocks in our dataset fall into 12 business sectors, such as Energy and 
Utilities. Given these labels for each stock, we use the concepts of subgraph 
intensity and coherence to gauge how how similarly stocks belonging to a 
given business behave as a function of time. 

Let us consider a cluster p, constructed such that all of its nodes Vg belong 
to the same business sector, and let n denote the number of nodes in this 
cluster. Then we add all the n{n — l)/2 links corresponding to the interaction 
strengths between any pair of nodes within g. In one extreme, if all the link 
weights are equal to unity, every node participating in g interacts maximally 
with its n - 1 neighbours. In the other extreme, if one or more of the weights 
are zero, the subgraph intensity for the fully connected subgraph gn tends to 
zero because the original topological structure no longer exists. 
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In Figure 1, we show the relative cluster intensity as a function of time for 
selected business sector clusters. Values above unity indicate that the intensity 
of the cluster is higher than that of the market. This implies that in most cases 
stocks belonging to a given business sector are tied together in the sense that 
intra-cluster interaction strengths are considerably stronger than those of the 
market on the whole. It is also worth noting the high value for the absolute 
cluster intensity for the market roughly between 1986 and 1990. This elevated 
value is due to the 1987 stock market crash (Black Monday), which caused 
the market to behave in a unified manner^. The crash also compresses the 
relative cluster intensities, which means that the cluster-specific behaviour 
is temporarily suppressed by the crash, and after the market recovers the 
clusters regain their characteristic behaviour. 
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Fig. 1. Relative (to the market) cluster intensity as a function of time for select 
clusters. Inset: The (absolute) cluster intensity for the market used for normalisation. 

Business sector clusters are also more coherent than the market, as shown 
in Figure 2, except for Basic Materials. One explanation is obtained from 
the industry classifications, which is a finer classification scheme, of stocks 
comprising the BM cluster. These include Metal Mining, Paper, Gold & Silver 
and Forestry & Wood Products. Therefore, it is clear that the Basic Materials 
business sector is extremely diverse. Also, the price of some of these items is 
determined, at least partially, outside the stock market. Consequently, it is 
not so surprising that the cluster intensity remains low, at times even falling 
below the market reference. Similarly, the low coherence values indicate that 
there are stocks in this cluster with very high correlations (those belonging 

'* The length of this elevated period is related to the window width parameter. 
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to the same industry, such cts gold mining), but also very low (companies 
belonging to different industries). In conclusion, our results indicate that, in 
most cases, stocks belonging to the same business sector have higher intensity 
and more coherent intra-cluster than inter-cluster interactions. 
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Fig. 2. Relative (to the market) cluster coherence as a function of time. 
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S u m m a r y . As complex networks in economics, we consider Japanese share­
holding networks as they existed in 1985, 1990, 1995, 2000, 2002, and 2003. In 
this study, we use as data lists of shareholders for companies listed on the stock 
market or on the over-the-counter market. The lengths of the shareholder lists 
vary with the companies, and we use lists for the top 20 shareholders. We rep­
resent these shareholding networks as a directed graph by drawing arrows from 
shareholders to stock corporations. Consequently, the distribution of incoming 
edges has an upper bound, while that of outgoing edges has no bound. This 
representation shows that for all years the distributions of outgoing degrees 
can be well explained by the power law function with an exponential tail. The 
exponent depends on the year and the country, while the power law shape is 
maintained universally. We show that the exponent strongly correlates with 
the long-term shareholding rate and the cross-shareholding rate. 

K e y w o r d s . Shareholding network, Power law. Long-term shareholding, Cross-
shareholding 

1 Introduction 

Recently, many studies have revealed the true structure of real-world networks 
[1, 3]. This development also holds true in the field of econophysics. Such 
studies have investigated business networks [9], shareholding networks [10, 
11, 12, 5], world trade networks [6, 7], and corporate board networks [2, 4]. 

By common practice, if we intend to discuss networks, we must define their 
nodes and edges. Edges represent the relationships between nodes. The subject 
of this study is the ownership network. Accordingly, we consider companies 
as nodes and the shareholding relationships between them as edges. 
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Table 1. Change in the size of shareholding network N, the total number of edges 
K, and the exponent 7 of the outgoing degree distribution p(A:out) oa k~^^ 

Year| 

~jn 
K 
7 

1 1985 
2,078 

23,916 

1.68 

1990 

2,466 

29,054 

1.67 

1995 

3,006 

33,860 

1.72 

2000 

3,527 

32,586 

1.77 

2002 

3,727 

30,000 

1.82 

2003 

3,770 

26,407 

1.86 

In this article, we consider Japanese shareholding networks as they existed 
in 1985, 1990, 1995, 2000, 2002, and 2003 (see Ref. [5] for shareholding net­
works in MIB, NYSE, and NASDAQ). We use data published by Toyo Keizai 
Inc. This data source provides lists of shareholders for companies listed on 
the stock market or on the over-the-counter market. The lengths of the share­
holder lists vary with the companies. The data before 2000 contain information 
on the top 20 shareholders for each company. On the other hand, the data 
for 2002 and 2003 contain information on the top 30 shareholders for each 
company. Therefore to uniformly analyze the data we consider the top 20 
shareholders for each company. 

Types of shareholders include listed companies, non-listed financial insti­
tutions (commercial banks, trust banks, and insurance companies), ofläcers, 
and other individuals. In this article, we don't consider officers and other in­
dividuals, so the shareholding networks are constructed only from companies. 
The number of nodes, AT, and the total number of edges, K, vary with the 
years, and these are summarized in Table. 1. 

This paper is organized as follows. In Sec. 2 we consider the degree dis­
tribution for outgoing edges and show that the outgoing degree distribution 
follows a power law function with an exponential cutoff. In addition, we show 
that the exponent depends on the year and the country, while the power law 
shape is maintained universally. We also discuss correlations between the ex­
ponent and the long-term shareholding rate and the cross-shareholding rate. 
From this examination, we show that the exponent strongly correlates with 
these quantities. The last section is devoted to a summary and discussion. 

2 Change of outgoing degree distribution 

If we draw arrows from shareholders to stock corporations, we can represent 
a shareholding network as a directed graph. If we count the number of in­
coming edges and that of outgoing edges for each node, we can obtain the 
degree distribution for incoming degree, Ajin, and that for outgoing degree, 
/cout- However, as explained in Sec. 1, the lengths of the shareholder lists vary 
with the companies, and thus we consider only the top 20 shareholders for 
consistency. Therefore, the incoming degree has an upper bound, A:in < 20, 
while the outgoing degree has no bound. 
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Fig. 1. Log-log plot (left) and semi-log plot (right) of the cumulative probability 
distribution, F(fcout <). of the outgoing degree fcout-

The log-log plot of fcout is shown in the left panel of Fig. 1. In this fig­
ure, the horizontal axis corresponds to fcout 1 and the vertical axis corresponds 
to the cumulative probability distribution P(fcout <) that is defined by the 
probability distribution function p(fcout)i 

P(fco 
Jkc 

"^out P(^out) ' 

in the continuous case. We can see that the distribution follows the power law 
function, p(A:out) oc A:~J, except for the tail part. The exponent 7 depends 
on the year, as summarized in Table. 1. It has also been reported that the 
degree distributions of shareholding networks for companies listed on the Ital­
ian stock market (Milano Italia Borsa; MIB), the New York Stock Exchange 
(NYSE), and the National Association of Security Dealers Automated Quo­
tations (NASDAQ) each follow the power law distribution [5]. The exponents 
are 7MIB = 1.97 in 2002, 7NYSE = 1-37 in 2000, and 7NASDAQ = 1-22 in 2000. 

These are not so different from the Japanese case. 
The semi-log plot is shown in the right panel of Fig. 1, and the meaning 

of the axes is the same as in the left panel. We can see that the tail part of 
the distribution follows approximately the exponential function. The exponen-
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Fig. 2. Change in the long-term shareholding rate and that in the cross-shareholding 
rate (left), and the correlations between these rates and the exponent 7 (right). 

tial part of the distribution is mainly constructed from financial institutions. 
On the other hand, almost all of the power law part of the distribution is 
constructed from non-financial institutions. The above results suggest that 
different mechanisms work in each range of the distribution, and some of the 
reasons for the emergence of this distribution are discussed in Ref. [12]. 

It is reasonable to assume that the change in the exponent 7 can be at­
tributed to the change in the pattern of shareholding. In Japan, since 1987, a 
long-term shareholding rate and a cross-shareholding rate have been reported 
by Nippon Life Insurance (NLI) Research Institute [8]. 

The changes in these rates are shown in the left panel of Fig. 2. In this 
figure, the horizontal axis corresponds to the year, and the vertical axis corre­
sponds to the shareholding rate calculated on the basis of number of shares. 
The open circles corresponds to long-term shareholding, and the open squares 
corresponds to cross-shareholding. We can see that both the long-term share­
holding rate and the cross-shareholding rate decrease after 1990. 

Correlations of the exponent with the long-term shareholding rate and 
with the cross-shareholding rate are shown in the right panel of Fig. 2. In this 
figure, the horizontal axis corresponds to the exponent 7, and the vertical 
axis, the open circle, and the open square are the same as in the left panel. 
We can see that the exponent has strong and negative correlations with both 
the long-term shareholding rate and the cross-shareholding rate. 
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3 Summary 

In this article, we considered Japanese shareholding networks as they existed 
in 1985, 1990, 1995, 2000, 2002, and 2003. These networks were represented as 
a directed graph by drawing arrows from shareholders to stock corporations. 
For these directed shareholding networks, it was shown that the outgoing 
degree distribution for each year can be well explained by the power law 
distribution, except for the tail part. The exponent depends on the year and 
the country, while the power law shape is maintained universally. We also 
showed that the exponent has strong and negative correlation with both the 
long-term shareholding rate and the cross-shareholding rate. This means that 
the dissolution of long-term shareholding and cross-shareholding causes the 
exponent to increase. 
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1 Introduction 

The G7 countries (Prance, USA, United Kingdom, Germany, Japan, Italy, 
Canada) are the most developed countries in the world, but such statement 
leaves unanswered the question on which of those is the most important one 
and of course what kind of dependencies exists between them. Of course 
this subject has been considered along various lines of analysis (Frankel 
2000), which usually require a detailed knowledge of the analysed objects 
and therefore are difficult to pursue. Our own question is to investigate the 
dependence and leadership problem on a very limited number of data. Within 
this paper correlations between G7 countries, are investigated on the basis 
of their Gross Domestic Product (GDP). GDP is one of the most important 
parameters describing state of an economy and is extensively studied (Lee 
et al. 1998, Ormerod 2004). 

The annual GDP records'^, considered as a discrete time series are used 
over the last 53 years (since 1950 till 2003) in order to evaluate GDP incre­
ments and distances between those countries. Different distance functions are 
used and the results compared. Distance matrices are calculated in the case 
of discrete Hilbert spaces Lq {q = 1,2), Eq. (1), a statistical correlation dis­
tance, Eq. (2), and a difference between increment distributions, Eq. (4). The 
distance functions were chosen here below taking into account considerations 
on basic properties of the data. The distance matrices are then analysed using 
graph methods in the form of a unidirectional or bidirectional chain (UMLP 
and BMLP respectively) (Ausloos and Miskiewicz 2005) as well as through 
the locally minimal spaiming distance tree (LMST). 

2 Distance and graph analysis 

In the case of discrete time series the metrics can be defined in the Hilbert 
space Lq {q = 1,2) in a standard way (Maurin 1991) 

http://www.ggdc.net/index-dseries.html#top 
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d,{A,B) = C£\^,-bi\'')K (1) 
1 = 1 

where A, B are time series: A = ( a i , a 2 , . . . ,an) , B = (61,62, ••• ^^n)- The 
statistical correlation distance is used in the form: 

diA, B\t,T) = ^J\{l - corr^t.rM, B)), (2) 

where t and T are the final point and the size of the time window over which 
an average is taken respectively; the correlation function is defined as: 

f 4 jy. < ÄB >{t,T) - <A >(t,T)< B >(t,T) 

^ ( < A2 >(t,T) -<A >^e,T))(< B2 >(t,T) -<B >2^ _,,)) 

(3) 
The brackets < ... > denote a mean value over the time window T at time t. 

Additionally the distribution p(r) function of GDP yearly increments (r) 
is evaluated and the correlations between countries are investigated using Cq 
{q = 1) metrics (Maurin 1991) 

dcM^B) = [ T " \PA{r)-PB{r)\^dr]'^. 
J — oo 

(4) 

Since the statistical parameters describing GDP increments are very close to 
the normal distribution (Ausloos and Miskiewicz 2005) it is assumed that 
this distribution well describes the GDP increments distribution. 

There are different advantages to each of those distance functions. The 
discrete Hilbert space Lq distance Eq. (1) can be applied to any data and 
does not require any special properties of the data so this method seems to 
be very useful for comparing various sets of data. The second method Eq. (2), 
a statistical distance, is specially sensitive to linear correlations. The third 
method Eq. (4) is the most sophisticated one since it requires a knowledge 
of the data distribution function, but then points out to similarities between 
data statistical properties. The main disadvantage of the last method is that 
it is sensitive to the size of the data set, since it is based on the whole 
distribution function. 

The distance matrices are built in a varying size time window moving 
along the time axis. The distance matrices are analysed by network methods 
- in the form of LMST and correlation chains (CC). The topological proper­
ties of such trees and graphs, generated as a visualisation of the correlation 
between GDP in G7 countries allow us to gain some practical information 
about the weakest points of the networks and some possible roots for crashes, 
recessions or booms as will be investigated in details in a following paper. 

Our present analysis focuses on the globalization process of G7 country 
economies, which is understood as an increasing resemblance between devel­
opment patterns. The question is investigated by means of the total graph 
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weight which is defined as a sum of distances between the countries for a given 
graph type (for LMST) and the mean distance for CC. LMST is a modifi­
cation of the Minimum Spanning Tree algorithm (Gormen et al. 2001). It 
is built under the constraints that the initial pair of nodes on the tree are 
the countries with the strongest correlation between their GDP. GG are in­
vestigated in two forms: unidirectional and bidirectional minimum length 
chains (called UMLP and BMLP respectively) (Ausloos and Miskiewicz 
2005). UMLP and BMLP algorithms are simplifications for LMST, where 
the closest neighbouring countries are attached at the end of a chain. In the 
case of the unidirectional chain the initial node is an arbitrary chosen coun­
try. Therefore in the case of UMLP the chain is expanded in one direction 
only, whereas in the bidirectional case countries might be attached at one of 
both ends depending on the distance value. 

Moreover a percolation threshold is defined as the distance value at which 
all countries are connected to the network. The percolation threshold has been 
investigated for the different distance measures. This technique allows us to 
observe structures in GDP relationships between countries. 

3 Results 

The analysis is discussed here for a 15 years time window, which allows to 
observe the globalization process and statistically compare results obtained 
by different methods. The graph and percolation analysis were performed in 
the case of Li , L2, C\ and statistical distances. Figs 1,2 show the results of 
graph analysis and Fig 3 the time evolution of the percolation threshold for 
diff'erent distance measures. Despite differences in values between results ob­
tained by LMST and QC methods (the graph weight takes its maximal value 
up to 12 in the case of £1 in LMST, whereas in QQ the maximal value of 
the mean distance is not larger than 1.2) the time evolutions of the measured 
parameters show that the distances between countries are monotonically de­
creasing in time whatever the method of analysis. However for the LMST 
and percolation threshold in £1 metrics the evolution is not monotonous. 
Yet, since the distances between countries are usually decreasing with time 
this can be interpreted as a proof of a globalization process. A similar conclu­
sion may be obtained by analysing the percolation threshold of G7 countries 
(Fig 3). However the results depend on the applied distance measures, which 
are sensitive to different properties of the analysed time series. In the case 
of L\ and L2 distances the results do not significantly depend on the visu­
alisation method. But in the L\ and statistical distances the results are not 
unique specially in the case of the percolation threshold Fig (3). 

^In Figs 1,2 and 3, L\ and statistical distances are denoted as Gauss and Man-
tegna respectively. 
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Fig. 1. The time evolution of the graph weight for different distance measures. 
The time window size is equal to 15 yrs. 
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Fig. 2. The time evolution of the total length of uni- and bidirectional chains for 
different measures. The time window size is equal to 15 yrs. 

4 Conclusions 

The correlation between G7 countries has been analysed using different dis­
tance functions and various graph methods. Despite the fact that most of the 
methods allow to observe a globalization like process it is obvious that their 
sensitivity to observe correlations are different. It seems that the percolation 
threshold methods is the most sensitive one, since even for Li and L2 dis­
tance functions it reveals different stages of globalization. One can observe 
that the correlations achieve their highest value in 1990, at well known sig­
nificant political changes in Europe. Later on, the correlations remain on a 
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Fig. 3. The time evolution of percolation threshold for different measures. The 
time window size is equal to 15 yrs. 

relatively stable level. Analysing the applied distance functions it has been 
observed that the noise level is the highest in the case of the Ci distance 
since this method is the most sensitive to the length of the data (required 
for calculating the distribution parameters). However the Ci method seems 
to be the most appropriate, because it compares the distribution functions 
taking into considerations all properties of the process. 

A c k n o w l e d g e m e n t 
This work is partially financially supported by FNRS convention FRFC 

2.4590.01. J. M. would like also to thank SUPRATECS for the welcome 
and hospitality and the organizers of the 3rd Nikkei symposium for financial 
support received in order to present the above results. 

References 

Ausloos, M. and Miskiewicz, J. (2005) An attempt to observe economy glob-
aUzation: the cross correlation distance clustering of the top 19 GDP coun­
tries, submitted for publication. 

Gormen, T. H., Leiserson, G. E., Rivest, R. L., and Stein, G. (2001) Intro­
duction to Algorithms, Second Edition. The MIT Press. 

