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Abstract

We propose a network description of large market investments, where both stocks and

shareholders are represented as vertices connected by weighted links corresponding to

shareholdings. In this framework, the in-degree (kin) and the sum of incoming link weights (v)

of an investor correspond to the number of assets held (portfolio diversification) and to the

invested wealth (portfolio volume), respectively. An empirical analysis of three different real

markets reveals that the distributions of both kin and v display power-law tails with exponents

g and a: Moreover, we find that kin scales as a power-law function of v with an exponent b:
Remarkably, despite the values of a; b and g differ across the three markets, they are always

governed by the scaling relation b ¼ ð1� aÞ=ð1� gÞ:We show that these empirical findings can

be reproduced by a recent model relating the emergence of scale-free networks to an

underlying Paretian distribution of ‘hidden’ vertex properties.
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1. Introduction

A fundamental problem in economics is to characterize different systems by means
of simple and universal features. The power-law form of the statistical distributions
of many quantities, including individual wealth [1–4], firm size [5] and financial
market fluctuations [6–8], seems to be one of such ‘stylized facts’. As in many other
complex systems, the emergence of this behaviour can be related to the interactions
of a large number of agents [9–11]. On the other hand, the recent advances in
network theory [12] allow to describe economic systems internally and to
characterize them through novel quantities. Indeed, the topology of various
economic networks, ranging from those formed by directors of corporate boards
[12,13] to those generated by the strongest asset correlations [14] is again
characterized by power-law distributions, in close analogy with many other
networks (including Internet, WWW and biological webs [12]).

In the present paper, we propose a network description of the financial system
formed by the assets traded in a stock market and the corresponding shareholders.
As we show below, we find that shareholding networks are again characterized by
power-law distributions, which here describe the volume and diversification of
portfolios. These quantities are the subject of fundamental financial issues such as
portfolio optimization [15], and our empirical analysis reveals that they are related
through nontrivial scaling relations. We finally show that the above results can be
reproduced by a simple network model [16] which assumes that the topological
properties depend on some non-topological quantity (or fitness) which is this case
represents the wealth invested by the shareholders.
2. Introducing the shareholding networks

The data sets we analysed refer to the shareholders of all assets traded in the
Italian stock market [17] (MIB) in the year 2002, in the New York Stock Exchange
[18] (NYSE) in the year 2000 and in the National Association of Security Dealers
Automated Quotations [18] (NASDAQ) in the year 2000. The number M of assets in
the markets is 240, 2053 and 3063, respectively. The data necessarily report, for each
asset, only a limited number of investors (generally holding a significant fraction of
shares of it). While this biases the estimate of the number of investors of each asset
(which can in principle be very large), it does not affect qualitatively the statistical
properties of the number of assets in the portfolio of each reported investor.

As well known, it happens frequently that some shareholders of a certain company
are themselves companies whose shares are traded in the market, so that there is a
significant fraction of listed companies which are also owners of other listed
companies. This leads naturally to a network description of the whole system (see
Fig. 1a), where the N investors and the M assets are both represented as vertices and
a directed link is drawn from an asset to any of its shareholders (which can be
persons or listed companies themselves, therefore the total number of vertices is less
than N þ M). In this topological description the in-degree ðkinÞi (number of
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Fig. 1. Shareholding networks for the Italian market: (a) the extended net (red vertices ¼ stocks; green
vertices ¼ shareholders) and (b) the restricted one (stocks labelled by the name of the corresponding

company). Arrow size is proportional to the fraction of shares owned.
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incoming links) an the investor i corresponds to the number of different assets
in its portfolio (which we call the ‘portfolio diversification’). Vertices with zero in-
degree are listed companies holding no shares of other stocks. The out-degree kout of
a vertex is the number of shareholders of the corresponding asset, but as we
discussed above this is a biased quantity and we cannot deal with its statistical
description. We also note that a weight can be assigned to each link, defined as the
fraction sij of the shares outstanding of asset j held by i multiplied by the market
capitalization cj of the asset j. The quantity vi ¼

P
jsijcj (hereafter the ‘portfolio

volume’) is therefore the total wealth in the portfolio of i. If we consider the subnet
restricted to the owners which are listed companies themselves (hereafter the
‘restricted’ net), we obtain the structure reported in Fig. 1b, providing a description
of the interconnections among stocks. The whole networks will be denoted as the
‘extended’ ones.

