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Summary. We use a spatial iterated Prisoner’s Dilemma game (IPD) to investigate
the spatial-temporal evolution of heterogeneity in agents’ strategies. In our model,
N agents are spatially distributed on a lattice and each agent is assumed to interact
with her 4 local neighbors a number of ny times during each generation. If the agent
has a one-step memory for the last action of each individual neighbor, this results in
a total of eight different strategies for the game. After each generation, the agent will
be replaced by an offspring that adopts the strategy of her most successful neighbor.

The agents are heterogeneous in that they play different strategies dependent
on (i) their past experience, (ii) their local neighborhood. The spatial-temporal
distribution of these strategies is investigated by means of computer simulations on
a cellular automaton. In particular, we study the incluence of ng on the dynamics of
the global frequencies of the different strategies and the conditions for a stationary
(frozen) or non-stationary (dynamic) coexistence of particular strategies on a spatial
scale.

1 Introduction

Agent-based models are important for the understanding of microeconomic
interaction. A pervasive characteristic is the heterogeneity of agent behavior
which may result e.g. from interaction with different neighbors (locality), or
different individual experience in the course of time (historicity), or heteroge-
neous environmental conditions, or simply individual diversity. While inter-
acting with others, an agent’s success or failure often depends on her strategic
behavior. To reduce the risk of making the wrong decision, it often seems to
be appropriate to copy the most successful strategy, this way adapting to
the local environment. This kind of local imitation behavior will be used in
this paper to explain the spatial evolution of heterogeneity in a multi-agent
system.
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We consider a system of IV agents spatially distributed on a square lat-
tice, so that each lattice site is occupied by just one agent. Each agent 7 is
characterized by two state variables, (i) her position r; on the lattice, and (ii)
a discrete variable 0;, describing her possible actions, as specified in Sect. 3.
Agents are assumed to directly interact only with their 4 nearest neighbors
a number of ng times. In order to describe the local interaction, we use the
so-called iterated Prisoner’s Dilemma (IPD) game — a paradigmatic example
[1, 4, 11] well established in evolutionary game theory with a broad range of
applications in politics, economy, and sociology.

In the simple Prisoner’s Dilemma (PD) game, each agent i has two options
to act in a given situation, to cooperate (C), or to defect (D). Playing with
agent j, the outcome of this interaction depends on the action chosen by
agent 7, i.e. C or D, without knowing the action chosen by the other agent
participating in a particular game. This outcome is described by a payoff
matriz, which for the 2-person game, i.e. for the interaction of only two agents,
has the following form:

C D
CR,RS,T (1)
DTS PP

In PD games, the payoffs have to fulfill the following two inequalities:
T>R>P>S 2R>S84T 2)

The known standard values are T =5, R=3, P =1, S = 0. This means in a
cooperating environment, a defector will get the highest payoff. From this, the
abbreviations for the different payoffs become clear: T' means (T)emptation
payoff for defecting in a cooperative environment, S means (S)ucker’s payoff
for cooperating in a defecting environment, R means (R)eward payoff for
cooperating in a likewise environment, and P means (P)unishment payoff for
defecting in a likewise environment.

In any one round (or “one-shot”) game, choosing action D is unbeatable,
because it rewards the higher payoff for agent ¢ whether the opponent chooses
C or D. At the same time, the payoff for both agents i and j is maximized
when both cooperate. But in a consecutive game played many times, both
agents, by simply choosing D, would end up earning less than they would
earn by collaborating. Thus, the number of games n, two agents play together
becomes important. For ng > 2, this is called an iterated Prisoner’s Dilemma
(IPD). It makes sense only if the agents can remember the previous choices of
their opponents, i.e. if they have a memory of n,,, < ny — 1 steps. Then, they
are able to develop different strategies based on their past experiences with
their opponents, which is described in the following.
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2 Agent’s Strategies

In this paper, we assume only a one-step memory of the agent, n,, = 1.
Based on the known previous choice of her opponent, either C' or D, agent
¢ has then the choice between eight different strategies. Following a notation
introduced by [10], these strategies are coded in a 3-bit binary string [I,|I. 1]
which always refers to collaboration. The first bit represents the initial choice
of agent i: it is 1 if agent ¢ collaborates, and 0 if she defects initially. The two
other values refer always to the previous choice of agent j. I. is set to 1 if
agent i chooses to collaborate given that agent j has collaborated before and
0 otherwise. Similarly, I is set to 1 if agent ¢ chooses to collaborate given
that agent 7 has defected before and 0 otherwise. Both I, and I; can be also
interpreted as probabilities to choose the respective action given the knowledge
of the previous choice of the opponent. But in the deterministic case, I. and
I; are either 0 or 1. Thus, eight different strategies (s = 0,1,...,7) result,
which are given in Tab. 1.