Frankel, J. (2000) in Nye J. S. and Donahue, J., editors, Governance in a 
Globalizing World, pages 45-71. Brookings Inst. Press, Washington. 

Lee, Y., Amaral, L. A. N., Ganning, D., Meyer, M., and Stanley, H. E. (1998) 
Universal features in the growth dynamics of complex organizations. Phys. 
Rev. Lett., 81:3275-3278. 

Maurin, K. (1991) Analiza. PWN, Warszawa. 
Ormerod, P. (2004) Information cascades and the distribution of economic 

recessions in capitalist economies. Physica A, 341:556-568. 

316 



Dependence of Distribution and Velocity of 
Money on Required Reserve Ratio 

Ning Xi, Ning Ding, and Yougui Wang* 

Department of Systems Science, School of Management, Beijing Normal 
University, Beijing, 100875, People's Republic of China ygwangQbnu.edu.cn 

Summary. The impacts of money creation on the statistical mechanics of money 
circulation were investigated by focusing on the dependence of monetary wealth 
distribution and the velocity of money on the required reserve ratio in this paper. 
In reality, money creation is important to economic system. The process of money 
creation can be represented by the multiplier model of money in traditional eco­
nomics. From this model, it can be known that the required reserve ratio set by the 
central bank is one of the main determinants of the monetary aggregate and under 
some assumptions the monetary aggregate can be expressed as the product of the 
monetary base and the required reserve ratio in steady state. Taking the role that 
the required reserve ratio plays in the monetary system into account, we developed 
a random transfer model by introducing a fractional reserve banking system and 
carried out some simulations to observe how the monetary aggregate evolves over 
time, how monetary wealth is distributed among agents, as well as how fast money is 
transferred in the transferring process. Monetary wealth is found to follow asymmet­
ric Laplace distribution, and the fact that latency time of money follows exponential 
distribution indicates that the transferring process is Poisson type. The theoretical 
formulas of monetary wealth distribution and the velocity of money in terms of the 
required reserve ratio are given respectively which are in a good agreement with the 
simulation results. 

K e y words: Money creation, Reserve ratio, Statistical distribution. Velocity 
of money, Random transfer 

1 Introduction 

Models of environments where money is transferred among traders, have re­
cently undergone rapid development and contribute prominently to econo-
physics on wealth distribution [1, 2, 3]. This kind of models can be applied 
to investigate not only monetary wealth distribution but also the velocity of 
money [4, 5]. However, most of the works in this line studied the case without 
money creation. In reality, money plays an important role in economy and 
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most of money in circulation is created by loaning behavior of banks. Cog­
nising the significance of money creation, Robert Fischer and Dieter Braun 
analyzed the process of creation and annihilation of money from a mechanical 
perspective by proposing analogies between assets and the positive momen­
tum of particles and between liabilities and the negative momentum, and 
applied this approach into the study on statistical mechanics of money [6]. To 
be closer to reality, the required reserve ratio, one of the main determinants 
of the monetary aggregate, should be considered. In this work, we further 
examine the impacts of the required reserve ratio on two outcomes of money 
transfer: monetary wealth distribution and the velocity of money. 

2 Money Creation and Simplified Multiplier Model 

Modern banking system is a fractional reserve banking system, which absorbs 
savers' deposits and loans to borrowers. As purchasing, the public can pay in 
currency or in deposits. In this sense, currency held by the public and deposits 
in bank can both play the role of exchange medium. Thus, in economics, the 
monetary aggregate is measured by the sum of currency held by the public 
and deposits in bank. When the public saves a part of their currency into 
commercial banks, this part of currency turns into deposits and the mone­
tary aggregate does not change. Once commercial banks loan to borrowers, 
usually in deposit form, deposits in bank increase and currency held by the 
public keeps constant. So loaning behavior of commercial banks increases the 
monetary aggregate and achieves money creation. 

Economists have developed a model to represent this process. It is called 
the multiplier model of money [7]. Here we introduce its simplified version. 
In economy, commercial banks are required to keep a percentage of their 
deposits in currency form as required reserves, which is determined by central 
bank and named as the required reserve ratio. The simplified multiplier model 
requires that all the currency is saved in commercial banks and commercial 
banks only hold reserves as much as required reserves. Thus commercial banks 
try to grant loans till all the currency is held as required reserves, then the 
monetary aggregate can be expressed as 

M = ^ , (1) 
r 

where M denotes the monetary aggregate, MQ the monetary base and r the 
required reserve ratio. 

Although all factors involved in money creation except the required reserve 
ratio are ignored in the simplified multipher model, it conveys us the essence of 
money creation in reality. This suggests that the role of money creation can 
be investigated by focusing on the impacts of the required reserve ratio on 
relevant issues. Thus we simply introduced a bank into the random transfer 
model to examine how the required reserve ratio affects monetary wealth 
distribution and the velocity of money. 
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3 Model and Simulation 

We made an extension of the model in Ref. [6] by introducing a fractional 
reserve banking system. The economy consists of Â  traders and a bank. At 
the beginning, a constant monetary base MQ is equally allocated to these 
traders and all the monetary base is saved in the bank. In the transferring 
process of money, each of the traders chooses his partner randomly in each 
round, and yield N trade pairs. Then one is chosen as "payer" randomly and 
the other as "receiver" in each trade pair. If the payer has deposits in the 
bank, he pays one unit of money to the receiver in deposit form. If the payer 
has no deposit and the bank has excess reserves, the payer borrows one unit 
of money from the bank and pays it to the receiver. But if the bank has no 
excess reserve, the trade is cancelled. After receiving one unit of money, if the 
receiver has loans, he repays his loans. Otherwise the receiver holds this unit 
of money in deposit form. 

Since the initial settings of the amount of money and the number of traders 
have no impacts on the final results, we performed several simulations with 
MQ = 2.5 X 10^ and Â  = 2.5 x 10^, while altering the required reserve ratio. It 
is found that given a required reserve ratio the monetary aggregate increases 
approximately linearly for a period, and after that it approaches and remains 
at a steady value, as shown in the left panel of Figure 1. We recorded the 
steady values of the monetary aggregate for different required reserve ratios 
and found the relation between them in a good agreement with that drawn 
from the simplified multiplier model. We also collected the values of time 
when the monetary aggregate begins to be steady for different required reserve 
ratios. Since the maximal value among them is 1.2 x 10^ or so, after 8 x 10^ 
rounds we collected the data of deposit volume, loan volume and latency 
time which is defined as the time interval between the sampling moment and 
the moment when money takes part in trade after the sampling moment for 
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Fig. 1. Time evolution of the monetary aggregate for the required reserve ratio 
r — 0.8 (left). The vertical fine denotes the moment at which the monetary aggregate 
reaches the steady value. The stationary distribution of monetary wealth for the 
required reserve ratio r — 0.8 (right). It can be seen that the distribution follows 
asymmetric Laplace distribution from the inset. 
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the first time. We are fully convinced that the whole economic system has 
reached a stationary state by that moment. Please note that each transfer 
of the deposits can be regarded as that of currency chosen randomly from 
reserves in the bank equivalently as collecting the data of latency time. 

Defining monetary wealth as the difference between deposit volume and 
loan volume of a trader, we found that monetary wealth follows asymmet­
ric Laplace distribution, as shown in the right panel of Figure 1. Using the 
method of the most probable distribution [8], we can obtain the formula of 
stationary distribution of monetary wealth in terms of the required reserve 
ratio as follows. 

. . ATo = 
P-{m) = — e ^ 

for m > 0; 

for m < 0, 
(2) 

where Â o denotes the number of the traders with no monetary wealth, m+ is 
equal to the average amount of positive monetary wealth and m^ is equal to 
the average amount of negative monetary wealth. The expressions of m+ and 
m_ can be written as 

_ 1 + 1/1 - r Mo 
771+ = 

N 

and 
_ 1 - r + y/l-r Mo 
m_ = 

(3) 

(4) 

Theoretical results are in good agreement with simulation results, as shown 
in the left panel of Figure 2. 

Required Reserved Ratio/ 

0.0 0.2 0.4 0.6 0.8 

Required Reserve Ratio.r 

Fig. 2. m+ (left, upper), m_ (left, lower) and the velocity of money (right) versus 
the required reserve ratio obtained from simulation results (dots) and the corre­
sponding analytical formulas (continuous curves) respectively. 

From simulation results, it is also seen that latency time follows an ex­
ponential law, which indicates that the transferring process of currency is a 
Poisson type. In this case, the velocity of money can be calculated by latency 
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time [4]. Prom the detailed balance condition which holds in steady state, we 
can obtain the expression of the velocity of money in terms of the required 
reserve ratio as follows, 

N - - i -

Theoretical results are in good agreement with simulation results, as shown 
in the right panel of Figure 2. 

4 Conclusion 

In this paper, in order to look into how money creation affects the statis­
tical mechanics of money circulation, we develop a random transfer model 
of money by introducing a fractional reserve banking system. In this model, 
the monetary aggregate is determined by the monetary base and the required 
reserve ratio. Simulation results show that the steady monetary wealth dis­
tribution follows asymmetric Laplace type and latency time of money obeys 
exponential distribution regardless of the required reserve ratio. The distri­
bution function of monetary wealth in terms of the required reserve ratio 
are presented. Likewise, the expression of the velocity of money is also pre­
sented. These theoretical calculations are in quantitative agreement with the 
corresponding simulation results. We believe that this study is helpful for 
understanding the process of money creation and its impacts in reality. 
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Summary. Recently, in order to explore the mechanism behind wealth or income 
distribution, several models have been proposed by applying principles of statistical 
mechanics. These models share some characteristics, such as consisting of a group 
of individual agents, a pile of money and a specific trading rule. Whatever the 
trading rule is, the most noteworthy fact is that money is always transferred from 
one agent to another in the transferring process. So we call them money transfer 
models. Besides explaining income and wealth distributions, money transfer models 
can also be applied to other disciplines. In this paper we summarize these areas as 
statistical distribution, economic mobility, transfer rate and money creation. First, 
money distribution (or income distribution) can be exhibited by recording the money 
stock (flow). Second, the economic mobiUty can be shown by tracing the change in 
wealth or income over time for each agent. Third, the transfer rate of money and its 
determinants can be analyzed by tracing the transferring process of each one unit 
of money. Finally, money creation process can also be investigated by permitting 
agents go into debts. Some future extensions to these models are anticipated to be 
structural improvement and generalized mathematical analysis. 

Key words: Transfer model, Distribution, Mobility, Transfer rate. Money creation 

1 Introduction 

Money does matter to an economy. To understand the role that money plays 
in the performance of economic system, many theoretical studies have been 
performed in traditional economics. Recently, a small branch of "econophysi-
cists" shifted their attentions to this issue. Several models have been developed 
by applying principles of statistical mechanics to the questions of income and 
wealth distribution [1, 2, 3, 4, 5]. These models share some characteristics, 
such as consisting of a group of individual agents, a pile of money and a 
specific trading rule. The most noteworthy fact is that money is always trans­
ferred from one agent to another in the transferring process. So this kind of 
models could be referred as money transfer models. The prime theme of con­
structing such models is to explore the mechanism behind wealth or income 
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distribution. In fact, they can be applied more widely in some other economic 
issues. In this paper, we prospect for some applications of these transfer mod­
els and anticipate that considerable achievements can be made on the basis 
of them. We also argue that further improvements should be accomplished to 
make these models much more realistic. 

The purpose of this paper is to identify what issues could be analyzed on 
the basis of money transfer models. This kind of models is very easy to grasp, 
for only two elements are involved: money and agents. Money is possessed or 
held by agents, and may be transferred among them via trading. Based on 
these models, recent efforts were mainly devoted to the formation of monetary 
wealth distribution, the circulation of money [6, 7] and creation of money [8]. 
We would like to summarize and expand the scope of their applications in the 
following four routes. 

2 Applications 

2.1 Distr ibut ion 

Money transfer models are originally used to demonstrate steady distributions 
of money. This can be achieved by recording the quantity of money stock 
possessed by each agent in the simulations. In the basic model proposed by A. 
Dragulescu and V.M. Yakovenko, the money distribution follows a Boltzmann-
Gibbs law [1]. B.K. Chakrabarti et al. introduced the saving behavior into the 
model [2, 3], and found the money distribution obeys a Gamma law when all 
the agents are set with the same saving factor, but a power law as the saving 
factor is set randomly. N. Ding et al. introduced the preferential dispensing 
behavior into the trading process and also obtained a stationary power-law 
distribution [4]. From these results we can see that the shape of distribution 
is determined by the trading rule. 

Besides these theoretical studies, econophysicists also performed the em­
pirical studies on the distribution in the economy, following the earlier Pareto's 
work. The analysis showed that in many countries the income distribution typ­
ically presents with a power-law tail, and majority of the income distribution 
can be described by an exponential distribution [9, 10, 11]. It is worthy noting 
that account of these empirical studies is taken of income distribution. Income 
corresponds to money flow which is different from money amount. However, all 
the distributions presented in previous simulations do not refer to the money 
flow. Actually, in the money transferring process, we can also record the level 
of money flow received by each agent during a given period. The statistics 
of them yields the flow type distribution. Thus, embodying the money flow 
generation mechanism, the transfer models can also provide a convenient tool 
for investigating the mechanism behind the income distribution in reality. 
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2.2 Mobil i ty 

During the simulations of money transfer models, the amount of money held 
by agents varies over time. This phenomenon is called mobility in economics. 
In the view of economists, mobility is an indispensable supplement to distribu­
tion because the former can cure the anonymity assumption of the latter [12]. 
And the analysis of mobility is greatly helpful to comprehend the dynamic 
mechanism behind the distribution. In addition, like distribution, economic 
mobility should be an essential criterion when evaluating a relevant theoretical 
model. 

In the transferring process, the economy will reach its steady state and 
the distribution will keep unchanged. After that, the amount of money still 
fluctuates over time for each agent, meanwhile the rank of each agent shifts 
from one position to another. To show the mobility phenomenon with clarity, 
we can record agents' rank instead of the amount of money. The time series 
of rank for any agent's can be obtained by sorting all of agents according to 
their money in the end of each round. We performed some simulations and 
the primary results show all of agents are equal in the economies of models 
in Ref. [1] and [2]. They have the same probability to be the rich or the poor. 
It can be found that the frequency of the rank fluctuation decreases as the 
saving rate increases. By contrast, the economy in Ref. [3] is stratified where 
agents are not equal any longer for their saving rates are set diversely. Based 
on these results, it can be concluded that different models exhibit different 
mobility characters. 

2.3 Transfer R a t e 

In reality, money does not remain motionless. Instead, it is transferred from 
hand to hand consecutively. This phenomenon is called the circulation of 
money in economics. The term usually used to describe the circulation is the 
velocity of money, which can be computed by the ratio of total transaction 
volume to the money stock. In fact, it refers to the transfer rate of money that 
measures how fast the money moves between agents. This rate can be observed 
by recording the time intervals for each unit of money to be held. This kind 
of time interval is called " holding time" or " latency time" of money. It can be 
found that there is not only a distribution of money among agents, but also 
a steady distribution of holding time as the economy reaches its equilibrium 
state. The holding time distribution also shifts its shape depending on the 
trading rule. For instance, in the simulation of the model with uniform saving 
factor the stationary distribution of holding time obeys exponential law, while 
in the model with diverse saving factor the distribution changes to a power 
type [7]. 

The transfer rate of money has an inverse relation with the average holding 
time of money. When the circulation process is in the nature of Poisson one, 
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the probability distribution of the latency time of money takes the following 
form [6] 

m = ^e- + , (1) 

where \/T corresponds to the intensity of Poisson process, and T signifies 
the average holding time of money. In this case, the velocity of money can be 
written as 

V ^ = f (2) 
Since the average holding time is governed by the money holders (agents 

in the models), the above equation suggests that the velocity is determined 
by the behavior patterns of economic agents. Employing the well-known life-
cycle model in economics, Wang et al. demonstrated that the velocity of money 
can be obtained from the individual's optimal choice [13]. Thus the study on 
the transferring process provides a new insight into the velocity of money 
circulation. 

2.4 M o n e y Creation 

With the help of money transfer models, we can still discuss the impact of 
money creation on the statistical mechanics of money circulation. In reality, 
most part of the monetary aggregate that circulates in the modern economy is 
created by debts through banking system. Thus money creation has important 
influence on the characteristics of monetary economic system. 

Recently, some investigations have been carried out in this line mainly 
from two perspectives. One is from physics perspective. Adrian Dragulescu 
and Victor Yakovenko demonstrated the equilibrium probability distribution 
of money follows the Boltzmann-Gibbs law, allowing agents to go into debt 
and putting a limit on the maximal debt of an agent [1]. Robert Fischer and 
Dieter Braun analyzed the process of creation and annihilation of money using 
a mechanical method and examined how money creation affects statistical 
mechanics of money [8]. The other is from economics perspective. It is known 
that the essence of money creation can be represented by the required reserve 
ratio from the multiplier model of money in economics. Thus we can examine 
the dependence of monetary wealth distribution and the velocity of money on 
the required reserve ratio based on a transfer model of money and computer 
simulations. We extended a money transfer model by introducing a banking 
system, where money creation is achieved by bank loans and the monetary 
aggregate is determined by the monetary base and the required reserve ratio. 
The simulation results show that monetary wealth follows asymmetric Laplace 
distribution, and the velocity decreases as the required reserve ratio increases. 
For more details you can see Ref. [14]. 
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3 Discussion and Conclusion 

The money transfer models were constructed originally for explaining the real 
income or wealth distribution. They also can be applied to other economic 
issues, such as economic mobility, transfer rate and money creation. These 
applications will bring this kind of models to be rival to the prevailing models 
in monetary economics. Of course, the current version of these models is far 
from perfectness. In order to fulfill the goal, some further improvements and 
modifications are required. One is to make the agents in the model closer to 
rational economic ones. Another one is to analyze the model in a generalized 
mathematical way, which would help us to understand the model deeply and 
completely and show the right way to structural modification. 
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Summary. We study a simple model of capital exchange among economic agents 
in which the effect of a correlation between wealth and connectivity is considered 
within two different hypotheses: a) agents interact within their own social or eco­
nomic class and b) agent's connectivity is related to its success in exchange trans­
actions. The wealth distribution in the first case may generate a two-class society 
with a clear gap in the middle and highly unequal power law distributions with a 
great number of strongly impoverished agents and a few very rich ones. In the 
second case the wealth distribution is modified by the dynamics of the lattice, get­
ting closer to a power law for some values of the parameters of the model. As ex­
pected, the lattice itself is different from the random initial one. 

