Systemic risk in economic and financial networks

Frank Schweitzer
fschweitzer@ethz.ch

In collaboration with S. Battiston, J. Lorenz, M. Puliga

Main Research Areas
- Economic Networks & Social Organizations
 - e.g. ownership networks, R&D networks, financial networks, ...
 - e.g. online communities, OSS projects, animal societies, ...

Methodological Approach: Data Driven Modeling
- economic databases: ORBIS, Bloomberg, patent databases
- online data: user interaction, communication records, blogs

Risk: Two Perspectives
- systemic risk
 - risk that a whole system comprised of many agents fails
 - opposed to individual agent failure ⇒ impact on others
 - agents, interactions ⇔ systemic properties?

- macro level approach ⇒ systems dynamics
 - small number of representative agents, nonlinear feedback
 - critical conditions of control parameters ⇒ regulation

- micro level approach ⇒ complex systems
 - large number of heterogeneous, strongly interacting agents
 - systemic risk as emerging property ⇒ focus on collective effects

Why do systems fail?
1. external or internal perturbations
 - supercritical shocks ⇒ increase resistance
 - solution: “more of the same”
 - problem: likelihood of extreme events

2. cascading effects
 - agents affected by spreading failure
 - solution: control structure
 - problem: optimal heterogeneity

3. contagious effects
 - agents follow the crowd (herding)
 - solution: control feedback
 - problem: acceleration, trend reinforcing
Structural perspective: Network topology

Some Empirics: Financial Networks

- skewed distributions: few banks interact with many others
- clusters: banks with similar investment behavior

(left) Clusters are grouped (colored) according to regional and sectorial organization
(right) Degree distribution of the interbank connection network

Hubs - good or bad for systemic risk?

- agent dynamics: \(s_i(t+1) = \Theta[\phi_i(t,s,A) - \theta_i] \)
- fragility \(\phi_i \) of agent \(i \) depends on failure of neighbors, \(s_j \in \{0,1\} \)
- (i) 'inward' variant: increase of fragility depends on in-degree
 \[\phi_i(t) = \frac{1}{k_i} \sum_{j \in \text{nb}_i(i,A)} s_j(t) \]
- (ii) 'outward variant': increase of fragility depends on out-degree
 - load of failing node (i.e. 1) is shared equally among neighbors
 \[\phi_i(t) = \sum_{j \in \text{nb}_i(i,A)} \frac{s_j(t)}{k_j} \]

Example: Outward variant - node C fails

Realistic scenario: Load redistribution

- major challenge in real networks: failure causes redistribution
- neighboring nodes have to compensate ⇒ increases risk of failure
- examples: financial networks, supply networks (power grid)

redistribution (given network A, states s(0))
- if node fails, load is distributed to active neighbors (if links exist)

\[\phi_i(t) = \begin{cases} \phi_i(t-1) + \sum_{j \in \text{fail}_{\text{in}}(i)} \frac{\phi_j(t-1)}{\text{sus}_{\text{out}}(j)} & \text{if } s_i(t) = 0 \\ 0 & \text{otherwise} \end{cases} \]

- \text{fail}_{\text{in}}(i): set of in-neighbors of i which failed at \(t-1 \)
- \text{sus}_{\text{out}}(j): set of out-neighbors of j which remain alive after \(t-1 \)
- twofold reinforcement: \(\text{fail}_{\text{in}}(i) \) increases, \(\text{sus}_{\text{out}}(j) \) decreases

Macroscopic reformulation

- global fraction of failed nodes ⇒ prediction

\[X(t) = \frac{1}{n} \sum_{i=1}^{n} s_i(t) \]

- systemic risk: \(X(t \to \infty) = X^* \to 1 \)
 - aim: compare different model classes → set \(p_\phi(0) \)
 - assumptions: fully connected network

macropscopic dynamics

\[X(t+1) = \int_{-\infty}^{\infty} p_\phi(t) - \theta(z) dz = P_\theta(\langle \phi(t) \rangle) \]

\[P_\theta(x) = \int_{-\infty}^{x} p_\theta(\theta) d\theta \]

procedure: express \(\langle \phi(t) \rangle \) in terms of \(X(t) \) ⇒ recursive equation

Comparison of Macrodynamics

- initial conditions normally distributed: \(z(0) \sim N(-\mu, \sigma) \)
 - case (i): \(\theta \sim N(\mu, \sigma) \), case (ii): \(\theta \sim N(\mu + \phi^\theta, \sigma) \)
 - \(\sigma^2 \): measure of initial heterogeneity in \(\theta \) across nodes
- initial failure: \(X(0) = \Phi_{\mu, \sigma}(0) \)
 - cumulative normal distribution function

\[X = \int_{-\infty}^{\infty} p_\mu(z) dz \]
Final fraction of failed nodes X^*

- **First-order phase transition:** Small variations in initial conditions lead to complete failure
- **Non-monotonic behavior** for case (ii): intermediate σ most dangerous