s Strategy Acronym Bit String
0 suspicious defect sD 000
1 suspicious anti-Tit-For-Tat sATFT 001
2 suspicious Tit-For-Tat sTFT 010
3 suspicious cooperate sC 011
4 generous defect gD 100
5 generous anti-Tit-For-Tat gATFT 101
6 generous Tit-For-Tat gTFT 110
7 generous cooperate gC 111

Table 1. Possible agent’s strategies using a one-step memory.

Depending on the agent’s first move, we can distinguish between two dif-
ferent classes of strategies: (i) suspicious (s = 0, 1,2, 3), i.e. the agent initially
defects, and (ii) generous (s = 4,5,6,7), i.e. the agent initially cooperates. Fur-
ther, we note that four of the possible strategies do not pay attention to the
opponent’s previous action, i.e. except for the first move, the agent continues
to act in the same way, therefore the strategies sD, sC, gD, gC (s =0, 3,4,7)
can be also named rigid strategies.

Non-trivial strategies are s = 1,2, 5, 6. Strategy s = 6, known as (generous)
“tit for tat” (gTFT), means that agent ¢ collaborates in the first round and
imitates her opponent’s previous action in every subsequent round. Agents
playing strategy gATFT (s = 5) also start cooperating but go on to do the
opposite of whatever her opponent did in the previous move. sATFT (s = 1)
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and sTFT (s = 2) represent the respective suspicious versions of the above
strategies. It is straight forward to see that two agents playing gT'FT continue
to cooperate in an iterated game, while agents playing gTFT and sTFT alter-
nately cooperate and defect. This illustrates that the first move of a strategy
can be vital to the outcome of the game and also, that the heterogeneous
behavior of an agent emerges from the interaction with different opponents.
Furthermore we note, that the number of interactions n, is also a crucial pa-
rameter in this game, because, if ng is even, gTFT and sTFT will gain the
same, but in case of ny being odd sTFT will gain more than gTFT.

3 Spatial Interaction

So far, we have explained the interaction of two agents with one-step mem-
ory. This shall be put now into the perspective of a spatial game with local
interaction among the agents. A spatially extended (non-iterative) PD game
was first proposed by Axelrod [1]. Based on these investigations, Nowak and
May simulated a spatial PD game on a cellular automaton and found complex
spatiotemporal dynamics [8, 9]. A recent mathematical analysis [2] revealed
the critical conditions for the spatial coezxistence of cooperators and defectors
with either a majority of cooperators in large spatial domains, or a minority
of cooperators in small (non-stationary) clusters.

In the following, we concentrate on the iterated PD game, where the num-
ber of encounters, ny, plays an important role. We note that possible exten-
sions of the IPD model have been investigated e.g. by Lindgren and Nordahl
[5], who introduced players which sometimes act erroneously, this way allowing
a complex evolution of strategies in an unbounded strategy space.

In the spatial game, we have to consider local configurations of agents
playing different strategies (see Fig.1). As explained in the beginning, each
agent ¢ interacts only with her four nearest neighbors. Let us define the size of
a neighborhood by n (that also includes agent 7), then the different neighbors
of i are characterized by a second index j = 1,...,n — 1. The mutual inter-
action between them results in a n-person game, i.e. n = 5 agents interact
simultaneously. In this paper, we use the assumption that the 5-person game
is decomposed into (n—1) 2-person games, that may occur independently, but
simultaneously [4, 11], a possible investigation of a “true” 5-person PD game
is also given in [11].

We further specify the 8; that characterize the possible actions of each
agent as one of the strategies that could be played (Tab. 1), ie. §; € s =
{0,1,...,7}. The total number of agents playing strategy s in the neighbor-
hood of agent i is given by:

n-—1
K=Y b0, 3)
Jj=1
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Fig. 1. Local neigbhorhood of agent 2. The nearest neighbors are labeled by a second
index j = 1,...,4. Note that 7 = 0 refers to the agent in the center.

where d;, means the Kronecker delta, which is 1 only for z = y and zero
otherwise, The vector k; = {k, &}, &%,... k7 } then describes the “occupation
numbers” of the different strategies in the neighborhood of agent ¢ playing
strategy #;.