Keywords: Econophysics, Wealth Distribution, Pareto's Law, Dynamic Network 

Wealth and income distribution in developed societies follow a kind of modified 
Pareto's law: a power law behavior is generally observed in the high income 
classes (with an exponent that changes from country to country [1]) while for in­
termediate and low income groups the distribution follows a different law that 
could be Gibbs or log-normal [2-5]. Different models of capital exchange among 
economic agents have been proposed trying to obtain the power law distribution 
for the wealthiest strata [6-14]. Most of these models consider two important fac­
tors: the existence of risk aversion and an asymmetric probability that, in the ex­
change, the poorer agent will be somehow privileged. Nevertheless, almost all of 
them consider exchanges on a fixed lattice or with no lattice at all, which corre­
sponds to just pick two agents, either at random [12], or following an extremal dy­
namics [13,14]. In almost all cases a Gibbs-exponential distribution is obtained, 
and the results are in good agreement with the income distribution of welfare 
states such as Sweden [15]. Other models have been proposed, in which agents 
save a fraction of their capital, and put at risk only a fraction of their resources 
[6,8,9,12]. In the language of economics this saved part of the assets is a measure 
of the agent risk aversion and its effect on the wealth distribution has been also 
studied for different dynamics. A power law is obtained in some limits, but the 
Gibbs-exponential distribution is the most frequent result [12]. 
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In all those models there are no correlations between the wealth of the agents and 
the probability of interaction between them: the choice of the interacting partner is 
determined either by a minimum dynamics [13,14] or completely at random. This 
seems to be at odds with the idea that people have a tendency to interact mainly 
with other members of their own social and economic class. For example: Inaoka 
et al. [16] analyzes the exchanges between Japanese banks, concluding that the 
bigger ones have more interactions between them and with the others than the 
small banks. The resulting network of interactions is very different for big banks 
(almost fully connected) than for small ones (a star-like network). 
In this paper we include correlations between the agent's connectivity and its 
wealth. The first case considered corresponds to a society in which agents interact 
only if they belong to a similar wealth class: we impose the difference of wealth 
between two agents to be within a given threshold to allow them to have an ex­
change. In the second case a correlation between the success of an agent in their 
economic exchanges and its degree of connectivity is considered: agents are ini­
tially placed on a random lattice, with a given average connectivity. When the 
transfer of wealth between agents takes place, every time an agent increases its 
wealth it also increases the number of neighbors linked to it. 

a) Model with wealth classes 

This is a variation of the model we presented in a previous work [12]: We con­
sider a set of economic agents characterized by an initial wealth uniformly distrib­
uted between 0 and w^ax and by a risk aversion factor ß, being 0 <ß < I, so 
that I-ßi is the percentage of wealth that the /-agent is willing to risk. Each trans­
action will take place between two agents chosen at random and we prescribe that 
no agent can win more than the amount he puts at stake, so that the value ex­
changed is the minimum value of the available resources of both agents, i.e. dw = 
min [(l-ßi)Wi; (1-ß/JWkJ, being ßi the risk-aversion and Wi the wealth of the /-agent. 
Finally, we introduce a probability p >0.5 of favoring the poorer of the two part­
ners [9]. Increasing the probability of favoring the poorer agent is a way to simu­
late the action of the state or of some type of regulatory policy that tries to redis­
tribute the resources [14,15]. Here we take this probability given by a formula 
proposed in previous works [9,12]: if the two agents participating in the exchange 
are / and k, the probability of favoring the poorer one is given by: 

p = 0 . 5 ^ / x l " ' - " - l (1) 

In ref [12] the two agents were chosen with no restrictions. Here they can only in­
teract if they belong to the same wealth class, i. e., if the difference between their 
wealth's is such that |>î /- Wk\< u, where w is a threshold parameter. The idea be­
hind this hypothesis is that the exchanges are more frequent or probable between 
agents belonging to the same economic strata [16]. We present numerical results 
for a system of N= 10,000 agents and performing a number of transactions big 
enough to guarantee that the distribution is stationary {W to 10^ steps per agent). 
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Fig.l shows the resuhs for two values of the parameter / o f Eq. (l):f=0.1 (low 
probability of favoring he poorer agent) and f=0.5 (the highest probability of fa­
voring the poorer agent) and several values of the threshold u. We start the simula­
tion with a uniform wealth distribution in the range [0,500]. 
For very low values of u the wealth distribution presents a sharp peak for very low 
income, meaning that a substantial fraction of the population owns almost zero in­
come, while for higher values of w the distribution is almost flat: the small value 
of w prevents wealth redistribution. For intermediate values of the threshold (u =25 
and 50) an interesting effect occurs: the formation of two "social classes", one 
with very small wealth, w ^0. /, and a richer one with a maximum near w =100. 

Fig. 1: Wealth distribution for case (a) with two values of the probability of favoring the 
poorer agent:/=ö. 7 (left panel) and f=0.5 (right panel) and several values of the threshold 
w. The results are averaged over 100 runs. 

Finally, for bigger values of u the wealth distribution looks more familiar: In the 
case off=0.1 a maximum is observed for low values of the wealth (w ^ 100) and a 
power law for the wealthiest sector of the population (see u=5000). For f=0.5 the 
maximum is more pronounced, the society is "fairer", and the number of very rich 
people decreases faster with a kind of exponential behavior. We have also calcu­
lated the Gini coefficients, finding that they increase as a function of u. It means 
that the presence of "wider" classes lessens inequalities. Correlations between 
wealth and risk-aversion will be discussed in a forthcoming article. 

b) Model with correlation between wealth and connectivity 

We consider a system where the agents are connected at random, but the links are 
not static and change as a function of the success in the individual exchanges. 
Each agent is characterized by an initial wealth Wi, and by a risk aversion factor ß. 
The simulation parameters are the same as in the previous case. We investigate 
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several values for the average number of links per agent, v, going from 5 to 80 
links per agent, for N=5000 agents. The initial distribution of links is a Gaussian. 
In order to update the lattice at each exchange, we divide the total wealth of the 
system by the total number of links, attributing a "monetary" value to each link. 
The winner in a transaction wins the amount of wealth defined in the previous 
subsection, but also wins the equivalent number of links, rounded by elimination 
of any fractional number. At each time step one chooses at random one agent and, 
also at random, one of the ''neighbors" connected with him by a link. This implies 
that more connected agents interact more frequently. We have studied three cases: 
the static lattice, in order to have a reference for comparison, the case (i) where af­
ter the transaction the winner takes links from the loser (up to a limit of leaving 
the loser connected by at least one link), and the case (ii) where the winner gets 
links taken at random from the population. Notice that in all three cases the total 
number of links remains constant throughout the evolution. This dynamics modi­
fies the lattice: in all cases the resuhing link distribution deviates significantly 
from the initial one, with a few agents having a number of links much higher than 
the average, whereas most of the population has very few links. This effect is most 
dramatic in the case/=0.7, and for big values of v. 

Fig. 2: Asymptotic wealth distribution for f=0.1 (left panel) and f=0.5 (right panel) and 
v=20. The results are averaged over 100 runs. The lines correspond to the fit by a power 
law, and are only guides to the eye. The exponent of the power law is -2.06 

Concerning the asymptotic wealth distribufion, in Fig. 2 we present results for 
v=20, -with f=0.] andf=0.5. For f=0.1 a very high peak for low values of income 
appears: about 60 per cent of the agents own about I/IO of the average wealth. On 
the other hand, a few very rich individuals own most of the wealth: each one owns 
about five times the average wealth. The differences between the three cases con­
cern mainly the number of people in the middle class, loosely defined as the 
wealth interval between wmax/10 and Wmax, and the number of people in the upper 
class {w > Wmax)' One striking feature observed for f=0.1 is that in the high class 
the asymptotic distribution for case (ii) follows a power law, whose exponent is ^ 
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-2.06 (corresponding to a Pareto exponent -1.06). Also, it is rather surprising that 
the distribution for case (i) and the static one are almost identical for f=0.1, even 
though the underlying lattices are very different. The three cases look similar for 
high values off. When/=ö.5, the redistribution of links does not seem to play an 
important role in the redistribution of wealth. In this case, the wealth distribution 
looks similar to that of developed countries like Japan or England [3,4]: a maxi­
mum in the distribution is observed for a "middle class" and for high income a 
power law may be drawn in a relatively narrow strip of wealth. The income ofthat 
middle class is almost the same as the average initial wealth, while the number of 
very rich people is smaller by a factor of 2 compared with the case/=Ö.7. In all 
cases, we have found a linear relationship between the connectivity of each agent 
and its wealth. Thus, interactions take place mostly between rich agents. A full de­
scription of this model is going to be published elsewhere [17]. 

Conclusions 

We have presented two models where the exchange of wealth is either related to 
the respective wealth of the agents or to the success in individual exchanges. In 
spite of the simplicity of the models, the results reproduce some features of ob­
served real wealth distributions. If the probability of favoring the poorer partner in 
individual transactions is small the distributions exhibits clear peaks for very low 
income (less than one hundredth of the average initial value). Those peaks contain 
a significant fraction of the total population, while the number of very rich agents 
is small but they concentrate most of the total wealth of the society. In a fairer so­
ciety (f^ 0.5) the distribution looks more like that of developed societies, with a 
maximum in the middle class and a smaller number of very rich agents. But there 
is a deviation of the power law to an exponential law, suggesting that this value of 
/ i s too high to a detailed description of real societies. 
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We analyze an ideal gas like models of a trading market. We propose a new 
fit for the money distribution in the fixed or uniform saving market. For the 
market with quenched random saving factors for its agents we show that the 
steady state income (m) distribution P{m) in the model has a power law tail 
with Pareto index i/ exactly equal to unity, confirming the earlier numerical 
studies on this model. We analyze the distribution of mutual money difference 
and also develop a master equation for the time development of P(rn), Precise 
solutions are then obtained in some special cases. 

1 Introduction 

The distribution of wealth among individuals in an economy has been an 
important area of research in economics, for more than a hundred years. Pareto 
[1] first quantified the high-end of the income distribution in a society and 
found it to follow a power-law P{m) ~ m"^^"'"*'^ where P gives the normalized 
number of people with income m, and the exponent '̂, called the Pareto index, 
was found to have a value between 1 and 3. 

Considerable investigations with real data during the last ten years re­
vealed that the tail of the income distribution indeed follows the above men­
tioned behavior and the value of the Pareto index v is generally seen to vary 
between 1 and 2.5 [2, 3, 4, 5]. It is also known that typically less than 10% of 
the population in any country possesses about 40% of the total wealth of that 
country and they follow the above law. The rest of the low income popula­
tion, in fact the majority (90% or more), follow a different distribution which 
is debated to be either Gibbs [3, 6] or log-normal [4]. 

Much work has been done recently on models of markets, where economic 
(trading) activity is analogous to some scattering process [6, 7, 8, 9, 10, 11, 
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12]. We put our attention to models where introducing a saving factor for 
the agents, a wealth distribution similar to that in the real economy can be 
obtained [7, 8]. Savings do play an important role in determining the nature of 
the wealth distribution in an economy and this has already been observed in 
some recent investigations [13]. Two variants of the model have been of recent 
interest; namely, where the agents have the same fixed saving factor [7], and 
where the agents have a quenched random distribution of saving factors [8]. 
While the former has been understood to a certain extent (see e.g, [14, 15]), 
and argued to resemble a gamma distribution [15], attempts to analyze the 
latter model are still incomplete (see however, [16]). Further numerical studies 
[17] of time correlations in the model seem to indicate even more intriguing 
features of the model. In this article, we intend to study both the market 
models with savings, analyzing the money difference in the models. 

2 The model 

The market consists of N (fixed) agents, each having money mi{t) at time 
t {i = 1,2,..., N). The total money M (= X̂ f̂  rriiit)) in the market is also 
fixed. Each agent i has a saving factor A» (0 < Aj < 1) such that in any trading 
(considered as a scattering) the agent saves a fraction Aj of its money m« (t) 
at that time and offers the rest (1 — \i)mi{t) for random trading. We assume 
each trading to be a two-body (scattering) process. The evolution of money 
in such a trading can be written as: 

mi{t + 1) = Ximi{t) + dj [(1 - Ai)mi(^) + (1 - Xj)mj{t)], (1) 

rnjit -h 1) = XjTrijit) + (1 - Cij) [(1 - Xi)Tni{t) 4- (1 - Xj)mj{t)] (2) 

where each nii > 0 and eij is a random fraction (0 < e < 1). In the fixed 
savings market Aj = Xj for all i and j , while in the distributed savings market 
Xi i^ Xj with 0 < Xi,Xj < 1. 

3 Numerical observations 

In addition to what have already been reported in Ref. [8, 9, 10] for the model, 
we observe that, for the market with fixed or uniform saving factor A, a fit to 
Gamma distribution [15], 

P(m)~m' 'exp( -m/T) , ri=^-j (3) 

is found to be better than a log-normal distribution. However, our observation 
regarding the distribution D{A) of difference A = \Am\ of money between 
any two agents in the market (see Fig. la) suggests a different form: 

334 



Fig. 1. D{A) in the fixed or uniform savings market, for A = 0.2,0.5,0.8 (right to 
left) and their fitting curves: D{A) ^^ exp{—A^'^^/T'); the corresponding P{m) the 
inset. 

Pirn) - m^ exp(-m'^/TO; « = 1 + A. (4) 

In fact, we have checked, the steady state (numerical) results for P{m) asymp­
totically fits even better to (3), rather than to (4). 

With heterogeneous saving propensity of the agents with fractions A dis­
tributed (quenched) widely (0 < A < 1), where the market settles to a critical 
Pareto distribution P{m) ~ Tn~^^'^^^ with i/ 2:̂  1 [8], the money difference be­
haves as D{Am) <^ (zAm)"̂ "̂*"̂ ) with 7 c:̂  1. In fact, this behavior is invariant 
even if we set eij = 1/2 [18]. This can be justified by the earlier numerical 
observation [7, 8] for fixed A market (Ai = A for all i) that in the steady state, 
criticaUty occurs as A —> 1 where of course the dynamics becomes extremely 
slow. In other words, after the steady state is realized, the third term con­
taining e = 1/2 becomes unimportant for the critical behavior. We therefore 
concentrate on this case in this paper. 

4 Analysis of money difference 

In the process as considered above, the total money (m, + rrij) of the pair of 
agents i and j remains constant, while the difference Arriij evolves for e = 1/2 
as 

{Amij)t^i = aij{A'mij)t -f ßijinii + mj)t, (5) 

where aij = |(Ai + Xj) and ßij = |(Ai - Xj). As such, 0 < a < 1 and 
- | < ß < | . The steady state probability distribution D{A) can be written 
as (cf. [18]): 
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D{A) = I dA' D{A') {5iA - (a + ß)A') + SiA - (a - ß)A')) 

where we have used the symmetry of the ß distribution and the relation 
aij -\-ßij = Ai, and have suppressed labels i, j . Here (...) denote average over 
A distribution in the market. Taking now a uniform random distribution of 
the saving factor A, p(A) = 1 for 0 < A < 1, and assuming D{Ä) ~ A~^^'^'^^ 
for large A, we get 

1 = 2 /*(iAA'̂  = 2 ( l + 7 ) - \ (7) 

giving 7 = 1. No other value fits the above equation. This also indicates that 
the money distribution P{m) in the market also follows a similar power law 
variation, P{'m) ~ m"̂ "̂*"*"̂  and u = j . 

5 Master equation approach 

We also develop a Boltzmann-like master equation for the time development 
of P(m, ^), the probabiUty distribution of money in the market [18]. We again 
consider the case eij = | in (1) and (2) and rewrite them as 

(8) 

Collecting the contributions from terms scattering in and subtracting those 
scattering out, we can write the master equation for P(m, t) as 

-^ hP(m,t) = ( / drrii / drrij P{mi,t)P{mj,t) ö{^ifmi-\-ii~mj-m)), 

(9) 
which in the steady state gives 

P{m) = ( / drrii I drrij P{mi)P(rnj) S{fifmi -^ fijrrij - m)). (10) 

Assuming, P{m) ~ m"̂ "̂*""̂  for m -^ oo, we get [18] 

1 = ((//+)"+(/.-)") = jjdii+dn-p{,i+)q{ti-) [{^t+r+iß-r]. (11) 

Considering now the dominant terms (a x"'' for r > 0, or oc ln(l/a:) for r = 0) 
in the x -> 0 limit of the integral J^ Tn^'''^^^P{m) exp(-mx)dm, we get from 
eqn. (11), after integrations, 1 = 2/(i/ + 1), giving finally u = I. 
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6 Summary 

We consider the ideal-gas-like trading markets where each agent is identi­
fied with a gas molecule and each trading as an elastic or money-conserving 
(two-body) colUsion [7, 8, 9, 10]. Unlike in a gas, we introduce a saving fac­
tor A for each agents. Our model, without savings (A = 0), obviously yield 
a Gibbs law for the steady-state money distribution. Our numerical results 
for uniform saving factor suggests the equilibrium distribution P{m) to be 
somewhat different from the Gamma distribution reported earlier [15]. 