In order to characterize the topology of these systems we consider the statistical
distribution P4ðkinÞ of the number of vertices with in-degree greater than or equal to
kin: This analysis has been performed on both the extended and the restricted nets.
As reported in Fig. 2, the tail of the distribution computed on the extended nets can
always be fitted by a power law of the form

P4ðkinÞ / k
1�g
in : (1)
Fig. 2. Cumulative histograms of kin for the extended nets (mai panel, with power-law fit) and the

restricted ones (inset).
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This corresponds (for large values of kin) to a probability density PðkinÞ / k
�g
in of

finding a holder with a portfolio diversified in exactly kin different stocks. The
values of the exponent g differ across markets: gNYS ¼ 2:37; gNAS ¼ 2:22; gMIB ¼ 2:97
(however note that in the Italian case the quite large exponent gMIB and the
small size of the net result in a small value kmax

in ¼ 19 of the largest degree). In the
inset of Fig. 2 we report the behaviour of P4ðkinÞ computed on the restricted nets.
In this case the situation is very different, and no scale-free behaviour is observable.
In particular, in US markets the maximum in-degree is significantly decreased,
while in the Italian one it remains the same. This means that in the extended
networks describing NYSE and NAS-DAQ the tail of P4ðkinÞ is dominated by
large investors outside the market, while in MIB it is dominated by listed companies,
who are the largest holders of the market. For the small kin region of P4ðkinÞ the
opposite occurs. This is reflected in the fact that only 7% of companies quoted in US
markets invest in other companies, while the corresponding fraction is 57% in the
Italian case.
3. Pareto’s law generalized to portfolio volume

To capture the weighted nature of the networks, we also consider the number
r4ðvÞ of investors with portfolio volume greater than or equal to v. Once more
(see Fig. 3a), we find that in all cases the tail of the distribution is well fitted by a
Fig. 3. (a) Cumulative histograms of v (money units are millions of current US dollars, or M$) for the

extended nets and power-law fits to the tails. (b) Scaling of v against kin: The straight lines are the curves
vðkinÞ / k

1=b
in with b predicted by Eq. (7), and are not fits to the data.
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power law

r4ðvÞ / v1�a (2)

corresponding to a probability density rðvÞ / v�a: The empirical values of the
exponent are aNYS ¼ 1:95; aNAS ¼ 2:09; aMIB ¼ 2:24: Note that, since v provides an
estimate of the (invested) capital, the power-law behaviour can be directly related
to the Pareto tails [1–4] describing how wealth is distributed within the richest part of
the economy. Consistently, note that also the small v range of r4ðvÞ seems to mimic
the typical form displayed by the left part of many empirical wealth distributions
[3,4], whose functional characterization is however controversial (log-normal,
exponential and Gamma distributions have been equivalently proposed [3,4] to
reproduce it). Since in the following we are interested in the large v and kin limit, the
characterization of the left part of the distributions is however irrelevant, and we
shall only consider the Pareto tails and the corresponding exponents. Note that,
although the scale-free character encapsulated in Eq. (1) is already known to be a
widespread topological feature [12], power-law distributions describing the sum of
link weights have only been addressed theoretically [19] in the field of complex
networks. Therefore our mapping of Pareto distributions (well established in the
economic context [1–4]) in a topological framework provides an empirical basis for
the investigation of these specific properties of weighted networks.
4. Scaling of portfolio volume versus portfolio diversification

We now look for an additional characterization of our system. In particular, we
ask if any relation between ðkinÞi and its weighted counterpart vi can be established.
If this is the case, then Eqs. (1) and (2) are not independent since they can be derived
from each other through the expression relating v and kin: In a topological context,
this directly leads us to the framework explored in Ref. [16] where the degree of a
vertex depends on an associated quantity or fitness, which in this case is embodied in
vi: In such a case, the connection probability is necessarily fitness-dependent and its
form—together with that of the fitness distribution—determines the topology of the
network [16]. Our empirical analysis reveals that this is indeed the case. As shown in
Fig. 3b, we find that v is an increasing function of the corresponding kin; following an
approximately straight line in double-logarithmic axes. The slope of this power-law
curve is different across the three markets. However, in the Italian case two points
deviate from this trend, signaling an anomalous behaviour for small (kinp3) values
of the diversification. We checked that these points correspond to investors holding a
very large fraction (X50%) of the shares of an asset, whose portfolio has therefore a
large volume even if its diversification is small. Clearly, these investors are the
‘effective controllers’ of a company. While in both US markets the fraction of links
in the network corresponding to such a large weight is of the order of 104 (so that
their effect is irrelevant on the plot of Fig. 3b), in MIB it equals the extraordinarily
larger value 0.13. This determines the ‘peak’ at small kin superimposed to the
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power-law trend in the Italian market, and singles out another important difference
between MIB and the US markets.
5. The fitness model with generalized preferential attachment

The results discussed so far are rather surprising since they show that portfolio
structure is governed by simple laws in each of the three markets, allowing for an
integrated description of both ordinary investors and companies despite their
investments are expected to be driven by different factors. The former are in fact
expected—at least within the standard framework of portfolio selection [15]—to
diversify their investments as much as possible in order to minimize financial risk,
while companies instead organize their portfolios in a more focused way in order to
establish strategic business alliances.