Agent i encounters with each of her four neighbors playing strategy 6,
in independent 2-person games from which she receives a payoff denoted by
ag;e;,, Which can be calculated with respect to the payoff matrix, eq. (1). The
total payoff of an agent ¢ after these independent games iz then simply

n—1
ai(0:) = > ape, = > o ki (4)
i=1 E]

We note again that the payofls agp,, also strongly depend on the number of
cncounters, n,, for which explicit expressions have been derived. They are
summarized in a 8 x 8 payoff matrix not printed here [12].

In order to introduce a time scale, we define a generation G to be the
time in which each agent has interacted with her n — 1 nearcst neighbors
n, times. During each generation, the strategy 8; of an agent is not changed
while she interacts with her neighbors simultaneously. But after a generation is
completed, &; can be changed based on a comparison of the payoffs received.
Le., payoff ¢; is compared to the payoffs a;; of all neighboring agents, in
order to find the maximum payoff within the local neighborhood during that
generation, max {a;, a4, }. If agent 7 has received the highest payoff, then she
will keep her @;, 1.e. she will continue to play her strategy. Otherwise, agent ¢
has the possibility to adopt or to imitate the strategy of the most successful
agent in her neighborhood. This implies that agent ¢ has the possibility to
dircctly observe the strategies of neighboring agents. If there is more than one
neighbor with the same highest payoff, agent i randomly chooses one of the
strafegies of these neighbors.

The maximum payoff in the neighhorhood of agent ¢ is given hy



92 F.Schweitzer et al.

Amax(t) =  max {as, a0} (5)
Jj=1,...,n—1
and
J*(i) = argmax;j—o,... n—10i; (6)

defines the position of the agent that received the highest payoff in the neigh-
borhood. The update rule of the game can then be summarized as follows:

91(0) if ai(ei) = amax(i)

Y G) else @

0;(G+1) = {

i* (i)[n] (

where j*(¢)[n] denotes the case, where agent 7 randomly chooses a strategy
of one of the most successful neighbors, . We note that the evolution of
the system described by eq. (7) is deterministic, except that equally sucessful
strategies in a local neighborhood need to be chosen randomly. Results for
stochastic cellular automata (CA) have been discussed in [3, 7].

The adaptation process leads to an evolution of the spatial distribution
of strategies that will be investigated by means of computer simulations on a
cellular automaton in the following section.

4 Evolution of Spatial Patterns of Strategies

In order to get a graphic idea of the spatio-temporal evolution of heterogeneity,
we have restricted the computer simulation to only three strategies instead of
eight, namely sD, sATFT and gTFT (s = 0,1, 6). Strategy sD is known to be
the winning strategy for a one-shot game, i.e. ng = 1, while gT'FT is known to
be the most successful strategy for ng > 4. Thus when ny is increased from 1
to 4 a transition from defection to cooperation can be observed in the system.
This is of particular interest in this paper, i.e. we mainly investigate n, = 2
and ng = 3 to focus on the transition region.

Agents playing sATFT are added to the initial population, since they
behave anti-cyclic, i.e. they defect when the opponent cooperated and vice
versa. The simulations are carried out on a 100 x 100 lattice with periodic
boundary conditions, in order to eliminate spatial artifacts at the borders.
Initially, all agents are randomly assigned one of the three strategies. Defining
the total fraction of agents playing strategy s at generation G as

1 N
£G) = 2> b0 )
i=1

fo(0) = f1(0) = fe(0) = 1/3 holds for G = 0 (see also the first snapshot
of Fig. 2%).