For widely distributed (quenched) saving factor A, numerical studies 
showed [8, 9, 10] that the steady state income distribution P(m) in the market 
has a power-law tail P{'m) ~ m~^^'^^^ for large income limit, where u ĉ  1.0, 
and this observation has been confirmed in several later numerical studies as 
well [16, 17]. It has been noted from these numerical simulation studies that 
the large income group people usually have larger saving factors [8]. This, in 
fact, compares well with observations in real markets [13, 19]. The time corre­
lations induced by the random saving factor also has an interesting power-law 
behavior [17]. A master equation for P{m,t), as in (9), for the original case 
(eqns. (1) and (2)) was first formulated for fixed A (A» same for all z), in [14] 
and solved numerically. Later, a generalized master equation for the same, 
where A is distributed, was formulated and solved in [16] and [18]. We show 
here that our analytic study (see [18] for details) clearly support the power-law 
for P(m) with the exponent value i/ = 1 universally, as observed numerically 
earlier [8, 9, 10]. 
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Summary. We analyze a chaotic growth cycle model which represents essential 
aspects of macroeconomic phenomena. Unstable periodic solutions detected from a 
chaotic attractor of the model are categorized into some hierarchical classes, and 
relationships between each class of them and characteristics of the attractor are 
discussed. This approach may be useful to clarify economic laws hidden behind 
comphcated phenomena. 

1 Introduction 

There is a close relation between a business cycle model and periodic solutions 
even if it shows chaotic dynamics. This suggests that taking periodic solutions 
from the chaotic dynamics leads to clarifying laws hidden behind complicated 
economic dynamics. 

There have been some studies to understand complicated chaotic phenom­
ena by detecting unstable periodic solutions. For example, an unstable peri­
odic solution of Navier-Stokes equation found by Kawahara and Kida (2001) 
exhibits a regeneration cycle of wall turbulence and makes it possible for us 
to recognize a coherent structure obviously. We examine chaotic dynamics 
shown by a generalized Goodwin model through finding unstable periodic 
orbits embedded in the chaotic attractor. 

The next section gives a Keynes-Goodwin model^ and shows a chaotic at­
tractor generated by the model. In section 3 we study unstable periodic orbits 
numerically found in the attractor, and attempt to understand characteristics 
of the model through classified orbits. The final section concludes our results. 

^ Wolfstetter (1982) first generalized the original model (Goodwin (1967)) to a 
model with dissipative structure by introducing a government taking a Keynesian 
fiscal policy. 
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2 The model and its attractor 

A two-country model with capital mobility is extended from a model repre­
senting the domestic growth cycle of a comitry by interactions among three 
variables. The two-country growth cycle model is described by the following 
six-dimensional system (Ishiyama and Saiki (2005b)): 

^'^ 0.48-f < - a ) w i , (1) 
at I — Vi 

dvj 

dt 
-Ui)) (a + ß))vi (2) 

(3) 

(0.1(/ii + Q.lßiiv* - Vi) - 0.7(1 - d")(l 

^ = 0.4(-2J--0.48-<-
dt \-Vi * 

where investment function hi = 1.5(1 - uif -h 3.5(7^^ — Ui)^\ i,j = 1,2 (i ^ j). 
Variables u^, Vi and nf denote the z-th country's labor share rate, employment 
ratio and expected inflation respectively. Parameters a, ß and S are the rate 
of technical progress, the population growth rate, and the income tax rate re­
spectively. These parameters are common in both countries, while parameters 
of fiscal policy /j^i are different. The relation /X2 > Mi(> 0) means the gov­
ernment of country 2 takes more positive fiscal policy. Symbol v* means the 
equilibrium employment ratio determined by l/ui-dui/dt = 0 and dirf/dt = 0. 
The function hi contains a term of mutual actions between countries. For an 
economically meaningful parameter setting the trajectory starting from al­
most every point reaches the chaotic attractor shown in Fig. 1. 

Fig. 1. A chaotic attractor depicted by the model 

Parameters are fixed as a = 0.02, ß = 0.01, S = 2/7, /ii = 1.25, /Z2 = 6 hereafter. 
The first Lyapunov exponent of the attractor is 0.099. 

3 Unstable periodic orbits in the attractor 

Ishiyama and Saiki (2005a,b) have already pointed out the importance of 
unstable periodic orbits (UPOs) to recognize characteristics of business cycles 
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to some extent. In this section we consider classes of periodic solutions focusing 
on the labor share rate in country 1 (^i). Relationships between each class of 
the solutions and the chaotic solution will be discussed further. It is essential 
in this context that periodic orbits are to be embedded.^ 

3.1 Unstable periodic solutions with simple dynamics 

The simplest periodic solution (Fig. 2) is a representative of business cycles 
observed in the chaotic attractor. Intervals between the nearest local maxima 
of ui of the cycles approximately equal the period of this solution.*^ Here we 

Time s e r i e s of Ui 

Fig. 2. Time series and phase diagram of the simplest periodic solution (UPOi) 

Period of this orbit is about 25.22. Arrows on the periodic orbit indicate traveling 
directions. They also show how an economy typically goes in the chaotic solution. 

Time series of Ui 

1 0 2 0 3 0 4 0 5 0 6 0 7 0 

Fig. 3. Time series and phase diagram of an example of UPOn {UPO3) 

This unstable periodic orbit can be seen as a series of three expanding tides. 

^ See Ishiyama and Saiki (2005b). 
^ Some statistical similarities between the simplest solution and the chaotic solution 

are referred to in Ishiyama and Saiki (2005b). 
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consider a class UPOn including the simplest solution. It consists of UPOk, 
where UPOk is a set of periodic solutions with k times of monotonic expan­
sions of ui (See Fig. 3.). Only UPOi, UPO2, •••, UPO7 are found as the 
members of UPOn for our parameter setting. 

3.2 Unstable periodic solutions with complicated dynamics 

We have found more than 500 unstable periodic orbits with transitions among 
patterns. Each pattern is a series of expanding oscillations like UPOn^ and 
called regime n in Ishiyama and Saiki (2005a,b). We name the transition from 
UPOm type pattern (regime m) to UPOn type pattern (regime n) transition 
m -^ n. UPOm,n is a class of periodic solutions which contains transition 
m -^ n and transition n —> m^ while UPOi,ni,n is a class of periodic solutions 
consisting of transitions I -^ m, m -^ n and n -^ I. Fig. 4 gives examples of 
these classes. 

Time series of ui Time series of Ui 

25 50 75 100 125 150 175 50 100 150 200 250 300 350 

Fig. 4. Time series of examples of UPOm.n (C/POs.s) and UPOi,^,« {UP03,5j) 

Each orbit of these classes is considered as a cyclical series of growth patterns of 
Ul. 

3.3 Hierarchical structure of solutions 

Let us consider correspondences between chaos-transitions and transitions in 
unstable periodic orbits with respect to the classes mentioned above. Chaos-
transitions are transitions observed in the chaotic behavior. Fig. 5 suggests 
that the more complicated periodic solutions with many patterns we find, 
the more sorts of chaos-transitions can be covered with their transitions. In 
fact it is confirmed that transition 4 -^ 2 is covered with the transitions 
in UP02,3,3,4 for example. No transitions other than chaos-transitions are 
covered with the transitions of any periodic orbits in the attractor. Thus there 
is duality between chaos-transitions and transitions represented by detectable 
periodic orbits in the attractor. 
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T r a n s i t i o n in the c h a o t i c a t t r a c t o r 
To 
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Fig. 5. Distribution of chaos-transitions and transitions represented by UPOm.n 
and UPOi,m,n (Value in each cell is the frequency of a chaos-transition divided by 
100.) 

The c-th cell in the r-th row with positive number denotes chaos-transition r ^*^ c. 
The cells bounded by dashed lines and thick lines mean chaos-transitions 
corresponding to UPOm.n and UPOi,m,n respectively. Note that the existence of 
UPOk implies transition k -^ k \s observable in the chaotic economic growth. 

4 Conclusions 

We focus on three classes of unstable periodic solutions embedded in the 
chaotic attractor of a growth cycle model. We study correspondences between 
these classes and the general chaotic behavior. Typical patterns and proper­
ties of economic growth of the model can be represented by the simplest class. 
The other classes contain recursive transitions among two or three typical pat­
terns corresponding to transitions observed in the chaotic growth. We have 
successfully related the presence of such a transition of chaotic economic dy­
namics generated by the two-country Keynes-Goodwin model to the existence 
of unstable periodic solutions embedded in the attractor. Generally infinite 
number of unstable periodic orbits are embedded in a chaotic attractor. This 
implies usefulness of unstable periodic orbits to study business cycle models. 
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Summary. We discussed a model in this paper which shows the power-law be­
havior in a ranking problem of income. The Monte Carlo simulation of our model 
shows a satisfactory fit with the data for Japanese and US CEOs. We have investi­
gated the origin of the power-law behavior which is proven by some fractal struc­
ture formed in our model system. 

Key words. High-income ranking, Power-law distribution. Fractals, High-income 
model 

1. Introduction 

A log-normal distribution for a wide range of income and Pareto distribution 
(Power-law distribution) for high-income people have been investigated since 
1897: (Pareto 1987); (Champemowne 1953); (Shlesinger and Montroll 1983); 
(Aoyama et al. 2000); (Yamamoto and Miyazima 2001). The simple explanation 
of the log-normal distribution has been made by the product of independent events 
and the central limit theorem. The power law distribution has not been explained 
simply by introducing some adjusting parameters: (Champemowne 1953); (Lydal 
1959); (Mandelbrot 1960); (Montroll and Shleginger 1983); (Takayasu and Oku-
yama 1998); (Kawamura and Hatano 2002). 

The main source of income of each person is proportional to sales amounts of 
companies. The series of those processes perform an endlessly complicated and 
hierarchical nest structure of trades, where a person gets the incomes from another 
person who loses the resource money. Therefore, we can find an intricate nest of 
structures, and consequently these should form some fractality. 

In this paper we will suggest a model for the distribution of income. Our pre­
sent model is so simple that we can obtain an analytical solution and power-law 
distribution assuming existence of stationary solution. But we don't expect that 
our model can be robust enough to explain all properties of economics. We are 
very interested in understanding why the economic system shows the fractality, 
which we consider, one of important reasons why the data in real economical ac­
tivity and our model show the power law in high income. 
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2. Random Competitive Model Showing the Power Law 

We proposed a model which reproduces a power law behavior of the highest in­
come amounts against ranking of income without any adjusting parameter: (Ya-
mamoto et al. 2002, 2003). Our high income data in Japan are derived from tax 
amounts of high tax payers which we can obtain annually from the tax office pub­
lications. The tax rate is constant for these high-tax payers who are the top 
100,000 wage-earners in Japan. Therefore, the income is proportional to the tax 
amount for those people. For our model system we assume two following conser­
vation conditions: 

CI. Our system consists of Â  homogeneous members at the initial stage. The 
number of persons N is fixed. 

C2. Our system reserves 2N units as resource money. Each member keeps one 
unit as a minimum amount. 

We tried to simulate several cases of A^=100, Â= 1,000, yv= 10,000 and /V-100,000 
and generally averaged the ranked incomes over 100 trials of simulation. 

We introduce the following simple competition rule to our system: 
M1. Two members who are picked up randomly from the whole group scram­

ble for their total money by doing an economic activity. One of the two 
members collects all the money of the two members, and the other loses 
all of his and her resource money. In order to maintain the number of ac­
tive members with resource money, we add one unit of money to the loser. 

M2. In order to keep the whole resource money in our system we reduce one 
unit from a member who has resource money more than or equal to two 
units and is also selected randomly. 

Hereafter, a step of process which consists of both Ml and M2 is referred to one 
Monte Carlo step(lM.C.). If this simulation is carried out more than yv~ Monte 
Carlo steps, we obtain a stationary distribution from any arbitrary initial condition. 
This model is so simple that we can take into account more factors of complicated 
situations for our simulation with ease. A good fit with the combined data of 
CEOs in the USA and Japan was obtained previously even in the present model. 
We show the comparison of the real data (1998) and the simulation result 
(yv= 10,000) in Fig.l. Now, in this simulation a minimum unit of resource money is 
converted in a hundred million yen in real data. Both slopes of these data are about 
-0.7, which shows a good fit with the power law slope. 

3. Intricate Nests of Structures 

We investigate the origin of the power law which has been proven here by the fact 
that the fractality is formed in our model system. Evidence of the fractality is 
shown to be a nest of structures. It has been investigated how intricate nests of 
structures are formed in our system. It is our attractive point how many members 
have joined to the competition until a certain member in the system gets the pre­
sent wealth. We trace backward the flow of the money from the top of the tree. 
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Fig. 1. The comparison of the real data (1998) and the simulation result(A =̂ 10,000) 

An example of the intricate nests of structures is shown in Fig.2 for Â= 1,000. 
The number on the left-hand side in Fig.2 indicates the M.C. step, and time goes 
to upward. The first figure in the box is the wealth amount at the M.C. step and the 
second figure is the member's identification number. The shaded box indicates 
that the member lost his whole resource money in the previous competition. The 
beginning of the tree (top in Fig.2) is defined by a member who lost his whole re­
source money in a competition. The ends of the tree (bottom in Fig.2) are defined 
by a pair of members whose resource money is one (for example, the two mem­
bers #725 and #947 at the M.C. step of 939051, #827 and #978 at M.C. step of 
939086 and #625 and #469 at M.C. of 939162 in Fig.2). This tree is so large that 
only parts of the top and bottom are shown, omitting M.C. Step of 939162 to 
997091. 

Thus we can find various sizes of trees where many members are joined into 
the competition. The dot-dash-line in the vertical direction in Fig.2 shows that one 
unit or occasionally more units are reduced from the winner in the intervals of 
these Monte Carlo steps (the step M2 in the second section). Therefore, the 
wealth on the top of the tree becomes less than the size of tree. 

Naturally, the size of a tree is equal to the number of competitions in the tree or 
the number of shaded boxes in the tree. Therefore, if one unit or occasionally more 
units were not reduced from the winner in the intervals of these Monte Carlo 
steps, like dot-dash-lines in Fig.2, the wealth on the top of the tree could become 
the same amount of the tree size under the enough resource money in the system. 
The fractality in the size of trees (the number of members joined) and the number 
of trees has been investigated. 

We show the size of trees against the ranking (yv=l,000) and the wealth on the 
top of the tree against the ranking is shown in Fig.3 in the log-log diagram. The 
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slope of power-law of the tree size in Fig. 3 is -1.94, and the coefficient of deter-
mination-R2 is 0.999 by least squares method, which means that the size of tree 
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1[625] 1[469] 

1[827] 1L978] 

Fig. 2. An example of the intricate nests of structures A—KOOO 

is expressed by the power-law of the ranking. Similarly, the slope of power-law of 
the wealth is -0.721. These results show good fits with the power-law in Fig. 1. 
Therefore, we consider that the fractality of our model is clearly illustrated by the 
fi*actality of the tree size distribution. 
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Fig. 3 The size of the tree and the wealth on the top of the tree against the ranking 
(Â = 1,000). The lozenge, the circle and the straight line are obtained from the present simu­
lation and curve fitting, respectively 
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Summary. We propose a model for power-law problem in high-income against 
ranking. This model is so simple that we can examine the effect of some differ­
ences in competition rules where we obtain different power-law exponents as well 
as exact analysis by the master equation. 
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1. Introduction 

Economic activities have a very intricate structure consisting of many factors such 
as production of natural resources, disasters, labor power supply, relation between 
goverments, and so on to be considered. The economic system can be viewed as a 
prototype of complex system. These gains which are obtained by the competition 
among companies are distributed to employees. These processes perform end­
lessly complicated nests of trades that people get incomes from unspecific random 
objects and give incomes other people more and more. Therefore here are intricate 
nests of structures and these should exist some fractality. 

Power-law distributions for high-income have been investigated since 1897 
(Pareto 1897); (Chanpemowune 1953); (Lydall 1959); (Shlesinger and Montroll 
1983); (Takayasu and Okuyama 1998); (Aoyama et al. 2000) ; (Yamamoto et al. 
2001, 2002) and (Kawamura and Hatano 2002). Power-law distributions are found 
in many other examples of social and economical events as well as in high-income 
ranking problems, such as word counting (Zipf 1932), family name distribution 
(Miyazima at al. 2000), firm size (Stanley 1996), fluctuation in finance (Mandel­
brot 1997), passengers at stations (Fujita and Miyazima 2003) and so on. Here we 
show some earlier power-law exponents of high-income data in Table 1. 
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Year 

1897 

1953 

1959 

1983 

1998 

2000 

2002 

2002 

2002 

Name 

Pareto 

Champernone 

Lydall 

Montroll. et al. 

Takayasu, et al. 

Aoyama. et al. 

Yamamoto. et al. 

Yamamoto. et al. 

Kawamura. et al. 

In high-income ranking problem, our main interests are why the high-income 
distribution shows power-law and what kinds of factors determine the power-law 
exponent. In addition, it is also interesting what the power-law exponent means in 
the real economical phenomena. In this paper we suggest a model which indicates 
some different power-law exponents depending on competition rules. 

Table 1. Some earlier data of the power-law exponent {X: Income. P{t>X): The probability 
with income more than X. R: The rank means the number of persons who earn more than 

X. Equation R^P{ r>A] ~A'''') 

(X Income Data 

1.5 Some Euro cities 

1.7 U.K. 1951/1952 

1.5 U.K. 1954/1955 

1.63 USA 1935/1936 

0.5 Model 

2.05 Japan 1998 

1.39 Model 

1.32 Japan & USA 1998 

1.0 Model 

When we change the competition rule in our model, different power-law expo­
nents are obtained. If we can investigate and analyze the relation between the 
competition rule and the power-law exponent sufficiently, it will become clear that 
we can estimate the competition rule. Our presented model is simple enough to get 
exact solution by analytical method. 

2. Model and simulation 

Our common procedures are as follows. 
Stepl. Our system consists of N homogeneous members. The number of mem­

bers N is fixed. 
Step2. One of two members who are chosen randomly from the members gets 

their total money after the following competition rule. 
Step3. S units of money are kept constant as total resource during the process. 