Top left: class (i) constant load. Top right: class (ii) load redistribution with initial load $\phi^0 = 0.25$.
Bottom line: Net fraction of failed nodes $X^* - X(0) \Rightarrow$ Systemic risk resulting from cascades only

Problem: Self-Ownership

- **75% of the ownership of the SCC firms stays within the SCC**
- Propagation of financial distress increases systemic risk
- Cross-ownership decreases competition \Rightarrow market failure

Topological: The highly connected core

- **Largest connected component (LCC) contains giant bow-tie:**
 - IN-section, strongly connected component (SCC) core,
 - OUT-section, tubes and tendrils.
- Remaining small connected components (CC).
- Numbers refer to:
 - Percentage of contained TNC, total TNC operating revenue.

Ownership Network of Transnational Companies (TNCs)

<table>
<thead>
<tr>
<th>Ownership Network of Transnational Companies (TNCs)</th>
<th>Topological: The highly connected core</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Topology: Financial Networks

- **Weighted network:** Links represent transaction volumes
- **Existence of a backbone:** Involves a small number of nodes

(left) Thousands of banks and tens of thousands of links representing USD 1.2×10^{12} in daily transactions
(right) Core of the network: 66 banks accounting for 75% of transfers, 25 banks being completely connected.
Acceleration due to trend reinforcement

1. Load redistribution
 - Topological effect: fewer agents have to carry the load
 - Increasing load \(\Rightarrow \) increasing risk of failure

2. Individual history matters
 - CDS spreads: failure today \(\Rightarrow \) worse conditions tomorrow
 - Bad trend \(\Rightarrow \) increasing risk of failure

3. Global coupling matters
 - US housing bubble: banking crisis due to macroeconomic feedback
 - Erosion of value and worse economy \(\Rightarrow \) increasing risk of failure

Bad Trends: Macroeconomic Feedback

"... we had it wrong ... it was more popcorn than domino"

- Data: FDIC (Federal Deposit Insurance Corporation), 2011
- Highly skewed distribution: 0.1 – 300.0 bn USD
- Indirect interaction: coupling due to macro economy, no direct cascades

Trend Reinforcement Model

Fragility of \(n \) agents evolves as

\[
\phi(t + 1) = \phi(t) + \sigma \xi(t) + \alpha \text{sign}(\Delta \phi(t))
\]

- Fragility\(\phi(t) \)
- Stochastic shocks\(\sigma \xi(t) \)
- Trend reinforcing\(\alpha \text{sign}(\Delta \phi(t)) \)

- Trend reinforcing\(\uparrow \rightarrow \uparrow \uparrow \rightarrow \uparrow \uparrow \)
- Reducing volatility\(\sigma \)
 - Decreases stochastic shocks\(\rightarrow \) less bankruptcies, BUT
 - Reduces possibility to break bad trends \(\rightarrow \) more bankruptcies!

Conclusion: We are safest with intermediate volatility

Herding into the wrong direction

- Wisdom of crowds
 - Median estimate of groups better than estimate of experts
 - Important condition: no correlations

- Crowds under "mild" information coupling
 1. "Social influence effect" (statistical)
 - Reduces opinion diversity without improving collective error
 2. "Range reduction effect" (statistical)
 - Moves truth to peripheral regions \(\Rightarrow \) crowds become less reliable
 3. "Confidence effect" (psychological)
 - Convergence leads to overconfidence, despite lack of improved accuracy

Laboratory Experiments

- social influence triggers convergence of estimates
- wisdom of crowds, i.e., group diversity, diminishes over time
- true value moves to peripheral regions
- individuals gain confidence in their own estimates

Conclusions: The Risk to Fail

1. Systemic Risk
 - failure of few agents is amplified (micro and macro feedback)
 - need of endogenous rather than exogeneous explanations
 - focus on backbone: small core of strongly connected important nodes

2. Control Structure
 - hubs: role of degree depends on redistribution mechanism
 - optimal agent: heterogeneity can reduce systemic risk
 - ownership: highly connected core increases systemic risk
 - phase transition: small changes lead to big impact on systemic risk

3. Control Feedback
 - load redistribution amplifies agent’s failure
 - trend reinforcement: intermediate volatility reduces failure
 - systemic risk without cascades: macroeconomic feedback
 - herding into the wrong direction: overconfidence, lack of improvement

EPJ Data Science starts Jan 2012 ... stay tuned