Because each agent encounters with her 4 nearest neighbors ng, times dur-
ing one generation, in each generation (N/2 X ng4 x 4) independent and simul-
taneous deterministic 2-person games occur. Fig. 2* shows snapshots of the
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spatio-temporal distribution of the three strategies for ng, = 2, while Fig. 3*
shows snapshots with the same setting, but for n, = 3. 4

G=4 G=22 G=150

Fig. 2. Spatial-temporal distribution of three strategies: sD (black), sATFT (white),
and gTFT (grey). Parameters: grid size: 100 x 100, payoff values: T = 5, R = 3,
P=1,5=0n,=2*

For n;, = 2, we see from Fig. 2 that in the very beginning, ie. in the
first four generations, strategy sD grows very fast at the expense of sATFT
and especially on gTFT. This can be alse confirmed by looking at the global
frequencies of each strategy {see left part of Fig. 4). Already for G=4, stratcgy
sD is now the majority of the population - only a few agents playing gTFT
and even fewer agents playing sATFT are left in some small clusters. Hence,
for the next generation one might assume that the sD wili take over the whole
population. Interestingly, this is not the case. Instead, the global frequency
of sD) goes down while the frequency of gTFT starts to increase continuously
until it reaches the majority. Only the frequency of sATF'T remains at its very
low value. On the spatial scale, this evolution is accompanied by a growth of

4Note that all spatial snapshots are original color figures, which could not be
printed here. Therefore, we encourage the reader to download the color version from
http://wuw,ais. fraunhofer.de/ " frank/p-wehia03.html

5Computer videos of these simulations can be found at http://www.ais.
fraunhofer.de/ frank/spatial_game.html
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G=11

Fig. 3. Spatial-temporal distribution of three strategies: sD {black), sATFT (white),

and gTFT (grey) for n, = 3. The comparisen with Fig. 2 elucidates the influence of
4
g.

domains of gTFT that are finally separated by only thin borders of agents
playing sD {cf Fig. 2 for & = 150). The reasons for this kind of fakeover
dynamics will be explained later.

Fig. 4. Global frequencies f.(G) of the three strategies for n, = 2 {left) and ny = 3
(right}. For the spatial distribution, see Fig. 2 and Fig. 3, respectively.



Apents with Heterogeneous Strategies Interacting in a Spatial IPD g5

When increasing the number of encounters n, from 2 to 3, we observe
that the takeover of gT'FT occurs much faster. Already for G = 13, it leads
to a situation where all agents play gTFT, with no other strategy left. Hence,
they will mutually cooperate. The fast takeover is only partly due to the fact
that the total mumber of encounters during one generation has increased. The
main reason is that for n, = 2 agents playing sATFT are able to locally biock
the spreading of strategy gTFT, while this is not the case for n, = 3. This
is because of the dependence on n, of hoth the agent’s payoff and the local
configuration of players,

To clucidate this, let us for the moment consider a population of only
two strategies, namely gTFT and sATFT. For ny, = 2 there is only one con-
figuration, shown in Fig. 5, where gTFT can invade sATFT because of the
higher payoff. However, as can be seen in Fig. 5{right), after one generation
the preconditions for further invasion have vanished, and thus the invasion
stops.

The sitnation is more complicated in the presence of the third strategy sD
[6], but it can be summarized, that agents playing sATFT in the early stage
are responsible for the delayed takeover by gTFT. The crossover dynamics
mentioned in Fig. 4 can be explained by the fact that only agents playing sD
are able to invade both, sATFT and gTFT. Thus, their frequency increases
strongly in the early stage. Once the number of agents playing sATFT is
considerably reduced by sD, ¢TFT can spread. For n, = 3, this situation is
different in that there are more local configurations, where gTFT can invade
sATFT. This in turn enhances the takeover of gTFT,

2 2 2 2 2 2 2 3 2 2 2 2z 2z 2 2. 2
2 2 2 2 '2. 2. a2 2 2 2 2
2 2 223 225 224 2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 2 2
2 2 . 2 2 2 2
2 2 2 2 2z 2 2 2 2 2. 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
G=10 G=1

Fig. 5. (left) The smallest configuration of gTFT (grey) that is able to gain ground
in sATFT {white) for n, = 2, (right) The result of the invasion after one generation,
The numbers show the payoffs of the respective agents within their neighberhood,
The values T =5 R =3, = 1,5 = 0 have been used [or this calculation.
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In order to demonstrate this pinning effect on the global scale — i.e. agents
playing sATFT block the spreading of agents playing gTFT — we carried out
simulations with only two strategies, sATFT and gTFT. Fig. 6 shows spatial
snapshots for a ny, = 2 game. As expected this time sATFT (white) is the
stable majority after only three generations.
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Fig. 6. Spatial snapshots of two strategies, SATFT (white) and gTFT (black).
Parameters: 100 x 100 grid and ny = 2. Initial conditions: random distribution of
agents playing sSATFT and gTFT.