Each member keeps one unit of money as a minimum amount. The total 
resource money S is fixed except for the following Type 2. 

We introduce our system to the competition rule of the following three different 
types. 
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Type 1: One of the two members collects all the money of the two members, 
and the other loses all of his or her resource money. In order to maintain the num­
ber of active members with resource money, we add one unit of money to the 
loser. In order to keep the whole resource money in our system we reduce one unit 
from a randomly selected member who has the resource money more than or equal 
to two units. Here, the total amount of the resource money S is fixed 2N. 

Type 2: One of the two members acquires all the money of the two mem­
bers, and the other loses all of his or her resource money. In order to maintain the 
number of active members with resource money, we add one unit of money to the 
loser. Therefore, the total resource money increases by one unit per competition. 
We relax the above common condition Step3 and the system is simulated under 
the condition N^<S <{N^\f for the member N and the total resource money S. 

Type 3: When amounts of the resource money for the two members are dif­
ferent, a winner acquires less amount of two resource moneys and the other loses 
the amount of money. A winner who has smaller money doesn't get the all of the 
money of a loser. The remaining part of the rule is almost the same as Type 1. 
Here, the total resource money S is fixed IN. 

We show simulation results of three different types against ranking in Fig. 1. 
The power-law exponent of incomes against ranking of Type I,Type 2 and Type 3 

Fig. 1. Three log-log plots of income against ranking, A^=10,000. 

are -0.717, -2.026 and -1.006, respectively. 
Simulation results of the frequency F(X) against the income X are shown in 

Fig.2 for three different types. The power-law exponent of the frequency F(X) 
against the income X of Type l,Type 2 and Type 3 are -2.45, -1.55 and -1.98, re­
spectively. Now we compare above exponents with a in Table 1. When we 
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change the exponents of the frequency F{X) in Fig. 2 to the exponents of the cu­
mulative quantity, the exponents of Type 1, Type 2 and Type 3 become -1.45, -
0.55 and -0.98, respectively. The exponent of Type 1 corresponds to the indices of 
a of Pareto's, Champemowne's, Lydall's, Montroll's and Yamamoto's data. The 
Type 2 corresponds to the index of a of Takayasu's data. The Type 3 corre­
sponds to the index of a of Kawamura'sdata. 

Fig. 2. Tree log-log plots of the frequency F(X) against the income X, ^=10,000. 

We also obtain the asymptotic solution of our model. Our model is simple 
enough to be solved by the generating function of the master equation. When in­
come X is sufficiently larger than order 1, the asymptotic probability P{X) behaves 
as a power-law. As for the Type 1 model, the power-law exponent of the asymp­
totic probability P(X) becomes -5/2 and as for the Type 2 model, the power-law 
exponent of the asymptotic probability P(X) becomes -3/2, respectively. These re­
sults show a good agreement with the slopes in Fig.2. 
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6. New Ideas 
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Summary. In this paper ŵ e present a model which allows to discriminate between 
two kinds of behavior connected with areas which we will call personal and economic. 
It seems that an attitude with regard to the personal area spreads in a different way 
than that with regard to the economic area. We assume that eacth agent tries to in­
fluence its neighbors, but in the personal area the information flow^s inward from the 
neighborhood (like in most opinion dynamic models), whereas in the economic area 
the information flows outward from the agent or group of agents to the neighborhood 
(like in the Sznajd model). 

1 Introduction 

Much of economic and financial theory is based on the notion tha t individu­
als act rationally and consider all available information in the decision-making 
process. However, researchers have uncovered a surprisingly large amount of 
evidence tha t this is frequently not the case [1]. Human decision-making devi­
ates in one way or another from the s tandard assumptions of the rationalistic 
paradigm in economics. Psychologists consider an interactive process where 
several factors may influence a decision in a non-trivial way. In the seventies 
Daniel Kahneman and Amos Tver sky began to benchmark their cognitive 
models of decision making under risk and uncertainty against economic mod­
els of rational behavior. In 2002 they were rewarded by the Nobel Prize in 
Economic Sciences. 

Starting with the works of Kahneman and Tversky a field known as "be­
havioral finance" has evolved. It a t tempts to better understand and explain 
how emotions and cognitive errors influence investors and the decision-making 
process. Many researchers believe tha t the study of social sciences can shed 
considerable light on the efficiency of financial markets as well as explain many 
stock market anomalies, market bubbles, and crashes. 

One of the most powerful phenomena tha t influence human decision is the 
so-called Social Validation - the fundamental way tha t we decide what to do 
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in a Situation is to look at what others are doing [2]. An isolated person does 
not convince others; a group of people sliaring the same opinion influences the 
neighbors much more easily. Motivated by this phenomenon we introduced a 
novel concept of spin dynamics, known presently as the Sznajd model (SM) 
[3]. The crucial difference of our model compared to voter or Ising-type models 
is that information flows outward. In our model each site of a one-dimensional 
lattice carries an Ising spin. IVo neighboring parallel spins, i.e. two neighbor­
ing people sharing the same opinion, convince their neighbors of this opinion. 
SM has been successfully applied in marketing, finance and politics (for re­
views see [4, 5, 6]). 

However, it is known that social validation is not equally powerful in all 
parts of life. Here we present a new api)roach, which allows to discriminate be­
tween two kinds of behavior, cormected with areas which we will call personal 
and economic. 

2 Motivation - politics 

One of the sociological (or political) problems that attracts much attention is 
the building of consensus in a society w^hose members represent several dif­
ferent attitudes. In particular Stauffer [7] has asked the following question: 
'What happens when there are several parties on the political stage, say two 
extremist and two centrist?'. Such a situation pertained in the United King­
dom in the early 1980s, when the Liberals and the Social Democratic Party 
held the middle ground between the left-wing Laboin^ Party and the right-wing 
Conservative Party. The two middle parties soon realized that there was not 
enough room for both of them, and merged in the late 1980s [8]. In the model 
proposed by Stauff"er each lattice site is initially either empty, with probability 
1/2, or has one of four possible opinions 1, 2, 3 or 4 (like in the Potts model), 
with probability 1/8 each. Then, at each time step every occupied site tries to 
move to an empty neighbor. Afterwards, randomly selected pairs of nearest 
neighbors, who share the same opinion, convince all those neighbors of the 
pair's opinion, which differ by at most one unit. Stauffer found that parties 
2 or 3 always win: they have more powxu' of persuasion. But in most cases, 
one party other than the winner retained a small minority. This minority was 
always an extremist position, either 1 or 4. 

Recently we have proposed another approach to describe a political stage 
with four parties [9]. Our approach is based on the so-called Political Com­
pass, which works by separating ideology into two major areas: economic and 
personal [10]. It allows us to discriminate between two kinds of behavior, 
connected with areas which we call personal and economic. It seems that an 
attitude with regard to the personal area can change in a different way than 
that with regard to the economic area. We assume that each agent tries to 
influence its neighbors, but in the personal area the information flows inward 
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from the neighljorhood (like in Glauber dynamics), whereas in the economic 
area the information flows outward to the neighborhood (like in SM). 

E o 
•o 
(D 

1G 
c 
o 
0 

Socialists 

A 
T 

Authoritarians 

T ^ 

Libertarians 

• A T T I 1 
Conservatives 

A 
V 

Economic freedom 

Fig. 1. Political Compass and the representation of 4 types of political attitude 
in our model. Black arrows represent attitude to economic and white - to personal 
freedom. 

3 The Model 

Each person is characterized by two trai ts (a^, 5,), where a? describes the att i­
tude to personal freedom and 5^ describes the a t t i tude to economic freedom. 
Both t rai ts are represented by Ising spins (like in the Ashkin-Teller model 
[11]). This representation is simply a discretization of the diagram presented 
in Fig. l : 

1. Socialists: (a^ = l,Si = —1) 
2. Libertarians: (cr, = 1,5, = 1) 
3. Authoritarians: (a? = —1,6\ = — 1) 
4. Conservatives: (cr̂  = + 1 , 5 ; = 1) 

Since social validation seems to be really powerful in economic parts of 
life, the a t t i tude to economic freedom (Si) is driven by the SM dynamics. 
On the other hand, it seems tha t the social validation phenomenon is less 
pronounced in private aspects of life, such as e.g. religion. The personal area 
at t i tudes are mostly influenced by the family or friends. For this reason we 
have decided to model the evolution of a^ using zero-temperature Glauber 
dynamics. It is obvious tha t some agents who share opinions in one area (e.g. 
economic) can be at variance in the other (personal). It is also natural to 
assume that a disagreement in one area can destrov or at least weaken the 
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convincing force of these agents also in the other area. To takc^ into account 
the mutual influence of both aspects (personal and economic) of social life we 
introduce a tolerance factor p. 

Results for a two dimensional system can l)e found in [9]. Here we describe 
he algorithm and results of computer simulations on the chain. In each Monte 
Carlo step we repeat N (number of agents in the system) times the following: 

1. Change the a t t i tude to economic freedom: 
a) Choose at random a pair of neighboring spins (persons) Sj and Si^i. 
b) If ar * a^^i — 1 then the spins 5^_i and Si+o follow SM dynamics, i.e. 

Si--1 = Si^2 = Si if Si * 6^4-1 — 1. 
c) If a I * cr̂ -̂ i = — 1 then the spins Sr-i and 5,-|_2 follow SM dynamics 

with probability p. 
2. Change the at t i tude to personal freedom: 

a) Choose at random a spin a^. 
b) If Si-1 * Si-^i == 1 then the spin cr̂  follows the zero-temperature 

Glauber dynamics, i.e. (TJ = CTJ-I if a^-i * cr^+i = 1, in the oppo­
site case (a-i-i * (7/̂ _i = — 1) the spin a^ is flipped with probability 
1 
2' 

c) If Si-1 * 5y+i == — 1 then the spin cr, follows the zero-temperature 
Glauber dynamics with probability p. 

Fig. 2. Time evolution from random initial conditions of the chain. Four colors 
devScribe four attitudc^s. Some attitudes can become extinct or appear during the 
evolution. 
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We have found tha t independently of the initial a t t i tudes distribution and 
independently of the tolerance factor p, consensus is always reached as a final 
steady state in one dimension, in contrast to the results for two dimensions 
[9]. However, consensus in the economic area is reached much faster than in 
the personal area. Interestingly, some options can disappear from the system 
and appear again (see Fig.2) during time evolution. If we start , for example, 
with only two options, say Socialists and Libertarians, randomly distributed 
we can end with Conservatives or any other one of foiu' possible steady states. 

In case the initial conditions consist of two opposite at t i tudes (disagree­
ment in both areas, e.g. Authori tarians and Libertarians) separated by a bor­
der line the evolution always takes place in two steps. In the first step con­
sensus in the economic area is reached. Then for a long time two at t i tudes 
tha t differ only in the personal area (e.g. Libertarians and Socialists) compete 
eventually leading the system to a consensus in both areas. It should be noted 
tha t in this case the behavior of a one dimensional system differs from the 
behavior in two dimensions, where a ' 'phase transition" was observed as a 
function of the tolerance factor [9]. Below^ a certain value of p consensus is not 
reached. Moreover, in two dimensions the relaxation time is p-dependent, in 
contrast to the one dimensional case. 

The main conclusion of our paper is the observation (based on computer 
simulations) tha t it is quite easy to convince others in the economic area, and 
almost impossible in the personal area. 
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1 Introduction: Entropy in the Disaggregated 
Production Function 

Mimkes [3] gave a concise formulation of entropy of production by the use of 
disaggregated neoclassical production function: 

iV different elements (factors of production) : K, capital, L, labor, and so 
forth. 

M different classes (production processes) : Wi, W2, • • •, Wm • 
Disaggregated production function Wi = Fi{K, L) for each process z = 1, • • •, 77 
Entropy S then is defined by the use of the probability P of the distribution 

of the N elements in M classes of categories: S = NlnN — NilnN 

In this article, we replace this idea of entropy of production with a more 
concrete idea of complexity in economic point of view. In particular, we use 
the idea of hierarchical inclusion. This can be illustrated in Table 1. The idea 
is associated with an idea of truncation of production system. Truncation 
here implies microscopic reversibility in a sense that any activity or its subset 
after truncation could be feasibly changeable under the economic feasibility 
condition. 

Table 1. The Idea of Hierarchical Inclusion 

Production Subset 
simple complex hierarchical 

Technology 5 :̂  [c] \ 
sUc 

Real wage <ci;*> > < uj^ > average 
Probability Pr{uj^'9her | )̂ ^ Pr{u*''^^^'' \ c) / 

Pr{w^'''"^^ I s) < Pr(a;'°^"" | c) 
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2 Complexity and Interaction in Production 

2.1 Producers' Set; The Winery Example 

A simpler process could be regarded as a process with a younger vintage t. 
According to the Austrian theory, the process series of different vintages at 
in production can build into a newly more complex process to produce a final 
produce of higher quality an, e.g., the winery to make the vintages variety of 
bottle of wine: 

{{{{aiya2}'ai}'---anr 
This suggests the idea of vertically integrated process of production since this 
may be decomposed as follows: The elder process {{ai 1^0:2}'^ contains a set 
of intermediate produces of simpler independent processes {ai}^{aia2}^ and 
so forth. Here thus are two sources of production for each intermediate good 
e.g., «2, i-e., one source from a simpler separate process as such {ai}^, the 
other as a by-product from a more complex process {aiQ:2}^-

2.2 The Essential Feature of Productive Arrangements 

The key notions in economics could just become active when the price-cost 
criteria or profitability are applied to them. A simpler or more complex process 
could then not stand alone irrespective of a lower or higher welfare or real 
wage. As shown later, we encounter some dilemma from the following table: 

Table 2, Complexity and Profitability 

Complexity 
Average welfare simple complex 

lower {(^iV {oiia2y 
higher * {cti}^ U {aia2}^ 

2.3 A Roundabout as well as Hierarchical Inclusion 

We must now be careful to distinguish the two cases of more complex system: 
(a)The element (1,2) of the above matrix, and (b)the element (2,2) of the 
matrix. Production in both cases includes roundabout production. In our wine 
example, by roundaboutness, a^ must be embodied a higher added value, as 
indicating a possibility of higher net income. We however have only a2 as a 
final produce in the system (a). a\ just serves as an intermediate one as an 
input. In our terms, we call the system (b), i.e., {ai}^U{aia2}^ the hierarchi­
cal system of production, because there are contained a simpler way as well as 
a higher way of production, and then providing two different commodities as 
the final produces. A hierarchical inclusion may have a better quasi-average 
welfare system in terms of a convex combination of both subsystems. 
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2.4 Complexity in the Activity Analysis: Extension 

We shall formulate an extensive form of complexity in production as above 
mentioned in terms of the Activity Analysis of von Neumann growth model 
type. This model may be of a typical model of CAS: Complex Adaptive Sys­
tem. See Holland [2]. This can depict an aspect of interaction of heterogeneous 
processes of production. 

In the Analysis, by means of the idea of truncations of the production 
system into many productive subsystems/^ we could again seize the point of 
hierarchical sets even in our more extensive case than the previous case. 

3 Average Welfare of the Hierarchical Inclusion 

3.1 A Numerical Example of Production and Truncations 

We then introduce a new commodity ß^, e.g., chemical at time t in our produc­
tion system, by the use of which a new wine could be made. We for simplicity 
set ß^ = ß for any t. Such an addition to Table 2 will complete a usual input-
output matrices A^B. Here a^ indicates the input of good j (super-suffix) 
required per unit of process activity qi. 6:J indicates the output of good j per 
unit process activity Qi. 

So far we furthermore have neglected the input of primary factor of pro­
duction like labor input. Now we introduce labor U as indispensable factor for 
each process of production ?'. Our numerical values will be as follows: 

Table 3. A Numerical Example of von Neumann Growth Model 

input A output B 
Processi labor aj = (aj,a^) 6i = (6j,6f) 

process 1 1 5.333 16 12.333 36 
process 2 1 6 1.5 16 13.25 
process 3 1 0.1 0.8 7.9 11.5 

Finally we close our model to introduce the final demand vector: 

In our numerical example, the system as a whole will thus produce two final 
goods by choosing any single process or an two processes from the given system 
{A,BJ}. 

Schefold B [5] 
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3.2 Cost Minimization Systems: CMS 

According to the idea of von Neumann [4], we formulate the dual system of 
price p and quantity q system underlying the above example. Here p is a 
column vector, q a row vector. 

The price system for i = 1, 2,3: 

(1 + r)aip + wli > bip (!) 

Here w is the rate of wage; r is the rate of interest. 
The quantity sys tem for j = 1^2: 

{1 + g)qa^-{-dj < qb^ (2) 

Here d is the final demand; g is the rate of growth. Under these inequalities 
conditions, we will choose the Cost Minimizing System: CMS:^ 

Minimize ql s.t. [ß - (1 -h r)A]p < wl (3) 

Income Maximization, as the dual problem,: 

Maximize dp s.t. q[B - (1 + r)Ä]p > dp (4) 

The von Neumann equilibrium could be achieved if the rules of profitability 
and free goods were applied;^. In this framework, in particular, the rule of free 
goods may contribute to income maximization by way of much use of the free 
good. This may be an intuitive reason why we could often empirically find an 
optimal solution of the form of single process operation, even if there were any 
multiple processes available to us. 

Lemma 1. ^ Welfare of a multiple process operation system could thus be 
higher by including a single process operation into its own system. 

3.3 The Number of Subsystem in a Given Production Set 

We call the subsystems of solutions finding a minimal price subsystem trun­
cations. In our example, we have 9 ways of truncations in toto: 

{ l , 2 } , { l , 3 } , { 2 , 3 } , l ^ l ^ 2 ^ 22,31,32 

Here we denote a subsystem of process hni by {/i,?'}; We also denote the 
single process operation of process i to produce good j only by i^. 