Turning to a topological context, we now show that, as anticipated above, the
observed properties can be reproduced by means of a recent stochastic network
model [16] that introduces a fitness variable characterizing each vertex. Although the
original model was designed for undirected graphs, it can be simply generalized to
directed networks as follows. There are two types of vertices in the network, which in
our case represent the N agents (each characterized by its fitness xi) and the M assets
(characterized by a different quantity yj). Due to the presence of listed companies
acting as both types, the total number of vertices does not sum up to N þ M : We
shall regard xi as proportional to the portfolio volume of i, which is the wealth that i

decides to invest. The quantity yj can instead be viewed as the information (such as
the expected long-term dividends and profit streams) associated to the asset j. Note
that yj can also be a vector of quantities, since the following results can be easily
generalized to the multidimensional case [20]. A link is drawn from j to i with a
probability which is a function f ðxi; yjÞ of the associated properties. Note that
f ðx; yÞaf ðy; xÞ; differently from the undirected case [16].

The simplest choice is the factorizable form f ðx; yÞ ¼ gðxÞhðyÞ where gðxÞ is an
increasing function of x, which takes into account the fact that investors with larger
capital can afford larger information and transaction costs and are therefore more
likely to diversify their portfolios. The function hðyÞ encapsulates the strategy used
by the investors to process the information y relative to each asset. The stochastic
nature of the model allows for two equally wealthy agents to make different choices
(due for instance to different preferred investment sectors), even if assets with better
expected long-term performance are statistically more likely to be chosen. For large
web sizes, the expected in-degree of an investor with fitness x is given by

kinðxÞ ¼ gðxÞhT ; (3)

where gT is the total value of gðxÞ summed over all N agents. If the above relation is
invertible, and if rðxÞ denotes the statistical distributions of x computed over the N

agents, then the in-degree distribution is given by

PðkinÞ ¼ r½xðkinÞ�dxðkinÞ=dkin : (4)
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Analogous relations for koutðyÞ and PðkoutÞ can be obtained directly. However, since
our information regarding kout is incomplete (see above), we cannot test our model
with respect to the function hðyÞ; and in the following we shall only consider the
quantities derived from gðxÞ:

Note that the above mechanism differs from those explored in most network
models [12], where new vertices are continuously added and preferentially linked to
pre-existing ones with large degree k (‘preferential attachment’ rule). In the latter
case, the functional form of the degree-dependent attachment probability can be
measured [12] in real evolving networks, and is found to be proportional to k (‘linear
preferential attachment’) or more generally to kb (‘nonlinear preferential attach-
ment’). Here, the attachment mechanism is ‘preferential’ with respect to the variable
x, and not to the pre-existing vertex degree. Within this ‘generalized preferential
attachment’ framework, the analogous choice for the connection probability is then
gðxÞ ¼ cxb with b40; where c is a normalization constant ensuring 0pgðxÞp1 (a
possible choice is c ¼ x�b

max; so that by defining x 	 v=vmax we can directly set c ¼ 1).
It is straightforward to show that the predicted expressions (3) and (4) now read

kinðxÞ / xb ; (5)

PðkinÞ / k
ð1�a�bÞ=b
in ; (6)

where we have used the fact that rðxÞ / x�a for large x. Note that the above results
still hold in the more general case when f ðx; yÞ is no longer factorizable provided that
kinðxÞ ¼ M

R
f ðx; yÞsðyÞdy / xb as in Eq. (5), where sðyÞ is the distribution of y

computed on the M assets.
6. Discussion and concluding remarks

The empirical power-law forms of rðxÞ; kinðvÞ and PðkinÞ are therefore in
qualitative agreement with the model predictions. Moreover, by comparing Eqs. (1)
and (6) we find that the model predicts the following relation between the three
exponents a; b and g:

b ¼ ð1� aÞ=ð1� gÞ : (7)

By substituting in the above expression the empirical values of a and g obtained
through the fit of Figs. 2a and 3a, we obtain the values of b corresponding to the
curves vðkinÞ / k

1=b
in shown in Fig. 3b, which simply represent the inverse of Eq. (5) in

terms of the quantity v. Remarkably, the curves are all in excellent agreement with
the empirical points shown in the same figure, except the ‘anomalous’ points of MIB.
This suggests that the proposed mechanism fits well the investors’ behaviour, apart
from that of the effective holders of a company.

A final comparison with the ‘traditional’ preferential attachment mechanism is
again revealing. Note that here we always observe the analogous of a superlinear
(b41) preferential attachment. However, while the traditional mechanism yields
scale-free topologies only in the linear case [12], here we observe power-law degree
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distributions in the nonlinear case as well. This is a remarkable result, since in order
to obtain the empirical forms of PðkinÞ the exponent b does not need to be fine-tuned,
and the results are therefore more robust under modification of the model
hypotheses. Also note that, interestingly, Pareto’s law of wealth distribution has
also been proposed [2,21] as a possible explanation for the ‘fat tails’ observed in
financial markets fluctuations. In a network context, the above results support the
hypothesis that the presence of nontopological quantities associated to the vertices
may be at the basis of the emergence of complex scale-free topologies in a large
number of real networks [16].
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