5 Global Payoff Dynamics

In economics, utility maximizing agents should have an estimate of the prob-
abilities of their expected payoff. In our model, however, the updating of
strategies is behavioral instead of rational, i.e. the agent simply imitates the
strategy of the best, this way trying to increase her own payoff. It is of in-
terest, whether this simple local imitation strategy would also maximize the
global utility. Thus, in the following we investigate the global payoff and the
dynamics of the payoffs of the individual strategies.
The average payoff per agent @ is defined as:

N "
1= LS a0 =S h@ 0 0Dl

where f(G) is the total fraction of agents playing strategy s and @, is the
average payoff per strategy, shown in Fig. 7 for the different strategies.

We note that the payoffs per strategy for the 2-person games are always
fixed dependent on ng. However, the average payoff per strategy changes in
the course of time mainly because the local configurations of agents playing
different strategies change. For ny, = 2, we have the stable coexistence of all
three strategies (cf Fig. 2 and Fig. 4 left), while for n, = 3 only strategy gTFT
survives (cf Fig. 3 and Fig. 4 right). Hence, in the latter case we find that the



Agents with Heterogeneous Strategies Interacting in a Spatial IPD 97

ks ~SATFT ] L .
: —gtFT : :
0.5 E 0.5F 3
o] - N B B 0;4 AR B B B
0 50 100 150 0 5 10 15 20
G G

Fig. 7. Average payoff per strategy, @,, eq. (9), vs. time for ng = 2 (left) and ng = 3
(right)

average payoff of gI'FT reaches a higher value than for ny = 2, while in Fig.
7 the corresponding curves for the other strategies simply end, if one of these
strategies vanishes.

The average global payoff is shown in Fig. 8 for different values of n,.
Obviously, the greater ng, the faster the convergence towards a stationary
global value, which is @ = 3 only in the “ideal case” of complete cooperation.
As we have already noticed, for ng = 2 there is a small number of defecting
agents left playing either sD or sATFT, therefore the average global payoff is
lower in this case.

1:_\/ — n=3 _
- ng=2
0.5 B
O‘E- SRR BTSN B ST B
0 50 100 150 200
G

Fig. 8. Average global payoff a, eq. (9), vs. time for different values of n,.
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6 Evolution of More Diverse Strategy Patterns

So far, we restricted the discussion to only three strategies. But, as explained
in Sect. 2, the full strategy space consists of eight possible strategies, Tab. 1 —
which in turn may result in much more complex spatial patterns. To elucidate
this, in the following we present computer simulations with the full set of
strategies.

As before, the initial distribution is chosen randomly, with equal initial
frequencies of all eight strategies. Again, we concentrate on n, = 2, and
update rule eq. (7) is used. Fig. 9 and Fig. 10* show snapshots of the spatio-
temporal evolution of the strategy distribution. Noteworthy, both runs start
with the same setup (except a different randomization) — but, interestingly,
the evolution occurs in a rather different manner, as a comparison between
the two simulations demonstrates.® The evolution of the global frequencies of
the respective simulations can be found at Fig. 11.

During the early stage, i.e. until G = 100 the dynamics of the two runs is
rather similar: we observe that all generous strategies (i.e. agents starting with
cooperation) die out, except gD (blue) — which later appears to be the global
winner in both cases. The critical time window occurs at about G = 100, where
in the first case the global frequency of gD increases further, until it reaches
a stationary value of about 0.8, whereas in the second case this increase is
turned into a descent, until a global (and non-stationary) frequency of about
0.55 is reached.

The different evolution during the critical stage results from the random-
ness in the update rule for equally best neighbors and from small deviations
in the local configurations , where sC (yellow) plays a crucial role (cf Fig. 10
with Fig. 9 at G = 100). It seems that sC stabilizes the survival of sD, which
can be also observed in Fig. 11. In the first case, both strategies dissapear,
while in the second case they both survive. The local coexistence of both sC
and sD can be seen in the snapshots of Fig. 10.

We emphasize that the coexistence of four strategies, i.e. gD, sTFT to-
gether with sD and sC, eventually results in a non-stationary long-term dy-
namics, rather different from the first case, where only two stategies, i.e. gD,
sTFT, survive. Here, we find a (quasi-) stationary spatial pattern, where the
local configuration consecutively flips between two states and thus only tiny
changes in the global frequency occur.