/^ B = [(6^)], the output matrix; A = [(a^)], the input matrix 
^ The rule of profitability means that the process operation is halted if the strict 

inequality is held in (3)The rule of free good means that the price of the goods is 
set zero (a free good) if the strict inequality is held in (4)(overproduction). 

^ Aruka [1] 
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2 commodity production by 3 processes : 3C2 -I-3 Ci x 2 = 9 ways of trunca­
tion. 

3 commodity production by 3 processes : 3C3 + 3(3C2 X2 C2) +3 Ci x 3 = 16 
ways of truncation. 

Lemma 2. The larger both the numbers of process and commodity are, the 
larger the number of truncation will be. Also it will similarly as for the number 
of hierarchical inclusion of subsystems. 

3.4 Wage Curves of CMS subsystems 

We employ the notion of real wage to judge the level of welfare of a subsystem 
of production. Given the final demand d = (d^, d^), The real wage uj is defined 
as: 

_ the wage payment _ ^^ wqiU . . 

the standard of living Yli^-\ ^Pj 

By substituting the solution of a CMS p{r)J thus we have the wage curve of 
the form:^ 

The wage curve can measure the level of welfare in the society. Similarly, it 
follows the consumption curve from the dual maximization problem: 

3.5 The Characterization of CMS' Solutions 

We can solve a CMS for any nonnegative plane (r, g). The economically mean­
ingful range for the solutions are limited to the range g < r. The golden age 
growth r = g is merely a very special case. Economy will be located in the 
lower triangle of the r—g plane, i.e., the non-golden age growth area. As shown 
in Lemma 1, we may often observe that a single process operation could of­
ten be found a solution among the CMS truncations, in other words, a most 
profitable one for producers. In users' view of welfare, however, it must not 
be.^ We could use the idea of hierarchical inclusion to enlarge our subsystems 
into a more comprehensive system. We could then obtain a larger welfare in 
average. 

^ We use the normalization rule ql = 1. 
^ The curve usually is of hyperbolic on the plane (r,a;). 
^ In addition, a higher rate of profitability may be accompanied by a higher risk in 

the financial economy. 
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Fig. 1. The horizontal axe: rate of interest r; The vertical axe: rate of growth g 

3.6 The Real Wage u; and Complexity 

We see that there may coexist some multiple truncations at a given rate of 
interest under the economic feasibility condition g < r^ as shown as the black 
colored areas in Figure 1. Thus a certain hierarchical inclusions of subsystems 
could be formed. In our example Table 3, we find a multiplicity of truncations 
{{2,3} U 22} at r = 1.2 for a feasible g > 1.2. In view of Lemma 1-2, hence, 
we will have the statement on complexity of production: 

Theorem 1. The probability of multiple truncations compatible to a given rate 
of interest r must be augmented if the number of truncations increases in the 
range of g <r. Average welfare could then be risen by a hierarchical inclusion 
of a single process operation of higher profitability, i.e., by an increase of 
complexity. 
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Abstract 

This paper outlines some of the concepts and tools which, although not 
in the mainstream macroeconomics literature, have been effective either in 
providing new results, or insights to known results. ^ 

Briefly put, the new approaches borrow concepts and tools from popula­
tion genetics, condensed matter physics, and recently developped stochastic 
combinatorial analysis in statistics. Continuous-time Markov chains are con­
structed for clusters of heterogeneous types of interacting economic agents. 
We can then draw macroeconomic policy implications by examining solu­
tions of master (Chapman-Kolomogorv) equations, Fokker-Planck equations 
or Langevin equations, as the needs call for them. 

This paper attempts to introduce the reader to some of these new no­
tions, and procedures to gain new insights and results.'^ 

This paper reports on some of these by loosely organizing them into four 
sections. 

Introduction 

In mid 1990's, new approaches to macroeconomic modeling have been pro­
posed in Aoki (1996), and elaborated further in Aoki (2002). 

His modeling approaches have been suggested by examples in population 
genetics, condensed matter physics, and in stochastic combinatorial analysis, 
and differ substantially from the mainstream macroeconomics in model con­
structions. Some of the similarities in models in condensed matter physics 
and biology have already been noted in Higgs (1995), Mekjian and Chase 
(1997), and in Derida and Flyvbjerg (1987). We extend similar approaches 
to modeling macroeconomics. For example, the notion of the relative sizes 
of basins of attractions in random map models in physics, the Herfindahl 
index as an economic idea of shares of markets, Aoki (2002, p. 142, 173-174), 

F̂or details of the methods and some examples see Aoki (1996, 2002), and their cor­
rected versions Aoki (1998, 2004),and recentWehia conference proceedings. 

^Some of the reported results have been obtained in cooperation with a few of like-
minded economists, statisticians, and physicists. In particular the author gratefully ac-
knowleges several important insights he obtained as the results of many discussions with 
H. Yoshikawa, and D. Costantini. 
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and Ewens distributions in population genetics are remarkably similar or 
identical. 

Models we use are dynamic, that is, model states change over time. 
The model dynamics are described by the continuous time Markov chains. 
Instead of differential (difference) equations for the states, we use differential 
(difference) equations for the probability of state variables. They are the 
Chapman-Kolomogorov equations. We call them master equations following 
the physics usage. 

We loosely classify our approaches and results into four groups or cate­
gories depending on what new "ingredients" or viewpoints are used in model­
ing or in describing the models. First, the notion of equilibria is extended to 
stationary or equilibrium stochastic distributions. Equilibria are stationary 
distributions. See Yoshikawa (2003) for elaboration. 

Second, we do not use representative agents in our models. Instead, 
several types of agents are considered- Sets of agents are partitioned into 
subsets, called clusters. Clusters are composed of agents of the same char­
acteristics, called type for short. In considering these partitions, combina­
torial considerations naturally come into play in counting the number of 
different configurations that these partitions can assume. The notion of en­
tropy and various distributions on the set of clusters of agents in different 
configurations also become necessary. Less well-known distributions such as 
Ewens, Poisson-Dirichlet, residual allocation models, and Levy distributions 
are some of the examples. 

These clusters are not treated symmetrically. Some are closer together 
than others. We introduce a notion of distance of clusters that is transitive. 
Correlations will not do since they are not transitive, as is well known from 
the literature on numerical taxonomy. We use the notion of ultrametrics. 

The clusters are organized as leaves of trees and dynamics on trees are 
examined as in the physics literature by assuming that stochastic transition 
rates between clusters are functions of the ultrametric distances between 
clusters. Dynamics of states organized into trees are used to examine the 
effects of idiosyncratic shocks to one of the clusters spreading throughout 
the trees. We have shown that sluggish spread of the idiosyncratic shocks 
throughout the trees are one of the causes for slow responses of macroe-
conomic signals to these shocks. The tree structures help explain sluggish 
macroeconomic indices, and policy ineffectiveness under uncertainty which 
is touched on next. 

Third, uncertainty also contributes to sluggish responses of macroecon-
omy. Uncertainty of the forecasts of the effects of current actions has been 
shown to make policy actions less effective. Uncertainty, moreover, has im­
plications not fully explored in the existing mainstream macroeconomics, 
as has been demonstrated in Aoki and Yoshikawa (2005a,b,c), and in Aoki, 
Yoshikawa, and Shimizu (2005). 

Fourth, dynamics of clusters lead us naturally to examine fat-tailed dis­
tributions, also known as power-laws, and (scale-invariant truncated) Levy 
distributions. These distributions are well-known in finance but not in 
macroeconomics. 

We have examined labor market dynamics as a vehicle of illustration of 
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some of the points touched on here. Unlike the traditional approach, our 
model of labor market dynamics dispenses with the traditional matching 
functions. We derive Okun's law and Beveridge curves in economies which 
respond to aggregate demands. 

In this connection we mention new Schumperterian perspective on long-
run behavior as another example. We model interaction between innovation 
and imitation processes as birth-death with inmiigration models and ex­
amine long-run behavior of this model, by solving a model of two-sector 
economy composed of innovative and immitative sectors. Explicit station­
ary solutions of the first and second moments are obtained for the sizes of 
the two sectors, using cumulant generating functions for dynamically inter­
acting two sectors. Distributions of relative sizes of technically efficient and 
inefficient sectors are quite similar to those we obtain in our labor market 
model. See Aoki, Nakano, and Yoshida (2004), and Aoki and Yoshikawa 
(2005 b) for detail. 

Stochastic Equilbria 

Bellman was the first to identify probability distributions as the proper no­
tion of state in stochastic dynamics, hence equilibria aare stationary proba-
bihty distributions, Bellman (1961), and Bellman and Dreyfus (1962). There 
usually are several basins of attractions. Models are not confined to some 
basins of attractions. They eventually wander out of the basins they cur­
rently occupy. The idea of equilibrium selections in macroeconomics loses 
its meaning in stochastic context. 

Sluggish Macroeconomic Behavior 

Our approaxih in explaining sluggishness in macroeconomy is different from 
the well-known Taylor's explanation of staggered labor contract, Taylor 
(1980). His model and virtually all multi-sector models treat sectors sym­
metrically with equal distance between any two sectors. There is no notion of 
adjustment speeds as functions of some similarity measures among clusters. 

Dynamics of trees have two aspects to it. There are multiplier lags or 
impluse or step responses. These are lags in responses at the output of 
dynamics when a known input, such as an impulse or a step input is applied 
to the input. There is another kind of lags related to the delay in exogenous 
disturbances to one of the leaves of a tree spreading throughout the tree as 
the input signals to other leaves or nodes on higher levels of trees. These 
are multiplier and information transmission lags. For further detail see Aoki 
and Yoshikawa (2005). 

Uncertainty Trap 

To explain this notion simply, suppose that a large number, N of agents 
face a binary choice optimization problem. There is externality because the 
current number ,n of the agents with one choice may influence how the rest 
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of the agents choose, and consequently the dynamics of how the size of the 
fraction evolve. The number of ways n agents out of N form one cluster 
turns out to be important. Here the entropy of this patterns matter as has 
been shown in Aoki (1996, pp. 137-147). 

The same formulation can be used to conclude that in situations with a 
large degree of uncertainty policy effectiveness is greatly reduced. See Aoki 
and Yoshikawa (2005a) for detail. 

New Features of Multi-Sector Economy 

In Aoki (2002, Sec. 8.6) a new multi-sector economy has been examined 
where sectors have different productivity coefficients to illustrate effective­
ness of demand manangement. Despite the simplicity of the model, its 
output (GDP) has been shown to respond to demand management poli­
cies. Later in Aoki and Yoshikawa (2005) the model has been extended to 
examine Okun's law and the Beveridge curves, all without the traditional 
matching functions. They exhibit an unexpected effects of demand share 
switching when the model is not in equilibrium. Expanding demand shares 
of less productive sectors lead to the increase in size of the less productive 
sectors. When more demands are directed to more productive sectors, the 
sizes of the less productive sectors shrink faster than the sizes of the more 
productive sectors grow. This leads to decrease in GDP, contrary to our in­
tuition. A similar phenomenon has also been observed in a more elaborate 
model in Schumperterian spirit, Aoki, Nakano, and Yoshida 92004). 

Concluding Remarks 

One area that requires further attention is the construction of macroeco-
nomic model with asset markets. There are many proposals using repre­
sentative agents, and some with heterogeneous agents where agents solve 
very complicated intertemporal optimization problems under ad hoc sets of 
assumptions. 

Asset market behavior has been extensively modeled by the econophysi-
cists, a group of physicists who turn their training to discover power-laws 
and scale invariant properties with almost no work being done in macroeco­
nomics. 

We try to match their eflForts in modeling financial phenomena by focus­
ing on the real phenomena such as consumption streams and GPD. 

There are other results not included in this list. See the forthcoming 
book by Aoki and Yoshikawa (2005). 
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Summary. Competition phase space approach is proposed. Theoretical 
background is presented. Practical applications of the proposed approach to 
competition media monitoring are discussed. 

Key words. Competition, Phase diagram. Multi-agent simulation model. Bank 
system. 

Introduction 

Competition is considered to be a motive power of evolution in economical 
systems and it lies in the focus of both empirical and theoretical studies. A correct 
and well-timed monitoring of the competition media is one of the main problems 
for headquarters and top managers. A lot of competition analysis techniques are 
known nowadays: SWOT, 7S, Porter model, GAP and so on. 

In the present paper we propose the competition phase space approach that is 
based on main results of our studies of competition in physics, ecology and 
economy carried out for the last five years, including: i) quantitative technique for 
identification of agents' competitive strategic behavior (Popkov and Berg 2001); 
ii) general numerical model of the competition life cycle (Berg and Popkov 2003); 
iii) software for empirical data analysis (Popkov et al. 2001). All these tools have 
been applied to monitoring of banks' competition (Popkov et al. 2002). Current 
paper is the first one summarizing our theoretical and practical studies in the field 
of phase space approach to competition analysis. 

Phase space of the competition behavior (theory) 

Competition between economic agents for limited amount of resources takes place 
in any economical system. The most universal resource is payable demand of 
customers. Agents do their best in order to maximize income money flow. So 
agent's competitive behavior (behavior strategy) means the agent's response to the 
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changing external conditions (according to Mintzberg et al. 1998). Usually the 
economic agents' behavior strategies are described in a qualitative verbal form: 
companies are compared to different kinds of animals (foxes, lions etc.) because 
similarity in competition between animals and firms helps to understand behavior 
of economic agents. Main (primary or basic) well-known strategies (according to 
the different classifications) are the following: 

1. "Skimming the cream o f f (profit maximizes) / swallows / explerents / ruderals. 
2. "Leading in costs" / lions, elephants / violents / competitors. 
3. "Market niche players" (differentiation) / foxes / patients / stress-tolerants. 

Traditional qualitative techniques ascribe the certain agent's behavior to one of 
these classes. Real economic agent is usually combining the features of different 
classes that makes qualitative classification useless. 

Phase diagram is used to discover the quantitative (in %) superposition of the 
three basic competitive strategies of agents' behavior, that makes 100%. So the 
phase diagram is a three-component one (two of the components are independent) 
and a triangle. Components are the basic strategies. Detailed identification of 
competitive behavior strategies was described in our recent study (Popkov and 
Berg 2001). 

Phase space inside the 2D triangle is the space of competition behavior, fig. 1. 
As with description of dynamic systems in physics, independent coordinates are 
«agent's assets A - assets normalized growth rate A'» where A '=l/A*dA/dt. So the 
agent's position inside this triangle is determined by two dynamic empirical 
parameters (A, A'). 

This diagram was tested by a computer model of the competition life cycle 
(CLC). This numerical model, describing the competition self-development in a 
closed system, is defined on a two-dimensional lattice using "cell automata" 
technique. Agents' competition for a limited amount of resource takes place under 
their growth. Growth/dissimilation of each agent is the result of in- and out-
coming resource flows (income and costs). For the detailed description of the 
model see paper by Berg and Popkov (2003). 

Trajectories of the competition life cycle were calculated and set at the above 
mentioned phase diagram together with the empirical data. Stages of the 
competition life cycle at the calculated trajectory correspond to the well known 
empirical observations of the market development, described, for example, by M. 
Porter, P. Kotier and others. 

As it was shown earlier the proposed phase diagrams make it possible to: 
i) identify the type of the agents' strategic behavior and calculate the share 
(superposition) of each basic strategy it comprises; ii) compare the competitive 
behavior of all the agents both in qualitative and quantitative way; iii) find the 
position of one individual agent among others (concerning behavior features); iv) 
analyze the time dependence of the evolution of each agent's behavior strategy as 
well as the whole market evolution. 
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Competition monitoring (practice) 

The idea of the competition media monitoring is based on the fact that the same 
agents are competing with each other on different product markets (micro level of 
competition) at one and the same time. Results of the competition are income and 
costs flows of agents, summarized in total assets (A) and profit growth (aggregated, 
macro level of competition). The banking sector of the Russian economy has been 
selected for the demonstration of the competition monitoring due to the following 
features: i) high level of competition; ii) better data base (as compared to the other 
economy branches); iii) high speed of evolutionary changes within a short time 
period. 

At the micro level of competition sales of four banking products/services 
(deposits of firms and citizens and credits to firms and citizens), that form more 
than 80% of the bank's profit, are taken into consideration. At the macro level the 
banks' assets dynamics is analyzed. So parameter yl corresponds to assets of bank 
at macro level and sales of certain product at micro level 

Banks' competition media monitoring in Ekaterinburg was performed during 
the period 2000-2003 (14 banks, database of banks' balances: over 150 parameters 
per each bank, quarterly). Some brief resuhs are described below. 

Comparison of banks' competitive behavior was carried out and is shown at the 
Table and fig. la,b. The Table demonstrates the quantitative identification of 
competitive strategies for 4 banks (the other 10 are not shown) at 3 of 4 markets 
("Deposits of firms" column is not shown). For example: real behavior of the bank 
JSfo 3 at the citizens' deposits market is 50% competitive (C), 40% - ruderal (R) and 
only 10% - stress-tolerant (S), see also fig. la.Percentages (±1%) of S, R and C 
strategies are calculated by means of triangle phase diagrams. Fig. 1 shows only 2 
of them. 

Table. Comparison of banks' competitive behavior (in %). 

Bank 

3 
4 
10 
14 

Credits to 
firms 

S 
17 
20 
74 
75 

R 
28 
46 
20 
22 

C 
55 
34 
6 
3 

Deposits of 
citizens, 

fig. la 
S 
10 
36 
87 
90 

R 
40 
40 
10 
10 

C 
50 
24 
3 
0 

Credits to 
citizens 

S 
34 
90 
87 
90 

R 
23 

0 
11 
10 

c 
43 
10 
2 
0 

<Average> 
behavior (4 

markets) 
S 
32 
55 
81 
82 

R 
30 
27 
16 
17 

C 
38 
18 
3 
1 

Aggregated 
behavior, 

fig. lb 
S 

5 
8 

78 
72 

R 
38 
52 
16 
26 

C 
57 
40 
6 
2 

S, R, C are the basic competitive strategies: S - stress-tolepant, R - ruderal, C - competitive 
behavior (see classification above). 
"<Average> behavior" means, that the percentage of S, R and C types in bank's behavior 

at each of 4 investigated markets is averaged. 
"Aggregated behavior" means, that the behavior is calculated according to bank's assets 

that are summarizing the bank's activity in financial sphere, including the markets 
investigated. 
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Fig.lab. Phase diagrams of banks' competitive behavior for the last quarter of 2004. The 
position of each bank inside the triangle reflects it's competitive behavior as compared to 
the other banks. This position is recalculated in percents according to the three basic 
strategy types (S, R, C) and shovm at the Table, a Citizens' deposits market (micro level of 
competition). Horizontal axis - growth rate of deposits volume (quarterly) without 
normalization, left axis - total volume of deposits, b Aggregated behavior calculated by 
assets (macro level of competition). Horizontal axis - growth rate of assets volume 
(quarterly) without normalization, left axis - total volume of assets. All units - in billions 
of Russian rubles. 

Fig. 1 shows the competition phase space in micro level (fig. la corresponds to 
"Deposits of citizens" column of the Table) and macro level (fig. lb corresponds 
to "Aggregated behavior" column). 

Comparative analysis of banks' competitive behavior, summarized in the Table 
and fig. 1, shows, that the phase space technique discovers new important 
information about agents' behavior. Main results of the competition monitoring 
are the following: 

1. One and the same bank demonstrates different competitive behavior at the 
different markets. For example, behavior of the bank JSfo 3 at the market of 
credits to firms is characterized as competitive in the part of 55%, while at the 
market of credits to citizens - only in the part of 43%. At the same time the 
average behavior is competitive only in part of 38% and aggregated one - in 
the part of 57%. 

2. The aggregated behavior (macro level) is not a simple average of behavior at 
each product market (micro level). Comparison of two last columns of the 
Table makes it clear (especially for bank JV» 4). The main reason lies in the fact 
that the bank can redistribute it's profits and assets among the different markets 
(that would result in shift of sales growth rate), while the total assets amount 
remains the same. 
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Besides, the phase diagram of the total sales (that is not shown) easily indicates 
the most attractive market of bank products (or a group of markets) in respect of 
profits and sales growth, which is important in directing further managers' efforts. 

Conclusion: other useful applications 

Phase space inside the proposed triangle diagram, used for competition monitoring, 
can be applied to other dynamic systems analysis in management practice: 

1. Industry monitoring with the help of phase space technique helps banking top 
managers to find the most attractive branches for investments and determines 
an empirical rule of banking management, based on the life cycles of it's clients 
monitoring. 

2. Business-cycles analysis in macro and microeconomics activities (including 
successful and unsuccessful projects). 

3. Monitoring of all ongoing projects of the company helps to observe and 
compare their efficiency (portfolio project management). 

Also the phase space proposed has certain advantages in cognitive data 
presentation in comparison with ordinary tables and time-dependency curves (see, 
for example, the Table column "Aggregated behavior" and the diagram at fig. lb). 
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In Ihe spatial interaction theories of geography, the regional system is given as OD matrix 

from the beginning, the attractiveness of each store is given exogenously, and parameters are 

estimated using survey trip data Tij. These theories don't account for Üie idea that the macro 

regional system would be generated self-oiganizationally from micro interactions of elements. 

D. L. Huff (1962) studied individual shopping behavior and made a probability model for the 

choice of stores. In Huflfs model the attractiveness of each store is also given exogenously and 

the resistance parameter is estimated from inquiry survey data. His theoiy also doesn't account 

for the idea of a self-organizing retail spatial market system. In this paper we will take up 

habitual shopping in all types of shopping behavior. We'll take the consumer's store choice 

model as the micro non-linear interaction of elements setting the attractiveness as endogenous 

variables, and also parameters as endogenous ones. Using tiie constmctive simulation method 

we'll show that in specific regional areas, under what kind of conditions of the model, and how, 

a macro regional market system will be generated self-organizationally. The characteristic of a 

regional space conceming the consumer's store choice behavior will be expressed by the 

combination of two parameters [ X ,Sg] introduced into the model. Each store's attractiveness 

will be estimated to give an account of the real sales. 

Assumptions and Model 
Types of business taken into consideration 

We'll take up the GMS (general merchandising store) and SM (supermarket) as the retail 

type tiiat corresponds to habitual shopping. We'll divide the SM into two types, SMI and SM2. 

SMl=selling area 500-1999 m̂ , monthly sales over one hundred million yen. When sales are 

unknown we'll take selling area over 1000 m'. SM2=200O-5999 m'.GMS=over 6000 m'. 

SMI type stores merchandize perishable foods, processed foods, domestic non-durable goods, 

and utensils. SM2 type stores merchandize the same goods as SMI, and other categories. Here, 

GMS is an original Japanese type of business. The GMS merchandize the same categories as 

SM2 but also merchandize clothes, home fashion and recreational goods. 

Input data and the subject of the model 

The input data is firstly so called mesh census data base (in 2000) that is published with 
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digital media by the government, secx)ndly femily income and expenditure survey data (in 

2000) by the government, finally supemiarket data base (in 2000, including selling area, gross 

sales, latitude and longitude data) by the Shogyokai Inc. The subject of consumption is 

households wdth 2 or more members. We will divide the analyzing regional area into many 

small spaces in the simulation, and consider the shopping behavior of the group of the small 

space instead of individuals. Next we assume that the mean probability and mean 

consumption of monthly shopping behavior correspond to the small group, and follows the 

model. We label the small group as a collective consumer just like an individual. 

The choice model and the share of consumption Sg at g retail type 

We assume that the probability of choosing a store is in proportion to the store's 

attractiveness and inversely proportional to the power fijnction on the Euclid distance fi-om 

residence point i to thej store like Rjĵ . We assume that resistance parameter X corresponds 

to the average of all traflSc modes and is indigenous to each regional area. The normalization 

of Üie probabilities is carried out through the 3 retail types at each i-point. There is the problem 

of I.I.A.( Independence fix)m Irrelevant Alternatives) in this case. Then the total consumption 

of tiie analyzed area at the all stores is not changed in spite of the existence of any stores being 

outside of the model. To express and solve this problem we introduce a new parameter Sg that 

means the share of consumption at g retail type in our model. If we write C for household's 

monthly expenditure of goods (it was 116,535 yen in 2000 except some goods which GMS or 

SM didn't merchandise) we can find out Sg, with it C*Sg becomes to mean the household's 

average monthly expenditure at g retail type. Sg is also indigenous to each regional area. 

Store's attractiveness and the coefficient of attractiveness 

According to habitual shopping behavior, at first a store is chosen, then goods are chosen. 

This means each store possesses the whole attractiveness. Also we consider that the 

attractiveness is a realized utility (satislaction) in the consumers' habitual experience. 

Therefore attractiveness per m̂  would be around the sales per m^ So we introduce j store's 

attractiveness per m' Aj (we call this the coefiicient of attractiveness). Next we write Aj*Mj 

as the j store's whole attractiveness. Mj means selling area, and these are constants in the 

simulation. Aj is an endogenous variable that is estimated as a solution of the simulation. On 

the other hand we relativize each store's sales per m̂  by dividing with the GMS's average 

sales per m̂  of the Kanto plain (it was 55,600 yen in 2000). We call this as relative sales per 

m' and write it Kj. We put this Kj as the initial value of Aj in the simulation. GMS's average 

Kgms=1.0, SM2's average KSM2=1.23, SMI's averageKsMi=2.21. If we can't discover a store's 

sales on the data base we estimate it's theoretical sales using this average of each retail type. 

With these initial values if we find out Sg with the Sg the simulation converges very rapidly, 

then finally Aj would be around each Kj. Then Sg would take the meaning of real share of 

consumption at g retail type. Because we can say that fi^om the equation (2) if all the variables 
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take their real meanings, except Sg, then Sg must take it's real meaning. (The simulation could 

converge at any Sg but the corresponding Aj could not be interpreted.) 

The size of store choice set 
The size of store's choice set is the number of stores chosen mostly close to the consumer's 

residence on their monthly shopping at each retail type. If we put many stores for the set in the 

simulation, tiie possibility of assigning the probabilities to unnatural stores from the viewpoint 

of the collective consumer would arise. We simulated changing the number and found that the 

case of 4 stores on SM2 and SMI, 8 stores on GMS WCTC very natural and realistic in our 3 

specific regional areas. 

System equation and the method of simulation 
We write the mean probability that consumers of i-point choose j-store in their monthly total 

shopping trips as follows: 

P i j - {AjMj/R'ij) / ( ^.4,M,/i^^/ + f ^ ^ M , / / ? ' , . + 
5M1:/=1 SM2:m=\ 

^A„M„/R^„) ; fromdefinition ^ P ü + J ] P ^ ^ + S ̂ "^^^ 
GMS:n=l l=\ w=l n=\ 

At all points in the regional area. n 1, n2, n3 =number of chosen stores at each retail type. 

We write the theoretical sales per month of j store Ujt Then we can write as follows: 

Ujt=2; PifC*Sg*Ni*Ai=: J^ ai*AfMj*Ni*Ai*C*Sg • • • • (l) 

a i=constant, A i=the small area around i-point, Ni= household density around i-point. 

If we want Aj with which j-store's theoretical sales Ujt equal to real sales Ujr under given 

X and Sg, we would write this as follows: 

Ujt= Ujr j=l~m (at each store in the analyzed area) (2) 

These are kinds of non-linear large simultaneous equations concerning Aj, and the number 

of formulae is m. To solve these equations we developed large simulation software. The 

method of simulation is as follows. At first we set the number of contour lines of probability 

and the value of probability from 100% to 1%. On the points of the subdivided mesh line the 

software estimates the value of probability and gets all the contour lines of each store. Next, the 

software calculates the inter-area of each contour line and multiplies the inter-area with Ni and 

C*Sg and the value of probability so as to get the theoretical sales of j store. Next it compares 

this Ujt to real sales Ujr. If tiie relative error is over the specified % it calculates modifying Aj 

little by little, and finishes when each relative error of all stores is reached under a specified %. 
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There are infinite solutions concerning Aj in the above simultaneous equations. The reason is 

that if we multiply this variable by any constant, the value of the probability is not changed. So 

we must select a really meaningful solution. Therefore, as already mentioned, we must set Sg 

so that Aj will converge around it's initial value, that is relative sales per m^ 

Conclusion 
We have run this simulation in 3 areas, i.e. the Shonan area, the Yamato area, the 

Sagamihara area in Kanagawa which are similar suburban areas of Tokyo (see Fig.l), and we 

found the following conclusion. (The boundaiy of the first-degree trade area is defined as 30% 

line of the probability, second-degree trade area as 15%, third-degree trade area as 7%, 

fourth-degree trade area as 1%, as follows.) 

1 .Table 1 shows the corresponding value of Sg and the value of C*Sg in each area which can 

be found when we change the value of X fi-om 1.8 to 3.0. Each value of C*Sg means the 

necessaiy condition for convergence. We can show that only one or a small range of the set of 

C*Sg is real and tme. The stability of the system becomes higher when X is lower, i.e. the 

simulation converges rapidly. But in each area when X =1.8-2.0 the average expenditure at 

SMI or SM2 is larger than the expenditure at GMS. This is converse to reality. In other words 

under conditions of high mobility like ^=1.8-2.0, many consumers concentrate on GMS, 

therefore SMI or SM2 would be not able to exist due to lower demand. Conversely when X 

=2.8-3.0 the stability of the system becomes lower, i.e. Aj of some stores of GMS would 

become larger further away from Kj to converge. The power function causes that the 

first-degree trade area becomes larger, and the second-degree trade area doesn't change. 

However the third and fourth degree trade areas become smaller in all stores of these analyzed 

areas compared with the case of ̂  =2.4. As a result, because of such low mobility, SMI needs 

less demand to operate. Conversely GMS needs an unrealistically larger demand if the real 

sales were to be realized in the simulation. According to the statistics by the government (the 

1999 National Survey of Family Income and Expenditure) we can neglect the case of ̂  =2.2 

because oflower expenditure at GMS. Thus we can estimate that the real value of X maybe 

2.4-2.6, but from the stability of the system we could say X ^2A. Table 2 shows the estimated 

values of Aj and Kj of GMS in the Shonan area when X =2.4 as an example. 

2.The Shonan area is covered all over with the contour lines of all GMSs. Fig.2 shows the 

first-degree trade area of all stores of the 3 retail types. Thus under the trade area of the GMSs 

the smaüer SMs also have similarly broad first-degree trade areas when X =2.4. From the 

shape of power function the boundary of the second-degree trade area is close to the boundary 

of the first-degree trade area at each store. 60% of stores in the Shonan area take a share of 

sales over 60% in the first- plus second-degree trade area. So the trade area could be seen as a 

monopolistic area, and because of this each store can avoid a strongly competitive situation. 
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Quantum-Monadology Approach to Economic 
Systems 

Teniaki Nakagomi 

Kochi University, Kochi 780-852 Japan, nakagomiQis.kochi-u.ac.jp 

Summary. In order to describe non-classical nature of economic phenomena, the 
use of quantum monadology, a quantum world model reinforced with Leibnizian 
monadology, is proposed, which provides not only the way of thinking but also a 
mathematical system that enables us to simulate personal and social human behav­
iors and to describe integrative or anomalous processes of economic systems. 

K e y words: Quantum monadology, Whole-individual reflection 

Quantum brain produces economic phenomena 

Economic phenomena are produced by human activities. Human activities 
are created by the brain, which is "material" and ultimately governed by 
quantum mechanics. The traditional average image of the brain might be a 
complex neural network system. Recently, however, another scientific trend 
appears which asserts that the ultimate origin of the decision making and the 
consciousness is in quantum mechanics associated with the "brain matter" 
and that the neural system serves as an enhancer and a supporter to the 
quantum brain system. Symbolically, it is called "quantum brain dynamics 
(QBD)." You will find comprehensive discussions on this trend from science 
and philosophy in the monograph edited by Globus et al. (2004). In order 
to make a linkage between QBD and the traditional approach, the author 
proposed quantum, monadology, which provide a mechanism of integrating 
quantum individuals to make a unified whole (Nakagomi 1992, 1995, 2004a, 
2004b). In this line of thinking, it is expected that economic systems should 
be described by quantum models rather than classical models, since econo-
systems are the result of monadistic integration of elemental quantum systems. 

A main objection to such an approach will be that quantum structure 
on the microscopic level is averaged out on the macroscopic level and the 
classical population dynamics is sufficient and effective, as is true in chemical 
reactions. Indeed, typical theories of econo-dynamics are base on the statistical 
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mechanics of chemical reaction models. In this objection, econo-systems are 
considered to be macroscopic, but what is the material scale that character­
izes the macroscopicness of an econo-system? Different from chemical reaction 
systems, an econo-system is not uniform not only in real space but also in ab­
stract econo-space, and cannot be considered as a simple macroscopic system 
that is subject to statistical mechanics. 

Monadistic examples 

We can see some examples of monadistic structures in our daily experience. 

Computer games. In a computer game through networks, each player battles 
in a battlefield that his computer produces. The battlefields of different players 
are correspondent to each other by the communication through networks, and 
players feel themselves to be playing in a common battlefield, which does not 
exist anywhere. 

Traffic of cars. Consider many cars running on a road. The distances be­
tween cars vary smaller or larger as they are nmning, but normally they do 
not collide with each other except for rare accidents. Observing such phenom­
ena, physicists may consider that there is a repulsive force between cars and 
they may succeed in explaining average motions of cars. However, the force 
assumption would not describe the motion of individual cars. We find a sim­
ilar situation in quantum physics. The motion of a car is determined by the 
mind of the driver. Decisions of the driver depend on the memory of the past 
and the prediction of the future and are not affected by those of the other 
drivers. Also in quantum mechanics, the behavior of a particle is affected by 
the wave function belonging to the particle and not by the wave functions of 
the other particles. Each driver has his image of the motion of his car and 
surrounding ones, which, normally, is correspondent to those of other drivers, 
and the cars run smoothly. However, if the correspondence is broken, then it 
may cause accidents. Not physical law of motion of cars but correspondent 
images of drivers produce the harmonized external world, the smooth motion 
of the whole cars. 

The market. The motion of the market is determined by the action of market 
players, who choose their action by the image of the motion of the market that 
they have in their mind. If you want to control the market, you must consider 
to control the image of the market players. It is important to know the laws of 
motion of the image, some of which we know and use by experience, though 
we do not have a systematic theory of them. 

Whole-individual reflection 

The author considers that the essential feature of economic phenomena con­
sists in the whole-individual reflection in the sense that the internal images 
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of the whole in respective individuals determine the whole and inversely the 
whole reflects into individual's internal worlds, in other word, the preestab-
lished harmony in the Leibnizian philosophy, monadology. 

The whole-individual reflection provides a integration scheme of individ­
uals, which is different from that in statistical mechanics, the latter averages 
out varieties of individuals, and makes spatially uniform structures. 

From the point of view of quantum monadology, the first origin of the 
whole-individual reflection scheme is in the ultimate basic physical level of 
quantum mechanics and relativity, and the scheme is iterated simulatively to 
make a hierarchy of monadistic structures each of which has its own semantic 
system. In this way, the quantum field structure on the basic physical level is 
inherited into the systems of human activities, in particular, in political and 
economic systems. 

Quantum logic 

In the hierarchy of monadistic structures, the quantum nature of the basic 
physical level would be inherited into the human-level monadology. In this 
inheritance, though incomplete, quantum structure remains in the logic used 
in the decision making system of individuals or monads. The logic with quan­
tum nature is represented mathematically as an orthomodular lattice, which 
includes both standard quantum logic (generated on a Hilbert space) and 
classical (or Boolean) logic. 