The significantly different evolution of the spatial patterns for the same
average setup suggests that the dynamics may have at least two different at-
tractors that are reached, however, with different probability. From our com-
puter simulations we deduced that the non-stationary pattern shown in Fig.

5The observant reader may notice that simulations are not exactly comparable
since we have chosen the snapshots at different generations. This was mainly to
show the most interesting patterns. But, in order to give an impression about the
different evolution, we also provide computer videos of the full simulations, which
can be found at http://www.ais.fraunhofer.de/ frank/spatial_game.html.
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Fig. 9. Spatial-temporal distribution of 8 strategies: sD (black), sSATFT (white),
sTFT (green), sC (yellow), gD (blue), gATFT (pink), gTFT (red), gC (cyan). For
parameters see Fig. 2.

10 is not reached very often, e.g. the attractor size should be relatively small
compared to the size of the attractor with the stationary pattern. This shall
be investigated in a future paper.

Eventually, we mention an important difference between the games with
three and with eight strategies. Whereas in the first case agents playing gTFT
are in the majority, in the latter case they completely disappear — which is
different from the observations by e.g. [1]. This means that an increase in
heterogeneity in the agent’s strategies, together with consideration of local

interaction, results in a quite complex (sometimes non-stationary) dynamics
in the IPD.

7 Conclusions

In this paper, we have investigated the evolution of spatial heterogeneity in
agents’ strategies. This heterogeneity originates from two different sources:
(i) the local restriction of agent interaction to nearest neighbors, (ii) the con-
sideration of a one-step memory that allows different responses to individual
actions.
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G=300 G=1500

Fig. 10. Spatial-temporal distribution of 8 strategies: sD (black), sATFT (white),
sTFT {green)}, sC (ycllow), gD {blue), gATFT (pink), gTFT (red), gC {cyan). Same
setup as in Fig. 9, but with a different initial randomization. *

As an illustrative example for the heterogeneous interaction, we have in-
vostigated the iterated Prisoner’s Dilemma (IPD) game, that has been estab-
lished as a key paradigm for investigating the evolution of cooperation, with
many applications in politics, economy, and sociology.

In the first part of the paper, we have investigated the case of three strate-
gies, concentrating mainly on the role of consecutive encounters between any
two agents, ng. We find that a critical value of n, exists above which no co-
existence between agents playing different strategies is observed. Hence, the
most successful strategy, i.c. the one with the highest payoff in an iterated
game, gTFT, is eventually adopted by all agents. This confirms the findings
of {1} also for the spatial case. Below the critical ng, we find a coexistence be-
tween cooperating and defecting agents, where the cooperators are the clear
majority {playing gTFT), whereas the defectors play two different strategios,
either sI) or sATFT. In both cases, we observe that the share of gTFT in the
early evolution drastically decreases before it eventually invades the whole
agent population. We notice, however, that this picture holds only for a ran-
dom initial distribution of the three strategics. It can be shown [12] that there
are always specific initial distributions where gTFT fails to win.

In the second part of the paper, we have investigated the more complex
case of eight strategies, with n, = 2 fixed. Different from the case of three



Agents with Heterogeneous Strategies Interacting in a Spatial IPD 101

LN B B L R B L B B L N Lt B

M

PRI PR BRI B AR PR BT
0 100 200 300G400 500 600 700

L L L N L B BB LRI UL NS L U I Lt T

U ]
r — sD
0.8+ SATFT
0.6
Gy
0.4

0.2 [lpates

0._ -

......... [ RS NN RS NN

0 500 1%(})0 1500 2000

Fig. 11. Frequencies of the simulation shown in Fig. 9 (top) and Fig. 10 (bottom).
The surviving strategies are (descending order of relative frequencies) gD, sTFT
(top) and gD, sTFT, sD, sC (bottom)*.

strategies which all coexist for n, = 2, we observe the coexistence of either two
or four strategies. In particular, the popular strategy gTFT does not survive,
if initially eight strategies are considered. This is different from the known
results in many alternative scenarios, where TFT usually wins. An interesting
observation is the non-stationary long-term dynamics of the spatial game in
the case of eight strategies (given the standard payoff matrix). Here, random
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deviations in the initial configuration may lead the global dynamics to different
attractors. Thus, local configurations are of great influence.
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