An orthomodular lattice, sometimes symbolically called "quantum logic", 
is a logic system of AND, OR, NOT that satisfies the "orthomodular law" and 
is not required to be subject to the distributive law, different from Boolean 
logic. 

Decision making systems based on non-classical types of logic are discussed 
in Nakagomi(1995). A salient characteristic of quantum logic is that the order 
of two decisions may affect its consequence. Quantum logic is adopted in the 
axioms of quantum monadology. 

Mathematical scheme of NL world 

A monadistic system is specified by a mathematical scheme called NL world 
W, which consists of three sets and five mappings and is subject to the two 
rules given below. 

Py = (K,F,L,r7,p,a;,A,/?). (1) 

Each item is as follows: F is a finite set of monad-images with a special element 
'̂ ŝeif ? self-im,age. F is a set of internal states. L is a (j-complete orthomodular 
lattice (or quantum logic) of contents of consciousness, r; is a mapping -0 G 
F I—> 7y('0) > 0, appetite, p is a mapping ip E F ^-^ p(lV^) {^ probability measure 
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on L), preferability. a; is a mapping ip E F ^-^ ̂ {i^) (an orthogonal system of 
elements of L), list of choice. A is a mapping {r,ip) G G{V) x F i—> X{r,ip) 
(an automorphism on L), interpreter, where S{V) is the symmetric group 
of V (the group of all one-to-one and onto mappings from K to F ) . /? is a 
mapping {i,ip) e L x F ^^ ß{^)'^ G F , state-change operator. The orthogonal 
system a;('0) is assumed to be complete with respect to the measure p{'\ip), 

Rule 1 (Monads and correspondences) 

With the NL world W, a set Mw of monads is associated, whose number of 
elements is the same as that of V. For any pair of monads m and m\ there 
exists a image-image correspondence rmm' : V ^^ V (one-to-one and onto) 
with condition that 

rmm'iVseu) ^ VseU {m ^ m!) a n d rmm'fm'm" = rmm"- (2) 

Each monad m then has an entity-image correspondence Cm ' Mw —^ ^ 
defined by 

Cm{m') = rmm'(Vself), (3) 

which is uniquely derived from the condition rmm'Cm' = Cm and Cmi'm) = VseU-

Rule 2 (Current states and renewal cycle) 

Each monad m has a variable ^rn^ current state, that takes values in F , and 
follows the renewal cycle of three steps given below: 

Step 1. Each monad m is urged one time to make a decision, and one monad, 
say m i , is hit with probability proportional to the appetite T](^rni)' 

Step 2. The hit monad mi chooses an item i from (jj{^rni) with probability 
proportional to the preferability p(^ | ^rni)-

Step 3. Each monad m E Mw interprets the choice £ by the monad m,i as 
^m = A(rmmi,^m)^5 and renews its current state ^rn by the substitution 
formula 

^m:=ß{£m)^m^ (4) 

Symmetry and substructures 

The NL world has the basic correspondence given by Rule 1. It is extended 
to a higher-level correspondence among internal worlds of individual monads 
in a situation in which 1) the symmetric group &{V) has a representation 
R on the transformations over F , that is, for each r G 6 ( K ) , R{r) defines a 
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mapping from F to F such that R{rr') = R{r)R{r') and R{I) = / , and 2) 
the definition of the NL world W has "symmetry" under the transformation 
R{r) for any r G 6 ( K ) . 

On this symmetry assumption, it is derived that if the following relation 
holds for any pair of monads m and m' at some time 

^m = R{rmm')'^m', (5) 

then, at any time after that time, this relation holds for any pair of monads 
m and m'. 

Relation (5) means that all the monads share a common world image. Dif­
ferent from the original Leibnizian world model, the correspondence (or har­
mony) between monads is not all pre-established, but partly post-established 
in the NL world scheme. This mechanism makes it possible to produce higher-
level monadistic structures. There are various possibilities as the representa­
tion R by restricting to subsets of monads (if necessary), and we have various 
monadistic substructures superposed on each other. 

The explanation of quantum monadology remains quite insufficient in this 
paper due to the hmitation of pages. Among omitted subjects, there is the 
concept of null monads, which plays an important role in generating higher-
level monadistic structures. 

The author expects that the NL world scheme is implemented adaptable to 
econo-systems, and is used to simulate their dynamics and to answer various 
economic problems from fundamental to practical. 
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Visualization of microstructures of economic 
flows and adaptive control 
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Summary. Economic flows are modeled based on the microscopic particle 
pictures, and studied by renormalized stochastic dynamics and simulations. From 
the universal behavior obtained, every catastrophic behavior of the flows may be 
understood, as well as which sub-system is concerned and how to avoid it by 
suitable control measures. 

Key words, economic flows, economic catastrophe, microstructures and control 

Introduction 

Aims of this paper are to improve our understanding of the economic flows on the 
basis of a particle model. Assuming typically important types of microeconomic 
structures, we discuss how to derive various catastrophic points and their behavior 
by understanding how to control them. We compare these results with those of the 
actual economic flow behavior. In section 2, general model systems are specified 
and methods and results are summarized. And also the relationship between the 
results and the evolution of option pricing is summarized in section 2. Finally, in 
section 3 concluding remarks are given. For further details we refer to three 
references. 

General model systems, methods and results 

Model systems. Money is proposed to possess certain characteristics {like mass, 
charge, and spin (internal degrees of freedom)} while it flows via commercial 
societies, termed "groups". The money with inherent characteristics averaged over 
a certain group is regarded as a "particle" with a certain group-dependent 
character. Every particle flows according to the balance of influences of the 
pairwise interactions between particles, on the external-field interactions, on local 
external fields and a certain environment as a whole. The groups consist of various 
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financial groups, industrial sectors/nations. The external fields are related to 
certain economic policies/reviews acting on the particles. The environment may be 
parametrized by a ''temperature''. 

For the simulations, particles at a position T\ in space possess the following 
characters {spin Sj, kinetic energy Kj}. Pairwise interactions result in magnetic 
and/or elastic interactions described as {J,j, Aij=Jij[KS,«Sj+(l-K)], Bjj=J,j[K5sisj+(l-
K)]}, where a Lennard-Jones potential Jij=J(r)=4£[(a/r)'^-(a/r) ] (giving a 
minimum potential -e, and zero potential at the distances a, oo). The parameters 
0<K<1 are adopted. External (magnetic, pressure) fields hj, Pj represent 
micropolicy/review, and temperature T macropolicy. The state of money is 
assumed to vary by individual and group states, which are called "magnetic" and 
"elastic", respectively. 
(51) Elastic type systems: E= Z,Ki+I,>jJ,j-IiPi»Vi, 
(52) Magnetoelastic type systems: E= E,K,+Z,>jA,j-2ih,«Si-IiP,»Vi, (S=1,,.,,S), 
(53) Fractured elastic type systems: E=Z,Ki+I,>jB,j-I,hsims,-S,Pi*Vi, (S=0,...,q-1), 
where v, and msi are a surface vector and a spin-moment at a point /, respectively. 
(SO) Other theoretical systems with various interacting mechanisms like 
anisotropic-magnetic/binary-fluid/quantum-fluid/Heisenberg-magnetic type. 
In (SI) the money flow is represented by the money configuration in space under 
the interactions with the external field and temperature. In (S2)-(S3) it is 
determined by the magnetic and elastic interactions under the influence of the 
fields {h,P,T}. The difference in these systems results from the different type of 
the pairwise interactions. The models (Sl)-(SO) may become the economic 
standard models, and the results obtained indicate the measures required for the 
analysis of microeconomic dynamics. 
Methods and results. In our model, economic flows consist of groups, "grains" 
of various sizes and individual of investors in "interfaces" between the "grains". 
Individual dealers make decisions by their own judgments under the policy of 
their groups. Each group competes with other groups to get customers. In an 
assembly oi groups of different sizes, the smallest group disappears at the lowest T. 
This process is iterated until the largest group makes transition to another phase, 
with increasing T. In the solid phase the system possesses long-range order, 
magnetic order and periodic order in space, whereas in the liquid and gas phases it 
has only short-range correlations, to form clusters. In the gas phase, particles are 
assumed to obey Boltzmann's equation. In an assembly of same sized groups, all 
groups are frustrated to compete with each other. Finally, one group loses the 
competition, and this process is repeated until the largest group makes a transition, 
with increasing T. This case is related to the glass-like state. 
Monte Carlo simulation and results for (SI), (S2), (S3). The economic systems 
are divided into small block-cells so that a block-cell system may be regarded as a 
local equilibrium state. Monte Carlo simulation is performed, and the averages of 
economic quantities over each block-cell are taken leading to the following results. 
Many mesoscopic phases hierarchically appear in the "solid-like/liquid-like/gas-
like" phase regions, e.g., their curves of order parameter vs temperature are drawn 
with hierarchical stepwise curves. In the liquid-like/gas-like phases, the stepwise 
curves change to those with nearly discontinuous jump as a "first-order-like" 
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phase transition, and "spinodal-like" behavior appears. The order of the transition 
temperatures corresponds to that of the group sizes in the weak nonlinear regime, 
whereas an irregular ordering occurs in strong nonlinear regime. For every 
mesoscopic transition point, critical regions exist that exhibit power-law behaviors 
and non-critical regions are present displaying non-power-law behaviors. The 
position, height and half-width of the peaks for every block-cell, e.g. in the curves 
of specific heat, susceptibility, and autocorrelation are different, depending on the 
block-cell positions. As competing phenomena of the magnetic and elastic inter­
actions, a higher transition temperature results for stronger average pairwise 
interactions. At the balancing point of both interactions, both mesoscopic phase 
transitions simultaneously occur. Competition between groups arises, to get more 
customers. This competition between same-sized groups continues for longer 
times with high energies. The reason is that larger groups become more stably 
ordered. Wherever the size of interfacial regions is larger than the interacting 
potential range, more stably ordered groups are newly created in the interfacial 
regions. Simultaneously, the energy of the system rapidly changes and the creation 
of a new group occurs in a large interfacial region. Afterwards the system 
becomes more stable. Similarly, this situation happens in the glass-like phase. Due 
to an economic policy of quench-anneal, changing from a certain hard policy Ti to 
a soft policy T2 in some period of time T, and returning to the same hard policy Ti 
the economic system can find more stable new states. By an appropriate choice of 
Ti,T2,T, the optimal economic situations can be induced. In these simulation 
systems, the visualization, the estimation and the adaptive control of the economic 
situations may become possible for every mesoscopic phase. 
Renormalized stochastic dynamics and results. Every particle in economic flows 
is affected with random forces inside its own group and with stochastic forces 
inside the other groups and interfaces. Let us now consider generalized systems of 
extended-defect N-component type H( <i> ,V,f)= I dx[(l/2)SVi {| Vj_(paP+a\| V 
||9al'+rb9a'+V(x^)9a'+Usb(2''a=i9a')'/4!+Ucb2^=i(PaV4!-(H+f^ . The 6 d-dimen-
sional extended-defects; 8 d is 0 for point defects, 1 for line defects, 2 for plane 
defects, and non-integers for fractal defects. The dimensional analysis deduces the 
dimensions e =6-d for the quartic interactions, and e ^= £ d+ £ for the defect 
interaction. The mesoscopic critical behaviors for each grain system were obtained 
by the renormalizing approaches. For almost all representative systems also, they 
were studied and summarized in the last reference. 

Different sized groups of mesoscopic critical temperatures {Tjc}, Tic<T2c<..-- Tjc 
is the critical temperature of i-th group with average size Li=2Ri. It appears in the 
ascending order of group sizes for weak nonlinear regime. This ordering 
irregularly changes for strong nonlinear regime. Every mesoscopic phase 
possesses the inherent, characters and mesoscopic critical behaviors. The 
economic states of every group are estimated and controlled by these properties. 
Same-sized groups. A reference group surrounded by other groups makes motions 
inside the accumulated potential. It may overcome the potential barrier and make 
random walk, after some of the surrounding groups open a path. We define the 
jumping rate R(p)=l/T(p), characteristic evolution time T(p), interacting time 0 
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and interacting momentum given by R(p)0=l. Use R(p)=(l/To)(p/por. This state 
of a "glass-like" phase is described by the nonequilibrium distribution 
L^(x)=|iTb''/x'̂ ^ with |x=d/a: a=2 for nonconserved fields, and 4 for conserved 
fields, in mean field approximation. By renormalizing approaches, the mesoscopic 
critical behavior of the effective homogeneous functions and critical exponents 
a,..., are obtained. The economic states can be estimated and controlled by them. 
Evolution of option pricing. For the above results of each group, we use the 
conventional methods. Consider the relationship of the fluctuating volatility 
distribution PTO), the option price 0(t), and the expected price, based on the 
microeconomic pictures. The option price is assumed to have larger fluctuations 
than its stock price. For Gaussian price fluctuations, consider evolution of option 
price. Denote the price and the number by S(t), Ns(t) for stocks, by 0(S,t), No(t) 
for options, and by B(t), NBO) for short-time bonds. The total wealth is expressed 
as W(t)=Ns(t)S(t)+No(t)0(S,t)+NB(t)B(t). Consider a smooth exponential growth 
without fluctuations', dW(t)/dt^rwW(t), dB(t)/dt^rBB(t). Conventional relationship 
between the growth rate rw and the short-term bond rate r^ is adopted as rw^rß. 
The self-financing strategy is expressed by dNs(t)/dtS(t)+dNo(t)/dtO(S,t)+dNB(t)/ 
dtB(t)=0; Ns(t)/No(t)=-aO(S(t),t)/aS(t). Use the Fokker-Planck equation for the 
option price ^0/^=rwO-rxw^O/c5x+H^(i5x)0, where rxw=rw+H (̂i) and the 
probability distribution P(Xbtb|Xata)=exp[-rw(tb-ta)]/'*-oo(dp/27c)exp[ip(Xb-Xa)-{H (̂p) 
+irxwp}(tb-ta)] with H^(p)=H(p)-H'(0)=(l/2)c2p'-(l/3!)ic3p'-(l/4!)c4p'+(l/5!)ic5p' 
+.... An option for a certain strike price E of the stock is written as 0(Xb,tb)= 0(Sb-
E)(Sb-E)=9(Xb-XE)[exp(xb)-exp(xE)] with 0 step function and XE=lnE. The result 
deduces the Black-Scholes formula 0(Xa,ta)=S(ta)N(y+)-exp[-rw(tb-ta)]EN(y.) with 
y±=[ln{S(ta)/E}+(rw±cĵ /2)(tb-ta)]/{a^(tb-ta)}'̂ l For the option pricing with 
nonGaussian fluctuations 0(x(t),v(t),t), consider the riskfree portfolio W(t)=Ns(t) 
S(t)+No(t)0(S,t)+Nv(t)V(t)+NB(t)B(t). By accounting up to the second derivatives 
in the time evolution equation for the option price, using Ito rule and putting 
Nv(t)/No(t)=-aO(S(t),v(t),t)/av(t), we can use the smooth growth dv(t)/dt ~-Y[v(t)-
v^]. The renormalizing contributions to the corrective price of volatility risk -Xv 
are accounted as y*=y+A., v^*=yv^/y*. We can use the Fokker-Planck equation 
aO/a=rw(0-aO/ax)+(H^*+y*+epax+e^av)0, where H^* =-(1/2) d^y-'^''d^{\'\'^''y 
(\/2)d^\-{\/2)e^dy,\-epdy,dyy, and the probability distribution Pv(xbVb tb|Xa 
Vata)=exp[-(rw+y*)At]P̂ v(XbVbtb|XaVata), with thc arguments shifted to Xb"Xa ^ Xb-Xa 

-(rw-ep), Vb-Va-̂ Vb-Va-el 
Stock market indices in each group is represented by the logarithmic 

divergence of the index y for t near teas y=A+B[ln(l-t/tc)][l+Csin{(öln(l-t/tc)+(p}] 
for t<tc, where tc is estimated by the Levenberg-Marquardt and Monte Carlo 
algorithms dy/dt=-B/(tc-t). For every group, using the relation of the wealth vs 
time, the catastrophic point and the option pricing are estimated from Fig. 1, upper-
right. The fine structure of the curve of the volatility vs time for every group may 
deduce the relation of temperature vs time illustrated in the lower-left figure 
because the volatility is related to the inverse susceptibility, relative temperature 
shift. From this figure and the phase diagram illustrated in the upper-left figure, 
the contributions to the wealth of every group for each moment may be evaluated. 
It indicates which group contributes from which phase states at which rate. For 
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Fig. 1. Evolution of option price. 

macrocatastrophic changes a number of groups cooperatively change their states 
over wide phase states, whereas for every mesocatastrophic change particular 
groups are concerned with special phase states. By identifying the mesoscopic 
critical properties of the actual system with those of economic standard models, 
the characters of every concerned group, the dynamic estimation and the 
controlling methods are known. 

Concluding remarks 

Catastrophic properties of the economic systems were studied based on interacting 
microeconomic pictures. Every system divided into the "groups" with different 
characters exhibits the respective characteristic properties in its own catastrophic 
point. The group-size, catastrophic temperature and the magnitude of pairwise 
interactions are identified with the economic standard model. They are obtained 
from the height, position and half-width of the reference peak in the curves like 
specific heat and susceptibility. The essential features of every group are estimated 
as the spin components and the type of models like ferromagnetic/simple-fluids/ 
super-fluids. From these facts, the interacting mechanisms and structures of micro 
economic flows may be understood. The crucial states are estimated, in which 
each group works in phases (like solid-like/liquid-like/gas-like/glass-like phases) 
under certain values of the external fields and the temperature. As a result, they 
may be controlled by the external fields and the temperature, inherent to the macro 
and micro policies/reputations/reviews. Before planning or performing certain 
policies, it may be possible to estimate the consequences and to adjust the original 
plan, based on the simulations to realize a most acceptable situation for the public. 
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